

Biomass co-firing in high percentages

opportunities in conventional and advanced coalfired plants

J.H.A. Kiel

IEA Bioenergy Task 32 workshop Increasing co-firing percentages in existing coal-fired power plants Geertruidenberg, the Netherlands, 21 October 2008

ECN-L--08-080

NOVEMBER 2008

Energy research Centre of the Netherlands

Biomass co-firing in high percentages – opportunities in conventional and advanced coal-fired plants

Jaap Kiel ECN Programme manager Biomass & Coal

IEA Bioenergy Task 32 workshop Increasing co-firing percentages in existing coal-fired power plants, Geertruidenberg, the Netherlands, 21 October 2008

Energy research Centre of the Netherlands

In the dunes of N-Holland - Petten

ECN develops high-level knowledge and technology for a sustainable energy system and transfers it to the market

- Independent research institute
- 650 employees
- Annual turn-over: 80 million Euro
- Activities:
 - Biomass, Solar, Wind
 - Clean fossil fuels (CCS, fuel cells)
 - Energy efficiency
 - Policy studies

Presentation overview

- Biomass co-firing options
- State-of-the-art
- R&D needs
- Examples ECN R&D
- Co-firing in advanced coal conversion
- New challenges
- Concluding remarks

Essent Amer power station

Biomass co-firing technology options

Co-firing at Drax power station (UK)

- Coal-fired power station
- Capacity 6 x 660 MWe
- \cong 6.5% el. needs
- 10% biomass co-firing
- = 400 MWe
- = 1.5 Mtonne/a biomass

Source: Davis Smales, Drax

10% co-firing at Drax power station (UK)

Biomass co-firing in high percentages – R&D needs

- Biomass upgrading technology to reduce the cost of biomass logistics and improve the compatibility of biomass as a fuel
- Better mechanistic understanding of combustion/gasification-related technical bottlenecks and translation into fuel mixing recipes, design specifications and operating guidelines
- Predictive tools for assessing the co-firing potential of biomass streams and optimising boiler design and operation for co-firing (low-cost screening, modelling)
- Advanced techniques for (on-line) process monitoring and control
- (Ash recycling strategies and) utilisation options

Biomass – a difficult energy source

- Tenacious and fibrous (grinding difficult)
- Low energy density (LHV_{ar} = 10-17 MJ/kg)
- Hydrophilic
- Vulnerable to biodegradation
- Heterogeneous

Biomass co-firing in high percentages – opportunities in conventional and advanced coal-fired plants – Jaap Kiel

Biomass upgrading – technology options

- Adapt the biomass fuel to requirements of logistic systems and conversion processes (commodity fuel or "designer fuel")
- Technology options (a.o.):
 - Pyrolysis
 - Briqueting
 - Pelletisation
 - Torrefaction

Torrefaction for upgrading biomass

Process parameters

- Temperature: 200-300 ℃
- Residence time: 10-30 minutes
- Particle size: < 4 cm</p>
- Absence of oxygen
- Pressure: near atmospheric

Why torrefaction: from biomass/waste to commodity fuel

Grindability of (torrefied) woody biomass

Torrefaction leads to a dramatic decrease in required milling power and increase in milling capacity

TOGRAPHY BY

• Location: Delfzijl, the Netherlands

ECN

Technical bottlenecks

Technical bottlenecks

Ash forming elements in biomass vs. coal

Ash related issues to consider for a 'typical' biomass

Lab-scale Combustion Simulator (LCS)

Realistic gas temperature and gas composition profiles, sampling 5-2500 ms

Biomass co-firing in high percentages – opportunities in conventional and advanced coal-fired plants – Jaap Kiel

Lab-scale Combustion Simulator (LCS)

Entrained-flow reactor with integrated, premixed and multi-stage flat flame burner

- high particle heating rates
- high flame/particle temperature
- realistic gas temperature / environment history
- Controllable, long particle residence time

Full-scale probe measurements ECN mobile heat flux & ash deposition probe

Full-scale mass-balance measurements

Ash release results – top-4 elements

Comparison of ash release between fuels

Release biomass very different from coal:

- total release biomass 30-55% (incl. S and Cl)
- total release coal 0.3-2.6% (excl. S and Cl) or 8-36% (incl. S and Cl)

Release behaviour in MBM co-firing

Alkali metals in MBM significantly increase risk of corrosion and fouling. Can coal non-alkaline clay minerals interact with alkalis in MBM?

- •1650-1450 °C T profile, residence time (~50 µm particles) ~2.0 s
- MBM and 20% (w/w) MBM in PO56 and DGP coals

Mineral name/content [% w/w]	PO56	DGP
TOTAL ASH	16.6	14.4
Quartz	13.1	6.3
Kaolinite (non-alkali-clay)	20.0	58.9
Montmorillonite (Mg,Na-clay)	19.9	2.4
Illite (K-clay)	18.8	1.4
Al-silicate (not further specified)	5.3	2.7
Dolomite	5.2	4.1
Calcite	0.1	2.0
Pyrite	4.4	4.2
Apatite	0.3	2.0
Ca-Al-silicate	0.2	4.1
Classified sum of minor fractions	8.0	3.9
Unclassified	4.7	2.0
Total clay % of the ash	64%	65.4%
kaolinite+Al-silicate % in clay	39% of total clay	94% of total clay

Release behaviour in MBM co-firing

- Interactions with clays are quite significant
- Coal minerals may be used to control alkali behaviour

General understanding of fuel interactions Example potassium

Interactions demonstrated in ash deposition

Impact deposition on heat transfer - fouling factor

Combustion conditions	Fuel mass fed	Deposition rate	Deposit thickness @ 0°	Fraction of inorganic matter deposited
	[9]	[g /m²s]	[mm]	% wt
full NOx	7.7	0.018	2.00	61
O ₂ depleted	2.29	0.009	3.70	30
OFA	7.64	0.013	1.40	43

Fuel: MVC + olive residue 0.018 $R^2 = 0.9918$ 0.016 0.014 full NOx O2 depleted 0.012 Foulingfactor Rf [K*m2K] OFA 0.010 mass *≠* 0.008 thickness ≠ $R^2 = 0.997$ 0.006 fouling factor! 0.004 $B^2 = 0.9844$ 0.002 0.000 -0.002 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Cumulative ash feed [g]

Biomass co-firing in high percentages – opportunities in conventional and advanced coal-fired plants – Jaap Kiel

Predictive tools – aggregating mechanistic knowledge

- Low-cost screening
- Biofuel impact prediction (empirical modelling, esp. ash-related)
 - release, formation, properties, deposition, quality, emission
- Ash Deposition Post-Processor (CFD-based)

On-line deposition monitoring and control

- Membrane walls: heat flux measurement + water canons (Clyde Bergemann)
- Super-/reheaters: section-wise evaluation using cleanliness factors (ratio of actual vs theoretical heat transfer rate, e.g. ABB system)

Technology challenge: direct monitoring (and control) of super-/reheater fouling

Fouling under USC conditions

• Deposit bulk composition: S and Cl vs surface temperature and SO₂(g)

Lab-scale ash deposition (USC conditions)

Biomass co-firing in high percentages – opportunities in conventional and advanced coal-fired plants – Jaap Kiel

Lab-scale ash deposition (USC conditions)

Lab-scale ash deposition (USC conditions) – initial corrosion

Oxide layer on interface	C1/660°C/0	C1/750°C/0	C1/BM6/660 °C/0	C1/BM6/750℃/0
Substrate material	SS310	Alloy617	SS310	Alloy617
Thickness [µm]	5	1.5	6.8	0.8
Main elements	Cr , Mn, Fe,Ni	Cr, Ni, Mo, Co	Cr , Mn, Fe	Cr, Ni, Mo, Co
Sulphur [%]	~4	< d.l.	~2	~1

Biomass co-firing – new challenges

- Biomass should be sustainable and certified
- Biomass is scarce and costly → maximise efficiency → optimise heat utilisation
- Other biomass applications with higher added value → low quality biomass for co-firing (e.g. high alkali/chlorine content) → Low-temperature gasification (650 °C)
- Large, increasing fraction of wet biomass → need for special upgrading technology

Source: Peder Stoholm

Increasing amounts of wet biomass: TORWASH?

E.g. residues from wet/biochemical biomass processing and aquatic biomass

TORWASH = Torrefaction + Washing + Drying

- Salt removal (K, Na, Cl, SO₄)
 - better ash quality \rightarrow utilisation instead of land fill
- Torrified product
 - energy densification, logistics, etc.
 - chemical conversion makes biomass water repellent
- Dry biomass
 - higher caloric value

TORWASH (hay)

Concluding remarks

- Biomass co-firing is established technology for co-firing percentages up to 10-20% (e/e)
- Biomass co-firing at high percentages (30-50% e/e) is feasible, but needs/highly benefits from:
 - Innovative biomass upgrading technology
 - Better mechanistic understanding of technical bottlenecks
 - Better predictive tools
 - On-line monitoring and control (e.g. fouling, corrosion)
- Torrefaction + pelletisation allows cost-effective, high-efficiency production of commodity biomass fuels with superior logistic and conversion properties
- Many technical bottlenecks in biomass co-firing are ash related. Main mechanisms of ash formation and ash behaviour have been mapped. R&D focus now on quantification and incorporation of mechanistic knowledge in predictive tools
- Combination of predictive tools and on-line monitoring is key to successful management of ash behaviour
- New challenges in biomass co-firing include sustainability, heat utilisation, lower quality ("salty") biomass, wet biomass

Thank you for your attention!

For more information, please contact:

Dr.ir. J.H.A. (Jaap) Kiel

phone+31 224 56 459e-mailkiel@ecn.nlinternetwww.ecn.nl

Acknowledgements go to

- The ECN biomass co-firing team: Alex Adell, Christine Bertrand, Arjen Boersma, Mariusz Cieplik, Lydia Fryda, Peter Heere, Jasper Lensselink, Jana Kalivodova, Willem van de Kamp, Jan Pels, Dennis Slort, Fred Verhoeff, Rian Visser, Tomasz Zagorski.
- The European Commission (FP6/7 and RFCS programmes), the Dutch Ministry of Economic Affairs and SenterNovem for their financial support.