

Energy research Centre of the Netherlands

Transition to the hydrogen economy

Marcel Weeda, Energy research Centre of the Netherlands (ECN) AERO-NET Workshop, Sheffield, 25 January 2007

Energy Research Centre of the Netherlands (ECN)

- Independent research organisation;
- Bridge between fundamental research and industrial products;
- 550-600 employees;
- Annual turnover 65 M€

- <u>Unit:</u> Hydrogen and Clean Fossil Fuels
- <u>Group:</u> Hydrogen Transitions and Infrastructure

Structure presentation

- Energy issues
- Role of hydrogen and applications
- General views on hydrogen transition
- Source to user
 - Primary energy use
 - GHG-emissions
 - Fuel cost
- Vehicle cost
- On-board and on-site storage
- Status and activities
- Summary/Conclusions

Issues w.r.t. supply and use of energy

• Availability and undesirable dependencies

Climate change

Arctic sea ice, 1979 Arctic sea ice, 2003

Issues w.r.t. supply and use of energy

• Air pollution

• Fossil resources are finite, in particular oil and natural gas

Hydrogen is part of the solution

General options:

- Conservation; avoid the use of energy
- Increase energy conversion efficiency (transformation, end-use)
- Use of clean energy sources and energy carriers
- Use of climate neutral energy sources and energy carriers
- Use of energy carriers that can be produced from various energy sources

Specific options:

- Hydrogen: clean, carbon-free, universal (like electricity)
- Fuel Cells: efficient conversion of hydrogen into electricity

Applications for hydrogen and fuel cells (1)

- Transport
 - Propulsion:
 - moped, scooter, motor
 - passenger car
 - van
 - light duty truck
 - bus
 - Auxillary Power Unit:
 - heavy duty truck
 - airplane
 - ship

100-500 kW Hydrogen from kerosine

10-10,000 kW Hydrogen from marine diesel

Applications for hydrogen and fuel cells (2)

- Residential and commercial sector, and agriculture
 - Back-up power, or Uninterrupted Power Supply (UPS)
 - Portable power and mobile power (power generators)
 - Energy storage (e.g. wind, solar) in remote areas
 - Mini- and micro-CHP ?

Potential mini- and micro-CHP is not clear. Savings depend on:

- Heat to power ratio
- Load curves (simultaneity in heat and power demand)
- Temperature level of the heating system
- Capacity of the system
- Control strategy of the system
- Characteristics reference system

Furthermore, many alternatives available, like better isolation, greening of electricity mix (sustainable electricity should be used directly), use of solar heat, heat pumps, etc.

Energy saving by CHP: NG fuelled, optimal case

Energy saving by CHP: Hydrogen fuelled

Transition to the hydrogen economy

- Hydrogen economy will probably be a transport fuel economy
- Transition to the use of hydrogen as an energy carrier, instead of liquid carbon-containing energy carriers, for transport applications

Transition of hydrogen transport applications

2010	 Range extension for electric vehicles (forklifts and small utility vehicles at airports, hospitals, municipal services, etc.)
	Demonstrations with busses and passenger cars (ICE & FC)
	 Increase of vehicle fleets on hydrogen (e.g. busses)
2020	 FC passenger cars commercially available for private use
2030	 Rapid uptake of hydrogen cars in the market
2050	 Up to 50% of road transport on hydrogen

Scenarios for penetration of hydrogen vehicles

Comparison HyWays - IEA Scenarios

Industry plans for hydrogen vehicles

Fuel Cell Vehicle Manufacturers' Current Timetable for Launch

Manufacturer	Year	Numbers	Notes
DaimlerChrysler	2012	10,000	Initial launch,
(Germany)	2015		Mass Market
Ford (USA)	2015		"commercial readiness"
GM (USA)	2010-2015		Commercial viability
	2025		Mass Market
Honda (Japan)	2010	12,000 (in USA)	Start production
	2020	50,000 (in USA)	
Hyundai (Korea)	2010		Road tests 2009
Toyota (Japan)	2015		Will cost US\$50,000

Fuel Cell Today, 2006 worldwide survey

An example ..., but many more available

Compared to previous FCX:

- FC Stack size: -20%
- FC Stack weight: -30%
- FC Stack output: +14 kW
- Electric motor output: +15 kW
- Travel range: +30%
- Energy efficiency: +10% (abs. 60%)

Specifications:

Number of	passengers	4	
Motor	Max. Output	95kW (129PS, 127 horsepower)	
	Max. Torque	256N-m (26.1kg-m, 188.8 lb-ft.)	
	Туре	AC synchronous motor (Honda Mfg.)	
Fuel Cell Stack	Туре	PEFC (proton exchange membrane fuel cell, Honda Mfg.)	
	Output	100kW	
Fuel	Туре	Compressed hydrogen	
	Storage	High-pressure hydrogen tank (350atm)	
	Tank Capacity	171 liters (4.4 kg hydrogen)	
Dimensions (L x W x H)		4,760 x 1,865 x 1,445mm (187.4 x 73.4 x 56.9 inches)	
Max. Speed		160km/h (100 mph)	
Energy Stora	ige	Lithium Ion Battery	
Vehicle Rang	le*	270 miles (> 400 km)	

* Preliminary EPA driving range determined by Honda using the current EPA calculation method. Source: Honda Motor Co., Ltd.

Where does the hydrogen come from?

Natural gas

Coal

Nuclear energy

Biomass

Wind energy

Geothermal heat

Solar energy

Transition of H₂ feedstocks and production

2010	 By-product and excess capacity natural gas (NG) reformers On-site production via water electrolysis and NG reforming
2030	 Clean fossil hydrogen - natural gas reforming and coal gasification including carbon capture and storage (CCS) - and nuclear hydrogen
2050	 Renewable hydrogen from biomass (gasification) and wind (electrolysis) Novel technologies: thermo-chemical cycles and increasing use of solar energy (e.g. thermal water splitting and photo-electrochemical hydrogen production)

How to get the H_2 energy to the customer? (1)

liquefaction

How to get the H_2 energy to the customer? (2)

Transition of hydrogen transport & distribution

2010	 Available infrastructure industrial hydrogen: tube trailers and liquid hydrogen trucks
	 On-site production via water electrolysis and NG reforming
2030	• Regional production with transport by liquid hydrogen trucks and tube trailers (1 LH ₂ truck \approx 10 tube trailers)
	 Build-up of regional pipeline infrastructures
	 Coupling of regional infrastructures
2050	 Large hydrogen pipeline infrastructure
	Maintain flexibility as long as possible

No-regret approach

Well-to-Wheels (WTW) energy use

WTW fuel cost and GHG emissions, FC-Hybrid

WTW fuel cost and GHG emissions, ICE-Hybrid

HyWays – vehicle cost (medium class cars only)

Energy density of storage of energy carriers

Energy Carrier	Form of Storage	Energy density weight MJ/kg	Energy density volume MJ/I	
Hydrogen	Gas (1 bar)	120	0.011	
	Gas (300 bar)		2.7	
	Liquid (-253 ℃)		8.5	
	Metal hydride	2	10	
Natural gas	Gas (1 bar)	50		
	Liquid (-162℃)		21	
Gasoline	Liquid	46	32	
Diesel	Liquid	42	35	
Electricity	Pb battery	0.1	0.3	

Storage of hydrogen

	Liquid	Compressed 300 bar	Compressed 700 bar
On-board storage	[liter]	[liter]	[liter]
- Gasoline/Diesel	60	-	-
- Hydrogen (same drive range)	130	400	200
- Hydrogen (half drive range)	65	200	100
On-site storage ^{1) 2)}	[m ³]	[m ³]	[m ³]
- Gasoline/Diesel 3)	25	-	-
- Hydrogen (truck delivery) 3)	+ 20	+ 250 4)	-
- Hydrogen (on-site production)	Back-up and peak demand	+ 50 ⁴⁾	-

¹⁾ Average filling station; large filling station 3 x average

²⁾ 40% penetration of hydrogen cars; ~ 800 kg hydrogen/day which is 3 tube trailers/day

³⁾ Storage of 2.5 times the average daily demand

 $^{4)}\Delta P$ of 50 bar allowed in storage

Pressure vessel with \varnothing 1 m:

length of 70 - 320 m 3000 kg steel per m

The hydrogen infrastructure dilemma

- 13,350 million liter of Fuel (petrol, diesel and LPG) or 450 PJ per year in the Netherlands
- 40% penetration of hydrogen cars: ~100 PJ hydrogen requiring ~150 PJ Natural Gas or Electricity
- For comparison, the annual Dutch Natural Gas use is 1040 PJ and the Electricity use is 330 PJ (<u>ex</u>cluding the energy sector)

- On-site production: extension current infrastructure and storage
- Compressed gas by truck: on-site storage and number of trucks
- Liquid hydrogen is energy intensive (liquefaction 30% H₂ energy content)
- Hydrogen pipeline infrastructure investments only at large demand

Status hydrogen and fuel cells (early 2006)

- Currently about 400 demo projects worldwide
- About 100 (prototypes of) hydrogen busses
- About 600 (prototypes of) hydrogen passenger cars (yearly production ~50 miljoen cars)
- **140 >200 hydrogen filling stations realised/planned** (currently about 100 in operation)
- About 700 pieces of "niche" transport systems (APU's, Scooters, forklifts, wheel chairs, small utility vehicles, ...)
- >3000 kleinschalige stationaire systemen (<10 kW_e) (ca. 75% PEMFC, rest mostly SOFC)
- Almost 800 large-scale stationary systems (>10 kW_e) (mostly in US; PAFC, MCFC and SOFC on natural gas, biogas and coal gas)
- Interest and development becomes world wide

Hydrogen highway in California

Hydrogen Highway in British Colombia, Canada

Hydrogen filling stations and cars in Japan

Europe: CUTE project

- 30 busses in 10 cities
- Different climatic conditions
- Different options H₂ production
- Availability busses the same or even better than diesel busses!
- Follow-up HyFLEET-CUTE: o.a. 14 H₂-ICE busses in Berlin

Clean Energy Partnership in Berlin

Hydrogen highway in Germany

Linde, 2005

Hydrogen highway in Noorwegen

HyNor (www.hynor.no):

- 2005 2008
- 580 km of hydrogen highway
- Busses, taxi's, "private" cars
 - (15 Toyota Prius Hybrides on H₂)
- Urban, regional and national

Investments 115 M€ in 10 jaar

Nordic countries are pro-active: Also many initiatives in Denmark and Iceland

Where are we in the transition?

Time _____

Still R&D and demo-project policy. No real deployment policy yet.

Summary / Conclusions

- Hydrogen has the required characteristics for an energy carrier in a sustainable energy system
- Clear role for hydrogen in transport applications
- Stationary hydrogen only under specific conditions
- Long term outlook hydrogen fuel cost and hydrogen vehicle cost are OK, as for WTW GHG-emissions and primary energy use
- But, short term benefits w.r.t. GHG's and energy may be limited
- Hydrogen still in R&D phase: start introduction 2015-2020
- Research needed into infrastructure dilemma
- No sign of real deployment policies yet
- Large short term investments needed for (uncertain) long term benefits

Business as usual

Action

Illustration: Scientific American

Energy research Centre of the Netherlands

Thank you for your attention

weeda@ecn.nl

Energy saving by CHP: NG fueled, mismatch H/P ratio

Energy saving by CHP: NG fueled, optimisation reference

