

Seaweed potential in the Netherlands

Hans Reith Wouter Huijgen Jaap van Hal Jip Lenstra

ECN-L--09-080

June 2009

Energy research Centre of the Netherlands

Seaweed potential in the Netherlands

Hans Reith, Wouter Huijgen, Jaap van Hal, Jip Lenstra ECN Biomass, Coal and Environmental Research *Macroalgae - Bioenergy Research Forum, 2nd June 2009, Plymouth, UK. Sponsored by SUPERGEN Bioenergy II*

www.ecn.nl

Contents

- Background
- Seaweed cultivation in the North Sea
- Potential integration with wind turbine parks
- Production costs
- Processing and biorefinery options
- Conclusions

J.H. Reith, E.P. Deurwaarder, K. Hemmes, A.P.W.M. Curvers, P. Kamermans, W. Brandenburg, G. Zeeman. 2005. Report ECN-C--05-008 (in Dutch). <u>http://www.ecn.nl/docs/library/report/2005/c05008.pdf</u>

NL targets Transportation Biofuels

- 2007: Obligation 2% biofuels; no tax reduction: costs for user.
- Stimulation development "2nd generation" biofuels: 60 MEuro in 5 years

Revision of targets in Oct. 2008 (concern about effectiveness, sustainability)

- 2009: reduced from 4.5% to 3.75%
- 2010: reduced from 5.75% to 4%

NL Biobased raw materials platform: target for 2030

• Substitute 30% fossil feedstock (ca. 850 PJ) with biomass to supply

60% transport fuels25% chemicals and materials25% of the electricity demand17% of heating requirements

Biomass demand: approx. 1200 PJth/yr = 80 Mton (60-80% from import)

- Sustainable development and production of biomass in NL and abroad Aquatic biomass (microalgae, seaweeds, other), use of agro-residues, crop development for biorefinery, certification of imported biomass
- Co-production of chemicals (C1-C6), transport fuels, electricity and heat Biorefining, fermentation, enzymatic/chemical conversion Gasification (SNG) /pyrolysis /co-firing/fermentation of residues
 http://www.senternovem.nl/energytransition/themes/biobased_raw_material_platform/index.asp

Current seaweed exploitation

* © C.J. Dawes ** © M.D. Guiry

> Macrocystis pyrifera (giant kelp);Californie*

Gracillaria line cultivation

- Current world production: ca. 10 Mton yr, > 40 species exploited (China, Philippines, Indonesia, USA, France, Ireland, Norway, ...)
- Market size ca. 6 Billion US\$ / year; 2 a 3% growth per year
- Major applications: food, phycocolloids as thickeners/gellings agents, extracts for cosmetics, animal feed/aquaculture, fertilizer.... No major energy applications
- Cultivation: line systems or floating

Figure 84 - Culture de Laminaria japonica en Chine. La majeure partie de la récolte est utilisée pour l'alimentation humaine directe mais le tonnage destiné à l'extraction d'acide alginique augmente d'année en année.

Photo's: © R. Perez,1997. Ces algues qui nous entourent. Ifremer.

Energy research Centre of the

janvier à avril : position horizontale

mai-juin : très forte croissanse début juillet (récolte)

Sea weed harvest in Asia (Photo Ifremer)

Harvest of Macrocystis (Kelco company)

Experimental ring system for cultivation of Laminaria in the German North Sea (AWI-Bremerhaven, B.H. Buck *et al*)

- •Good stability in the North Sea
- •Extrapolated biomass production ~ 20 tons d.w./ha.yr
- Scale-up potential ?

ECN BIO-OFFSHORE:

Large scale Seaweed production integrated with offshore wind turbine parks in the North Sea

- Assessment study 2005

Projection for 2040

- Seaweed cultivation area 5.000 km2 (<10 % of the NL area of the North Sea @ 57.000 km2)
- Integration with off-shore wind parks & (other) aquaculture operations
- Energy potential up to 350 PJth (25 Mton dry biomass per year)

J.H. Reith, E.P. Deurwaarder, K. Hemmes, A.P.W.M. Curvers, P. Kamermans, W. Brandenburg, G. Zeeman. 2005. Report ECN-C--05-008 (in Dutch). <u>http://www.ecn.nl/docs/library/report/2005/c05008.pdf</u>

Some results

- North Sea is an additional area for biomass production
- Areal productivity ca. 20 tons d.w./ha.yr seems feasible without nutrient addition
- Productivity can possibly be increased up to 50 ton d.w./ha.yr via layered cultivation / controlled addition of nutrients

•Energy potential (5,000 km²): up to 350 PJ. Net : 50 PJ green chemicals + 160 PJ fuels. Total estimated CO₂ emission reduction approx. 11 Mton/yr

• Impact of large scale-seaweed cultivation on the North Sea ecosystem is a critical success factor (introduction of species, interference with marine mammals, eutrophication,..)

• Fast growing native seaweed species available

Seaweed species native to the North Sea

Laminaria saccharina

Ulva sp.

Laminaria digitata

Laminaria hyperborea (Perez)

Alaria esculenta (Irish Seaweed Centre)

Palmaria palmata (AWI)

Synergy with offshore wind turbine parks

- Parks closed for shipping
- Multifunctional use of area and offshore constructions
- Potential combination with other aquaculture operations,
 e.g. mussel cultivation
- Joint O&M: personnel, vessels, equipment

Source: Bela H. Buck, Alfred Wegener Institute, DE.

Result: Cost reduction for both activities Challenges: construction, additional facilities,.....

Off-shore wind turbine parks in the North Sea

- NL Target 2020: 6000 MW (ca. 10% NL e-use)
- •10 parks @ 600 MW = 100 turbines 6 MW = 100 km2 per 600 MW park
- In 2020: 1000 km2 potentially available for seaweed cultivation
 Beyond 2020

Off-shore wind turbine parks in the North Sea

- Spatial planning
 - Shipping routes
 - Military areas
 - Fishery
 - Sand production
 -

Location is a major factor for investment costs, logistics and operational costs

Figuur 7.1 Beheers- en gebruiksfuncties in de Nederlandse Exclusieve Economische Zone (NEEZ) van de Noordzee. De gemarkeerde gebieden zijn uitgesloten voor offshore windenergie. Bron: Rijkswaterstaat

Effects on North Sea ecosystem "critical success factor"

- Introduction of species
- Effects on fish, marine mammals
- Effect on eutrophication

•

- Seaweed cultivation can enhance biodiversity by offering shelter + feed for molluscs, fish. Restoring fish populations?
- Pilot scale test in North Sea required to assess impacts (-/+)
- Early involvement of stakeholders and public
- Communication, Address societal aspects

Seaweed production cost

Type of cultvation system	Productivity			Costs Re		ference:	
	ton daf/ ha.yrr	ton d.w./ ha.yr	\$ ton d	af	\$ (or €) / ton d.w.		
Chili: harvest of natural populations	-	-	-		250]	nternet
Philippines: coastal cultivation; 'off-farm' price	-	-	-		80 - 160]	nternet
Nearshore cultivation Macrocystis	34 50	57 83	67 42		40 25		[3]
Gracillaria/Laminaria line cultivation (offshore)	11 45	14 59	538 147		409 112		[3]
Tidal Flat farm Gracillaria/Ulva	11 23	14 30	44 28		33 21		[3]
Floating cultivation Sargassum	22 45	32 66	73 37		50 25		[3]
Experimental, ring system offshore Laminaria cultivation in the North sea	-	20	-		2500 €		[4]

Indication production costs (mostly from published design studies): $50 \in (nearshore/floating) - 400 \in (offshore)$ per ton dry weight. Verification required!

Seaweed production cost

Production costs depend mostly on :

- investment costs cultivation and harvesting systems
- biomass productivity per unit of area

Current cost offshore cultivation are too high for energy generation alone: combination of products and fuels via biorefinery may be economically feasible

Definition of biorefinery cf. IEA Bioenergy Task 42 Biorefineries

•Biorefinery is the sustainable processing of biomass into a spectrum of marketable products and energy

Aims: optimize economics and reduction of environmental impacts

Bio-Energy option Assessment based on estimates of investments and operational costs conversion techn.	Value of energy carrier	Maximum allowable (break even) cost seaweed excluding profit excluding subsidy for e-production [Euro/ton d.w.]	Maximum allowable (break even) cost seaweed excluding profit INCLUDING subsidy for e-production [Euro/ton d.w.]
Methane via Anaerobic digestion (proven technology for seaweed)	Methane: 3.5 Euro/GJ	8	8
Electricity via Anaerobic digestion	27 Euro/MWh	10	76
Ethanol + electricity	Ethanol: 0.4 Euro/L Electr 27 Euro/MWh	3	44
Electricity via bio- crude (HTU)	Biocrude production cost 6.4 Euro/GJ Electr 27 Euro/MWh	-31	71

Composition Laminaria sp.

Component	Contents
	in w% d.w.
Cellulose	6
Hemicellulose	0
Lignin	0
Lipids	2
Proteïns	12
Starch	0
Alginates	23
Laminaran	14
Fucoidan	5
Mannitol	12
Total fermentable	e 60
sugars	
Ash contents	26

Assumed !

Specific composition: range of polysaccharides, proteins, minerals, no lignin

Highly suited feedstock for biorefinery to produce products and fuels

- higher value compounds (phycocolloids, colourants, mannitol, fucoidan, proteins)
- platform chemicals via fermentation (e.g. lactic acid) or chemical conversion
- fuels via fermentation (EtOH, CH4, H2) or thermochemical conversion (HTU, pyrolysis)

Potential extraction products from Laminaria sp.

Product	Markt	Gehalte in	Product	Waarde
	waarde	Laminaria	1)	zeewier
		gew. %		\$/ton
	\$/ton	ds	ton/ton	droge stof
Alginaat	6.000	23	0,184	1104
Mannitol	6.000	12	0,096	576
Fucoidine	6.000	5	0,04	240
Jodium	14.500	0,45	0,0036	52,2
Potash	60	9,5	0,076	4,56

•Product value ranges from 5 to 1100 \$/ton seaweed

- •Combinations possible
- •Potential market volume unknown

Potential fermentation, products from Laminaria

Product	Markt- waarde	Produc- tie	Waarde	100.000 ton/jaar (20 km2)		500.000 ton/jaar (100 km2)	
		(kg/ton	(\$/ton	(ton	Omzet	(ton	Omzet
	(\$/ton)	zeewier)	zeewier)	product)	(M\$/jr)	product)	(M\$/jr)
Ethanol	331	255	84	25.400	8,4	127.000	42,0
Azijnzuur	728	247	179	24.600	17,9	123.000	89,5
Butyraldehyde	948	123	117	12.300	11,7	61.500	58,3
Adipine zuur	1.433	370	530	36.900	52,9	184.500	264,4
Butanol	904	123	111	12.300	11,1	61.500	55,6
Melkzuur	300	486	146	48.600	14,6	243.000	72,9
Succinic acid	772	429	331	42.800	33,0	214.000	165,1
Propylene glycol	1.279	133	170	13.300	17,0	66.500	85,0
Glycerol	1.279	247	315	24.600	31,5	123.000	157,3
Citroenzuur	1.808	429	775	42.800	77,4	214.000	386,9
Proprion zuur	904	227	205	22.600	20,4	113.000	102,1
2-3 Butanediol	1.984	163	323	16.200	32,1	81.000	160,7
Gemiddelde waarde producten (\$/ton)			1.050				
Gemiddelde waarde zeewier (\$/ton d.s)			274				

large potential / Av. Product value per ton seaweed ca. 275 \$

• technology for fractionation/hydrolysis and fermentation systems for seaweed sugars needs to be developed

Seaweed processing options

Focus EOS LT proposal Seaweed Biorefinery
Platform chemicals and fuels via catalytic conversion and fermentation
Full valorization

Seaweed on ocean scale

- Focus on Sargassum sp. (fast growing, floating)
- The Sargasso Sea seems a good location
- Not much current, waves and storms
- •Cost estimate floating cultivation ca. \$50/ton d.w. (Chynoweth)
- Sargassum seaweed is now a pest
- But it forms also a good habitat for fish
- Monitoring with satellites feasible

Seaweed on ocean scale

- •Proposed concepts for farms
- •Floating PE-pipe proposed as boundary circle
- •Pre processing on sea to raw concentrate
- •Biorefinery on shore
- •Costs could be competitive to oil or natural gas if large scale production and conversion prove to be possible

Global aquatic biomass energy potential

Most feasible technical concepts		Area	Potential	
Set 1: Land based open ponds for		Arid land in (sub) tropical zones (deserts)	00 51	
	microalgae	and close to coast (max 100 km)	90 E1	-
Set 3: Horizontal lines for macroalgae Set 5: Vertical lines for macroalgae Set 6: Macroalgae colony		At existing infrastructure – f.e. offshore	110 E1	
		wind farms (up to 100 km offshore)	110 LJ	
		Near coast (max 25 km) in nutrient rich water	35 EJ	
		At open sea (biological deserts), up to 2000 km offshore	~6000 EJ	
	TOTAL		~ 6235 EJ	

Source: Ecofys; World energy consumption: 480 EJ/yr

ECN NL projects Sea weed cultivation and biorefinery

Nearshore Seaweed cultivation pilot (in preparation)

- Initiated by ATO Den HelderCooperation with WUR,
- IMARES, TNO, ECN and others
- Hatchery at Den Helder (TNO)Grow out area at near shore
- location
- •Experiments with several production techniques and North sea species
- •EU-EFRO grant pending

Seaweed biorefinery

EOS LT R&D project Submitted to SenterNovem

R&D issues

Technological

- Offshore cultivation systems/ engineering
- Nutrient supply and recycle
- Harvesting & logistics
- Processing (1st step at sea?)/
- Development of biorefinery systems
 - Hydrolysis and Fermentation systems
 - Chemical conversions
 - Energy conversion

Photo: IFREMER, F.

Non-technological

- Ecological effects (-/+)
- Development of logistic chain
- Societal and Socio-economic aspects

Conclusions

- Seaweed biomass offers a vast potential as a source of biobased chemicals and bio-energy.
- Seaweed cultivation combined with offshore wind turbine parks offers potential high productivity, multifunctional area use incl. potential combination with other aquaculture operations.
- The production costs are uncertain. Offshore cultivation costs seem too high for energy production alone. Seaweed biomass is highly suited for production of combinations of renewable chemicals and energy via biorefinery to enhance economic feasibility and reduce environmental impacts.
- R&D should focus on development of offshore cultivation systems, logistics and biorefinery and on environmental and socio-economic impacts. More insight in the feasibility of floating cultivation is required because of the potential low cost.

Some key references

- Energy supplies from Sea Farming, 1980. In: N.P. Cheremisinoff, P.N. Cheremisinoff and F. Ellerbusch (eds). Biomass: Applications, Technology and Production. Marcel Dekker Inc. New York and Basel.
- Wilcox, H.A.1982. The ocean as a supplier of food and energy. In: Mischlin and Bachofen (eds). New trends in Research and Utilisation of Solar Energy through Biological Systems. Experientia Suppl. Vol. 43.
- Chynoweth, D.P. 2002. Review of biomethane from Marine Biomass. History, results and conclusions of the *"US Marine Biomass Energy Program"* (1968-1990). 194 pp.
- Pérez, R. et al, 1997. Ces algues qui nous entourent. Conception actuelle, role dans la biosphere, utilizations, culture. Editions Ifremer. ISBN 2-905434-75-9.
- K. Luning and S. Pang, 2003. Mass cultivation of seaweeds: current aspects and approaches. Journal of Applied Phycology 15: 115-119.
- Buck, B.H. & C.M. Buchholz, 2004. The offshore ring: A new system design for the open ocean aquaculture of macroalgae. Journal of Applied Phycology 16: 355 368. 2004.
- J.H. Reith, E.P. Deurwaarder, K. Hemmes, A.P.W.M. Curvers, P. Kamermans, W. Brandenburg, G. Zeeman. 2005. Report ECN-C--05-008 (in Dutch). http://www.ecn.nl/docs/library/report/2005/c05008.pdf

<u>http://www.awi-bremerhaven.de/</u> <u>http://www.cbm.ulpgc.es/seapura/index.html</u> <u>http://www.senternovem.nl/energytransition/</u> www.algaebase.org Thank you for your attention Hans Reith, <u>reith@ecn.nl</u>

> <u>www.ecn.nl</u> <u>www.biosynergy.eu</u> <u>www.biorefinery.nl</u>

> > NOAA