Greenhouse gases from peat areas

P.S. Kroon A. Hensen H. Jonker A.T. Vermeulen W.H. van 't Veen

Presented at the EUFAR summer school in IASI, Romania (July 2007)

September 2007

Energy research Centre of the Netherlands

Greenhouse gases from peat areas

P. Kroon¹, A. Hensen¹, H. Jonker², A. Vermeulen¹ & W.H. van 't Veen¹

1. ECN, Netherlands ; 2. TU Delft, Netherlands

Outline

- Background
- Objectives
- Actual research method
- First results
- Additional airplane measurements

Background

Background: Land-use change on peat land

Background: Land-use change on peat land

Land surface in 1848

Drainage caused oxidation and thus dramatic land subsidence in East England

Land surface in 2000

Background: Land-use change on peat land

Agriculture:

 CO_2 from peat decomposition

N₂O from manure

Stronger greenhouse effect

Soil subsidence and rising sea level

Nature/wetland:

High water level

Wetland restoration:

Fixing CO₂ in new peat

More CH₄

Less agriculture

Agriculture:

Low water level

Objectives

- 1. To determine the greenhouse gas emissions of CH_4 and N_2O from a mainly agriculture used peat area
- To determine the effect of water management on the greenhouse gas emissions of CH₄ and N₂O from a managed peat site
- 3. To investigate the distribution by turbulence and the chemical properties of the greenhouse gases CH_4 and N_2O

Actual research method

8

Actual research method

Oukoop

Eddy covariance measurements

Fast chamber measurements

Actual research method

Cabauw

Profile concentration measurements

Automatic chamber measurements

$$\frac{dC}{dt} \neq 0$$

$$\mathbf{F}_{\mathbf{a}}$$

- Cow manure application in week 37 of 55 kgNha⁻¹
- Highest CH₄ peak in week 37
- Highest N₂O peak in week 40 (related to precipitation)

Results: Oukoop EC-measurements

- About 40% of the total N₂O emission was due to a fertilizing event
- About 5% of fertilized N is emitted (55 kgNha⁻¹ applied)
- N₂O and CH₄emission of 1.5 and 1.0 ton CO₂ equivalents per hectare over August to November 2006

Assuming a dairy farm of 25 hectare:

This CO₂ emission is equal to 420.000 km by petrol car

Results: Cabauw versus Oukoop

- Magnitude of flux dependent on meteorological circumstances
- Magnitude of flux dependent on amount of applied fertilizer
- Magnitude of flux is approximately the same for both grassland sites

Results: Fundamental research

Why need for additional airplane measurements?

Objectives

- 1. To determine the greenhouse gas emissions of CH_4 and N_2O from a mainly agriculture used peat area
- To determine the effect of water management on the greenhouse gas emissions of CH₄ and N₂O from a managed peat site
- 3. To investigate the distribution by turbulence and the chemical properties of the greenhouse gases CH_4 and N_2O