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Abstract 
 
Even though climate change is a dynamic problem, we argue that its analysis in terms of 
steady-state conditions is instructive for policy purposes, analogous to often-cited targets for 
the stabilized global average temperature rise or atmospheric CO2 concentration. We analyze 
climate change in a cost-benefit framework and specify CO2 emissions as annual averages of 
the time-dependent emission profiles of Wigley et al. (1996) while relating these to stabilized 
atmospheric CO2 concentrations and the corresponding global temperature increases. The 
resulting time-averaged model is simple enough to allow a fully transparent sensitivity study 
with respect to the uncertainties of all the damage and abatement cost parameters involved. 
Our result for the time-averaged optimal emission level Eo = 8.7 GtCO2/yr (about a third of 
current emissions) turns out to vary by at most 2.3 GtCO2/yr (or less than 30%) for the range 
of plausible parameter values. To assess the significance of uncertainties we focus on the 
social cost penalty, defined as the extra costs incurred by society relative to the overall social 
optimum if one makes the wrong choice of the time-averaged emission level as a result of 
errors in the estimates of the costs and benefits of CO2 emissions abatement. In relative terms 
the cost penalty turns out to be remarkably insensitive to errors. For example, if the true 
damage costs are three times larger or smaller than the estimate, the total social cost of global 
climate change increases by less than 20% above its minimum at the true optimal time-
averaged emission level. However, because of the enormous magnitude of the total costs 
involved with climate change (mitigation), even a small relative error implies large additional 
expenses in absolute terms. To evaluate the benefit of reducing cost uncertainties, we plot the 
cost penalty as function of the uncertainty in relative damage and abatement costs, expressed 
as geometric standard deviation and standard deviation respectively. Suppose continued 
externality analysis reduces the geometric standard deviation of relative damage cost 
estimates from 10 to 5, the benefit is 0.5% of Gross World Product (about 250 billion €). If 
further research reduces the standard deviation of relative abatement costs from 1 to 0.5, the 
benefit is 0.06% of Gross World Product (some 30 billion €). 
 
Key words: climate change, carbon dioxide, damage cost, abatement cost, social cost, 
cost penalty, information value, uncertainty reduction 
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1. Introduction  
 

Even if a comparison of costs and benefits may not be the only relevant 
criterion for the design and implementation of environmental policy, it is a crucial 
input. For the case of climate change it is thus advisable to quantify the costs and 
benefits of CO2 emissions abatement as much as possible, as done in the landmark 
Stern Review (Stern et al., 2006). The usefulness of cost-benefit analysis (CBA) for 
assessing environmental policy like relating to climate control has been questioned, 
given that usually notoriously large uncertainties are involved. In earlier work, 
however, we showed, for several pollutants including CO2, that the cost penalty 
incurred by making the wrong abatement choice because of uncertainties in the 
estimates for the costs and benefits of environmental policy is remarkably small (Rabl 
et al., 2005). Hence, CBA can be useful despite large uncertainties. 

This paper extends our earlier cost-benefit study to a non-linear model for 
climate change damage costs, which is more realistic than the linear model presented 
there. Indeed, for damage costs resulting from greenhouse gas emissions a 
combination of linear and quadratic terms seems most appropriate. The reasons lie in 
both the non-linearity of the impacts and that of the corresponding costs. There is 
growing consensus that non-market damages (such as biodiversity impacts) are non-
linear, while for market damages (like agricultural losses) linearity may today be a 
good approximation (but likely not farther in the future), and that the share in total 
climate change damage costs of the former is significantly larger than that of the 
latter. Especially for non-market damage costs, however, uncertainties are high, which 
justifies a careful inspection of their importance in climate change CBA. We therefore 
present a detailed sensitivity study regarding the contribution of our CBA input 
parameters and modeling assumptions to the uncertainty in the optimal emission level. 

We define Eo as the optimal time-averaged CO2 emission level that minimizes 
the total cost Ctot(E), that is, the sum of the damage cost Cdam(E) and the abatement 
cost Cab(E), as function of the total global time-averaged emission level E: 
 

)()()( ECECEC abdamtot += . (1)
 

To perform this optimization, mathematical expressions are needed for both 
Cdam(E) and Cab(E) and their derivatives. Ideally one should use a detailed dynamic 
top-down or bottom-up integrated assessment model fit for comparing the costs and 
benefits of climate change policies over time. For a systematic analysis of the main 
uncertainties in climate change CBA, however, we consider such models too 
complicated and their detail too great, as a result of which our findings would become 
opaque. Instead, our analysis is much more concise, is based on time-averaged 
relations, and possesses only few parameters that express the key features of the 
problem. Thus we can carry out a CBA that is fully transparent and shows clearly the 
role of each of the major factors involved. Our work is complementary to that of 
many, notably to recent publications like DEFRA (2004, 2005) and Tol (2005), in 
which overviews are given of estimated climate change damage costs under a 
specified increase in the concentration of atmospheric CO2 or the average global 
temperature. We, on the other hand, allow in principle for a large range of possible 
optimal values of the time-averaged emission level E or the corresponding global 
average temperature increase ΔT. 

Even though omitting time in this study may appear a radical approximation, 
we argue that the results of our CBA are realistic and provide good guidance for 

 2



policy making. In reality there is of course time-dependence in at least three key 
elements of the problem: the relation between CO2 emissions and temperature rise, the 
evolution of damage costs, and the profile of abatement costs. As far as the first is 
concerned, we use the time-dependent relationship between CO2 emissions and 
concentrations published by Wigley et al. (1996) to derive a relation between time-
averaged emissions and concentrations. This relation is an exact representation of the 
steady-state conditions in the Wigley et al. (1996) model. We then couple this relation 
to the expression employed by Caldeira et al. (2003) relating CO2 concentrations with 
global average temperature rises ΔT. As damage cost relation we use the standard 
formulation of most integrated assessment models (see references in Table 1), in 
which the damage cost increases quadratically with ΔT. Being based on the stabilized 
temperature rise ΔT, these models possess a strong time-independent foundation, 
much like our analysis. Thus we obtain an expression for the steady-state damage cost 
as function of steady-state emissions.2 As for the third time-dependent element, we 
replace it by a time-independent relation for the marginal abatement cost as function 
of E. Marginal abatement costs are expected to decrease over time as a result of 
technological progress. We account for this phenomenon implicitly, by adopting 
abatement cost curves that are significantly lower, especially as low emission levels 
are reached, in comparison to the cost curves currently determined that apply to 
abatement during the forthcoming decade (see e.g. Klaassen et al., 2005).  

With these three stylized time-independent assumptions our model is a 
realistic representation of stabilized conditions. The result from our CBA for the 
optimal CO2 emission level also proves to be a realistic estimate of the relevant long-
term policy goal. Being time-independent our model does not indicate the profile or 
rate at which one should reduce emissions towards that long-term goal. That question 
can be answered through the numerous dynamic studies that have analyzed the time-
dependent relation between emission scenarios and climate impacts (see, notably, 
Baker, 2005; Heal and Kriström, 2002; Keller et al., 2004; Kolstad, 1996; Nordhaus 
and Popp, 1997; Peck and Teisberg, 1993). 

Whereas the uncertainties of CO2 abatement costs are large, especially when 
projected far into the future (varying by typically a factor of 3), those of the damage 
costs are significantly larger (diverging over a range of as much as an order of 
magnitude). We therefore first provide, in section 2.1, a concise summary of some of 
the recent literature reporting estimates for aggregated climate change damage costs. 
We subsequently develop our expressions for Cdam(E) and Cab(E), in sections 2.2 and 
2.3 respectively. In section 3 we present the solution for the optimal emission level Eo 
as function of our model’s key input parameters. To evaluate the consequences of 
damage and abatement cost uncertainties, we calculate in section 4 the cost penalty, 
defined as the extra social cost incurred relative to the social optimum, as function of 
the error in the estimates of relative damage and abatement costs. We also estimate 
the value of reducing these uncertainties through further research, by plotting the cost 
penalty as function of the geometric standard deviation of the relative damage cost 
distribution (assumed lognormal) and the standard deviation of the relative abatement 
cost distribution (assumed normal). In section 5 we summarize our main results, 
compare these with those of the Stern review (Stern et al., 2006), and give 
recommendations for climate change research and policy making. 
 

                                                 
2 Note that understanding the steady state of environmental indicators is relevant for policy making, 
because the notion of sustainability possesses a strong connotation with stabilized conditions. 
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2. Damage and abatement costs 
 
2.1. Review of damage cost estimates 
 

A large number of integrated assessment models have been developed to 
assess climate change damage costs and their evolution over time.3 Some are based 
directly on the impact of ΔT on Gross Domestic Product (GDP) or Gross World 
Product (GWP). Others, in particular FUND (Tol, 1995) and PAGE (Plambeck and 
Hope, 1996), attempt to simulate climatic impacts in more detail, according to the 
categories or economic sectors to which they apply. Quite generally, most of the 
reported damage cost estimates do not cover all climate change impacts, as they 
usually exclude possibilities like major disastrous events or socially contingent 
effects, as well as many of the non-market impacts. For the economic assessment of 
catastrophic climate change impacts, for example, CBA as used in these models, and 
the one we present below, pose strong limitations, so that it is preferable to apply 
other types of analysis instead (see Weitzman, 1997a and Yohe, 1996). Damage costs 
estimated through these models strongly depend on the time discounting method used, 
assumptions regarding equity weighting, and the supposed risk aversion or 
willingness-to-pay to avoid damages, important subjects that we will not address in 
this paper.4

One of the pioneering models in this field was DICE (Nordhaus, 1991 and 
1994). DICE optimizes the trade-off between the costs of climate change and the costs 
of restricting CO2 emissions. The damage cost simulation of DICE is based on the 
assumption that a 3 ˚C warming induces a 0.25 % loss of GDP in the USA, based on 
estimates of market damages such as crop loss, forestry impact, and shoreline erosion. 
This value is raised to 1 % to account for all probable damages, especially non-market 
ones that are generally hard to quantify. In order to render DICE applicable globally 
the relative loss is further increased to 1.3 % of GWP, as many less developed 
countries are more dependent on e.g. agriculture and have as such a more limited 
ability to adapt to the effects of climate change. Furthermore, Nordhaus recognizes 
that for temperature rises higher than 3 ˚C disproportionally large damages are likely 
to result, so that the use of a quadratic function is appropriate. Most of the subsequent 
climate-economy models have adopted a similar climate change damage cost 
formulation. 

Another widely used climate policy assessment model is MERGE, a multi-
region Ramsey-Solow optimal growth model including greenhouse gas emissions and 
a global climate module (Manne and Richels, 2004). It can be operated in a cost-
benefit mode, in which a time path is chosen for emissions that maximizes the 
integrated discounted utility of consumption, after making allowance for the disutility 
associated with climate change. Whereas MERGE includes both market and non-
market damages, it focuses on the latter, as they are considered the largest. In 
particular, market and non-market damages are assumed to be linear and non-linear 
with temperature increases, respectively, and follow the type of assumptions made in 
DICE (Nordhaus, 1994). Thus, the loss resulting from climate change, possibly even 
climatic catastrophe, is supposed to increase disproportionally (in this case again 
                                                 
3 Most of them are essentially based on a comparison of future consumption trajectories in the expected 
utility framework as originally developed by Mirrlees and Stern (1972). 
4 Weitzman (1997a) points out that the influence on CBA of large catastrophic damages with small 
probabilities may outweigh the importance of discounting. This supports the focus of our analysis on 
(damage and abatement) cost uncertainties rather than on the nature of the CO2 emissions time-profile. 
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quadratically) if mankind passes beyond an average atmospheric temperature increase 
of a few ˚C. While different numerical assumptions are made for different regions in 
the world, Manne and Richels (2004) presume that for a ΔT of 2.5 ˚C an economic 
loss of 2 % of GDP is incurred in high-income countries (in other words, the 
willingness-to-pay to avoid such a temperature increase is 2 % of GDP).5 At the basis 
of simulations performed with models like FUND and PAGE, and of the other 
modeling exercises referred to below (Cline, 1992; Fankhauser, 1995; Titus, 1992), 
are damage cost assumptions similar to those made in DICE and MERGE, in some 
cases detailed per sector and/or region.6 The parameter choices and corresponding 
specific quantifications of damage costs, however, and thus the numeric way the 
quadratic temperature dependence is introduced in these models, often vary 
substantially, as shown in the next section. 

Two recent studies have produced an overview of an important part of the 
climate change damage literature and made a comparison of two modeling exercises 
determining the marginal damage cost dCdam/dE of CO2 and its uncertainties 
(DEFRA, 2004 and 2005). They report central estimates for six points in time from 
2000 to 2050. As an indication of the uncertainties they show a set of lower and upper 
central estimates as well as a lower and an upper bound (corresponding to 5% and 
95% confidence intervals). We quote some of their results, using an exchange rate 
conversion of 1.5 €/£, to allow for later comparison. Their central estimate is 
23 €/tCO2 in 2000, increasing to 59 €/tCO2 in 2050. The reported lower and upper 
central estimates for 2000 are 14 €/tCO2 and 53 €/tCO2, respectively. The lower 
bound is 4 €/tCO2 (5% bound of PAGE) and the upper bound 90 €/tCO2 (average of 
the 95% bounds of FUND and PAGE). Even though the range from lower to upper 
bound is enormous, it does not fully capture all published estimates. Indeed, some 
negative values for dCdam/dE have been reported (implying net climate change 
benefits rather than costs) as well as values a couple of times higher than the upper 
bound. Tol (2005) also reviews a large number of climate change impact studies, and 
combines over 100 estimates for the marginal damage cost of CO2 to form an overall 
probability density function. The uncertainty proves to be strongly right-skewed, with 
a median of $3.8/tCO2, a mean of $25.4/tCO2, and a 95% CL of $95/tCO2. According 
to Tol (2005), under standard assumptions of time discounting, equity weighting, and 
risk aversion, the marginal damage cost is unlikely to exceed $14/tCO2, and is 
probably smaller. This value is significantly lower than the $85/tCO2 reported by the 
widely publicized Stern Review (Stern et al., 2006), on which we will comment in the 
conclusion. 
 
2.2. Damage cost as function of emissions 
 

Most of the integrated assessment modeling studies (see references in Table 1) 
on energy, climate change, and the economy, use a damage cost function with the 
shape: 

                                                 
5 For low-income countries, like China and India, the ‘hockey-stick’-parameter they use in MERGE is 
smaller than 1. This means that at a per capita annual income between $5,000 and $50,000 a region is 
only willing to pay 1 % of GDP to avoid a 2.5 ˚C temperature rise, and at $5,000 or below basically 
nothing. At $50,000 or above the 2 % of GDP willingness-to-pay applies. 
6 Differences may exist though in assumptions on the tolerable temperature rise, defined as the ΔT 
below which no climate change damage is expected. While most models suppose a tolerable 
temperature of 0 ˚C, Manne and Richels (2004) assume it to be the temperature level in 2000 (which 
was about 0.7 ˚C higher than the average pre-industrial value) and Plambeck and Hope (1996) 2 ˚C. 
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θρ )( stabdam TC Δ= , (2)

 
in which Cdam is the damage cost expressed as fractional loss of GWP, ΔTstab the 
global average temperature change with respect to the pre-industrial atmospheric 
temperature in stabilized conditions, i.e. when equilibrium is reached of the climate 
system, and ρ and θ coefficients characterizing the shape of the damage function. 
Central to our analysis is the definition of ΔTstab as the stabilized global average 
temperature change obtained after a specified emission profile leads to new 
equilibrium values of the atmospheric CO2 concentration and the corresponding 
increase in atmospheric temperature. Time lags exist both between the CO2 emissions 
level and the stabilized CO2 concentration, and between this new atmospheric CO2 
concentration and ΔTstab, typically in each case of at least several decades up to a 
century. The very concept of stabilized temperature change is a time-independent 
summary of a dynamic process; it is of great practical importance because for policy 
applications one needs quantities that are easy to understand and communicate while 
preserving the key information. That justifies the formulation of integrated assessment 
models in terms of ΔTstab. 

Uncertainties about the parameters ρ and θ abound. The function of Equation 2 
is usually assumed to be quadratic, so that θ is 2. Roughgarden and Schneider (1999) 
investigate values of θ other than 2 (both 1<θ<2 and θ>2) on the basis of a set of 
expert views. They conclude, however, that a quadratic damage function is most 
plausible: while θ=2 is not a necessity – the damage function may e.g. be somewhere 
in between linear and quadratic or perhaps even cubic – differences of opinion on 
climate damage costs show up primarily in the coefficient ρ of the damage function, 
rather than in its exponent. Roughgarden and Schneider (1999) argue that allowing for 
views from experts of different scientific disciplines – who have differing opinions on 
especially the likelihood of extreme climate events – implies variations of ρ by as 
much as an order of magnitude, but in most of the literature one finds values for ρ that 
typically lie between 0.001 and 0.004. Table 1 summarizes the values of the 
coefficient ρ as obtained from a survey of some of the most widely used integrated 
assessment models of climate change. 

Formulated slightly differently, Manne and Richels (2004) assume in MERGE 
the relation: 
 

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

=
cat

stab
dam T

T
C , 

(3)

 
in which ΔTcat is the catastrophic temperature change at which all economic activity, 
hence the entire GWP, is supposed to be wiped out. Combining Equations 2 and 3 one 
finds the ΔTcat implicit in the models behind the references listed in Table 1. 
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Table 1. Parameter values for ρ and corresponding ΔTcat as assumed in several 
widely employed integrated assessment models of climate change. 
 

 
Source 

 

 
ρ 
 

 
ΔTcat  (˚C) 

 
Cline (1992) 0.0023 20.7 
Fankhauser (1995) 0.0028 19.0 
Manne and Richels (2004) 0.0032 17.7 
Nordhaus (1991, 1994) 0.0015 26.0 
Plambeck and Hope (1996) 0.0028 19.0 
Titus (1992) 0.0021 21.9 
Tol (1995) 0.0032 17.7 

 
N.B. Most of these authors report damages relative to GDP in the USA for one temperature increase 
level only, typically as associated with a doubling of the atmospheric CO2 concentration. Roughgarden 
and Schneider (1999) apply Nordhaus’ assumptions to the figures adopted by them in order to obtain 
expressions for the damage function of Equation 2 consistent with DICE. 
 

Since for our analysis we need to express Cdam as function of E, we first relate 
ΔTstab to the atmospheric CO2 concentration P by recalling that a roughly logarithmic 
relation exists between this concentration and global temperature increase (Houghton 
et al., 1996). More precisely, the stabilization level of atmospheric CO2 concentration, 
Pstab, can be related to ΔTstab by (see Caldeira et al., 2003): 
 

2
( )

280

2
stab

X

T
TstabP

P

Δ
Δ= , (4)

 
in which P280 is the pre-industrial CO2 concentration of about 280 ppmv, and ΔT2X the 
climate sensitivity, defined as the temperature change ΔTstab resulting from a doubling 
of the atmospheric CO2 concentration. Hence, a stabilization concentration target for 
atmospheric CO2 increases exponentially with the ratio of the stabilization 
temperature change and the climate sensitivity. As before, neither ΔTstab nor ΔT2X are 
instantaneous temperature changes, but global mean surface temperature changes 
attained if CO2 concentrations are held constant long enough to reach stable average 
climate conditions. ΔT2X is thought to lie in a range of about 1.5 to 4.5 ˚C. Recent 
empirical studies (based on e.g. ice core measurements) indicate that there is 
significant likelihood that ΔT2X lies above this canonical range (see for a recent 
overview of possible values of ΔT2X and implications, for example, van der Zwaan 
and Gerlagh, 2006). A most likely value of 3 ˚C for ΔT2X may thus still be considered 
conservative. In order to derive a simple time-independent relationship between Pstab 
and E, we employ the curves of Figure 1 in Wigley et al. (1996) representing a set of 
time-dependent emission profiles for the period 1990 – 2300 calculated for different 
values of Pstab. We take for each value of Pstab the corresponding annual emission 
level E averaged over this time frame. The data and a linear fit are shown in Figure 1.  
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Figure 1. Time-independent relationship between Pstab and E based on the data of 
Wigley et al. (1996), obtained by setting E equal to the annual average of their 1990-
2300 emission profiles. The data points show E for Pstab = 280, 350, 450, 550, 650, 
and 750 ppmv. The straight line is our linear regression. 
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Let Es be the current emissions value of about 25.7 GtCO2/yr. By using P280 and Es as 
reference levels we represent the linear fit of Figure 1 in dimensionless form:7

 
Pstab

P280

=ε + δ E
Es

      with δ = 1.45 and ε = 0.94.  (5)
 

Combining Equations 2, 3 and 5, and assuming θ = 2, we get for the first term 
of the RHS of Equation 1: 
 

2

2 2ln/)ln()( ⎥
⎦

⎤
⎢
⎣

⎡
+Δ=

s
Xdam E

ETEC δερ . (6)

 
This relation is shown as a dashed line in Figure 3. We have also carried out a Monte 
Carlo analysis, using the CrystalBall software and assuming that the parameters 
characterizing the damage cost curve are normally distributed.8 The resulting 
distribution of marginal damage costs is highly right-skewed, although fairly different 
from a lognormal distribution, with a geometric standard deviation of about 3.5. It is 
easy to get higher or lower values for the geometric standard deviation by making 
different assumptions on the distributions of the parameters. On balance we feel that a 
geometric standard deviation in the range of 4 to 5 is reasonable for current estimates 
of the marginal damage cost of climate change. 
 
                                                 
7 This choice for Es is arbitrary and has no effect on our final results. 
8 For the means and standard deviations we assumed, respectively, δ: Normal (1.45, 0.10); ε: Normal 
(0.94, 0.05); ρ: Normal (0.0020, 0.0005); ΔT2X: Normal (3, 1.2). 
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2.3. Abatement cost as function of emissions 
 

Like in Rabl et al. (2005), we assume that the marginal CO2 abatement cost 
takes the functional form: 
 

dCab

d(−E)
=

1
G

α E−β
Es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ

, (7)

 
in which Cab is the globally aggregated abatement cost as fraction of GWP (abridged 
to G in this formula), E and Es (both in GtCO2/yr) are as before, and α (in €/tCO2), β 
(in GtCO2/yr) and γ are coefficients characterizing the non-linear convex form of the 
abatement cost function. The factor G is added to the relation used in Rabl et al. 
(2005) in order to stay consistent with the way damage costs are expressed in 
Equation 2 and because in the present analysis we find it convenient to express all 
costs as fraction of GWP. For GWP we adopt today’s value of approximately 
50 trillion €/yr. We choose the signs in Equation 7 so that dCab is positive for a 
reduction of E. The parameters α, β, and γ may be determined by least squares 
regression if cost data are available as a function of the abatement level. Alternatively, 
they may be estimated on the basis of energy technology assessments or energy 
systems modeling. Here we choose the marginal abatement cost curves depicted in 
Figure 2, based on an evaluation of published integrated assessment modeling results 
(see notably Goulder and Mathai, 2000; Goulder and Schneider, 1999; van der Zwaan 
et al., 2002; Yohe, 1996).9 Figure 2 contrasts with near-term abatement cost curves 
obtained through detailed engineering energy technology analyses, like with the 
GAINS model up to 2020 (Klaassen et al., 2005). Over such a short time frame the 
potential for deep reductions is limited or exceedingly costly, because many of the 
technological options available require long installation lead times or have costs that 
are unacceptably high at the present time. In the long run, however, major cost 
reductions are to be expected as a result of technological progress and learning-by-
doing. Thus, our abatement cost assumptions concern the long run and should not be 
interpreted as realistic short-term policy goals.10 Note, however, that our model does 
not represent the phenomenon of learning, as function of time or cumulative installed 
capacity, explicitly. 
 

                                                 
9 These references typically report shadow carbon prices, which we associate with the efforts needed to 
achieve carbon emission reductions or, alternatively, carbon abatement costs. 
10 Figure 2 shows marginal abatement costs only down to E = 5 GtCO2/yr, as below this reduction level 
they become much higher than marginal damage costs, such that effectively no mitigation takes place. 
Also, below this abatement level the cost uncertainties are too extreme to be of real significance. 
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Figure 2. Our choice for the marginal abatement cost curve (solid line) and lower and upper 
bounds (dashed lines). The coefficients are α=7.5, β=3, and γ=−1.3 for the central curve, 
α=5, β=2, and γ=−1.1 for the lower limit, and α=10, β=4, and γ=−1.5 for the upper limit. 
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The cost of reducing CO2 emissions from starting point Es to level E is the 

integral of the marginal abatement cost equation of Equation 7: 
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    for γ≠-1. (8)

 
This is the E-dependent expression for the second term of the RHS of Equation 1.11 
We have also carried out a Monte Carlo analysis, using the CrystalBall software and 
assuming that the parameters of the abatement cost curve are normally distributed.12 
The resulting distribution of marginal abatement costs is approximately normal, 
except when the emission level drops below about 8 GtCO2/yr. The ratio of standard 
deviation and damage cost is about 0.15 at E = 25 GtCO2/yr, increasing to about 0.25 
at E = 10 GtCO2/yr. We are now in a position to solve our optimization problem.  
 
3. Cost-Benefit Analysis: Solution 
 

Since Eo minimizes Ctot (E), the sum of the marginal abatement cost and the 
marginal damage cost is equal to zero at this optimal emission level, so that: 
 

0
/

)/ln(
2ln
2 2

22 =
+
+

Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

ss

s
X

s EEE
EE

T
E

E
G

δ
δε
δε

ρβα
γ

     at E = Eo. (9)

 

                                                 
11 Note that we only consider values of γ < -1, since these provide a sufficiently broad abatement cost 
uncertainty range. 
12 For the means and standard deviations we assumed, respectively, α: Normal (7.5, 1.0); β: Normal (3, 
0.5); γ: Normal (-1.3, 0.1). 
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Unlike the case with linear damage costs, there is no analytical solution to this 
relation. We thus use the FindRoot function of Mathematica® to obtain a numerical 
solution.13 Table 2 lists the central values, pcentral, of all parameters of the optimization 
problem, as well as their ranges, [pmin, pmax], considered for the uncertainty analysis. 
For the central values of these parameters the optimal emission level is found to be 
Eo = 8.7 GtCO2/yr, about one third of the current emission level Es. The marginal 
damage and abatement costs at Es are about 77 €/tCO2 and 9 €/tCO2, respectively, 
while at the optimum they are equal to approximately 54 €/tCO2. Figure 3 shows the 
abatement, damage, and total costs expressed as percentage loss of GWP as function 
of emission level E. At today’s emissions the damage cost clearly dominates, which 
highlights the need for major reductions. 
 
Table 2. Central values and ranges of parameters p for the damage and abatement 
costs in the optimization problem. 

 
Parameters p pmin pcentral pmax 

 

Damage cost 
2

2 2ln/)ln()( ⎥
⎦

⎤
⎢
⎣

⎡
+Δ=

s
Xdam E

ETEC δερ  

 
δ 1.15 1.45 1.75 
ε 0.74 0.94 1.14 
ρ 0.0005 0.0020 0.0035 
ΔT2X [ºC] 1 3 5 

 

Abatement cost Cab (E)=
1
G

α Es

γ +1
Es−β

Es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ +1

−
E−β
Es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ +1⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
α [€/tCO2] 5.0 7.5 10 
β [GtCO2/yr] 2 3 4 
γ -1.5 -1.3 -1.1 

 
 

                                                 
13 All numerical results presented in this paper have been calculated with Mathematica. 
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Figure 3. Damage, abatement, and total costs expressed as percentage loss of GWP as 
function of emissions level E. 
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Figure 4 shows our results regarding the dependence of the optimal emissions 

level Eo on the parameter assumptions of our optimization problem. Since G and Es 
are known with sufficient precision – their uncertainties are essentially negligible – 
they do not need to be subjected to a sensitivity analysis. We vary each parameter p 
over the range [pmin, pmax] as listed in Table 2, wide enough to span any reasonable 
possible value of p. To show results in a compact format we choose to represent p in 
non-dimensional form as x = (2p - pmax - pmin)/(pmax - pmin). The central value pcentral 
equals (pmax + pmin)/2, corresponding to x=0. For the large uncertainty range chosen 
for the parameters α, β, γ, δ, and ε, we find that Eo varies by less than 20% in most 
cases.  

The largest error margins derive from changes in the climate sensitivity, ΔT2X, 
and the main parameter used to express climate change damage costs, ρ. Especially 
for values of x close to -1, for these two parameters, Eo could be much larger. For 
ΔT2X , however, we find it reasonable not to consider values below 2 °C, given the 
high likelihood that the climate sensitivity is higher than this level. For ρ, we consider 
0.0010 a generous lower bound, as it lies significantly below the minimum of values 
listed in Table 1. Since we abstract from the time-dimension of the cost-benefit 
problem, we cannot explicitly consider the effect of variations in the discount rate. 
Indirectly, however, we assume it is included in changes of ρ. Thus, limiting 
ourselves for ΔT2X  and ρ down to values of x=-0.5 but up to x=1, corresponding to a 
broad uncertainty range, we find that the optimal emission level Eo = 8.7 GtCO2/yr 
varies by no more than 2.3 GtCO2/yr or less than 30%. 
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Figure 4. Dependence of the optimal emissions level Eo (in GtCO2/yr and as fraction 
of current emissions Es) on parameters α, β, γ, δ, ε, ρ, and ΔT2X of the optimization 
problem. Each curve shows the effect of varying the parameter under consideration 
while keeping the others fixed at their central value. The x-axis shows the variation of 
each parameter p in non-dimensional form as x = (2p – pmax – pmin)/(pmax – pmin). 
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4. Cost penalty and value of research 
 

In our cost minimization problem the optimal emission level may well be 
determined incorrectly as a result of uncertainties in damage and abatement costs. 
Consequently, the real cost borne by society when establishing a desirable CO2 
emission level is larger than at the social optimum. Of course, various political 
processes may also preclude the choice of the optimal emission level, but here we are 
interested in errors in Eo resulting from erroneously estimated damage and abatement 
costs. In particular, we examine by how much the total social cost increases above the 
optimum due to damage and abatement cost estimation errors. Rather than looking at 
the uncertainty in each of the parameters of Table 2, as we did in the previous section, 
we here take a simplified approach by considering overall errors in respectively the 
damage and abatement cost. 

Suppose that damage costs have been estimated as Cdam,est(E), while the true 
damage cost is Cdam,true(E). Likewise, we assume that the abatement cost has been 
guesstimated as Cab,est(E), whereas it is really Cab,true(E). The optimal emission level 
corresponding to the estimated costs is Eo,est, instead of the true optimum Eo,true. We 
represent damage and abatement cost uncertainties by random variables, xdam and xab: 
 
xdam = Cdam, true(E) / Cdam, est(E), (10) 
 

 13



and 
 
xab = Cab, true(E) / Cab, est(E). (11) 
 

We look at variations of xdam and xab separately because their magnitudes and 
probability distributions are fundamentally different. Uncertainties in the abatement 
cost function are much smaller than those in the damage cost. Also, for the former a 
normal distribution seems most plausible. We therefore characterize the distribution 
of xab by a Gaussian with mean 1 and standard deviation σab. Since for large σab a 
significant portion of the Gaussian corresponds to negative values of xab, i.e. negative 
abatement costs, we truncate the Gaussian at zero and replace it by a normalized 
distribution that is proportional to the Gaussian at positive xab. 

For uncertainties in the damage cost function we assume a lognormal 
distribution. A variable has a lognormal distribution if the distribution of the 
logarithm of the variable is Gaussian. The lognormal distribution is strongly skewed, 
with a long tail of high values with low probability. It is usually characterized in terms 
of its geometric mean μg and its geometric standard deviation σg. Its geometric mean 
μg is equal to the median. If a quantity with a lognormal distribution has a geometric 
mean μg and a geometric standard deviation σg, the probability is approximately 68% 
for the true value to be in the interval [μg/σg, μg σg] and 95% for it to be in the interval 
[μg/σg

2, μg σg
2]. Thus the confidence intervals of the lognormal are multiplicative, in 

contrast to the additive ones of the Gaussian.14

The highly skewed distribution of damage cost estimates in the literature 
(DEFRA, 2004 and Tol, 2005) is fairly consistent with a lognormal function, even 
though a few studies claim negative damages. Indeed, global climate change probably 
produces both winners and losers, at least at moderate temperature increases, but we 
do not believe that the net world-wide damage cost could be negative for any increase 
of the atmospheric CO2 concentration. As representation of the estimates found in the 
literature we therefore take a lognormal distribution, and choose for its parameters a 
median μg = $3.8/tCO2 and upper limit μg σg

2 = $95/tCO2, that is, σg = 5.15 In view of 
the limitations of currently available studies – notably the fact that especially some of 
the most troubling potential impacts, such as a change in the thermohaline circulation, 
rapid non-linear ice-sheet disintegration, or methane release from permafrost melting, 
have not yet adequately or hardly at all been taken into account – we realize that the 
uncertainty range may well be larger than σg = 5. 

Since we focus in this section on variations in xdam and xab, we use these 
variables as arguments of the true optimal emission level Eo,true(xdam,xab) as well as of 
the difference ΔC(xdam,xab) between the total cost at Eo,est and that at Eo,true : 
 
ΔC(xdam, xab) =  [Cdam,true (Eo,est) + Cab,true (Eo,est)]  

- [Cdam,true (Eo,true) + Cab,true (Eo,true)]. 
(12) 

 
ΔC(xdam,xab) is the cost penalty due to errors in the damage and abatement cost 
functions. The results in this section are complementary to those of Figure 4. We here 
cover a wider range of uncertainties than considered there, but present less detail 

                                                 
14 See Spadaro and Rabl (2007) for more information on the use of lognormal distributions for the 
uncertainty analysis of environmental damage costs. 
15 This median is the one reported in the review by Tol (2005) and the upper limit the 95% confidence 
interval in this reference. 

 14



about the specific role of individual parameters. Starting from the quantities 
Cdam,est(E), Cab,est(E), and Eo,est as calculated with the central values of the parameters 
in Table 2, the corresponding true quantities are obtained by incorporating the factors 
xdam and xab in our analysis. As can be seen from an inspection of Equations 6 and 8, 
the variation of xdam is equivalent to variations in ρ and (ΔT2X)2, while the variation of 
xab is equivalent to a variation in α. 

The variation of the true optimal emission level Eo,true(xdam,xab) is plotted in 
Figure 5, in part a) as function of xdam, keeping xab = 1, and in part b) as function of 
xab, keeping xdam = 1. Since we think that the abatement cost uncertainty is smaller 
than the damage cost uncertainty, the depicted range of xab is smaller than that of xdam 
(up to a maximum of 3 and 5, respectively). As expected, both graphs of Figure 5 
confirm our central result of Eo = 8.7 GtCO2/yr, reached in this representation when 
both xdam = 1 and xab = 1. These plots also include our finding that the uncertainty 
range of this optimal emission level amounts to at most 2.3 GtCO2/yr, or less than 
30%, but furthermore depict the dependence of Eo on a larger scope of damage and 
abatement cost uncertainties than the ones we considered before, that is, parameter 
values beyond what we regard generous minimum and maximum boundaries. In 
addition, through the relative units used for the y-axis on the right, Figure 5 points out 
that even if the damage or abatement costs are estimated wrongly by as much as a 
factor of 3, the optimal emission level still amounts to about half the present-day 
emissions of CO2. Yet such an error by a factor of 3 could also imply that today’s 
emissions should be reduced by almost 80%, rather than the suggested central 
reduction value of 67%. These findings strengthen our analysis’ case for realizing a 
deep cut in CO2 emissions. 
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Figure 5. Effect of uncertainties on the optimal emission level Eo,true(xdam,xab).  
a) True optimum if true damage cost is xdam times larger than the estimate, keeping xab = 1. 
b) True optimum if true abatement cost is xab times larger than the estimate, keeping xdam = 1. 
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The cost penalty ΔC(xdam,xab=1) resulting from damage cost errors is shown in 
Figure 6 as function of xdam, keeping xab = 1. To get a sense for the magnitude of the 
cost penalty with respect to the total costs incurred at the optimum, it is instructive to 
complement the cost penalty in absolute terms (solid line and left hand scale) with 
that in relative terms as ratio ΔC/C (dashed line and right hand scale), with in this case 
ΔC=ΔC(xdam,xab=1) and C=C(xdam,xab=1). Analogously, the cost penalty 
ΔC(xdam=1,xab) due to abatement cost errors is shown in Figure 7, again both in 
absolute and in relative terms (left and right hand scales, respectively). Like for Figure 
6, given that the uncertainty range for abatement costs is probably smaller than for 
damage costs, we think it justified to depict a smaller x-axis span for xab than for xdam.  
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Figure 6. The cost penalty ΔC(xdam,xab=1) if the true damage cost is a factor xdam times the 
damage cost estimate, in absolute terms (solid line, left scale) and in relative terms as 
fraction of the total cost C(xdam,xab=1) at the optimum (dashed line, right scale). 
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Figure 7. The cost penalty ΔC(xdam=1,xab) if the true abatement cost is a factor xab times the 
abatement cost estimate, in absolute terms (solid line, left scale) and in relative terms as 
fraction of the total cost C(xdam=1,xab=1) at the optimum (dashed line, right scale). 
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Like in Rabl et al. (2005), we find that the cost penalty is relatively small near 

the optimum, or, in other words, the optimum is fairly broad. Only when the damage 
and abatement cost errors get large, the cost penalty becomes substantial. Figures 6 
and 7 show that when the true damage costs are 5 times the estimated ones, the 
relative cost penalty amounts to about 40%, and that when the true abatement costs 
are 3 times the estimated ones, the relative cost penalty amounts to about 20%. These 
relative changes may still be considered modest, but in absolute terms the cost penalty 
can become really enormous. The explanation is that the stakes involved in global 
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climate change, i.e. the costs both at the damage and abatement side of the problem, 
are simply very high. For example, for xdam=5 and xab = 3, the cost penalty reaches 
values nearing 1% and 0.5% of GWP, respectively, close to the total costs of 1.2% of 
GWP involved in the climate change problem at the optimum (see also Figure 3). 

Uncertainties in damage and abatement costs can be reduced by further 
research. To assess the value of such research we calculate the expectation value 
<ΔC(xdam,xab=1> as function of the geometric standard deviation σgdam of the damage 
cost, with xdam characterized by a distribution Lognormal(1,σgdam). Likewise, we 
determine the expectation value <ΔC(xdam=1,xab)> as function of the standard 
deviation σab of the abatement cost, with xab characterized by a distribution 
Normal(1,σab). Even though abatement options exist with negative costs, we do not 
believe that on a global scale total abatement costs could be negative. We therefore 
truncate the normal distribution at xab = 0. The results are shown in Figure 8. 
 
Figure 8. Expectation value of the cost penalty: a) <ΔC(xdam, xab=1> as function of the 
geometric standard deviation σg,dam of the damage cost; b) <ΔC(xdam=1, xab)> as function of 
the standard deviation σab of the abatement cost. 
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Figure 8 provides an indication of the value of improved information on the 
damage and abatement costs. For example, if research reduces the geometric standard 
deviation σg,dam of the relative damage cost estimates from 10 to 5, the expectation 
value of the cost penalty decreases from around 0.9% to some 0.4% of GWP. Hence 
the value of such research is about 0.5% of GWP. In relative terms less than half a 
percent benefit may seem negligible, but in absolute terms this reduction of the cost 
penalty corresponds to an amount of about 250 billion €. In a similar way, if further 
research reduces the standard deviation of relative abatement cost estimates from 1 to 
0.5, the benefit is about 0.06% of GWP, that is, about 30 billion €. We thus conclude 
that research to reduce the uncertainty of damage and abatement cost estimates can be 
extremely cost-effective. We also observe that the possible gains from continued 
climate change damage cost analyses (i.e. climatic externality studies) may be 
significantly higher than those obtainable by increasing our understanding of the 
nature of abatement technologies and their prospected costs. The reason is the small 
likelihood for extreme climate events with high impacts, that is, the lognormal 
distribution of the damage cost function. Note that the change of slopes in Figure 8 b) 
around σab = 0.2 is a reflection of the truncation at xab = 0. Such details should not be 
taken too literally, however, since the probability distributions are not known 
sufficiently well.  
 
5. Conclusions and recommendations  
 

We have carried out a cost-benefit analysis of climate change mitigation, with 
a focus on the uncertainties associated with both sides of the problem: the damage 
costs of CO2 emissions and abatement costs of CO2 emission reductions. To keep the 
analysis transparent we have introduced several major simplifications, especially by 
assuming a time-independent relation between CO2 emissions and atmospheric CO2 
concentrations, arguing that they do not affect the validity of our conclusions. Based 
on a review of the literature, we have formulated elementary approximations for the 
damage and abatement cost functions. For the most plausible choice of the model 
parameters, we find that the ‘climatic social optimum’ corresponds to an emission 
level Eo = 8.7 GtCO2/yr, about a third of CO2 emissions today. 

Varying the model parameters over a wide range, we evaluate the sensitivity 
of Eo and find that our central result is surprisingly robust. For most of our parameter 
tests, Eo changes by less than 20%. Varying the climate sensitivity parameter ΔT2X and 
the scaling factor ρ of the damage cost function, on the other hand, has a stronger 
effect. For ΔT2X we assume a central value of 3°C, a lower bound of 2°C and an upper 
bound of 5°C. For ρ we adopt a margin broader than the proportionality factors found 
in the literature, by supposing a central value of 0.0020, a lower limit of 0.0010, and 
an upper limit of 0.0035. On the basis of the corresponding parameter changes we 
find that Eo varies by no more than 2.3 GtCO2/yr, i.e. less than 30% from Eo as found 
under our central parameter assumptions. This finding both confirms and narrows 
down the result of the more rudimentary cost-benefit analysis by Rabl et al. (2005), 
who calculate that the optimal CO2 emission level lies between one third and three 
quarters of the current emission level under a wide range of parameter choices. 
Interestingly, our results imply that the optimal emission level is unlikely to be lower 
than Eo = 6.4 GtCO2/yr, i.e. about one quarter of current CO2 emissions, the 
explanation for which is that the abatement costs become too high at this mitigation 
plateau. 
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Ultimately it is not only the optimal emission level and its uncertainty that 
matters, but also the cost penalty, i.e. the extra social cost incurred due to an 
erroneously chosen Eo. Since it proves the optimum is broad, the cost penalty is 
relatively small even for large errors in the estimation of relative damage and 
abatement costs. For example, if the true damage cost is three times larger or smaller 
than the estimate used in our cost-benefit analysis, the total social cost of climate 
change increases by less than 20% above its minimum at the true optimal emission 
level. Because of the magnitude of the total costs involved with global climate 
change, however, even a fairly small relative error implies a large cost difference in 
absolute terms, amounting typically to hundreds of billions € in the case of damage 
cost uncertainties. We have therefore calculated the benefit of reducing these 
uncertainties. For example, if research reduces the geometric standard deviation of the 
relative damage cost estimate from 10 to 5, the expectation value of the cost penalty 
decreases from around 0.9% to some 0.4% of GWP. Clearly, the value of information 
brought forward by increased climate change damage research can be enormous. 

With Eo = 8.7 GtCO2/yr as optimal central emissions level and an uncertainty 
range of 2.3 GtCO2/yr, we derive from Figure 1 an optimal CO2 concentration of 
approximately Pstab,o = 400 ppmv and a possible variation of some 40 ppmv. This 
result deviates from the recommendation of Stern et al. (2006), who claim that the 
optimal climate stabilization concentration is around 500 ppmv CO2 (equivalent) with 
an error margin of about 50 ppmv. The discrepancy between their and our results is 
unlikely to be explainable by the fact that Stern et al. (2006) aggregate all greenhouse 
gases, while we only consider the most important contributor to climate change, CO2. 
While receiving support from most scientists for its clear message to undertake action 
to reduce greenhouse gas emissions, the Stern review has also been criticized for 
several reasons (Dasgupta, 2006; Nordhaus, 2006; Weitzman, 2007b): while some 
focus on the low discount rate it employs, others indicate that the damage costs it 
reports are too high or the abatement costs too low. In the present paper we confirm 
the observation made by others that, despite the Stern review’s high damage and low 
abatement costs, it arrives at an inexplicably high stabilization concentration. We 
strongly agree with the Stern review’s overall conclusion that a deep cut in CO2 
emissions is required to avert the risk of global climate change. Like others, however, 
we also question certain aspects of the analysis leading to this result, as well as the 
precise outcome. In particular, in addition to our suggested CO2 concentration level 
(400 +/- 40 ppmv) being significantly lower than that of the Stern review (500 +/- 50 
ppmv), we find in our analysis that the marginal damage costs (77 €/tCO2 at Es and 
54 €/tCO2 at Eo) are below those quoted in the Stern review (85 €/tCO2). The optimal 
emissions level we calculate (Eo = 8.7 +/- 2.3 GtCO2/yr) is also significantly lower 
than figures quoted in recently professed policy statements by several G8 and EU 
countries, who aim at reducing their CO2 emissions by half in 2050, that is, to about 
13 GtCO2/yr. 

From the above climate change cost-benefit analysis, and the description of 
the uncertainties involved, it is evident that much more work is required in the field of 
CO2 damage and abatement cost calculations. Especially climate change damage 
research really has only barely started off. In order to reduce damage cost 
uncertainties and exploit the value of the corresponding information, it is particularly 
important to perform detailed analyses of regional climatic impacts and associated 
economic costs. These are needed to complement the highly aggregated studies 
produced so far, like the one presented in this paper. We thus agree with the 
recommendation by DEFRA (2004) that the disaggregation and valuation of damage 
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costs by sector and region should be forcefully pursued. Determining the possible 
physical impacts of CO2 emissions in all areas of economic and social activity should 
be vigorously continued, since the ensuing findings can effectively profit long-term 
policy making. The classical challenges of mitigation timing, social discounting, 
equity weighting, and risk aversion remain on the agenda, as well as the question how 
policy makers should confront the uncertainties associated with climate change 
damage and CO2 abatement costs. To the latter, this article has attempted to contribute 
a step forward. As in the future more understanding on all the above fields emerges, 
the type of analysis presented here should be revisited. For the moment at least our 
study has shown how drastic the CO2 emission reductions are that need to be reached. 
We hope our analysis convinces policy makers that these cuts are even deeper than 
previously suggested: rather than continuing on the business-as-usual path that within 
decades may generate twice the amount of today’s CO2 emissions, the energy 
technologies should urgently be implemented capable of reducing these emissions to 
on average one-third of present-day levels, with uncertainty bounds of only one-fourth 
and two-fifths of the current figure of 25.7 GtCO2/yr, i.e. in any case well below the 
proclaimed one-half reduction. The more time we take not reaching the average one-
third goal, the deeper are the emission cuts required subsequently. Since in this paper 
we abstract from questioning the time profile of future emission reductions, but rather 
focus on damage and abatement cost uncertainties, we have performed our analysis in 
terms of the average emissions required over the coming three centuries. 
Consequently, whereas our results do not allow determining the transition path to 
reduce CO2 emissions from 25.7 to 8.7 GtCO2/yr, they do suggest that not being able 
to return to an emission level of below e.g. 20 GtCO2/yr during the 21st century 
necessitates a decrease down to at least 3 GtCO2/yr on average during the two 
following centuries. 
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