

Micrometeorological observations of CH₄ and N₂O at a managed fen meadow in the Netherlands

P.S. Kroon A. Hensen

H. Jonker

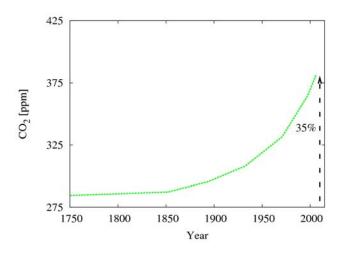
Presented at a seminar from the Meteorology and Air Quality section at Wageningen University and Research Center, 26 February 2009, Wageningen, the Netherlands

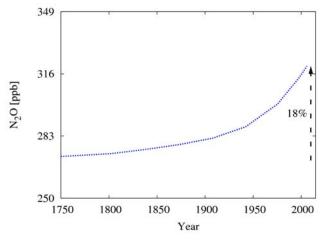
ECN-L--09-073 May 2009

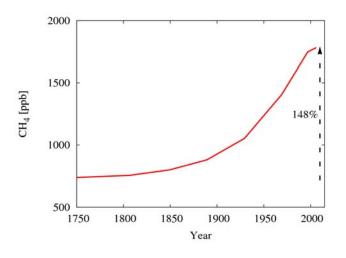
Energy research Centre of the Netherlands

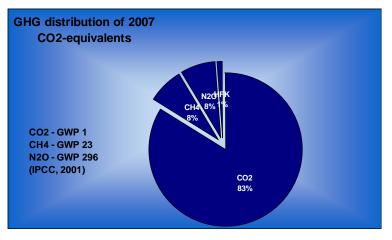
Micrometeorological observations of CH_4 and N_2O at a managed fen meadow in the Netherlands

Petra Kroon^{1,2}, Arjan Hensen¹ & Harm Jonker² 1. ECN, Netherlands; 2. TU Delft, Netherlands


Outline


- Background
- EC flux measurements
- Summary
- Future plans





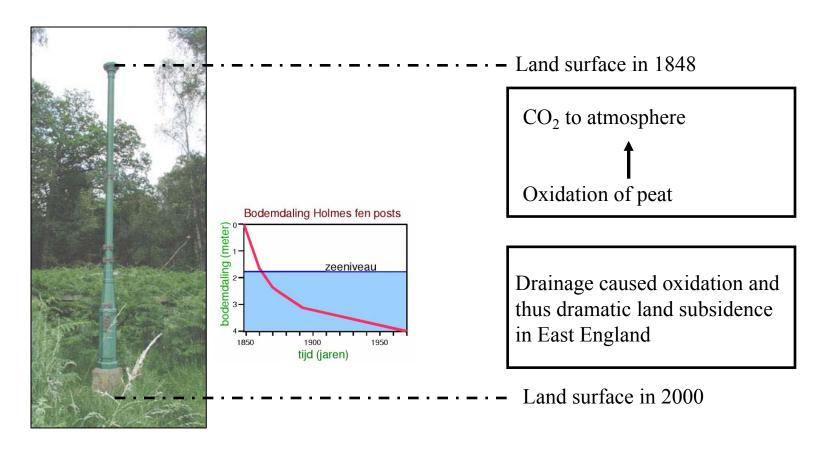
Background: Atmospheric concentrations

Natural sink of CO₂

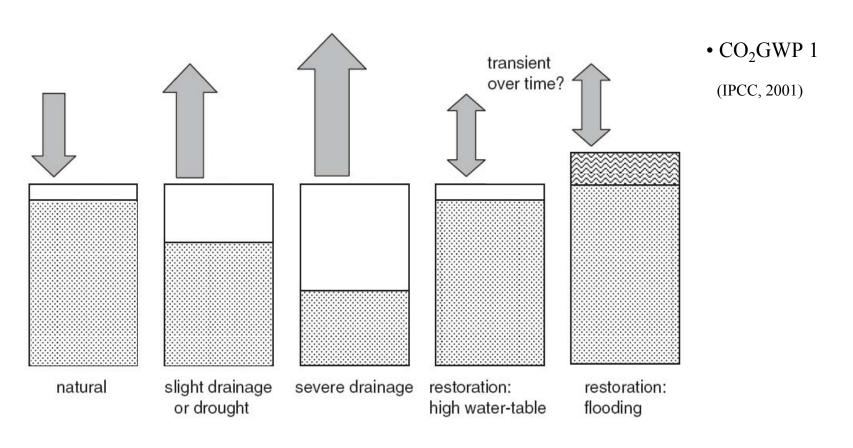
• 50% of atmospheric C content is accumulated in peat (Dolman et al., 2008)

Natural sink of CO₂

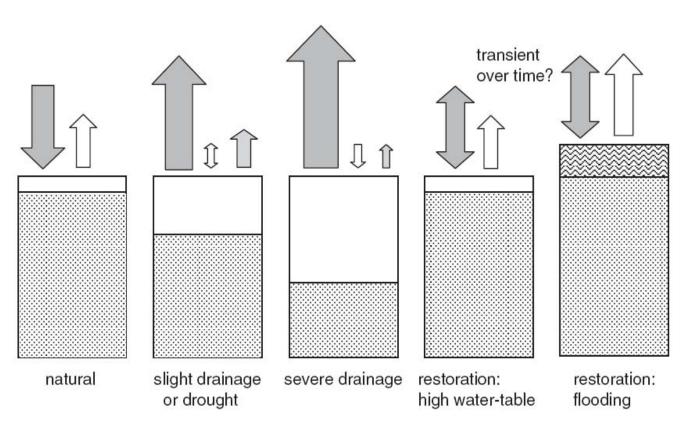
• 50% of atmospheric C content is accumulated in peat (Dolman et al., 2008)


Drainage

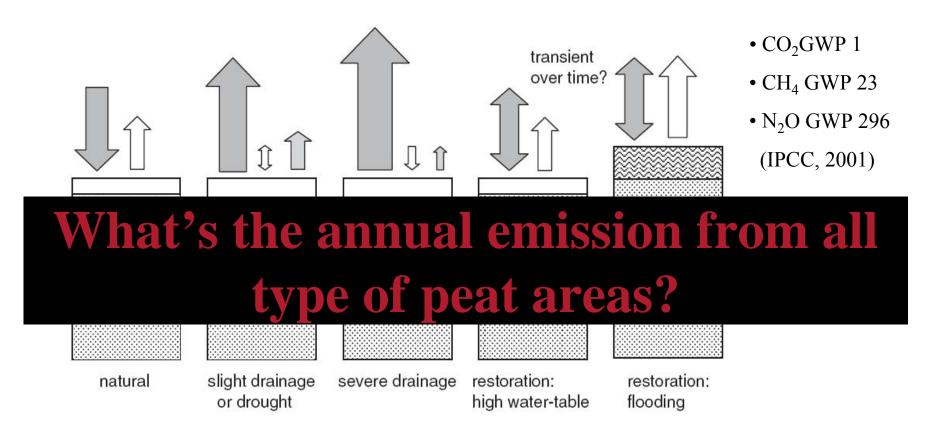
• Sudden release of all peat would release in 50% increase of atmospheric CO₂ (Dolman et al., 2008)



http://www.geo.vu.nl/~huik/moeras.html



Drösler et al., 2008



- CO₂GWP 1
- CH₄ GWP 23
- N₂O GWP 296 (IPCC, 2001)

Drösler et al., 2008

Drösler et al., 2008

Background: Lack of accurate annual sums

Table 1.2	2 Uncertainty of total annual emissions			
CO ₂	±5%	HFCs	±50%	
CH ₄	±25%	PFCs	±25%	
N ₂ O	±50%	SF ₆	±50%	
Total greenh	ouse gases		±5%	

IPCC category	Category	Gas	Combined uncertainty as a percentage of total national emissions in 2006
4D3	Indirect N ₂ O emissions from nitrogen used in agriculture	N ₂ O	3.1%")
4D1	Direct N₂O emissions from agricultural soils	N ₂ O	1.4%
1A4a	Stationary combustion: Other Sectors: Commercial/Institutional, gases	CO ₂	1.0%
6A1	CH ₄ emissions from solid waste disposal sites	CH ₄	0.9%
4B1	Emissions from manure management : cattle	CH ₄	0.7%
1A1b	Stationary combustion: Petroleum Refining: liquids	CO ₂	0.6%
2B2	Nitric acid production	N ₂ O	0.6%
1A3b	Mobile combustion: road vehicles: diesel oil	CO ₂	0.5%
4B8	Emissions from manure management: swine	CH ₄	0.4%
4A1	CH, emissions from enteric fermentation in domestic livestock: cattle	CH,	0.4%

") calculated uncertainties, for ranking purposes not rounded off

Maas et al., MNP, 2008

Background: Lack of accurate annual sums

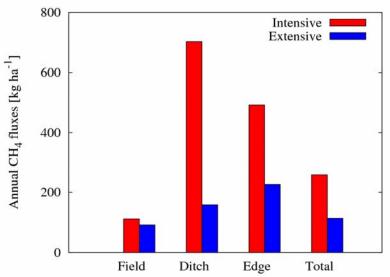
Due to temporal variation

1200 Int all Int weekly 900 $\mathrm{Flux}\ \mathrm{N_2O}\ [\mathrm{ngN}\ \mathrm{m^{-2}s^{-1}}]$ 600 Cumulative emission Int all: 3.09 kgN ha⁻¹ Int weekly: 5.47 kgN ha-1 300 -300 14/05/06 23/05/06 01/06/06 10/06/06 Date

Managed site in Reeuwijk in the Netherlands

(Kroon et al., 2008)

Uncertainty in N_2O annual estimates derived by chamber may be as high as 50% (Flechard et al., 2007)



Background: Lack of accurate annual sums

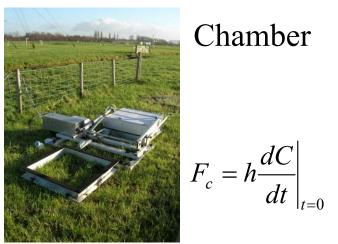
Due to spatial variation

Top view Reeuwijk site in the Netherlands

(Based on Schrier et al., 2008)

Background: Measurement techniques

Chamber


$$F_c = h \frac{dC}{dt} \bigg|_{t=0}$$

Background: Measurement techniques

Chamber

Eddy Covariance

$$F_c = \frac{1}{T_a} \int w'(t) C'(t) dt$$

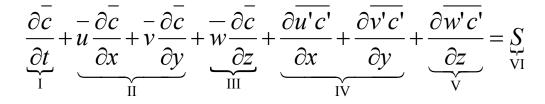
Background: Measurement techniques

Chamber

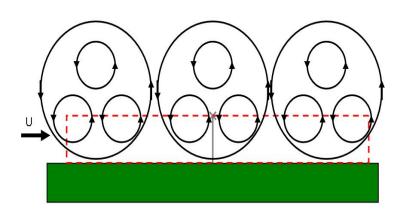
Eddy Covariance

Is it possible to perform EC measurements of CH_4 and N_2O ?

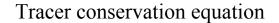
Can EC measurements contribute to a decrease of the uncertainty in annual estimates of CH_4 and N_2O ?

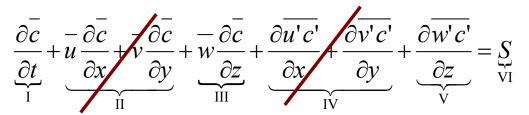

Detailed outline

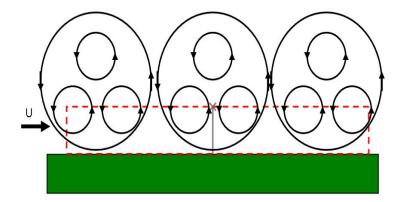
- Background
- EC flux measurements
 - Is it possible to perform EC measurements of CH₄ and N₂O?
 - What's the uncertainty in EC measurements of CH₄ and N₂O?
 - How comparable are fluxes measured by EC and chamber for CH₄?
- Summary
- Future plans

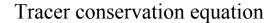


Tracer conservation equation

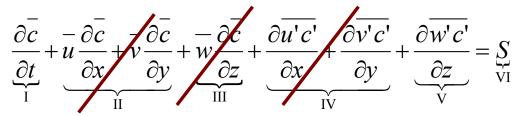


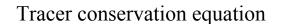




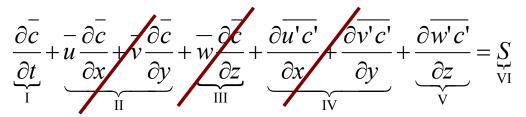

After Reynolds decomposition, integrating over the height and assuming:

- Horizontal homogeneity
- Flat terrain




After Reynolds decomposition, integrating over the height and assuming:

- Horizontal homogeneity
- Flat terrain
- Negligible mean vertical wind speed


$$\underbrace{\int_{0}^{h} S_{c} dz}_{NEE} = \underbrace{\int_{0}^{h} \frac{\partial \overline{c}}{\partial t} dz}_{Storage} + \underbrace{\overline{w'c'}}_{\widetilde{F}_{c}}|_{z=h}$$

After Reynolds decomposition, integrating over the height and assuming:

- Horizontal homogeneity
- Flat terrain
- Negligible mean vertical wind speed

$$\underbrace{\int_{0}^{h} S_{c} dz}_{NEE} = \underbrace{\int_{0}^{h} \frac{\partial \overline{c}}{\partial t} dz}_{Storage} + \underbrace{\overline{w'c'}|_{z=h}}_{\widetilde{\widetilde{F}}_{c}}$$

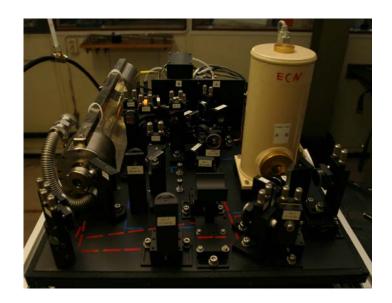
Sonic anemometer

Wind measurements

Tube connected to QCL

CH₄ measurements

N₂O measurements

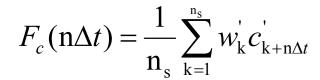


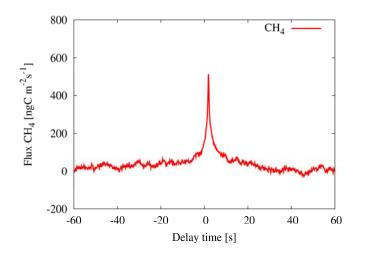
$$F_c = \overline{w'c'}\Big|_{z=h}^{\text{meas}}$$

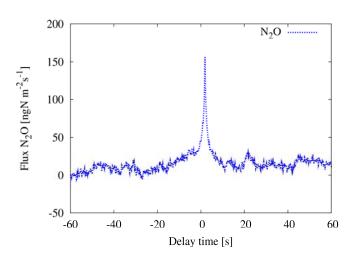
Quantum cascade laser

Requirements EC flux measurements:

- Stationair at least over 30 min
- Continuously running
- Sensitivity of 0.3 ppb and 1 ppb for N₂O (average 310 ppb) and CH₄ (average 1800 ppb)

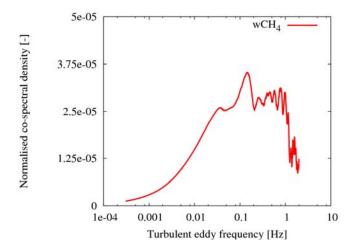

Kroon et al., BG, 2007

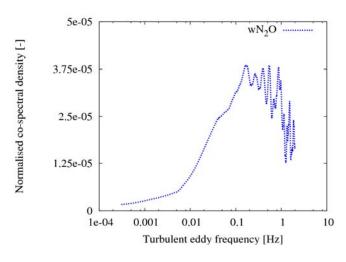




Delay time between w and c measurement!!

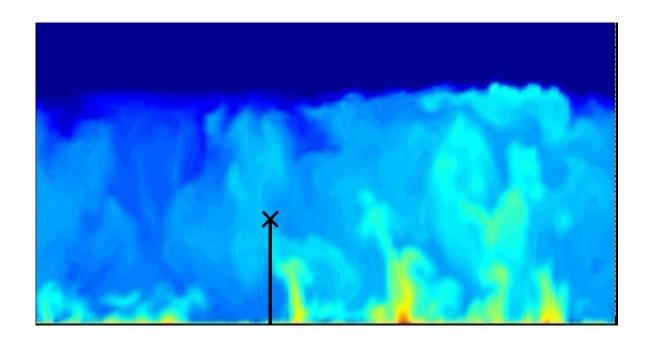
Kroon et al., BG, 2007





Do we detect all contributing eddies?

Time $F_c = \int w'(t)c'(t)dt$ $F_c = \int C_{wc}(f)df$ Domain



Kroon et al., BG, 2007

Uncertainty in EC flux measurements of CH₄ and N₂O

$$F_c = \overline{w'c'}\Big|_{z=h}^{\text{meas}}$$

$$\widetilde{\widetilde{F}}_{c} = \overline{w'c'}\Big|_{z=h}$$

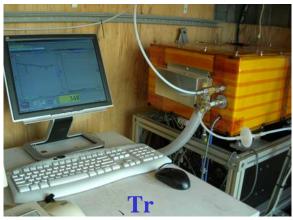
Courtesy: J. Schalwijk

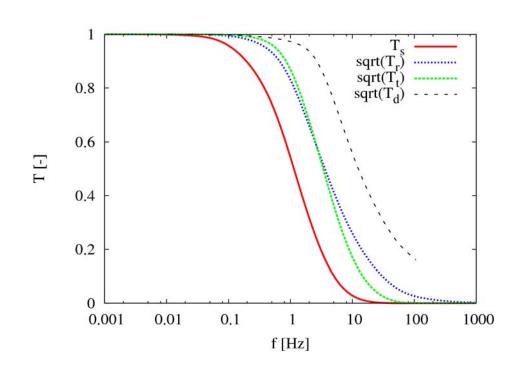
Uncertainty in EC flux measurements of CH₄ and N₂O

$$F_c = \overline{w'c'}\Big|_{z=h}^{\text{meas}}$$

Uncertainties

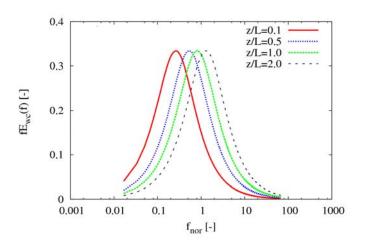
- Drift in instruments (R)
- Precision of instruments (R)
- One point sampling (R)
- Alignment sonic anemometer (S)
- Calibrations (S)
- Low frequency response losses (S)
- High frequency response losses (S)
- Delay time determination (S/R)

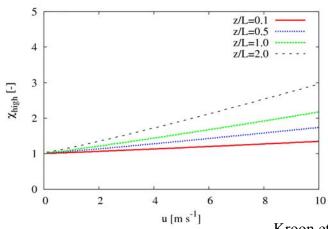

$$\widetilde{\widetilde{F}}_{c} = \chi_{cal} \chi_{low} \chi_{high} F_{c} + \chi_{Webb}$$


$$F_{c} = \overline{w'c'}\Big|_{z=h}^{meas}$$

$$T_{high}(f) = T_s(f)\sqrt{T_r(f)T_t(f)}\sqrt{T_d(f)}$$

Kroon et al., submitted

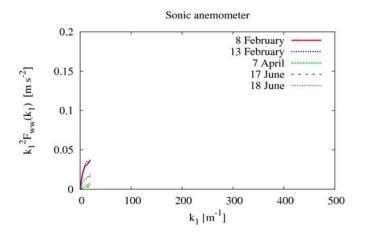

$$\chi_{high} = \frac{\int_0^\infty C_{wc}(f)df}{\int_0^\infty T_{high}(f)C_{wc}(f)df}$$


Empirical Kaimal spectrum for z/L>0

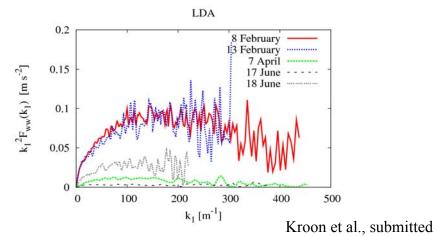
$$fE_{wc}(f) = f \frac{C_{wc}(f)}{\overline{w'c'}} = \frac{f_{nor}}{A_{wc} + B_{wc} f_{nor}^{2.1}}$$

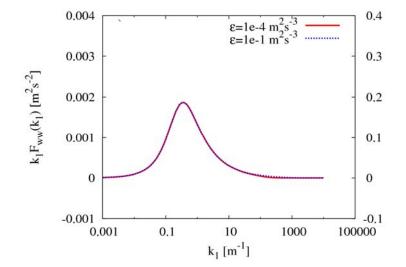
$$A_{wc} = 0.284 \left(1 + 6.4 \frac{z}{L} \right)^{0.75}$$

$$B_{wc} = 2.34 A_{wc}^{-1.1}$$



Kroon et al., submitted




Model Pope (2000)

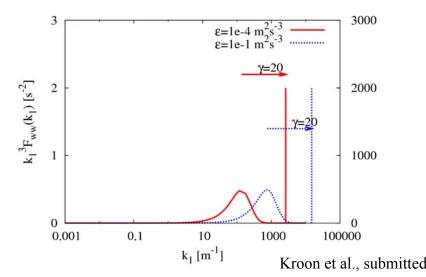
$$E(k) = C\varepsilon^{2/3}k^{-5/3}f_L(kL)f_\eta(k\eta)$$

$$E(k) = C\varepsilon^{2/3}k^{-5/3}f_L(kL)f_{\eta}(k\eta) \qquad \varepsilon \approx \int k_1^2 F_{ww}(k_1)dk_1$$

$$F_{ww}(k_1) = \frac{1}{4} \left(F_{uu}(k_1) - k_1 \frac{dF_{uu}(k_1)}{dk_1} \right) \qquad \eta = \left(\upsilon^3 / \varepsilon \right)^{1/4}$$

$$F_{uu}(k_1) = \frac{1}{2} \int_{k_1}^{\infty} \frac{E(k)}{k} \left(1 - \frac{k_1^2}{k^2} \right) dk$$

e.g. Nieuwstadt (1998)

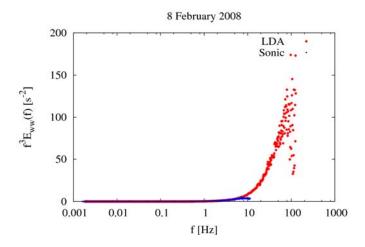

$$\varepsilon \approx \int k_1^2 F_{ww}(k_1) dk_1$$

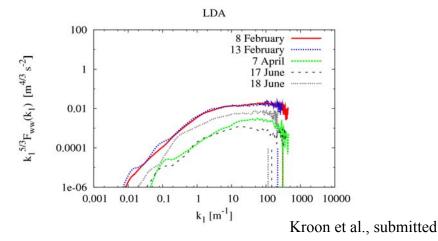
$$\eta = (\upsilon^3 / \varepsilon)^{1/4}$$

Kroon et al., AFM, submitted

$$\lambda_{\varepsilon} = \gamma \eta$$

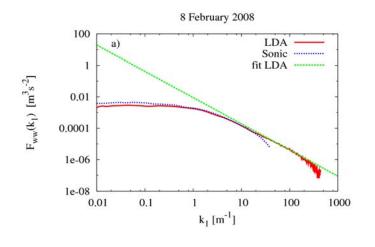
	γ
E(k)	15
$F_{uu}(k_1)$	25
$F_{ww}(k_1)$	20

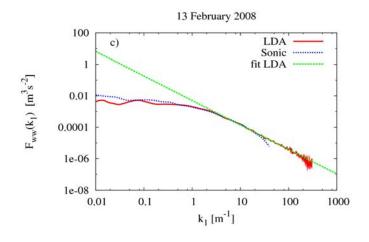


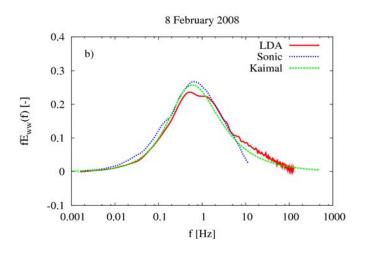


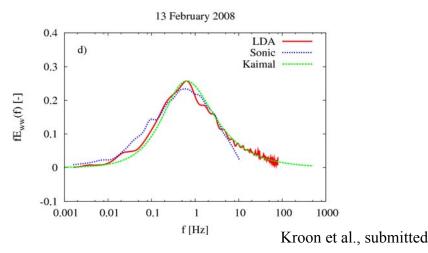
	8 February	13 February	7 April	17 June	18 June
η [m]	1x10 ⁻³	1x10 ⁻³	2x10 ⁻³	$3x10^{-3}$	2x10 ⁻³
$\lambda_{\varepsilon}[m]$	20x10 ⁻³	20x10 ⁻³	43x10 ⁻³	54x10 ⁻³	29x10 ⁻³
$Min(\lambda_{son})$ [m]	157x10 ⁻³				
$Min(\lambda_{LDA})[m]$	14x10 ⁻³	20x10 ⁻³	13x10 ⁻³	16x10 ⁻³	28x10 ⁻³

Dissipation scale is detected!!

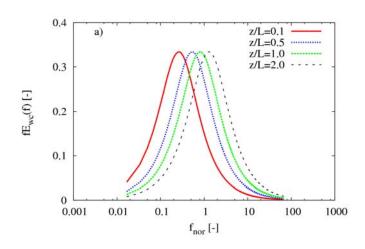

Empirical Kaimal spectrum can be validated!!

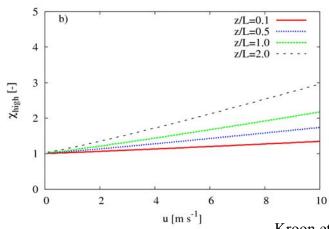






Reminder: High frequency correction

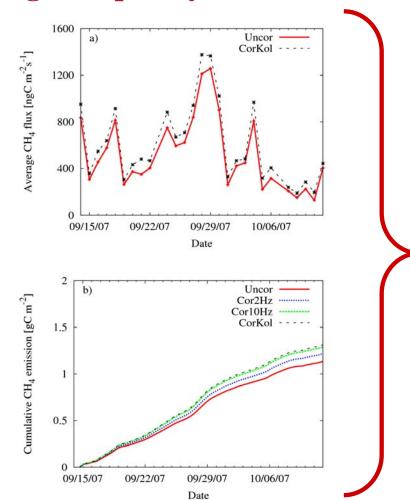

$$\chi_{high} = \frac{\int_0^\infty C_{wc}(f)df}{\int_0^\infty T_{high}(f)C_{wc}(f)df}$$


Empirical Kaimal spectrum for z/L>0

$$fE_{wc}(f) = f \frac{C_{wc}(f)}{\overline{w'c'}} = \frac{f_{nor}}{A_{wc} + B_{wc} f_{nor}^{2.1}}$$

$$A_{wc} = 0.284 \left(1 + 6.4 \frac{z}{L} \right)^{0.75}$$

$$B_{wc} = 2.34 A_{wc}^{-1.1}$$



Kroon et al., submitted

Cumulative emissions after high frequency correction about 14% higher

Kroon et al., submitted

Uncertainty in EC flux measurements of CH₄ and N₂O

$$F_c = \overline{w'c'}\Big|_{z=h}^{\text{meas}}$$

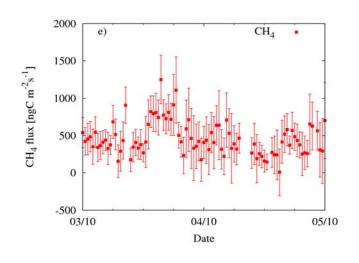
Uncertainties

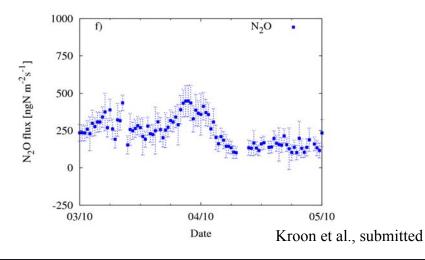
- Drift in instruments (R)
- Precision of instruments (R)
- One point sampling (R)
- Alignment sonic anemometer (S)
- Calibrations (S)
- Low frequency response losses (S)
- High frequency response losses (S)
- Delay time determination (S/R)

$$\widetilde{\widetilde{F}}_{c} = \chi_{cal} \chi_{low} \chi_{high} F_{c} + \chi_{Webb}$$

$$F_{c} = \overline{w'c'}\Big|_{z=h}^{meas}$$

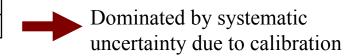
Uncertainty in 30 min EC flux measurement

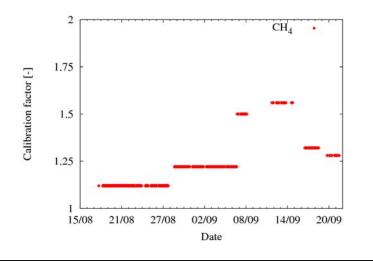

Estimated relative uncertainty $u(\widetilde{\widetilde{F}}_c)$

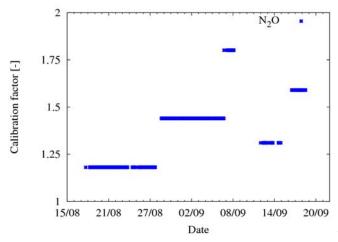

Averaging	CH ₄		N ₂ O		
period	<i>U</i> =1 ms ⁻¹	U=10 ms ⁻¹	<i>U</i> =1 ms ⁻¹	U=10 ms ⁻¹	
30 min	142%	48%	269%	87%	
Day	22%	11%	40%	15%	
Month	10%	9%	12%	8%	
3 months	9%	9%	9%	8%	

Dominated by random uncertainty due to one point sampling

$$\mathbf{u}_{\text{op}} = \mathbf{a}F_c = \sqrt{\frac{20z}{TU}} \frac{\overline{(\mathbf{w}'\mathbf{c}')^2}}{\overline{(\mathbf{w}'\mathbf{c}')^2}} - 1 F_c \quad \text{(Businger, 1986)}$$

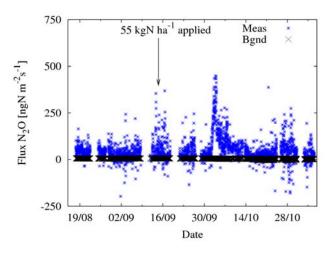


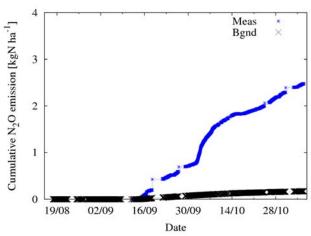



Uncertainty in 30 min EC flux measurement

Estimated relative uncertainty $u(\widetilde{\widetilde{F}}_c)$

Averaging	CH ₄		N ₂ O		
period	<i>U</i> =1 ms ⁻¹	U=10 ms ⁻¹	<i>U</i> =1 ms ⁻¹	U=10 ms ⁻¹	
30 min	142%	48%	269%	87%	
Day	22%	11%	40%	15%	
Month	10%	9%	12%	8%	
3 months	9%	9%	9%	8%	




Kroon et al., 2007

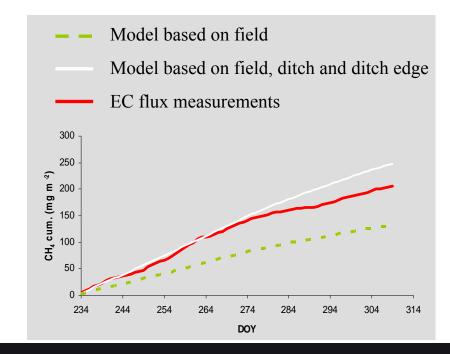
Uncertainty in emission coefficient

$$5.2\% \pm 0.8\%$$

Uncertainty due to e.g. storage and advection are not included!!

Kroon et al., in prep.

Comparability of EC and chamber for CH₄



	Coverage	а	b
Ditch	16%	-0.75	0.19
Ditch edge	5%	0.37	0.12
Field	79%	-1.03	0.07

Schrier and Kroon et al., submitted

Simple model based on manual chamber:

$$F_{CH4} = e^{a+bT}$$

Summary technical

- The annual emission estimates of peat areas are very uncertain
- Micrometeorological technique is required to include the spatial and temporal variation
- It is possible to perform EC flux measurements of CH₄ and N₂O using a QCL
- Corrections should be applied for the systematic errors in EC flux measurements
- LDA measurements can resolve the *w* spectra down to the scale on which most dissipation takes place.
- The Kaimal co-spectrum is valid as well in the high frequency range

Summary technical

- The cumulative emissions increased by about 14% after high frequency correction
- There are many uncertainties in EC flux measurements
- The uncertainty over one day EC flux measurement is between 11-40% for $\mathrm{CH_4}$ and $\mathrm{N_2O}$
- EC flux measurements can contribute to more accurate estimations of CH₄ and N₂O
- Models based on chambers must include the different land elements
- Chamber based model and EC flux measurements agreed within 20%

Summary policy related

- CH₄ emissions from ditches are much higher than from field
- CH₄ emissions are influenced by management
- N₂O emission coefficient can be much higher than default value of 1% of IPCC

Future plans

- Determination of the reliability of an one-point measurement (with TU Delft & KNMI)
- Developing and employing REA system for CH₄ and N₂O
- •Determination of emission coefficient of N₂O of Oukoop (with WUR & TU Delft)
- Determination of the total GHG balance of Oukoop (with WUR)
- Comparison of three different peat areas in the Netherlands (with WUR, VU & TNO)

Thanks to ...

Reeuwijk-team

BSIK-team

Cabauw-team

LDA-team

- Arjan Hensen (ECN)
- Hans van 't Veen (ECN)
- Alex Vermeulen (ECN)
- Pim van den Bulk (ECN)
- Piet Jongejan (ECN)
- Rob Rodink (ECN/TU)
- Harm Jonker (TU)
- Erwin de Beus (TU)
- Adriaan Schuitmaker (TU)
- Jerome Schalwijk (TU)
- Huug Ouwersloot (TU)
- Mark Tummers (TU)
- Stephan de Roode (TU)
- Fred Bosveld (KNMI)
- Arina Schrier (WUR)
- Dimmie Hendriks (VU)
- Mark Zahniser (Aerodyne)

. . . .

Energy research Centre of the Netherlands

Micrometeorological observations of CH_4 and N_2O at a managed fen meadow in the Netherlands

Petra Kroon^{1,2}

1. ECN, Netherlands; 2. TU Delft, Netherlands

