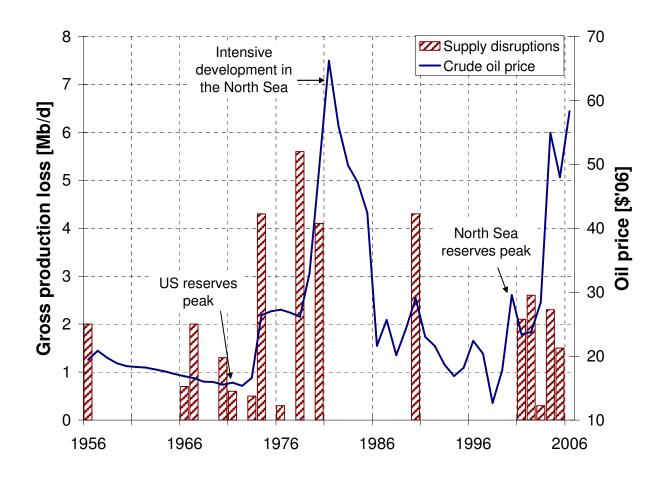


Energy research Centre of the Netherlands

Climate, energy security and innovation


Heleen Groenenberg

CEPS 4th Annual Energy Conference, Brussels, 8-9 March 2009

Oil price has an impact on production

..but risks of climate change may be larger

	Uncertainty in Valuation					
Uncertainty in		Market	Non Market	(Socially Contingent)		
Predicting Climate Change	Projection (e,g, sea level Rise)	Coastal protection Loss of dryland Energy (heating/cooling)	Heat stress Loss of wetland	Regional costs Investment		
	Bounded Risks (e.g. droughts, floods, storms)	Agriculture Water Variability (drought, flood, storms)	Ecosystem change Biodiversity Loss of life Secondary social effects	Comparative advantage & market structures		
	System change & surprises (e.g. major events)	Above, plus Significant loss of land and resources Non- marginal effects	Higher order social effects Regional collapse Irreversible losses	Regional collapse		

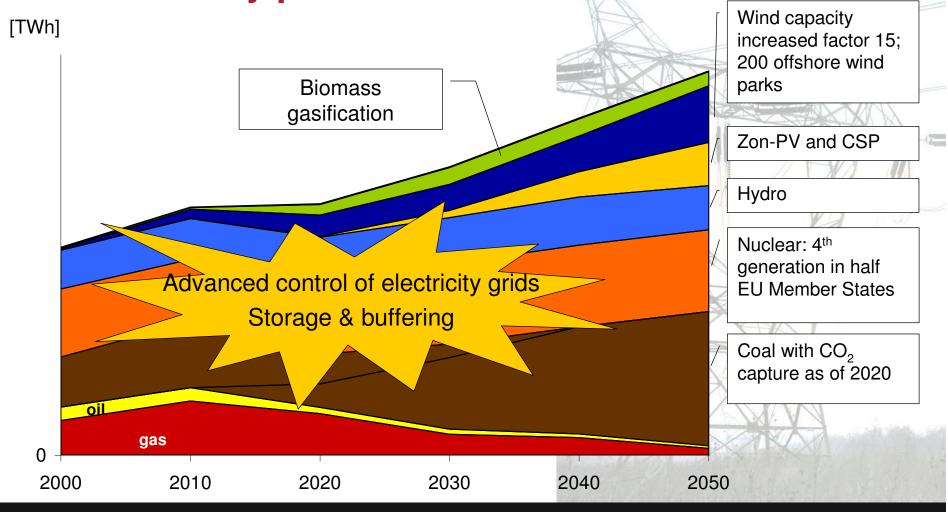
Scenario analysis

	2020		2050		
Intensity [%]	Ref	EU climate objective	Ref	EU climate objective	
Gas	28	30	18	19	
Coal	17	13	17	8	
Import dep [%]					
Oil	87	87	92	92	
Gas	75	75	83	84	

 $(WETO-H_2)$

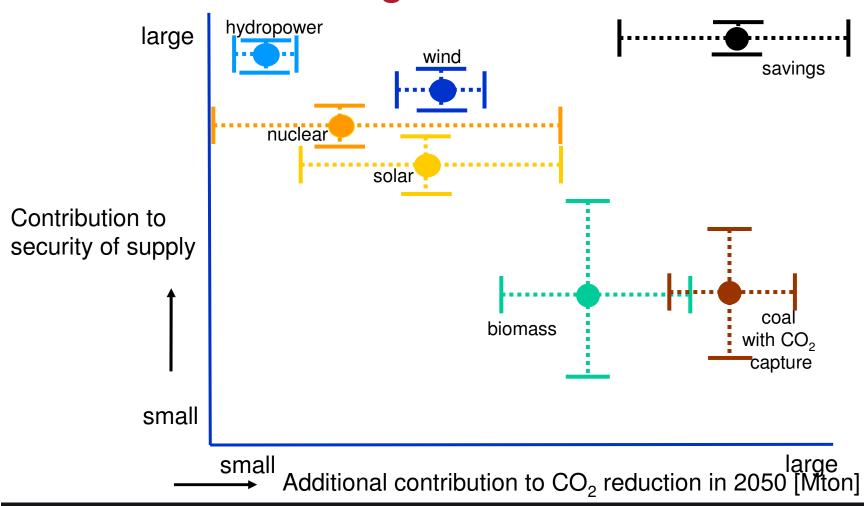
Synergies in EU energy policies?

- Long term impacts CC likely to exceed short/medium term impacts of supply disruptions
- Not all technologies contribute to both better climate and SoS
- Cost effective package to lower CO₂ by 50% in 2050 has only a modest positive impact on energy security
- Short-medium term: no technological breakthroughs needed to stabilize GHGs below 570 ppm (IPCC 4AR)


Why technological innovation?

- Long term contribution CC mitigation, SoS
- Success available technologies uncertain
- Competitive advantage
- Improved performance traditional technologies
- Reinvestment saved costs
- Capital and labour productivity, recycling

Contribution of innovation to competitiveness and jobs yet to be demonstrated



Electricity production and distribution

Which technologies make a difference?

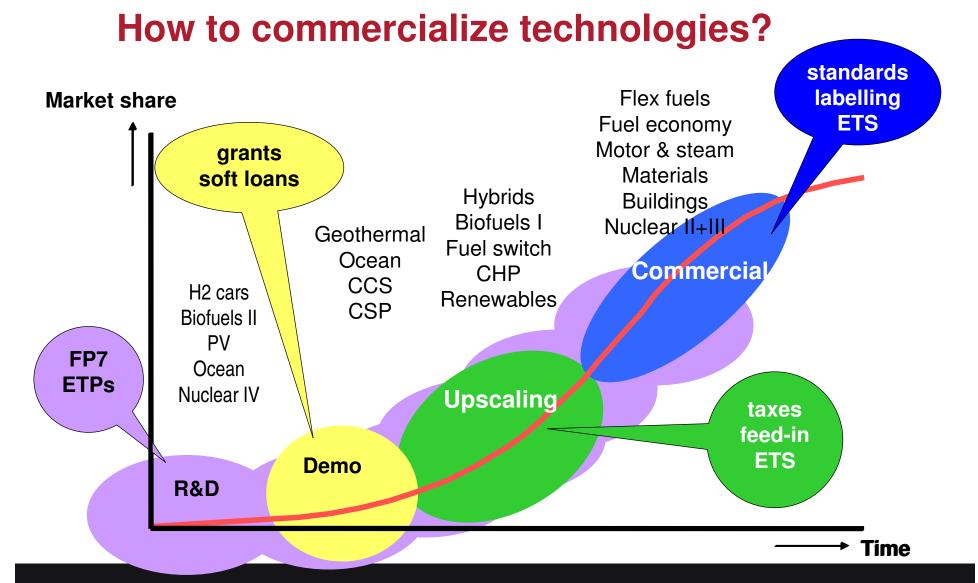
Power

	CC	SoS	Innov	
Nuclear II and III	++	++	Comm	
Biomass power	++	++	Upsc	
Wind	++	+	Upsc	
(Small) hydro	+	++	Upsc	
Solar heating/cooling	+	+	Upsc	
Geothermal	0	0	Upsc	
Coal CCS	++	++	Demo	
Gas CCS	+	0	Demo	
CSP	0	0	Demo	
Nuclear IV	++	++	R&D	
Stationary fuel cells	0	0/+	R&D	
Photovoltaics	0	0	R&D	
Ocean energy	0	0	R&D	

Cars

	CC	SoS	Innov
Ethanol flex-fuel	0/+	0/+	Comm
Fuel economy, non engine	0	0	Comm
Hybrids	0/+	0/+	Upsc
Plug-in hybrids	+	+	Demo
H ₂ fuel cell	0/+	0/+	R&D

Fuels


Biofuel 1st gen	+	+	Upsc	
H ₂ from fossils	+	0	Upsc	
Coal-to-liquids	-	0	Demo	
Bio-to-liquids	++	++	Demo	
Ethanol 2 nd gen	++	++	Demo/R&D	
H ₂ renewables	++	++	R&D	

Requirements for innovation policies

- 1. Short term efficiencies
- ν 2. Diversity and co-evolution
- 3. Long term perspective and path dependency
- 4. Facilitation

What can the EU ETS do?

- Preference for low-cost abatement options
- Innovation market failure
- Need for complementary policies for demos
 - Economic stimulus package
 - 300 Mt allowances new entrants reserve for demos

EU policies for commercial technologies?

	R&D	Upscaling		Commercial	
	FP7	ETS	Tax	Standard	Labels
Flex-fuel cars	X				
Car fuel economy					
Non engine tech					
Motor & steam		X			
Material efficiency					
Buildings, appliances				X	X
Nuclear II					

Conclusions

Synergies policies for climate mitigation, energy security and innovation not straightforward

Barriers remain, notably high upfront costs for demos and non-financial barriers to commercial technologies

Diversity strategy to be complemented with integral roadmap for energy transition

Prioritization and stepwise actions for demos, upscaling and energy infrastructures

contact: groenenberg@ecn.nl