

Calculation method of N₂O flux measurements by static chambers

P. Kroon

A. Hensen

P. van den Bulk

P. Jongejan

A. Vermeulen

Presented at the 3rd NitroEurope IP annual meeting, 18 - 21 February 2008, Gent, Belgium

ECN-L--08-065 February 2008

Energy research Centre of the Netherlands

Calculation method of N₂O flux measurements by static chambers

P. Kroon, A. Hensen, P. van den Bulk, P. Jongejan & A. Vermeulen

Literature review

VOL. 5, NO. 9

GEOPHYSICAL RESEARCH LETTERS

SEPTEMBER 1978

A NUMERICAL EVALUATION OF CHAMBER METHODS FOR DETERMINING GAS FLUXES

Allan D. Matthias, Douglas N. Yarger, and Robert S. Weinbeck

Departments of Agronomy and Earth Sciences, Iowa State University, Ames, Iowa, 50011

Abstract. Mathematical simulations of n: oxide (No0) flux from homogeneous soil into ; surface chambers have been done for both a type of chamber in which soil air is static collected and an open type of chamber in whi ambient air is dynamically drawn across the surface. Results indicate that chamber-meas fluxes over land surfaces may be subject to siderable uncertainty, due in part to concer tion gradient changes within the soil profil that are a function of the type and the size the chamber. Assessment of the uncertaintie chamber flux determinations are reported. 1 reasonable parameters closed-chamber flux va may be underestimated by as much as 55%. Da analysis procedures are described that can : prove the flux estimates. Use of open cham may yield better flux estimates than closed bers because of less disturbance to the nati gas concentration profile within the soil. application to NoO flux measurements over wa also is included.

Trace Gas Emission in Chambers: A Non-Steady-State Diffusion Model

Gerald P. Livingston,* Gordon L. Hutchinson, and Kevork Spartalian

ABSTRACT

Non-steady-state (NSS) chambers are widely used to measure trace gas emissions from the Earth's surface to the atmosphere. Unfortunately, traditional interpretations of time-dependent chamber concentrations often systematically underestimate predeployment exchange rates because they do not accurately represent the fundamental physics of diffusive soil gas transport that follows chamber deployment. To address this issue, we formally derived a time-dependent diffusion model applicable to NSS chamber observations and evaluated its performance using simulated chamber headspace CO2 concentration data generated by an independent, three-dimensional, numerical diffusion model. Using nonlinear regression to estimate the model parameters. we compared the performance of the non-steady-state diffusive flux estimator (NDFE) to that of the linear, quadratic, and steady-state diffusion models that are widely cited in the literature, determined its sensitivity to violation of the primary assumptions on which it is based, and addressed some of the practicalities of its application. In sharp contrast to the other models, NDFE proved an accurate and robust estimator of trace gas emissions across a wide range of soil, chamber design, and deployment scenarios.

CHAMBER MEASUREMENT OF SOIL-ATMOSPHERE GAS EXCHANGE: LINEAR VS. DIFFUSION-BASED FLUX MODELS

W. H. ANTHONY, G. L. HUTCHINSON,* AND G. P. LIVINGSTON

Abstract

We compared linear regression with a diffusion-based model for N_2O flux estimation using non-steady-state chamber gas concentrations from a long-term study of N cycling in a managed grass pasture on sandy soil in southern Texas. Of 2224 chamber deployments, 449 met criteria established for using the diffusion-based model, which yielded flux estimates that averaged \$4% larger than linear regression ($\pi = 3$)

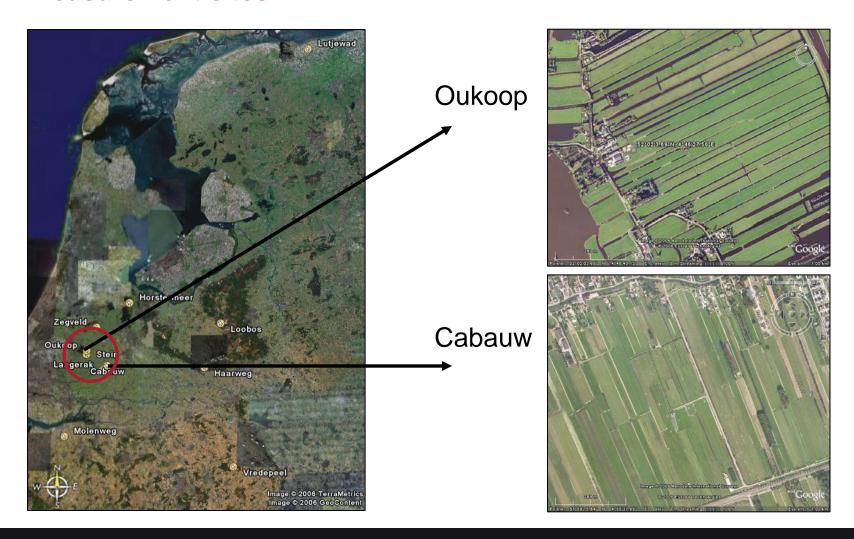
Although they this group in magnitude an 263 fluxes >1(application of represents a p influence not

larger scale b

Biogeosciences, 4, 1005–1025, 2007 www.biogeosciences.net/4/1005/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

CO₂ flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

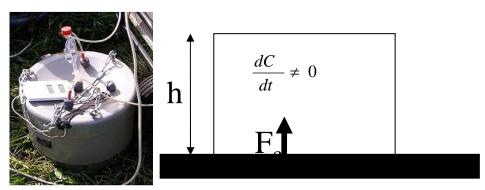
L. Kutzbach¹, J. Schneider¹, T. Sachs², M. Giebels², H. Nykänen⁴, N. J. Shurpali⁴, P. J. Martikainen⁴, J. Alm⁵, and M. Wilmking¹


Why do most of the people still use a linear regression?

Possible reasons:

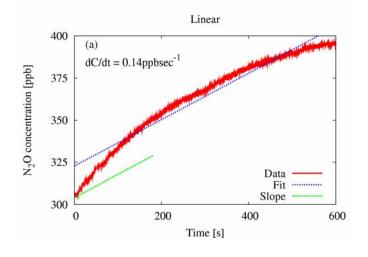
- Assumption that conentration behavior is linear over short measurement times.
- Assumption that non-linear concentration behavior can only be caused by leakage.
- Assumption that uncertainty due to spatial and temporal variation is much larger than the biases due to linear regression.

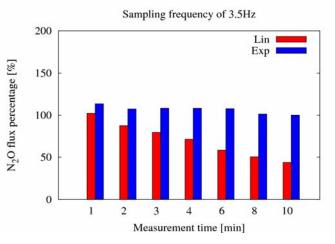
Measurement sites

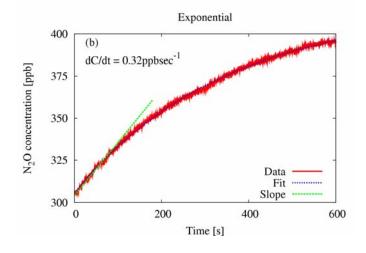


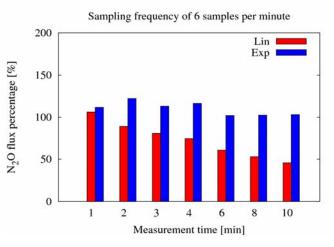
Measurement method (1)

Oukoop

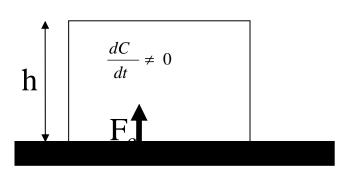

Fast chamber measurements



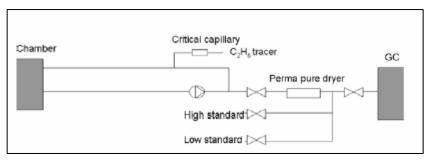

- N₂O concentrations measured with a QCL
- Sampling frequency of 3.5Hz



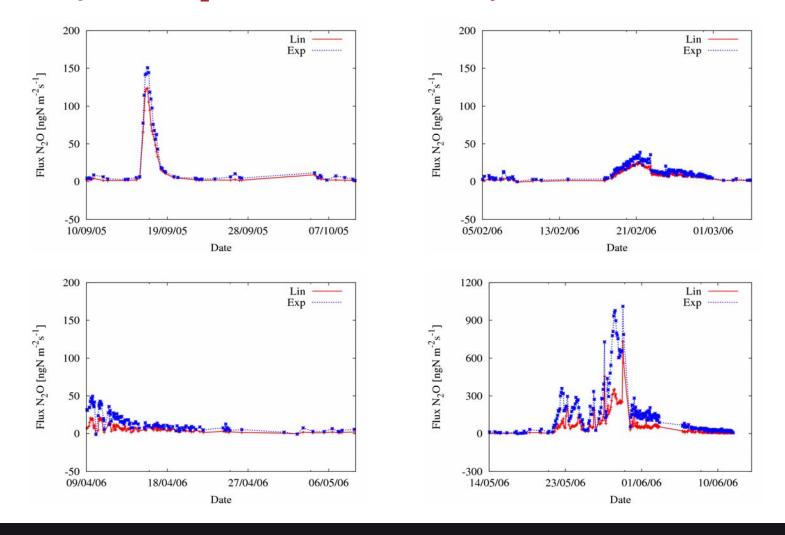
Assumption of short measurement times


Measurement method (2)

Cabauw

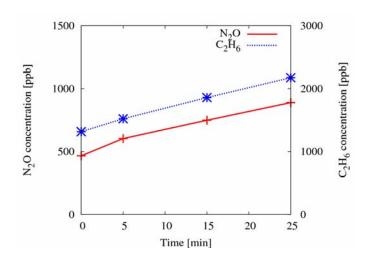


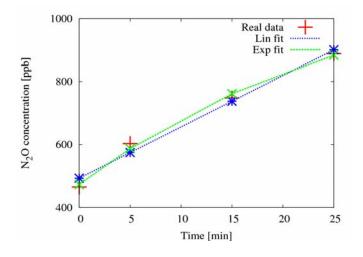
Automatic chamber measurements



Schematic representation

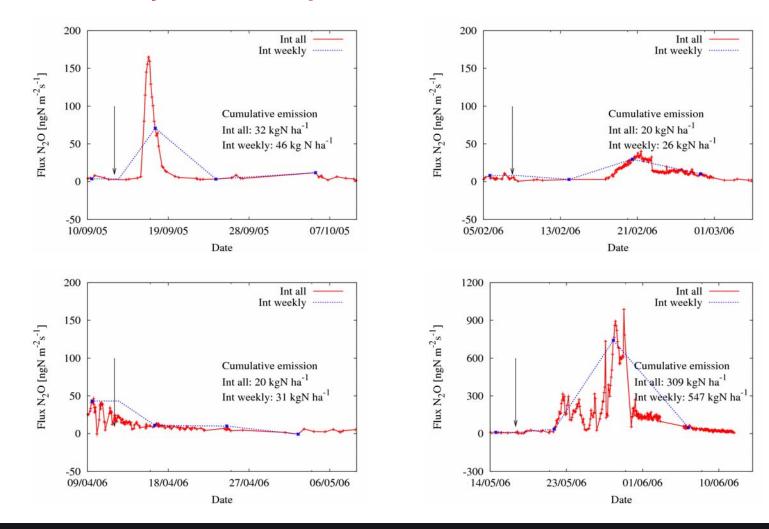
Comparison N₂O fluxes determined by two methods


Comparison N₂O fluxes determined by two methods


	mmary of applied abauw in the Neth		emissions of fo	nır fertilizing	events	at
Measurement period	Measurement method	Applied N [kgN ha ⁻¹]	Cumulative emissions N ₂ O-N [kgN ha ⁻¹]	Percentage emitted N ₂ O-N [%]	T [°C]	R [mm]
10/09/05- 10/10/		33	22·10 ⁻² 32·10 ⁻²	0.7 1.0	14	114
05/02/06 05/03/	Exponential 06 Linear Exponential	128	12·10 ⁻² 19·10 ⁻²	0.1	3	58
09/04/06 - 09/05/06Linear		60	9.10-2	0.1	11	15
14/05/06-14/06/0	Exponential 6 Linear	99	22·10 ⁻² 146·10 ⁻²	0.4 1.5	13	84
	Exponential		331·10 ⁻²	3.4		

Kroon et al., submitted

Non-linearity in case of a leak free chamber


N₂O flux estimate:

- Linear method -> 85 ngN m⁻²s⁻¹
- Exponential method -> 150 ngN m⁻²s⁻¹

28-10-2008

Uncertainty due to temporal variation

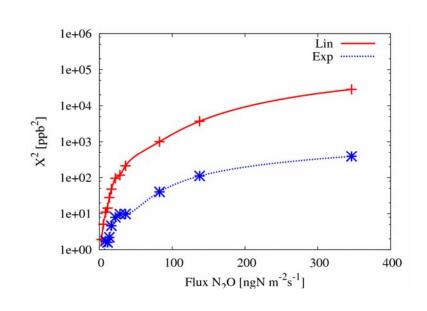
28-10-2008

Conclusion

Possible reasons:

- Assumption that concentration behavior is linear over short measurement times.
- Assumption that non-linear concentration behavior can only be caused by leakage.
- Assumption that uncertainty due to spatial and temporal variation is much larger than the biases due to linear regression.

Assumptions need to be proved


Advice

Test static chamber data for non-linearity by

- Comparing different methods and their goodness-of-fit
- Using an additional tracer like C₂H₆

Goodness-of-fit anaysis

$$\chi^{2} = \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

28-10-2008

Energy research Centre of the Netherlands

Calculation method of N₂O flux measurements by static chambers

P. Kroon, A. Hensen, P. van den Bulk, P. Jongejan & A. Vermeulen

