

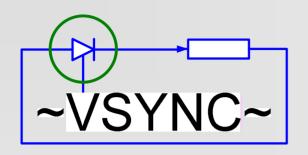
Project VSYNC - Contract no: FP6 - 038584

Virtual Synchronous Generators

- VSYNC project and VSG concept -

Klaas Visscher – Project manager

Visscher@ecn.nl


Energy research Centre of the Netherlands (ECN)

Overview

- The VSYNC project
- The VSG concept
- The Application Cases
- Implementation of VSG's
 - Phase 1: Laboratory testing
 - Phase 2: Demonstration
- Many Questions To Be Addressed

Project VSYNC - Contract no: FP6 - 038584

THE VSYNC PROJECT

THE VSYNC PROJECT

Virtual Synchronous Machines For Frequency Stabilisation In Future Grids With A Significant Share Of Decentralized Generation.

- **Duration:** 3 years (Oct 2007 till Oct 2010)
- Budget: €3.25 million
- Aim: Give distributed energy resources the character of Virtual Synchronous Generators that solve stability problems in future grids.
- Phase 1: Laboratory testing (6 x 5 kW VSG)
- Phase 2: Demonstration
 - 10 x 5 kW VSG; The Netherlands (Continuon)
 - 1 x 100 kW VSG; Romania (Electrica)
- Coordinator: ECN, The Netherlands
- Project manager: Dr. K. Visscher, <u>visscher@ecn.nl</u>

Project partners		
1 ECN	NL	
Energy research Centre of the Netherland		
2 TUE	NL	
Technical University of Eindhoven		
3 TUD	NL	
Delft University of Technology		
4 KUL	BE	
Catholic University of Leuven		
5 UPB	RO	
Universitatea Politehnica Bucuresti		
6 LABEIN	ES	
Fundación LABEIN		

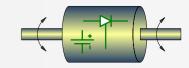
UfE Umweltfreundliche Energieanlagen Handelsgesellschaft mbH

BE

DE

9 Electrica RO
Electrica SA

7 3E


8 UfE

3E NV

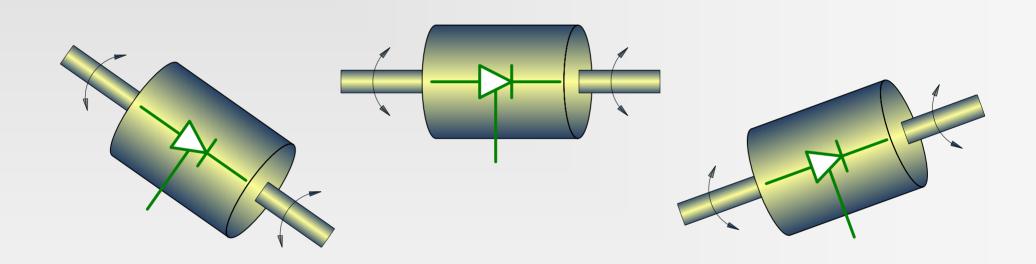
10 Continuon NL Continuon NV

FUTURE GRID SCENARIO

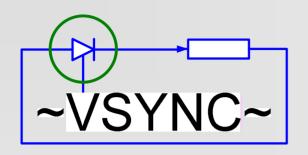
FUTURE CONDITIONS

- Large share of decentralised generation
- Central generation is diminished
- Partial near-islanding operation

CONSEQUENCES


- Less rotational mass in the system
 - Larger frequency variations
- Shorter response time to fault situations
 - for safety devices and for grid operators
- A less stable grid

PROBLEM APPROACH



Add Virtual Synchronous Generators (VSG's)

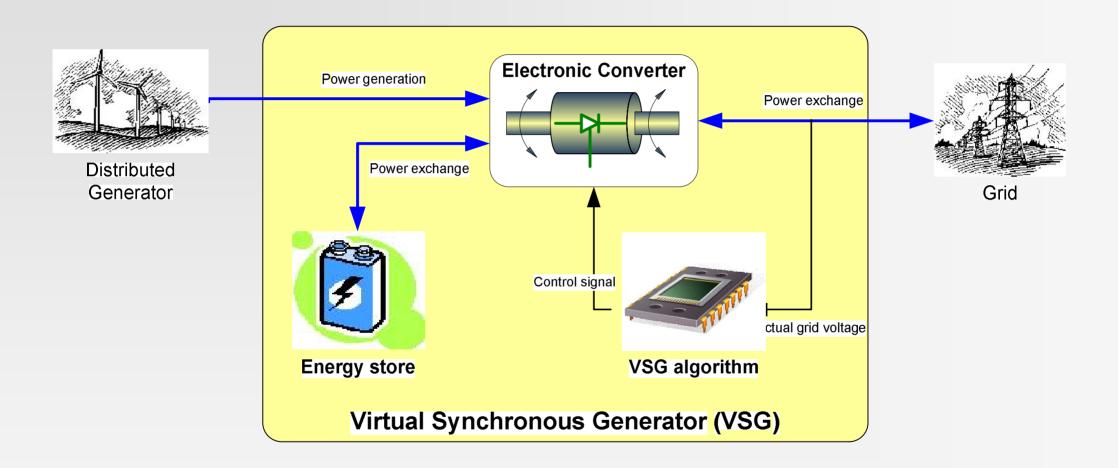
Expected Result: A more stable grid

Project VSYNC - Contract no: FP6 - 038584

THE VSG CONCEPT

OPERATION PRINCIPLE OF VSG's


- Many VSG's together behave like one large rotating mass
- Short lasting power exchanges between grid and energy stores counteracting changes in
 - Frequency
 - Voltage


EXPECTED RESULTS:

- Reduction of variations in frequency and voltage
- Improved fault clearance due to slower response of power system

~VSYNC~ www.vsync.eu

THE VSG CONCEPT

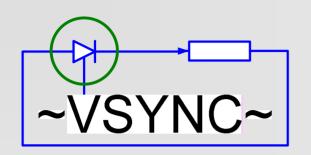
ENERGY ESTIMATES

$$\delta t = (1 \ 5 \ 15) \min$$

$$P_{\text{nom}} = \begin{pmatrix} 5\\ 50\\ 100 \end{pmatrix} kW$$

$$P_{nom} = \begin{pmatrix} 5 \\ 50 \\ 100 \end{pmatrix} kW$$
 $E = \begin{pmatrix} 0.1 & 0.4 & 1.3 \\ 0.8 & 4.2 & 12.5 \\ 1.7 & 8.3 & 25 \end{pmatrix} kWh$

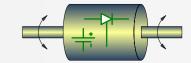
For comparison only:



One car battery = 0.5 kWh

ESSENCE OF VSG OPERATION

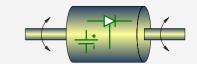
- Virtual Synchronous Generators emulate rotating inertia for limited time intervals,
- with the aid of complementary control algorithms to sustain operation in case of faults or contingencies,
- thereby giving balancing algorithms, control and protection devices ample time to restore normal operation in the system.



Project VSYNC - Contract no: FP6 - 038584

THE APPLICATION CASES

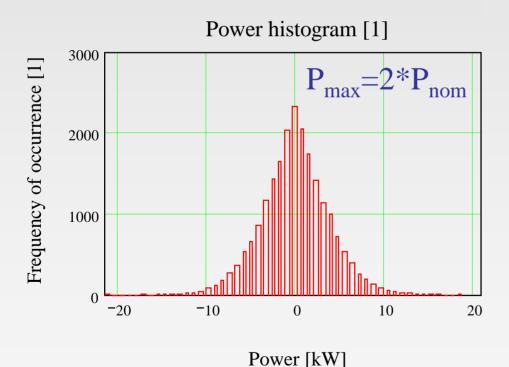
CASE 0: Normal operation

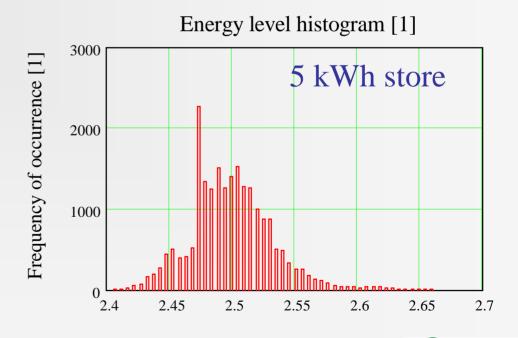

Frequency following VSG

- For simplicity:
 - DER switched off
 - without secondary algorithm for voltage stabilisation

$$P_{\text{mech}} = \omega_{\text{grid}} \cdot J \cdot \left(\frac{d}{dt} \omega_{\text{grid}}(t)\right)$$

Result:


 Short lasting power exchanges between grid and energy store counteracting changes in frequency



Normal operation of 10 kW VSG (10 April 2008)

Calculation from grid frequency data (4 sec samples, 24 hr series. Source: TenneT)

Energy level [kWh]

CASE 1: Primary balancing

Isolated small grid as a model for a future grid with significant intermittent generation.

Wind turbine and one central generator

- 1. Wind catches up
- 2. Power balance disturbed
- 3. Generator speeds up (frequency increases)
- 4. Operator takes measures (load increase or power decrease)

Scenario 1: No VSG

- 5. System goes into critical condition
- 6. Generator trips

Scenario 2: VSG added to the wind turbine

- 5. VSG buffers the excess wind power for a short time period
- 6. Balance restored

CASE 2: Safety & Security of supply

Solar array with inverter

- 1. Normal operation
- 2. Nearby short circuit fault (not in the main feeder)
- 3. Voltage drops (tens of percent)

Scenario 1: No VSG

- 4. Inverter trips
- 5. Safety device kicks in, and fault is cleared

Scenario 2: VSG added to the inverter

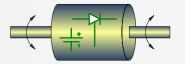
- 4. VSG empties its buffer to slow down the voltage drop
- 5. Safety device kicks in, and fault is cleared

CASE 3: Reconnection of microgrid

Micro grid with decentralised generators

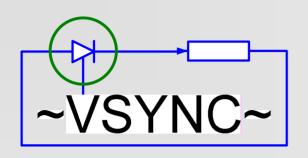
- 1. Normal operation
- 2. Main grid voltage drops for a short time interval (minutes)

Scenario 1: No VSG


- 1. Decentralised generators trip
- Main grid voltage restored

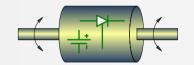
Scenario 2: VSG's added to the generators

- 1. Main grid connection broken (islanding mode)
- VSG's balance the micro grid (active & reactive power)
- 3. Main grid voltage restored
- 4. VSG's synchronise to main grid (UCTE sync/ grid voltage)
- 5. Micro grid reconnection



Case 4: Coordination of electricity stores

- Grid or micro grid with a mix of traditional power plants, DG's and VSG's
- Without coordination, the stores may get exhausted or filled completely
- VSG's and/or the DSO have to participate in a coordinated action to maintain the power balance for longer duration (e.g. 50% SOC)



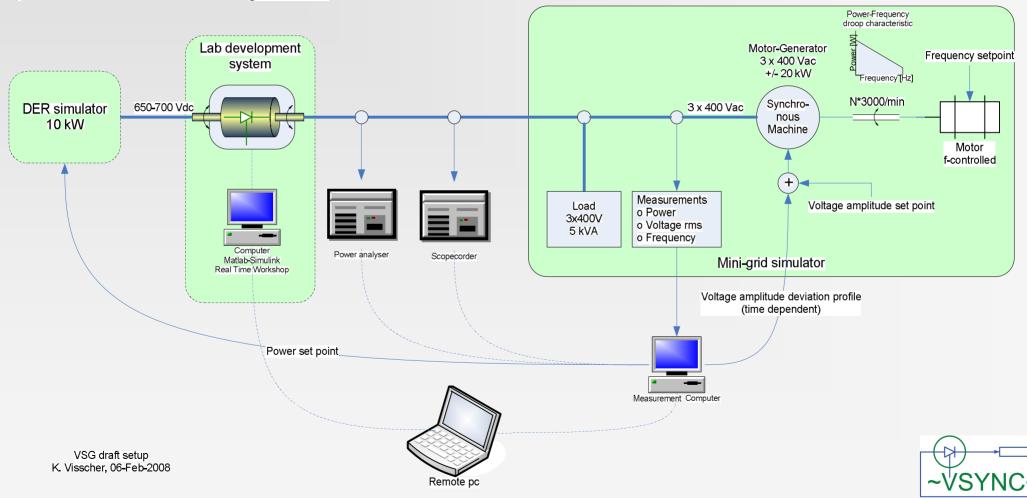
Project VSYNC - Contract no: FP6 - 038584

IMPLEMENTATION OF VSG'S

Phase 1: Laboratory testing (6 x 5 kW VSG)

Laboratory equipment

- Triphase development system
 - Rapid prototyping of power electronics applications
 - Controlled by pc (Matlab-Simulink)
 - Same equipment at 6 partners
- Mini test grid 20 kW @ 50 Hz
 - Motor / synchronous generator
 - RLC-loads
 - DER simulator

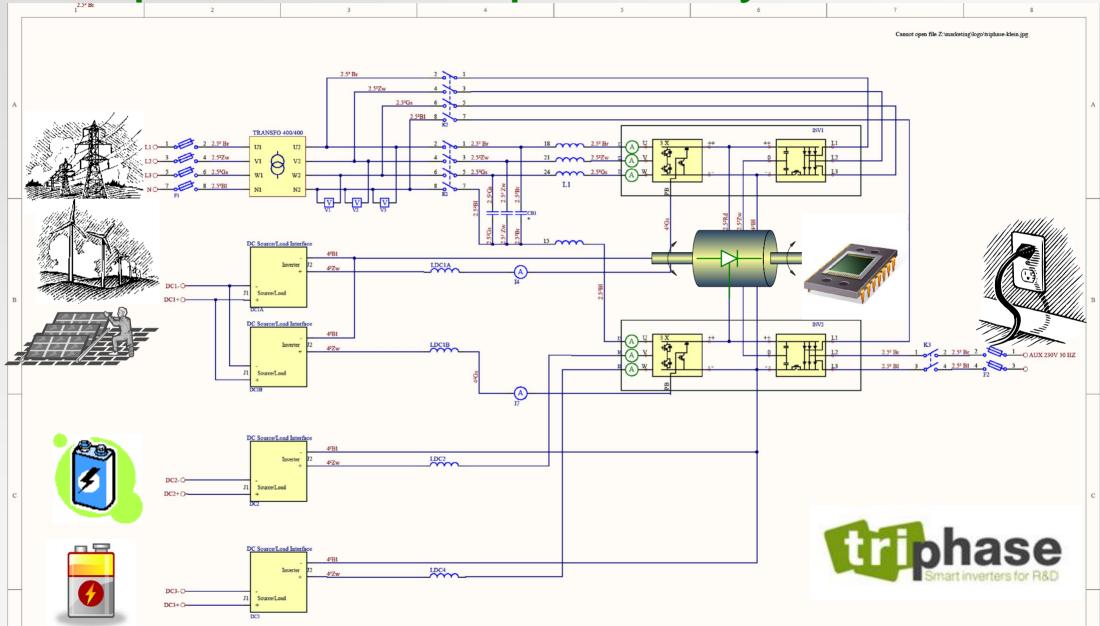

Laboratory system lay-out

www.vsync.eu

DRAFT - Laboratory set-up for tests of:

- a) VSG control algorithms
- b) Interaction of VSG with mini-grid events

Triphase Development System +



Triphase Development System +

Selected battery system

LiFeBatt battery pack:

Selected battery for ECN's system =

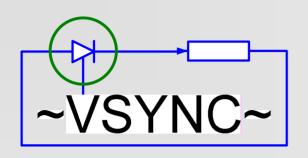
LiFeBatt battery pack specifications:

Each battery (two parallel packs required)

3 x 10810-HPS in series gives 3,2kWh storage

Minimum capacity = 9Ah

Nominal voltage = 356V


– Maximum voltage = 394V

– Cutt off voltage = 227V

Maximum charge current = 30A

Maximum discharge current = 120A

Project VSYNC - Contract no: FP6 - 038584

IMPLEMENTATION OF VSG'S

Phase 2: Demonstration

Field Tests (Planned)

- 10 x 5 kW VSG; The Netherlands (Continuon)
- 1 x 100 kW VSG; Romania (Electrica)
- (....?)

Many Questions To Be Addressed

- 1. To what extent will VSG's improve the stability of future grids?
- 2. What are the limitations of VSG's?
- 3. Are the application cases also good laboratory test cases?
- 4. How to measure the effect of one VSG in a field test?
- 5. To what extent doe the use of VSG's increase the amount of DG allowed in the grid?
- 6. Is a VSG a cost effective solution?
- 7. (....)

9-10-2008 28

Thank you for your attention

