
Energy research Centre of the Netherlands

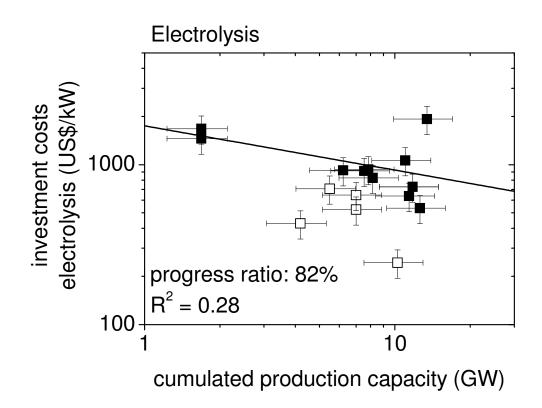
H₂ Technology Learning

Learning curve and progress ratio

Price data for PV modules with learning curve fit (Harmon, 2000).

Learning curve analysis at ECN

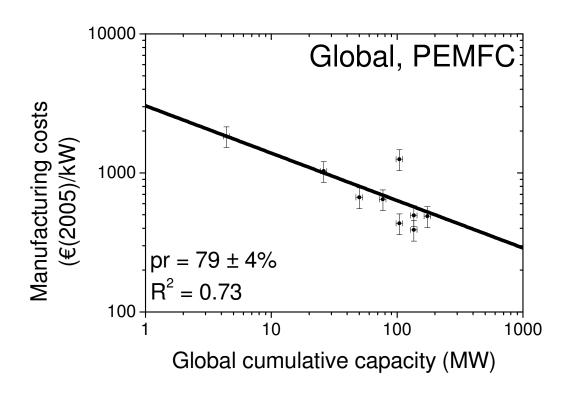
- Development of learning curves for energy technology, e.g. related to hydrogen (several papers).
- Use of learning curves for strategic energy policy making (van der Zwaan and Rabl, 2003).
- Understanding the nature and opening the 'black box' of learning curves (Ferioli et al., 2009).
- The implementation of learning curves in integrated assessment models (van der Zwaan et al., 2002).



Learning for hydrogen technology

- So far we have investigated two essential parts of a possible hydrogen economy: H₂ production and use (in fuel cells).
- H₂ production: 3 types (steam-methane reforming, coal gasification, electrolysis) and 2 levels (investment costs and production costs).
- H₂ fuel cell manufacturing: 3 types (PEMFC, AFC, PAFC) and 2 levels (globally and three different manufacturers: NASA, UTC, Ballard).

Learning for hydrogen production



Investment cost data for electrolysis H₂ production capacity with learning curve fitting attempt (Schoots et al., 2008).

Apr-09

Global learning for hydrogen fuel cells

Learning curve for PEMFCs in transportation between 1995 and 2006 (Schoots et al., 2009).

Learning for hydrogen fuel cells

Fuel cell type	Progress ratio	R^2
Global		
PEMFC	79 ± 4 %	0.73
Manufacturer		
AFC	82 ± 9 %	0.84
PAFC	75 ± 3%	0.75
PEMFC	70 ± 9%	0.83

Progress ratios and error margins for different fuel cell types and production scales (Schoots et al., 2009).

Learning for hydrogen technology – caveats

- Some components do not learn: price of coal, gas, electricity, platinum.
- These resources display large price volatilities that may obscure learning effects.
- Resource price increases may outweigh learning effects in other components.
- Economies-of-scale and R&D prove very relevant, especially for fuel cells.
- Specific PEMFC costs vary: 860-4100/kW depending on size (250-5 kW), with 500/yr production scale.

Apr-09

Learning for hydrogen technology – to do

- We have started investigating the third essential part of a possible hydrogen economy: H₂ transport and storage – suggestions most welcome.
- Other FC types, among which solid oxide fuel cells.
- Other H₂ production types, such as HT electrolysis.
- We plan to continue opening the 'black box' of learning-by-doing: component learning curves, economies-of-scale, material costs.

Publications

- Schoots, K., G.J. Kramer and B.C.C. van der Zwaan, "Learning Curves for Fuel Cells: an Assessment of Past and Potential Cost Reductions", Working paper.
- Ferioli, F., K. Schoots and B.C.C. van der Zwaan, "Use and Limitations of Learning Curves for Energy Technology Policy: a Component-Learning Hypothesis", *Energy Policy*, forthcoming, 2009.
- Ferioli, F., K. Schoots and B.C.C. van der Zwaan, "Component-Learning for Energy Technologies: the case of hydrogen production", *International Journal of Innovation and Learning*, forthcoming, 2009.
- Schoots, K., F. Ferioli, G.J. Kramer and B.C.C. van der Zwaan, "Learning Curves for Hydrogen Production Technology: an Assessment of Observed Cost Reductions", *International Journal of Hydrogen Energy*, 33, 11, 2008, pp.2630-2645.