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Abstract

This final report summarizes the work performed in the framework of the long-term EOS research
project “Sustainable Control. A new approach to operate windturbines”, partially financed by
the Dutch agency governmental AgentschapNL under number EOSLT02013. Within this project,
a novel approach to operate wind turbines more efficiently hasbeen developed, that integrates
wind turbine control, monitoring and supervisory control into one concept: “Sustainable Con-
trol” (SusCon). The SusCon concept reduces extreme and fatigueloads on the main wind turbine
components by means of combining the four major components:(1) Optimized Feedback Control
(OFC) for reduction of the wind turbine costs and the limitations for upscaling by means of de-
creased wind turbine loads under normal operational conditions, (2) Fault Tolerant Control (FTC)
for prevention of unnecessary standstill by means of an integration of self-adaptive controls and
detection methods for component degradations, (3) Extreme Event Control (EEC) for reduction
of turbine costs and increase of the certainty of electricity production by means of reduced turbine
loads during extreme operating conditions, and (4) OptimalShutdown Control (OSC) for avoid-
ance of accumulation of damage during shutdowns resulting from a serious defects by means of
condition-specific shutdown control. These concepts have firstbeen developed in theory, and next
verified by Proof-of-principle experiments. These experiments demonstrate significant reduction
of fatigue during normal operation conditions, and extremeloads during strong wind gusts and/or
serious system failures.
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Summary

Background

For the sake of nature and future generations, the Dutch government is aiming to make the energy
supply on short term more sustainable by means of wind energy. The government has defined
for this purpose an ambitious goal to achieve 6000MW offshore wind energy (2020). However,
offshore wind energy will only become economically viable if the price of energy drops and the
investment risks are acceptable.

The break-even point for offshore wind energy generation is expected to take place around the
year of 2025. To this end, upscaling of the wind turbines to 10MW and more is required due to the
high foundation and installation costs offshore. In addition, due to the bad accessibility offshore
(in the North See around 60%), it is necessary to seriously improve the reliability of the wind
turbines to achieve high enough availability. This means that the offshore wind energy generation
should be able to keep on operating under most environmentalconditions, and in spite of small
defects. An increase of the availability from 70% to 85% can be expected by a substantially
higher reliability. Such an increased reliability results in much less unplanned maintenance and
the supply certainty is significantly improved. Replacing a quarter of the unplanned maintenance
by planned maintenance would lead to a reduction of mainenance costs of around 10%; a serious
amount, bearing in mind that the maintenance costs offshoreare at present about 25% of the total
costs of wind energy.

Control is going to play increasingly important role being aviable way to realize cost reductions.
During the past years, almost all wind turbine manufacturers have moved over to the so-called
“controlled wind turbine concept”, meaning that the bladescan be actively adjusted and the rota-
tional speed can vary. These degrees of freedom offer excellent opportunities for:

• reducing extreme and fatigue loads (blades, tower, nacelle, transmission),

• adaptation of the operation to all changing and extreme situations (wear, small defects,
seasonal influences, etc.).

Due to the relatively recent transition to this turbine concept, these possibilities are yet not fully
exploited. This project makes these opportunities accessible for the new generation wind turbines
with a size of 10MW and larger. The focus is on new control concepts for the individual turbine,
which will contribute to a large extend to enabling efficient manufacturing techniques that are
part of the needed breakthrough technology for upscaling. The development of fundamentally
other techniques for operating individual wind turbines and parks will increase the availability
significantly and reduce the grid integration problems. The approachSustainable Control(Sus-
Con), chosen for this purpose, has a strongly innovative character with respect to other current
research, both national and international. SusCon integrates control, condition monitoring and
safety, which fundamentally differs from the conventional“isolated” approach.

Goal and collaborating parties

The main problem in the EOS reserach theme “Generation and Integration”, topic “Offshore
wind conversion”, is formed by the price and the energy supply certainty of electricity generated
offshore from wind. This is to a large extend due to a too low an availability. Furthermore,
much larger wind turbines are needed (up to 10MW and larger).This requires a substantially
lower loads, while retaining stability becomes more and more difficult as the wind turbine natural
frequencies come closer to each other and closer to the excitation frequencies from wind and
waves. This issue can be attributed to a large extend to the current state-of-the-art way of wind
turbine operation.
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The aim of this project is, by means of improved operation, to contribute substantially to the
solution to the following specific problems:

1 unnecessary standstill due to the current isolated approach of wind turbine control and
supervisory control,

2 high costs and limitations for upscaling due to high wind turbine loads and stability prob-
lems,

3 uncertainty of electricity production and high loads during extreme weather conditions,

4 accumulation of damage during turbine shutdown due to a serious defect.

This aim is realized by the development of an integrated approach, SusCon, for operating offshore
wind turbines. In this approach, the following four components can be distinguished, which will
are made available in the form of methods:

1 Optimized Feedback Control (OFC), to reduce wind turbine costs and the limitations for
upscaling by means of decreased wind turbine loads under normal operational conditions,

2 Fault Tolerant Control (FTC), to prevent unnecessary standstill by means of an integration
of self-adaptive controls and detection methods for component degradations.

3 Extreme Event Control (EEC), to reduce turbine costs and increase of electricity production
certainty by means of turbine loads reduction during extreme operating conditions,

4 Optimal Shutdown Control (OSC), to avoid of accumulation of damage during shutdowns
resulting from serious defects by means of condition-specific shutdown control.

The project consortium consists of the following six parties:

• Energy research Center of the Netherlands (ECN): ECN is coordinator of the project and
performs the planned research together with TUD, and to a lesser extend with GH.

• Delft University of Technology (TUD): The TUD is involved in this project with research
in the field of fault detection and fault tolerant control.

• Garrad Hassan & Partners Ltd. (GH): The consultant GH was involved in this project for
reviewing and advice.

• Nordex Energy GmbH (Nordex): Nordex, a German wind turbine manufacturer, was in-
volved in this project for supporting experiments on a N80 wind turbine located on ECN’s
test field in Wieringermeer (EWTW). Nordex withdrew itself fromthe project; the planned
experiment were preformed on a Mitsubishi wind turbine.

• ALSTOM Wind (ALSTOM): ALSTOM is a Spanish wind turbine manufacturer which, due
to the synergy between this project and ongoing research performed by ALSTOM itself,
supported system identification experiments on an Eco100 windturbine in Spain.

• Mitsubishi Heavy Industries, Ltd (MHI): MHI is a Japanese wind turbine manufacturer
which is much interested in control methods that can reduce the wind turbine loads. For
this reason, MHI provided a prototype wind turbine for for experimental verification of the
OFC, EEC and OSC methods.
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Description of the results, bottlenecks and application perspective

Results

OFC (Part II)
Within OFC methods have been developed to design feedback control focussing on the reduction
of fatigue loads (Section 1). “Individual pitch control” (IPC) around multiples of the rotational
frequency (multi-mode IPC) appeared to be a promising optionfor loads reduction on both rotat-
ing (blades and shaft) and non-rotating (nacelle, tower) components. For this purpose, algorithms
have been developed for IPC-1p, IPC-2p and higher, making use of so-called multi-blade trans-
formations. Time domain simulations have shown that a combination of IPC-1p, IPC-2p and
IPC-3p can make it possible to realize a reduction of fatigue loads on different components, up
to 20-30%. To achieve that, however, it appeared that a significant effort is required from the
pitch actuators, which is often the limiting factor in practice for the application of higher mode
IPC (IPC-2p and higher). Furthermore, it is shown in Section 2 that an even further loads reduc-
tion is achievable when above-mentioned feedback control algorithm is combined with so-called
“feedforward IPC control” based on estimated blade effective wind speeds.

To get the most out of the pitch actuators, a procedure has been developed in Section 3 to manage
in an optimal way hardware limitations on blade pitch angle,speed and acceleration. To this
end, the available actuator capacity gets first transformed to multi-blade coordinates and next
distributed between the different IPC loops, thereby givingalways priority to the collective pitch
control (CPC) algorithm. In this way, the CPC gets the possibility to use all needed actuator
capacity (within given limits) for controlling the rotor speed, while the IPC is allowed to consume
the remaining actuator capacity to reduce loads.

Further, attention has been paid to algorithms for compensation of aerodynamic imbalance, which
can have such a disturbing effect on the IPC that (mostly) tower loads can significantly increase.
A quasi-static algorithm has been developed that can compensate the effect of static aerodynamic
unbalance completely under the conditions that offset-free blade root moment measurements are
available. This condition cannot be satisfied with the currently available sensors. Therefore, atten-
tion has also been paid on different alternatives which use tower top acceleration measurements
instead of blade load measurements. An additional drawbackof these alternatives is that their op-
eration can be disturbed by possibly present mass imbalance, the influence of which is also (just
as with aerodynamic imbalance) visible in the measured tower top accelerations. Due to this, it
gets very difficult to make a clear distinction between aerodynamic and mass imbalance, and as a
result the alternative algorithms also (partially) compensate for the mass imbalance, which could
be undesired due to the fact that the loads can, in theory, increase. Detailed simulation studies,
however, show that the advantages outweigh this drawback. The results are, however, confidential
and are not described in this public report.

Concerning stability analysis, the existing methods for linear systems in the literature are in most
cases sufficient due to the fact that often linearized controlmodels are used in the controller
design.An exception to this is IPC-2p, which involves an intrinsic nonlinear, periodic model. For
stability analysis of IPC-2p loops, a method is developed in Section 4 based on Floquet analysis
of periodic systems.

For the purpose of performing simulations with the different control algorithms of the SusCon
concept, and more specifically with IPC, a model is developed which has as inputs fictive, blade-
effective wind speeds. These 3 signals (for a 3-bladed wind turbine) are realistic in the sense
that they are designed in such a way that the resulting aerodynamic moment on the rotor has the
same spectral characteristics as the moment that results when the rotor rotates in a 3-dimensional
wind field. A procedure for the generation of blade-effectivewind speeds is developed in Section
5, which speeds up the simulation, and thus also the whole controller design process. However,
for a reliable verification of the performance of the IPC algorithms with respect to loads, a much
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more detailed modeling is required. The current Blade ElementMomentum (BEM) based mod-
els, used standardly in commercial aeroelastic simulationtools such as Phatas and Bladed, have
shortcomings in the description of the unstationary aerodynamics on the one hand, and the differ-
ent working conditions of the blades on the other hand, whichare typical when individual blade
pitching is used as in IPC control. A so-called “free vortex wake” model is considered a better al-
ternative for loads analysis when an IPC controller is used. In this project, some improvements are
made to the “free vortex wake” model which form an important contribution to the development
of the model for detailed loads analysis of IPC algorithms. This model will be further developed
in the continuation project “Improvement of advanced design tools” (see Section “Application
perspective” below).

FTC (Deel III)
Fault tolerant control, considered in Part III of this report, aims at avoiding standstill in cases of
minor sensor and actuator faults by means of fault detectionand reconfiguration of the controller.
In relation to IPC control, a failure of a blade sensor can be seen as a minor fault. Depending
on the available instrumentation, it is possible to either switch off the IPC controller (if the blade
sensors are not redundantly implemented), or replace the faulty measurement by a healthy one (if
the blade sensors are doubly implemented). In the former case it suffices to detect the sensor fault
(fault detection), but it is not strictly necessary to pointthe sensor that has failed (fault diagnosis).
In the later case, however, fault diagnosis is preferred as this offers the possibility to accommodate
numerous sensor faults before maintenance needs to take place. This makes it possible to better
plan the maintenance, which can significantly reduce the O&M costs related to IPC control.

In Section 6 an algorithm is described that has been developedfor the detection and diagnosis
of faults in blade root moment sensors, in pitch and yaw actuators. The algorithm is based on
an advanced observer that has the property that it is almost insensitive to disturbances from the
wind, but at the same time is sensitive to sensor and actuatorfaults. By adding a realistic wind
model to the wind turbine model, it becomes possible to employ a so-called Kalman filter for
reconstruction of the state of this augmented model. The residual of the Kalman filter, i.e. the
difference between the measured signals and the estimate ofthe filter, has the properties of a
white noise process during normal operation. In case of a fault, however, the mean value of this
residual signal undergoes a significant change to realize thefault detection with a GLRT test
within a second.

A comparable approach is also used in Section 7 for the detection of faults in the yaw motor. The
mechanism of controller reconfiguration is, however, completely different in this case: after yaw
motor failures detection, a specially developed IPC controller becomes active which generates a
yawing moment on the rotor. It is shown that this IPC yaw controller can be designed in such
a way that it has approximately the same properties as the conventional yaw controller. Wind
turbine yawing with individual blade pitching is, however,always accompanied with additional
blade loads which are unavoidable for the generation of a yawing moment.

EEC (Part IV)
Extreme wind gusts and wind direction changes can give rise toheavy loads on different wind
turbine components, as well as to unnecessary standstill. Aiming at increasing the certainty
of energy production during extreme operating conditions,an algorithm has been developed in
Section 8 for the detection and control of extreme excitations. The algorithm uses an estimator
of the blade-effective wind speeds, which estimates are used in a CUSUM test for the detection
of abrupt changes in the mean value of these signals. This results in a rather rapid recognition of
coming wind gusts and changes in the wind direction, which inturn makes it possible to intervene
on time by pitching the blades fast to feathering position. Detailed aeroelastic simulations with
the software tool TURBU demonstrate that the EEC can be designedin such a way that it does not
trigger during normal production, but triggers timely during severe gusts, which makes it possible
to prevent shutdowns due to rotor overspeed. This research isfurther extended to a procedure that
allows to differentiate between the following six different types of wind gust classes: (1) rotor-
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coherent wind speed variations, (2) sudden height-dependent rotation of the wind (“backing and
veering wind”), (3) jet stream, (4) wind direction variation, (5) sudden wind shadow in front of a
side of the rotor plane of the wind turbine (“partial wake condition”), and (6) a sudden coherent
vertical component in the wind speed (“sloping wind”). For this approach, a Dutch patent is
granted [79].

Furthermore, model-based alternatives for the signals-based CUSUM test, and more specifically
the so-called “Generalized Likelihood Ratio test”, have been investigated in Section 9. By mak-
ing use of a linearized model of the wind turbine and a linear model of the “wind disturbance” is
this approach capable to distinct certain wind gusts (e.g. the well-known “Mexican hat”) some-
what faster than the CUSUM test. However, this algorithm is still in a very preliminary stage of
development, and it is more specifically not trivial to extendthe GLRT such that it can apply to
different mean wind speeds within the operating region of the wind turbine . The simplicity of
the model-free CUSUM test, and the possibility of extending this relatively easy to the full wind
region (this has already been done in the framework of the continuation project FLOW-CDTup,
see Section “Application perspective”), has larger practical value than GLRT.

OSC (Part V)
OSC has to do with bringing the wind turbine to standstill as a result of serious system failures.
This topic is treated in Part V, where the focus lies on specific situations, namely pitch actuator
faults and the electrical moment dropping to zero (as a result of, e.g., net loss or shaft fracture).
The aim is to guide the shutdown process in such a way that the loads remain as low as possible.
Methods of different complexity have been developed and compared, from which it becomes
clear that an advanced control algorithm based on “Nonlinear Model Predictive Control” yields
the best result at the price of significant increase of the computational complexity. On the other
hand, a simple shutdown solution based on a standard “pitching of the blade to feather as fast as
possible”, extended with a notch filter on the tower first frequency to prevent its excitation by the
fast pitch action, results in an excellent trade-off between computational complexity and loads
reduction.

The developed OSC methods are further improved and fine-tuned for application on the prototype
wind turbine of MHI (see also “Proof-of-principle experiments” below).

Experimental modeling (Part VI)
The experimental modeling is related to the formation of models based on measurement data. In
order to obtain useful data, specific experiments on the wind turbine during normal operation are
necessary, whereby the dynamics relevant for control design and analyses gets carefully excited
with test signals that are designed specially for that purpose. In Section 15 is described how
these signals can be designed such that no natural frequencies get excited in order to prevent
undesired resonances and unacceptable loads. These test signals are then added to the control
actions blade pitch angle and generation torque, which are computed and sent out by the wind
turbine controller at each controller cycle. Further, a number of methods for system identification
are developed, with the focus on identification in closed-loop due to the fact that the wind turbine
controller cannot be deactivated during the experiments. These techniques are first validated in
simulation studies, and later in Section 16 applied to real-life measurement data from the Eco100
wind turbine of the partner ALSTOM Wind. The obtained models arethen first validated using
model validation methods, developed specially for that purpose in Section 15, and later using
detailed aeroelastic model obtained with Bladed. The results show that the developed algorithms
for system identification should be seen as accurate enough for controller design. The involved
partner in these experiments, ALSTOM Wind, was satisfied with the results and took the initiative
to publish the results at four different international conferences ([9, 10, 22, 23]).

Proof-of-principle experiments
PoP experiments are performed with the SusCon algorithms OFC, EECand OSC. The prepa-
ration for these experiments, and specifically the fine-tuningof the algorithms, the experiments
themselves, and the results, are strictly confidential and are excluded from this public report. All
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these PoP experiments are performed on a MHI prototype wind turbine in two different mea-
surement campaigns: first the IPC algorithm was tested as part of the OFC in April 2010, and
one year later experiments were performed with EEC and OSC. Theselast experiments contain
also tests with the combination OFC-EEC-OSC, which represents the largest part of the SusCon
concept. The PoP with FTC is performed using the measurement dataobtained during the second
measurement campaign (no separate PoP experiments with FTC could be performed, see “Bot-
tlenecks”). The results from all experiments are received very positively by the project partner
MHI, and demonstrate that a reduction of fatigue loads on theblades of up to 17% can be realized
with OFC, while the extreme loads in certain cases drop by as much as 50% with EEC and OSC.

Bottlenecks

During the course of the project, the following bottleneckshave arisen:

• The contractual end date of December the 31, 2009, is shiftedin 2008 to December the 31,
2011, due to strong personnel undermanning during the first part of the project, as well as
a substantially longer throughput time of the industrial parties for the Proof-of-Principle
experiments,

• The industrial partner Nordex withdrew itself from the consortium on November the 17,
2009. Nordex has come to this decision on the basis of a long internal discussion and
detailed presentations, that were held by ECN on May the 28, 2009, at the premises of
Nordex in Norderstedt (Hamburg), over aspects related to the content and the execution of
the experiments related to the integral SusCon concept. The main reasons were personnel
shortage and a very tight time-to-market schemes for new developments. As a results, it
became unacceptable to make available enough staff for setting up wind turbine experi-
ments for execution of the PoP of the SusCon-concept. Shortly after, MHI was requested
to perform the SusCon concept PoP experiments, and luckily MHIappeared to be hap-
pily surprised with this request, which made the execution of all planned PoP experiments
possible.

• At the end of 2011, the end date of the project was shifted again to June the 30, 2012, due
to the long absence of the original project leader Tim van Engelen due to illness on the one
hand, and the fact that the FTC experiments could not be performed on time on the other
hand. In the first half of 2012, due to a large operations planned to the nacelle of the wind
turbine of MHI, it subsequently became clear that the FTC PoP experiments could anyway
not take place. In the beginning of 2012 it was agreed upon with Agentschap NL that the
PoP experiments will be done based on simulations with the software Bladed and using the
measured data obtained during the other PoP field tests.

Application perspective

The developed methods, and the integrated SusCon control approach, will be further developed
after the termination of the project in mutual coherence with the product development in the
area of measurements. The focus lies on the development of algorithms that can be integrated
into the process controllers of prototype wind turbines. Thepurpose of this is, by performing
tests of a much larger duration than in this project, to undo the SusCon concept from its teething
troubles and make the market enthusiastic about it. The lateris to be done chiefly by presenting
the concept as a “proven technology”. To this end, already before the actual termination of this
project, two continuation projects have been defined within the “Far and Large Offshore Wind
Innovation” programme (FLOW):
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• “Control Design Tool Upgrade” (CDTup), number P201101-014-ECN: This project repre-
sents the first phase of a large-scale upgrade of the Control Design Tool (CDT) of ECN,
a tool for the design of industrial wind turbine controllers. During this first phase, the al-
gorithms OSC and EEC, as developed in the SusCon project, will be further improved and
implemented into the CDT.

• “Improvement of advanced design tools”, number P201203-006-ECN: In this continuation
project, representing the second phase, the remaining SusCon algorithms (namely, OSC
and FTC) will be improved and added to the new tool, and the complete controller (incl.
the whole SusCon concept) will be extensively tested on a 2-bladed prototype wind turbine
of the Dutch wind turbine manufacturer 2-B Energy.

Furthermore, at the moment of writing of this report, it is being worked on a third related FLOW
project proposal with the wind turbine manufacturer XEMC-Darwind as partner. This project
will aim at improvement of the new tool by means of verifying it on a 3-bladed wind turbine .
The market introduction of the new control tool is expected inthe year of 2013.

After that, the advantages of SusCon will be taken into consideration in the design of the next
generation wind turbines, so that these are calculated for lower loads. This will firstly concern
turbines of the current size, and after that much larger onesof up to the optimal size of 10 MW
or larger for offshore wind energy generation.

Description of the contribution to the governmental goals

Contribution to the sustainable energy economy

The project contributes to the main aim of making offshore wind energy competitive with fossil
energy production on land in 2020 by means of increasing the availability and reduction of the
structural loads, or making these more uniform. The latter makes a further upscaling possible, at
powers of up to 10 MW or even more. A size of 10MW or more is needed to finally bring down
the costs for offshore wind energy to the required level. The new control concepts have a central
position in this, and will contribute to a large extend to making efficient building techniques
possible that take part of the required breakthrough technology for upscaling.

The development of fundamentally other operation concepts for individual wind turbine and clus-
ters will strongly increase the availability and reduce theproblems related to the grid integration.
The “Extreme event control” method strongly increases the certainty of energy generation during
storm fronts. Due to “Fault Tolerant Control” the wind turbines can, in spite of small defects,
continue its operation, resulting in less standstill and a better planning of maintenance.

It is expected that, due to SusCon, the costs of offshore wind conversion will decrease by about
16%: 11% due to increased availability, 2.5% due to reduced loads, and ahother 2.5% due to less
mainenance costs. Concerning the offshore wind conversio in the Netherlands, this boils down to
the avoidence of usage of primary energy of around 8.2PJ per year in 2020.

Strengthening the knowledge position of the Netherlands

Wind conversion offshore is a spearhead in the LT-EOS programme, with design knowledge as
research area. Concerning both the spearhead and the research area, ECN Wind Energy belongs
to the world top of the research institutes, as becomes clearfrom its role in the European Academy
of Wind Energy (EAWE), the role as coordinator of the IntegratedProject “UpWind” within the
European 6th Framework Programme, and the involvement in the European projects STABCON
and DOWNVIND.
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At the TUD, department Delft Center for Systems and Control (DCSC), under the leadership of
Prof. Michel Verhaegen, there is high-quality technical knowledge in the field of Fault Tolerant
Control and classical control theory. The affinity with wind energy is high.

This project delivers knowledge in the area of methods for operating offshore wind energy gen-
erators with a strong innovative character:

• control, monitoring and supervision and integrated for the first time in such a way, that the
availability of the wind turbines substantially increases;

• pioneering control algorithms are developed in the field of fatigue load reduction and con-
trol during extreme wind conditions as strong wind gusts;

• for the first time attention is being payed to stopping the wind turbine due to serious failure
with minimum subsequent damage.

This is very favourable for the knowledge position of the Netherlands because this knowledge
cannot easily be made operational without the expertise that is built up during the execution of
this project. The strengthened knowledge position in the fieldgives possibilities for substantial
knowledge export, given the enormous potential of wind conversion and the applicability of the
methods on both offshore and onshore wind energy.

To protect the developed knowledge, the following patent applications have been submitted:

[79] van Engelen, T., L. Machielse and S. Kanev (2010): Method and system for wind gust
detection in a wind turbine. Publication number NL C 2005400.

[77] van Engelen, T. (pending): System and method for compensating rotor imbalance in a wind
turbine. International publication number WO 2010/016764Al.

[42] Kanev, S., J. Schuurmans and T. van Engelen (pending): Apparatus and method for Indi-
vidual Pitch control in Wind turbines. Publication number P6029490US.

Spin off inside and outside of the sector

A product/market combination is formed by control systems for offshore wind turbines for the
electricity market. The wind turbine manufacturers play an important role here. Because SusCon
will appear interesting also for the onshore wind energy conversion, the market is expected to
take a worldwide size, but will mostly be concentrated in Europe, North America and Azia.

The developed integral control approach can lead to new product development in the field of
measurement equipment and actuation after termination of the project, with the emphasis on the
adaptation of the pitch actuators to make multi-mode individual control possible, as well as on
improvement of the quality and reliability of the load measurement devices for IPC.

Overview of publications

In the list below, all publications related to this project are listed, where the numbering corre-
sponds to that in the Bibliography at the end of this report.

[9] Carcangiu, C., I.F. Balaguer, S. Kanev and M. Rossetti (2011): Closed-Loop System Iden-
tification of Alstom 3MW Wind Turbine. Proceedings of IMAC XXIX. Jacksonville-FL,
USA

[10] Carcangiu, C., S. Kanev, M. Rossetti and I.F. Balaguer (2010): System Identification on Al-
stom ECO100 Wind Turbine. Proceedings of the POWER-GEN International Conference.
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[22] Font, I., S. Kanev and M. Rossetti (2010): System identification on the ECO 100 wind
turbine. poster in the European Wind Energy Conference.

[23] Font, I., S. Kanev, D. Tcherniak and M. Rossetti (2010): System identification methods on
Alstom ECO 100 wind turbine. Proceedings of The Science of MakingTorque from Wind
Conference. FORTH, Heraklion, Crete, Greece.

[38] Kanev, S. (2009): Dealing with actuator constraints in multi-mode blade load reduction
control. Report ECN-Wind Memo-09-069, ECN Wind Energy.

[39] Kanev, S. (2009): System identification from BLADED simulations with the Ecotècnia
100 wind turbine. Confidential report ECN-X–09-026, Energy Research Centre of the
Netherlands (ECN).

[40] Kanev, S. (2009): System identification from field measurements on Ecotècnia 100 wind
turbine. Report ECN-X–09-089, Energy Research Center of the Netherlands.

[41] Kanev, S. and T. van Engelen (2009): Exploring the Limits in Individual Pitch Control.
Proceedings of the European Wind Energy Conference (EWEC). Marseille, France.

[42] Kanev, S., J. Schuurmans and T. van Engelen (pending): Apparatus and method for Indi-
vidual Pitch control in Wind turbines.

[43] Kanev, S. and T. van Engelen (2008): Wind Turbine Extreme Gust Control. Report ECN-
E–08-069, ECN Wind Energy.

[44] Kanev, S. and T. van Engelen (2010): Wind Turbine Extreme Gust Control. Wind Energy,
13(1):18-35.
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Feedback-feedforward individual pitch control for wind turbine load reduction. Interna-
tional Journal of Robust and Nonlinear Control, 19(1):72-91.

[75] van Engelen, T. (2006): Design model and load reduction assessment for multi-rotational
mode individual pitch control (higher harmonics control).Proceedings of the European
Wind Energy Conference. Athens, Greece.

[76] van Engelen, T. (2007): Control design based on aero-hydro-servo-elastic linear models
from TURBU (ECN). Proceeding of the European Wind Energy Conference. Milan, Italy.

[77] van Engelen, T. (pending): System and method for compensating rotor imbalance in a wind
turbine.

[79] van Engelen, T., L. Machielse and S. Kanev (2010): Method and system for wind gust
detection in a wind turbine.
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Controllers. Proceedings of the 2nd Conference on The Science of Making Torque From
Wind. Lyngby, Denmark.

[82] van Engelen, T., J. Schuurmans, S. Kanev, J. Dong, M. Verhaegen and Y. Hayashi (2011):
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09-044, Delft University of Technology.
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Samenvatting

Samenvatting van uitgangspunten

Omwille van het milieu en toekomstige generaties, heeft de Nederlandse overheid zich ten doel
gesteld om de energievoorziening op korte termijn te verduurzamen door middel van winden-
ergie. De overheid hanteert hierbij een ambitieuze doelstelling van 6000MW offshore (2020).
Economische offshore windconversie is echter pas mogelijk als de kostprijs omlaag gaat en de
investeringsrisico’s aanvaardbaar zijn.

Het break-even point voor offshore windconversie zou rond 2025 liggen. Hiervoor is opschal-
ing nodig van de windturbines tot een vermogen van 10MW of meer, in verband met de hoge
fundatie- en installatiekosten offshore. Ook is het noodzakelijk om de betrouwbaarheid van de
windturbines sterk te verhogen door afdoende beschikbaarheid vanwege de slechte toeganke-
lijkheid offshore (Noordzee: ca. 60%). Dit betekent dat eenoffshore windturbine moet kunnen
doordraaien onder nagenoeg alle omstandigheden en ondankskleine mankementen. Een beschik-
baarheidverhoging van 70 naar 85% mag worden verwacht bij een substantieel verhoogde be-
trouwbaarheid. Zo’n verhoogde betrouwbaarheid heeft ook tot gevolg dat veel minder ongepland
onderhoud nodig is en dat de zekerheid van levering veel groter is. Vervanging van een kwart van
ongepland door gepland onderhoud leidt tot verlaging van deonderhoudskosten met zo’n 10%.
Dit, terwijl offshore de onderhoudskosten nu zo’n 25% van detotale kosten van de opgewekte
windenergie bedragen.

Regeling gaat een steeds belangrijkere rol spelen en vormt een aangrijpingspunt om kostenreduc-
ties te realiseren. De afgelopen jaren zijn nagenoeg alle windturbinefabrikanten overgegaan op
het zogenaamde “geregelde windturbine concept”. Hiermee wordt bedoeld dat de bladen actief
versteld kunnen worden en het rotortoerental kan variëren.Deze vrijheidsgraden bieden uitstek-
ende mogelijkheden tot

• reductie van vermoeiings- en extreme belastingen (bladen, toren, gondel, transmissie),

• aanpassing van de bedrijfsvoering aan alle wisselende en extreme omstandigheden (slijtage,
kleine defecten, seizoensinvloeden, enz.).

Door de recente overgang naar dit turbineconcept worden deze mogelijkheden nog weinig benut.
Dit project maakt de mogelijkheden toegankelijk voor de nieuwe generaties windturbines met een
schaalgrootte van 10MW of meer. De nieuwe regelconcepten voor de individuele turbine staan
hierin centraal en zullen in hoge mate bijdragen aan het mogelijk maken van efficiënte bouwtech-
nieken die deel uitmaken van de vereiste doorbraaktechnologie voor opschaling. De ontwikkeling
van fundamenteel andere bedrijfsvoeringconcepten voor individuele turbines en clusters daarvan,
zal de beschikbaarheid sterk doen toenemen en de problemen van de netinpassing doen afnemen.
De hiervoor gekozen benaderingswijzeSustainable Control(SusCon) is sterk vernieuwend ten
opzichte van al het lopende onderzoek, zowel nationaal als internationaal. In SusCon worden
regelen, bewaken en beveiligen geïntegreerd, hetgeen een doorbraak betekent.

Doelstelling en samenwerkende partijen

Het hoofdprobleem in het onderzoeksthema “Opwekking en Inpassing”, speerpunt “offshore
windconversie”, wordt gevormd door de kostprijs en zekerheid van levering van offshore opgewekte
elektriciteit uit wind. Dit is voor een groot deel te wijten aan een te lage beschikbaarheid. Verder
zijn veel grotere turbines nodig (tot 10MW of meer). Dit vereist aanzienlijk lagere turbinebe-
lastingen. Het behoud van stabiliteit wordt daarbij ingewikkelder omdat de trillingsfrequenties
van de turbine dichter bij elkaar komen te liggen en ook dichter bij de aanstootfrequenties van
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wind en golven. Deze problematiek is voor een aanzienlijk deel toe te schrijven aan de huidige
stand der techniek voor wat betreft de bedrijfsvoering.

Het doel van dit project is om via de bedrijfsvoering een substantieel deel van de oplossing te
bereiken voor de volgende specifieke problemen

1 onnodige stilstand door geïsoleerde benadering van regeling en turbinebeveiliging,

2 hoge kosten en opschalingbeperking door hoge turbinebelastingen en stabiliteitsproblemen,

3 onzekerheid van levering en hoge belastingen bij extreme weercondities,

4 opstapeling van schade bij turbine shut-down als gevolg van ernstig mankement.

Dit doel wordt gerealiseerd door een integrale benaderingswijze, SusCon, voor de bedrijfsvoer-
ing van offshore windturbines te ontwikkelen. In deze benaderingswijze zijn vier onderdelen te
onderkennen die in de vorm van methoden beschikbaar worden gesteld:

1 Optimized Feedback Control (OFC), voor reductie van de turbinekosten en verlichting van
de opschalingbeperking door verlaagde turbinebelastingen onder normale bedrijfscondi-
ties;

2 Fault Tolerant Control (FTC), ter voorkoming van onnodige stilstand door integratie van
zelf-aanpassende regelingen met detectiemethoden voor componentdegradatie.

3 Extreme Event Control (EEC), voor reductie van de turbinekosten en het verhogen van de
zekerheid van levering door verlaagde turbinebelastingenonder extreme bedrijfscondities;

4 Optimal Shutdown Control (OSC), ter voorkoming van opstapeling van schade bij turbine
shut-down als gevolg van een ernstig mankement door conditiespecifieke regeling naar
stilstand.

Het projectconsortium bestaat uit de volgende zes partijen:

• Energie onderzoekcentrum Nederland (ECN): ECN is aanvrager en penvoerder van dit
project en verricht het beoogde onderzoek samen met TUD en in beperkte mate GH.

• Technische Universiteit Delft (TUD): De TUD houdt zich binnen dit project bezig met
onderzoek op het gebied van detectie van falen en Fault Tolerant Control.

• Garrad Hassan & Partners Ltd. (GH): Binnen het project vervult de consultant GH een
belangrijke rol op het gebied van projectsturing en reviewing.

• Nordex Energy GmbH (Nordex): Nordex, een Duitse windturbine fabrikant, was betrokken
in dit project voor de ondersteuning van experimenten aan een N80 wind turbine op het
ECN testveld in de Wieringermeer (EWTW). Nordex heeft zich teruggetrokken van het
project; de geplande experimenten zijn verricht met een Mitsubishi windturbine.

• ALSTOM Wind (ALSTOM): ALSTOM is een Spaanse windturbine fabrikant, die vanwege
de synergie tussen dit project en door ALSTOM zelf voorzien onderzoek, meewerkte aan
systeemidentificatie experimenten aan een Eco100 windturbine in Spanje.

• Mitsubishi Heavy Industries, Ltd (MHI): MHI is een Japanse windturbine fabrikant die
nadrukkelijk geïnteresseerd is in regelmethoden die turbinebelastingen verder kunnen ver-
lagen. Hiertoe stelde MHI haar MHI-92 prototype turbine beschikbaar voor experimenten
met OFC, EEC en OSC.
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Beschrijving van de resultaten, knelpunten en perspectief voor toepassing

Resultaten

OFC (Deel II)
Binnen OFC zijn methoden ontwikkeld voor het ontwerp van terugkoppelregelingen waarin re-
ductie van vermoeiingsbelastingen centraal staat (Hoofdstuk 1). “Individual pitch control” (IPC)
rond veelvouden van het toerental (multi-mode IPC) is een veelbelovende optie gebleken waarmee
de belastingen op zowel roterende (bladen en as) als niet-roterende (gondel, toren) onderdelen
kunnen worden verlaagd. Daarvoor zijn algoritmen ontwikkeld voor IPC-1p, IPC-2p en hoger,
via zogenaamde multi-blade transformaties. Tijdsdomein simulaties hebben uitgewezen dat een
combinatie van IPC-1p, IPC-2p en IPC-3p te nemen, een vermoeiingsbelasting reductie op ver-
schillende onderdelen tot wel 20-30% mogelijk in vollast condities. Het is wel gebleken dat
daarvoor een aanzienlijke inspanning van de pitchactuatoren is vereist. Dit is vaak de beperkende
factor voor de toepassing in het praktijk van hogere mode IPC (IPC-2p en hoger). Daarnaast
is verder in Hoofdstuk 2 ook aangetoond dat nog verdere belastingreductie mogelijk is als het
bovengenoemde terugkoppelalgoritme voor IPC-1p wordt gecombineerd met zogenaamde “feed-
forward IPC control”, op basis van geschatte bladeffectievewindsnelheden.

Om het meeste uit de pitchactuatoren te halen, is in Hoofdstuk 3 een procedure beschreven voor
het zo optimaal mogelijk hanteren van de hardware limieten op blad pitch positie, snelheid en ver-
snelling. Daarbij wordt de beschikbare actuatorcapaciteit wordt getransformeerd naar multi-blade
coördinatenen, en vervolgens verdeeld onder de verschillende IPC lussen, waarbij de snelheid-
sregeling met het collectief bladverstelalgoritme (CPC) altijd prioriteit heeft voor de IPC algo-
ritmen. Op deze manier wordt het CPC algoritme in staat gesteld om alle daarvoor benodigde
actutatorcapaciteiten (binnen bepaalde grenzen) te gebruiken om het toerental goed te regelen,
terwijl het IPC de beschikking krijgt over de resterende actuator capaciteit om belastingen te
reduceren.

Verder is er gekeken naar algoritmen voor compensatie van aerodynamisch onbalans, hetgeen een
dermate verstorende werking kan hebben op de IPC dat met name torenbelastingen flink kunnen
toenemen. Een quasi-statisch algoritme is ontwikkeld dat het effect van statisch aerodynamisch
onbalans volledig kan compenseren onder de voorwaarden dater offset-vrije bladwortelmoment
metingen beschikbaar zijn. Omdat met de huidige sensoren niet wordt voldaan aan deze voor-
waarde is er ook gekeken naar verschillende alternatieven die, in plaats van bladmetingen, toren
top versnellingsmetingen gebruiken. Een bijkomend nadeel van deze alternatieven is dat hun
werking kan worden verstoord door een eventueel aanwezige massaonbalans, het effect waarvan
ook (net als dat van aerodynamisch onbalans) te zien is in de gemeten torentopversnelling. Daar-
door wordt het erg lastig onderscheid te maken tussen aerodynamisch en massa onbalans, en als
gevolg daarvan compenseren de alternatieve algoritmen ook(gedeeltelijk) voor de massa onbal-
ans. Dit is ongewenst doordat de belastingen in theorie zouden kunnen toenemen. Gedetailleerde
simulatieresultaten tonen echter aan dat de voordelen zwaarder wegen dan dit nadeel. Echter zijn
deze resultaten strict confidentieel en zijn daarom niet vermeld in dit openbaar rapport.

Met betrekking tot stabiliteitsanalyse zijn de bestaande methoden voor lineaire systemen in de
literatuur in de meeste gevallen al voldoende, omdat vaak gelineariseerde regelmodellen worden
gebruikt bij het regelaar ontwerp. Een uitzondering hierop is IPC-2p, dat gepaard gaat met een
niet-lineair, periodiek model. Voor de stabilitietsanalyse van IPC-2p is er een methode ontwikkeld
in Hoofdstuk 4, gebaseerd op Floquet analyse voor periodiekesystemen.

Ter behoeve van de simulaties met de verschillende regelalgoritmen van het SusCon-concept, en
in het bijzonder IPC, is een model ontwikkeld waarbij wordt gewerkt met fictieve, zogenaamde
blad-effectieve windsnelheden. Deze 3 signalen (bij een 3-bladige molen) zijn realistisch in de
zin dat zij zodanig worden ontworpen dat het resulterende aerodynamische koppel op het rotor
dezelfde spectrale eigenschappen heeft als het koppel dat resulteert als de rotor draait in een 3-

ECN-E–12-028 25



dimensionaal windveld. Een procedure voor de generatie van blad effectieve windsnelheiden is
ontwikkeld in Hoofdstuk 5, wat de simulatie, en dus ook het hele regelaar ontwerpproces aanzien-
lijk versnelt. Echter, voor een betrouwbare verificatie van deprestatie van IPC algoritmen met
betrekking tot belastingen is een veel gedetailleerdere modellering noodzakelijk. De huidige, op
Blad Element Momentum (BEM) gebaseerde, modellen die standaard worden gebruikt in com-
merciële aeroelastische simulatietools zoals Bladed en Phatas, schieten tekort in de beschrijving
van de enerzijds instationaire aerodynamica, en anderzijds de verschillende werkcondities van de
bladen, welke typerend zijn voor de individuele bladverstelling bij IPC regelingen. Een zoge-
naamd “free vortex wake” model wordt geacht als beter geschikt voor belastinganalyse bij het
gebruik van IPC controllers. In dit project zijn verbeteringen gemaakt aan het “free vortex wake”
model welke de toepassing van het model voor een gedetailleerde analyse van IPC regelingen een
stap dichterbij zetten. Dit model wordt verder doorontwikkeld in het vervolgproject “Improve-
ment of advanced design tools” (zie Hoofdstuk “Perspectief voor toepassing” hieronder).

FTC (Deel III)
Fout-tolerant regelen, beschouwd in Deel III van dit rapport, heeft als doel om stilstand te voorkomen
in gevallen van “milde” sensor- en actuator falen door middel van foutdetectie en reconfiguratie
van de regelaar. In verband met IPC control kan het uitvallen van, bijvoorbeeld, een bladsensor
worden gezien als een mild falen. Afhankelijk van de beschikbare instrumentatie kan daarbij
worden gedacht aan het buiten werking stellen van de IPC regeling (als de bladsensoren niet re-
dundant zijn uitgevoerd), of aan de vervanging van de foutieve meting met een correcte (als de
bladsensoren dubbel zijn uitgevoerd). In het eerste geval is het voldoende om te detecteren dat
een sensor faalt (fout detectie), maar het is niet strikt noodzakelijk om de sensor die gefaald heeft
te kunnen aanwijzen (fout diagnose). In het laatste geval daarentegen verdient fout diagnose de
voorkeur omdat men dan meerdere sensor falen kan “accommoderen” voordat onderhoud moet
plaatsvinden. Dit maakt het mogelijk het onderhoud beter teplannen wat de O&M kosten m.b.t.
IPC control flink kan reduceren.

In Hoofdstuk 6 wordt een algoritme beschreven voor de detectie en diagnose van falen in blad-
wortelmoment sensoren, en pitch en krui actuatoren. Het algoritme is gebaseerd op een gea-
vanceerd observer, met de eigenschap dat het vrijwel ongevoelig is voor verstoringen van de
wind, maar tegelijkertijd wel gevoelig is voor sensor en actuator falen. Door een realistisch wind
model toe te voegen aan het windturbine model wordt het mogelijk om een zogenaamd Kalman
filter te gebruiken voor de reconstructie van de toestand van dit “augmented model”. Het residu
van het Kalman filter, d.w.z. het verschil tussen de gemeten signalen en de schatting van het filter,
heeft bij normaal bedrijf de eigenschappen van een witte ruis signaal. In geval van falen verandert
de gemiddelde waarde van het residu dermate dat foutdetectie met een GLRT test binnen ca. 1
seconde geschiedt.

Een soortgelijke aanpak is gevolgd in Hoofdstuk 7 voor de detectie van kruimotor falen. Het
mechanisme van reconfiguratie van de regeling is hier echter geheel anders: bij kruimotor falen
wordt een speciaal ontwikkeld IPC regeling in werking gezet dat een kruimoment op de rotor
opwekt. Het is aangetoond dat deze IPC kruiregeling zodanig kan worden ontworpen dat het
ongeveer dezelfde dynamische eigenschappen vertoond als de normale kruiregeling. Het kruien
van de windturbine met individuele bladverstelling gaat echter altijd gepaard met extra bladbe-
lastingen welke onmisbaar zijn bij het opwekken van een kruimoment.

EEC (Deel IV)
Extreme windvlagen en windrichtingsveranderingen kunnen leiden tot grote belastingen op ver-
schillende onderdelen van de windturbine, alsmede tot onnodig stilstand. Met als doel om de
zekerheid van levering onder extreme bedrijfscondities teverhogen, is in Hoofdstuk 8 een algo-
ritme ontwikkeld voor de detectie en het pareren van extremeaanstotingen. Het algoritme maakt
gebruik van een schatter van de bladeffectieve windsnelheiden. Deze schattingen worden ver-
volgens gebruikt in een CUSUM test voor detectie van abrupte veranderingen in de gemiddelde
waarde van deze signalen. Dit resulteert in een vlotte herkenning van aankomende windvlagen
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en veranderingen in de windrichting, dat ertoe leidt dat er op tijd kan worden ingegrepen door
de bladen snel naar vaanstand te verstellen. Gedetailleerde aeroelastische simulaties met de soft-
ware tool TURBU tonen aan dat het EEC zodanig kan worden ontworpen dat het niet aanspringt
tijdens normaal bedrijf, maar wel tijdig aanspringt bij harde vlagen met als gevolg dat veiligheids-
shutdown door overtoeren van de rotor vaak kan worden vermeden. Dit onderzoek is verder uit-
gebreid naar een procedure waarmee een onderscheid kan worden gemaakt tussen de volgende
zes windvlaagklassen: (1) rotor-coherente windsnelheidsvariatie, (2) plotselinge hoogte afhanke-
lijke draaiing van de wind (“backing and veering wind”), (3)jetstroom, (4) windrichtingsvariatie,
(5) plotselinge windschaduw voor een zijgedeelte van het rotorvlak van de windturbine (“partial
wake condition”), en (6) door een plotselinge coherente verticale component in de windsnelheid
(sloping wind). Voor deze werkwijze is een Nederlands octrooi verleend [79].

Verder is er in Hoofdstuk 9 gekeken naar modelgebaseerde alternatieven voor de signaal-gebaseerde
CUSUM test, en met name naar de toepassing van de zogenaamde “Geleralized Likelihood Ratio
test” (GLRT). Door gebruik te maken van een gelinearizeerd model van de windturbine en een
lineair model van de “windverstoring” is deze benadering instaat om bepaalde windvlagen (zoals
bijv. de bekende “Mexicaanse hoed”) iets eerder te onderscheiden dan de CUSUM test. Dit algo-
ritme staat echter nog in zijn kinderschoenen, en het is met name niet triviaal de GLRT methode
zodanig uit te breiden dat het kan werken bij verschillende gemiddelde windsnelheden binnen het
werkgebied. De eenvoud van de modelvrije CUSUM test daarentegen, en de mogelijkheid om
deze relatief makkelijk uit te breiden naar het volledige windgebied (dit is inmiddels gedaan in
het kader van het vervolg project FLOW-CDTup, zie Hoofdstuk “Perspectief voor toepassing”),
levert grote praktische meerwaarde op ten opzichte van het GLRT.

OSC (Deel V)
OSC heeft te maken met het tot stilstand brengen van de windturbine bij serieus systeemfalen. Dit
onderwerp wordt beschouwd in Deel V, waarbij de nadruk ligt op specifieke gevallen, namelijk op
pitch actuator falen en het wegvallen van het elektrische koppel op de rotor (als gevolg van bijv.
netuitval of as breuk). Het doel is om het shutdown proces regeltechnisch zodanig te begeleiden
dat de belastingen zo laag mogelijk worden gehouden. Methoden met verschillende complex-
iteit zijn ontwikkeld en vergeleken, waaruit blijkt dat eengeavanceerd regelalgoritme op basis
van “Nonlinear Model Predictive Control” het beste resultaat oplevert, maar wel ten koste van
een aanzienlijke toename van de benodigde rekenkracht. Daarentegen biedt een eenvoudige shut-
down oplossing op basis van een standaard “het blad zo snel mogelijk verstellen naar vaanstand”,
uitgebreid met een notch filter op de toren eerste frequentie om ervoor te zorgen dat de eerste
torenmode niet wordt aangestoten door de snelle pitch actie, een uitstekende afweging tussen
rekencomplexiteit en belastingreductie.

De ontwikkelde OSC methoden zijn verder verbeterd en bijgesteld voor de toepassing op proto-
type windturbine van MHI (zie ook “Proof-of-principle experimenten” hieronder).

Experimentele modelvorming (Deel VI)
De experimentele modelvorming heeft betrekking op het verkrijgen van modellen op basis van
meetdata. Voor het verkrijgen van bruikbare data zijn tijdens normaal bedrijf specifieke experi-
menten aan de windturbine nodig, waarbij de voor regelaar ontwerp en -analyse relevante dyna-
mica wordt voorzichtig geëxciteerd met speciaal daarvoor ontworpen testsignalen. In Hoofdstuk
15 wordt beschreven hoe deze testsignalen zodanig kunnen worden ontworpen dat er geen eigen
modes worden aangestoten ter vermijding van ongewenste resonanties en onacceptabele belastin-
gen. Deze testsignalen worden vervolgens opgeteld bij de regelacties bladhoek en elektrisch
koppel die in elke regelcyclus door de regelaar worden berekend en uitgestuurd. Verder zijn
er een aantal methoden ontwikkeld voor modelidentificatie, waarbij de nadruk ligt op identifi-
catie in gesloten lus doordat de windturbine regeling tijdens de experimenten niet mag worden
uitgezet. Deze technieken zijn eerst in simulatiestudies gevalideerd, en later in Hoofdstuk 16
met echte metingen aan een Eco100 windturbine van de partner ALSTOM Wind. De verkre-
gen modellen werden eerst gevalideerd met speciaal voor datdoel ontwikkelde in Hoofdstuk 15
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validatiealgoritmen, en later op gedetailleerde aeroelastische modellen verkregen met Bladed.
De resultaten tonen aan dat de ontwikkelde algoritmen voor systeemidentificatie als nauwkeurig
genoeg voor regelaar ontwerp moeten worden beschouwd. De betrokken partner in de experi-
menten, ALSTOM Wind, was dermate tevreden met de resultaten dat hij zelf het initiatief nam
om de resultaten op vier verschillende internationale conferenties te publiceren ([9, 10, 22, 23]).

Proof-of-principle experimenten
PoP experimenten zijn gedaan met de SusCon algoritmen OFC, EEC en OSC. De voorbereiding
van deze experimenten en met name het bijstellen van de algoritmen, de uitvoering en de resul-
taten zijn strict vertrouwelijk en worden niet beschreven in dit openbaar rapport. Al deze PoP
experimenten zijn gedaan aan een MHI prototype windturbinein twee verschillende meetcam-
pagnes: eerst werd het IPC algoritme als onderdeel van OFC in april 2010 getest, en een jaar later
werden experimenten gedaan met EEC en OSC. Deze laatste experimenten bevatten ook testen
met de combinatie OFC-OSC-EEC dat het overgrote deel van het SusCon concept omvat. Het
PoP met FTC is uitgevoerd aan de hand van meetdata verkregen tijdens de tweede meetcampagne
(geen gerichte PoP experimenten met FTC konden worden uitgevoerd, zie “Knelpunten”). De re-
sultaten van alle experimenten zijn zeer positief ontvangen door de projectpartner MHI, en laten
zien dat een reductie van de vermoeiingsbelastingen op de bladen tot wel 17% kan worden gere-
aliseerd met OFC, terwijl de extreme belastingen in bepaaldegevallen tot wel 50% lager worden
met EEC en OSC.

Knelpunten

Tijdens de loop van het project hebben de volgende knelpunten zich voorgedaan:

• De contractuele einddatum 31 december 2009 is in 2008 voor het eerst verschoven naar
31 december 2011 wegens een sterke personele onderbezetting in het eerste deel van het
project en een aanmerkelijk langere benodigde doorlooptijd bij de industriële partners van
de Proof-of-Principle experimenten.

• De industriële partner Nordex heeft op 17 november 2009 te kennen gegeven zich terug
te trekken uit het consortium. Nordex is tot deze beslissinggekomen op grond van lang-
durige interne discussies en gedetailleerde presentaties, die op 28 mei 2009 door ECN bij
de Nordex vestiging in Norderstedt (Hamburg) zijn gehouden, over inhoudelijke en uitvoer-
ingstechnische aspecten van de experimenten met betrekking tot het integrale SusCon con-
cept. De hoofdoorzaken waren personeelsgebrek en erg strakke time-to-market schema’s
voor hun nieuwe ontwikkelingen. Hierom werd het beschikbaar stellen van een voldoende
bemande experimentele windturbine opstelling voor uitvoering van SusCon-concept PoP
experimenten te bezwaarlijk voor de bedrijfsvoering. Snel daarop volgend is MHI verzocht
om de SusCon-concept PoP experimenten uit te voeren. Tot grootgenoegen bleek MHI
blij verrast te zijn met dit verzoek, zodat de uitvoering vanalle experimenten gewaarborgd
bleef.

• Eind 2011 werd de einddatum van het project opnieuw verschoven naar 30 juni 2012, en-
erzijds door de langdurige afwezigheid wegens ziekte van deoorspronkelijke projectleider
Tim van Engelen, en anderzijds doordat de PoP experimentenmetFTC bij MHI niet op tijd
konden worden uitgevoerd. Omdat later ook bleek dat de uitvoering van de FTC PoP ex-
perimenten ook in de eerste helft van 2012 niet kon plaatsvinden doordat er grootschalige
werkzaamheden waren gepland aan de gondel van de windturbine van MHI, werd in over-
leg met Agentschap NL begin 2012 besloten de PoP experimentenmet FTC te doen aan
de hand van simulaties met de software GH Bladed en de meetdata verkgregen tijdens de
andere PoP experimenten.
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Perspectief voor toepassing

De ontwikkelde methoden en daarop gebaseerde integrale benaderingswijze van regelen, SusCon,
zullen na het project worden doorontwikkeld in onderlinge samenhang met de in gang te zetten
productontwikkeling op het gebied van meet- en regeltechniek. De nadruk ligt hierbij op het
ontwikkelen van algoritmen die opgenomen kunnen worden in de procescomputers van prototype
windturbines. Het doel hiervan is om via beproevingen van veel langere duur dan in dit project
het SusCon concept van haar kinderziektes te ontdoen en de markt er enthousiast voor te maken.
Dit laatste vooral door het concept te kunnen presenteren als “proven technology”. Met dit als
doel, zijn al voor afloop van dit project twee vervolg projecten geïnitieerd binnen het “Far and
Large Offshore Wind Innovation” programma (FLOW):

• “Control Design Tool Upgrade” (CDTup), nummer P201101-014-ECN: Dit project is de
eerste fase van een grootschalige upgrade van het Control Design Tool (CDT) van ECN, een
gereedschap voor het ontwerp van industriële windturbine regelingen. In deze eerste fase
worden de OFC en de EEC algoritmen, zoals ontwikkeld in het SusConproject, dooron-
twikkeld en geïmplementeerd in het CDT.

• “Improvement of advanced design tools”, nummer P201203-006-ECN: In dit vervolgpro-
ject, fase 2, worden de resterende SusCon algoritmen (namelijk OSC en FTC) verbeterd
en toegevoegd aan het nieuwe tool, en wordt de complete regeling (incl. het gehele Sus-
Con concept) uitvoerig getest op een 2-bladige prototype windturbine van de Nederlandse
windturbine fabrikant 2-B Energy.

Daarbij wordt op het moment van schrijven van dit rapport gewerkt aan een derde gerelateerde
FLOW voorstel met de windturbine fabrikant XEMC-Darwind als partner. Dit project heeft als
doel het nieuwe tool additioneel te verifiëren op een 3-bladige windturbine. De introductie van
het nieuwe regeltool op de markt wordt verwacht in het jaar 2013.

Daarna zal al in het ontwerp van nieuwe generaties windturbines rekening worden gehouden met
de voordelen van SusCon, zodat deze voor lagere belastingen worden berekend. Eerst zal dit
turbines van het gangbare formaat betreffen, daarna veel grotere en wel tot aan het voor offshore
windconversie optimale vermogen van 10MW of zelfs meer.

Beschrijving van de bijdrage aan de doelstellingen van de regeling

Bijdrage aan een duurzame energiehuishouding

Het project draagt bij tot de hoofddoelstelling, het concurrerend maken van offshore windconver-
sie met fossiele opwekking op land in 2020, door verhoging van de beschikbaarheid en verlaging,
dan wel meer gelijkmatig maken, van de turbinebelastingen.Dit laatste maakt verdere opschaling
mogelijk, waarbij moet worden gedacht aan windturbines meteen vermogen van 10MW of zelfs
meer. Een schaalgrootte van 10MW of meer is nodig om de kosten van offshore windconver-
sie uiteindelijk terug te kunnen brengen tot het vereiste niveau. De nieuwe regelconcepten voor
de individuele turbine staan hierin centraal en zullen in hoge mate bijdragen aan het mogelijk
maken van efficiënte bouwtechnieken die deel uitmaken van de vereiste doorbraaktechnologie
voor opschaling.

De ontwikkeling van fundamenteel andere bedrijfsvoeringconcepten voor individuele turbines en
clusters daarvan zal de beschikbaarheid sterk doen toenemen en de problemen van de netinpassing
doen afnemen. De “Extreme Event Control” methode verhoogt de zekerheid van energielevering
sterk bij stormfronten. Door “Fault Tolerant Control” kunnen de windturbines, ondanks kleine
gebreken, toch doordraaien waardoor minder stilstand optreedt en het onderhoud beter gepland
kan worden.
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Er wordt voorzien dat door SusCon de kosten van offshore windconversie met zo’n 16% zullen
dalen. Hiervan neemt de verhoogde beschikbaarheid 11% voorhaar rekening, de verlaagde be-
lastingen 2.5%, en de betere planbaarheid van het onderhoudnog eens 2.5%. Dit komt neer op
het vermijden van de inzet van primaire energie van ca. 8.2 PJ per jaar in 2020 voor wat betreft
offshore windconversie in de Nederlandse situatie.

Versterking van de kennispositie van Nederland

Windconversie offshore is een speerpunt in het LT-EOS programma, met ontwerpkennis als on-
derzoeksterrein. Zowel wat betreft het speerpunt als op het onderzoeksterrein behoort ECN Wind-
energie tot de wereldtop van de onderzoeksinstituten, zoals blijkt uit haar rol in de European
Academy of Wind Energy (EAWE), de rol als medecoördinator van het Integrated Project (IP)
“Upwind” in het kader van het Europese 6th Framework Programme,en haar betrokkenheid bij
de Europeese projecten STABCON en DOWNVIND.

Bij de TUD, afdeling Delft Center for Systems and Control (DCSC), onder leiding van Prof.
Michel Verhaegen, is hoogwaardige specialistische kennisaanwezig op het gebied van Fault Tol-
erant Control en klassieke regeltheorie. De affiniteit met windenergie is hoog.

Dit project levert kennis op het gebied van bedrijfsvoeringmethoden voor offshore windconversie
met een sterk vernieuwend karakter:

• voor het eerst worden regel-, bewakings-en beveiligingstaken zodanig geïntegreerd dat
hiermee de beschikbaarheid van de windturbines substantieel wordt verhoogd;

• er worden baanbrekende regelmethoden ontwikkeld op het gebied van vermoeiingsbelast-
ingreductie en het pareren van extreme condities zoals harde windvragen;

• er wordt voor het eerst gekeken naar het optimaal tot stilstand brengen van de turbine bij
ernstig falen met minimale vervolgschade.

Dit is bijzonder gunstig voor de kennispositie van Nederland omdat dit soort kennis niet makkelijk
operationeel is te maken zonder de expertise die opgebouwd is tijdens de uitvoering van het
project. De versterkte kennispositie op dit gebied biedt kansen voor substantiële kennisexport
gegeven het enorme potentieel van windconversie en de toepasbaarheid van de methoden op
zowel offshore als on-shore windconversie.

Om de ontwikkelde kennis te beschermen zijn de volgende patentaanvragen ingediend:

[79] van Engelen, T., L. Machielse and S. Kanev (2010): Method and system for wind gust
detection in a wind turbine. Publication number NL C 2005400.

[77] van Engelen, T. (pending): System and method for compensating rotor imbalance in a wind
turbine. International publication number WO 2010/016764Al.

[42] Kanev, S., J. Schuurmans and T. van Engelen (pending): Apparatus and method for Indi-
vidual Pitch control in Wind turbines. Publication number P6029490US.

Spin off binnen en buiten de sector

De product/marktcombinatie wordt gevormd door regelsystemen op offshore windturbines voor
de elektriciteitsmarkt. De windturbinefabrikanten spelen hierin een sleutelrol. Omdat SusCon
ook interessant zal blijken voor on-shore windconversie zal de markt een mondiale omvang aan-
nemen, maar zal vooral worden geconcentreerd in Europa, Noord Amerika en Azië.
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De ontwikkelde integrale benaderingswijze van regelen kanna het project leiden tot nieuwe pro-
ductontwikkeling op het gebied van meet- en regel-equipment waarbij de nadruk ligt op de aan-
passing van pitch-actuatoren om toepassing van multi-modeindividual pitch control mogelijk te
maken, maar ook op de verbetering en het betrouwbaarder maken van de belastingsensors beno-
digd voor IPC.

Overzicht van publicaties

In de lijst hieronder staan alle project-gerelateerde publicaties opgenomen, waarbij de nummering
overeenkomt met die in de Bibliografie aan het end van dit rapport.

[9] Carcangiu, C., I.F. Balaguer, S. Kanev and M. Rossetti (2011): Closed-Loop System Iden-
tification of Alstom 3MW Wind Turbine. Proceedings of IMAC XXIX. Jacksonville-FL,
USA

[10] Carcangiu, C., S. Kanev, M. Rossetti and I.F. Balaguer (2010): System Identification on Al-
stom ECO100 Wind Turbine. Proceedings of the POWER-GEN International Conference.

[22] Font, I., S. Kanev and M. Rossetti (2010): System identification on the ECO 100 wind
turbine. poster in the European Wind Energy Conference.

[23] Font, I., S. Kanev, D. Tcherniak and M. Rossetti (2010): System identification methods on
Alstom ECO 100 wind turbine. Proceedings of The Science of MakingTorque from Wind
Conference. FORTH, Heraklion, Crete, Greece.

[38] Kanev, S. (2009): Dealing with actuator constraints in multi-mode blade load reduction
control. Report ECN-Wind Memo-09-069, ECN Wind Energy.
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Part I

Introduction

Nowadays, control has been well established as a driver for cost reduction of wind energy con-
version. Usually, the associated control algorithms relate to production operation in stationary
turbulent conditions without any deteriorated wind turbine behavior (regular conditions). Un-
fortunately, extreme environmental conditions as well as system failure are real-life phenomena.
Especially offshore, the need arises to deal in an effective way with (short-term) extreme envi-
ronmental conditions and with minor or more severe types of system failure.

For reasons of the environment and future generations, the Dutch government has aimed to start a
transition in short-term to a more sustainable way for the generation of electricity way by utilizing
(offshore) wind power. Offshore wind energy conversion will become economical if the costs of
energy decreases and the risks for investments are acceptable.

For this, further up scaling of wind turbines towards 10MW isnecessary, because of the expen-
sive foundation and installation costs in case of offshore locations. Additionally, due to the low
accessibility for offshore locations, it is needed to improve the turbine reliability to achieve a high
availability. A higher availability will also result in less urgent maintenance (expensive) and gives
improved guarantee of energy production.

As a consequence, it is aimed to achieve large and efficiently built offshore wind turbines in the
future, which should be able to produce electrical energy during almost all circumstances and
despite of failures. Aiming to contribute significantly to this goal, the long-term research project
Sustainable Control, a new approach to operate wind turbine(SusCon) has been set up under
grant EOSLT02013 of AgentschapNL (2006-2012).

The approach of Sustainable Control is strongly innovative with respect to ongoing research.
Sustainable Control differs from the currently used in practice “isolated approach” in its integral
approach of turbine operation (integrating feedback control and supervising control) and the use
of advanced wind turbine control methods.

Within the scope of wind turbine management, the objective of this project is defined as finding
control methods that contribute significantly to the solution of the following specific problems:

• unnecessary turbine standstill due to “isolated turbine control approach”,

• high costs and upscale limitation due to high turbine loadsand stability problems,

• production uncertainty and high loads during extreme (weather) conditions,

• serial damages during shut-down after serious failure detection.

It is aimed in the project to realize these objectives by developing an innovative approach to
manage offshore wind turbines, called Sustainable Control.The Sustainable control concept
includes the development and integration of the following cornerstones that relate to wind turbine
control in four different types of operating conditions:

• Optimized Feedback Control (OFC): for load reduction by advanced control methods dur-
ing normal operating conditions (Part II).

• Fault Tolerant Control (FTC), for avoiding unnecessary standstill in cases of minor system
failures by fault detection and controller reconfiguration (Part III),

• Extreme Event Control (EEC), for avoiding excessive loads and unnecessary shut-down
under extreme conditions (Part IV),
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Figure 1 Schematic visualization of the Sustainable Control concept

• Optimal Shutdown Control (OSC), for avoiding excessive loads and serial damage after
serious system failure or hyper-extreme conditions (Part V).

The integration of these four cornerstones will make it possible to achieve significant reduction
of turbine costs and achieve further up-scaling of wind turbines.

Figure 1 shows a top-level visualization of the Sustainable Control concept. The development of
each of the four cornerstone methods consists of:

• definition of suitable models for controller design and evaluation,

• controller synthesis based on the control objectives,

• evaluation and analysis of the results based on detailed aeroelastic models,

• proof-of-principle experiments.

Supportive to the development of these four major cornerstones are the following additional ac-
tivities:

• development of methods for stability analysis of periodicsystems (Section 4), required for
performing closed-loop stability analysis of the higher-harmonics IPC loops developed in
Section 1.4.

• procedure for generating time-domain realizations of blade-effective wind speed signals
(Section 5), needed for performing fast simulations for intermediate testing of the control
methods developed in Parts II-V,

• wind turbine model identification (Part VI), required for fine-tuning the control-oriented
models using real-time measurement data,

• integration of the control methods into the Sustainable Control concept (Part VII),

• performing proof of principle experiments and detailed simulation tests for validating the
developed control concepts (not reported here due to confidentiality).

The project activities are organized in work packages. Figure2 depicts the dependencies between
the work packages of the project, and provides reference to the part of this report where each
work package is treated. The starting point of the research isthe state-of-the-art knowledge and
methods in the field of modeling, control, stability analysisand experiments. Work packages
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Figure 2 Overview of the work packages of the SusCon project

1-4 concern the developments of the control methods OFC, FTC, EEC and OSC, i.e. the four
cornerstones of the SusCon concept. Work packages 7 and 8 are supportive for the stability
analysis in WP1-5, and the proof-of-principle experiments in WP6.

Many of the results, presented in this report, have been published in journals, conferences, and in
form of technical reports. Below, a list is provided giving an overview of the parts of this report
that have appeared in one or another form in the literature.

• Section 1 “Multi-rotational mode individual pitch control” is published in: [75]

• Section 2 “Feedback-feedforward IPC” is published in: [65]

• Section 3 “Constraints handling in IPC” is published in: [42,41, 38]

• Section 6 “GLRT for detecting blade moment sensor faults” is published in: [103, 96]

• Section 8 “Dealing with wind gusts in combination with wind direction changes” is pub-
lished in: [44, 43]

• Section 9 “Fast wind gust detection with GLRT” is published in:[82]

• Part VI “Experimental methods” is published in [23, 10, 9, 22]

• Section VII “Integration of methods: Sustainable Control concept” is published in: [82]

A list of all project-related publications can be found in the Summary.
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Part II

Optimized feedback control (OFC)
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1 Multi-rotational mode individual pitch control

Summary

A model-based design approach for individual pitch controlhas been derived for 3 bladed HAWTs.
Control loops were designed for a typical 3 MW variable speedwind turbine and the performance
was evaluated in aero-elastic simulations. The individual pitch control reduces the loads from ro-
tationally sampled turbulence, tower stagnation and wind shear. The involved pitching activity is
centered around the rotational frequency (IPC-1p) and multiples of it (IPC-2p, IPC-3p; ‘higher
harmonics control’). The fatigue damage of the blades in fullload is substantially reduced while
one third or more is obtained from IPC-2p and IPC-3p; the fatigue damage reduction of the
nacelle is almost completely obtained from IPC-2p. Very elementary feedback laws appear to
satisfy when combined with modulation and demodulation schemes based on multi-blade coor-
dinate transformations in thekp-frequencies (k = 1, 2, 3). This is clarified via the decomposition
of the sampled turbulent wind field by the rotor blades in rotational modes. Integrated stability
analysis has to be based on Floquet theory; the required modelformulation is supplied.

1.1 Introduction

The loads on the rotor blades, drive-train and tower of horizontal axis wind turbines are caused
for a significant part by the rotational sampling of turbulence, the tower shadow and the wind
shear. These loads can be reduced via individual pitch control. The earlier publications [13] and
[6] give an impression of the potential of this control concept, focused on load reduction around
one time the rotational frequency (IPC-1p). The method for thedesign of the feedback loops for
individual pitch control has been explained in [6].

However, a control design model and a model-based motivation for the choice of the structure
of the feedback loops (feedback laws) as well as a model-based parametrization of these loops
have not yet been published. Besides, a drawback of the limitation to IPC-1p is the still existing
blade load components around multiples of the rotational speed (2p, 3p, ...). Perhaps even more
important are the loads on the nacelle around the 3p-frequency in case of a three bladed wind
turbine, which is the prevailing layout. So, compensation for the higher harmonic excitation from
the wind is expected to be worthwhile.

This section presents a simple control design model that caters for the individual blade behavior
(Section 1.2). The model is used for the design of feedback loops for IPC-1p (Section 1.3). It
also appears to allow for the design of feedback loops for individual pitch control around the 2p-
and 3p-frequency (IPC-2p, IPC-3p; Section 1.4). The model is only feasible for the design of a
set of IPC-kp feedback loopsafter a multi-blade coordinate transformationin the concerningkp-
frequency (k = 1, 2, 3). Two equal, elementary feedback laws can be applied for load reduction
within the scope of such ankp-transformed model. This immediately becomes clear when a
rotational mode decomposition of the sampled turbulent wind field by the rotor blades is added
to the model equations.

The IPC-kp feedback laws are designed independently while they will operate simultaneously.
The feedback laws, together with ankp modulation and demodulation scheme, set up the ‘true’
feedback loops for IPC-kp. Model analysis with the true feedback loops included proves the
expectations: compensation for thekp harmonic excitation from the wind (Section 1.5). Time-
domain simulations with this controlled model show the effect of IPC-kp control on the stationary
blade and nacelle loads (Section 1.6).

Although the IPC-kp designs are performed independently, there will exist some interaction since
the IPC-kp loops are simultaneously active and the required low-passfilters in the loops cannot
be realized for ideal behavior. A model formulation for integrated stability analysis is derived; the
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model contains periodic coefficients and requires application of the Floquet theory for stability
assessment (Section 1.7).

The control design model does not include blade bending and unsteady aerodynamics. Besides
the stability assessment procedure has not yet been established. Therefore, the adopted approach
should be considered as the first step in the development of a model-based design method for
IPC-kp rather than a fully validated method.

1.2 Control design model

The control design model pertains to a three bladed horizontal axis wind turbine (B = 3). The
main features of the model are:

• individually pitch-controlled rigid blades;
• main rotation and 1st drive-train torsion mode;
• 1st fore-aft and sideward tower bending mode;
• controllable generator torque.

A schematic layout of the wind turbine model is pictured below. The model also contains three
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Figure 3 Schematic layout wind turbine model

so calledblade effectivewind input signals. When such a signal acts as a uniform wind speed on
the rotor blade, it causes blade root loads that are similar to those arising from a rotating blade in
a wind field. This concept allows for describing the wind influence on the blade root loads via a
single input signal while yet taking into account the properties of the rotationally sampled wind
field affected by wind shear and tower shadow (longitudinal turbulence only). A comprehensive
description is in [80] .

The next two subsections deal with the linearized aerodynamic conversion behavior for the indi-
vidual rotor blades and the basic linear model equations.
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1.2.1 Linearized aerodynamic conversion

The aerodynamic conversion is based on linearized BEM-theory; dynamic wake effects and un-
steady aerodynamics are not taken into account. The BEM-basedaerodynamic conversion char-
acteristics are translated into multipliers that map a variation in the flapwise relative wind speed
vfli

to variations in the flap- and leadwise blade root moments and forces (aerodynamic gains).
Aerodynamic gains are also derived for the linearized influence of a variation in the pitch angle.
The pitch angle variationθi and relative wind speed variationvfli

for the ith blade thus cause
variations in the aerodynamic loads on the blade root by (seefig. 3 for orientation):

δMzi = hMz
vfli

+ kMz
θi (neg. flapwise moment)

δFxi
= hFx

vfli
+ kFx

θi (pos. flapwise force)

δMxi
= hMx

vfli
+ kMx

θi (pos. leadwise moment)

δFzi = hFz
vfli

+ kFz
θi (pos. leadwise force)

(1)

For variationδTa in the driving torque,δFa in the axial force,δMt in the tilt moment andδFs in
the sideward force holds:

δTa =

B∑

i=1

δMxi
; δFa =

B∑

i=1

δFxi

δMt =

B∑

i=1

sinψi δMzi ; δFs = −
B∑

i=1

sinψi δFzi

(2)

The flapwise relative wind speed variationvfli
for the ith blade is the sum of the blade effective

wind speed̃ui and the upwind motion of the rotor blade. The latter is caused by fore-aft tower
bending only since rigid blades are assumed. The upwind structural motion involves both the
fore-aft translatioṅxfa and tilt rotationφ̇fa of the tower top; the latter has an azimuth dependent
effect on the relative wind speed which varies over the rotorradius. The 3/4 blade radius location
of the rotor blades (3Rb

4 ) is assumed to be the effective location for taking into account φ̇fa in the
one-point-model-approachto blade loading. The flapwise relative wind speedvfli

is determined
as:

vfli
= ũi − ẋfa + sin(ψi)

3
2H

3Rb

4 ẋfa (3)

The multiplier 3
2H is exactly the ratio between displacement and rotation if a prismatic beam of

lengthH is subjected to a bending force load.

At azimuth angleψ (=
∫ t
−∞Ωr(τ) dτ ) equal to 0, the first blade is in the horizontal position

while it is rotating downward. For the azimuth anglesψ1, ψ2 andψ3 of the three blades holds:

ψ1 = ψ ; ψ2 = ψ + 2

3
π ; ψ3 = ψ + 4

3
π (4)

The gainshMz
. . . kFz

are derived from the power and thrust coefficient data in a chosen working
point, characterized by wind speed, rotor speed and pitch angle. The derivation is constrained by
the assumption of equal aerodynamic efficiency along the blade radius, which implies alinear
increasingflapwise force per unit spanffl(r) over the rotor radius andconstantleadwise force
per unit spanfld(r).

1.2.2 Periodic linear model equations

The model equations that are required for controller design are the equations of motions and the
output equations; the latter express the measurement variables that are input to the feedback loops
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in state and input variables, the ‘typical’ variables in theequations of motion.

Equations of motion
The variables of the drive-train are the rotor speedΩr, generator speedΩg and the shaft torsion
γ; all drive-train variables are scaled to the speed level of the rotor shaft. The drive-train is
accelerated by the aerodynamic driving torqueTa and decelerated by the generator torqueTg.
With linear and angular fore-aft tower motion included in the relative wind speed on the rotor
blades, the equations of motion for the rotor speedΩr and shaft torsionγ (eom1, eom2) become:

Jr Ω̇r
eom1
= δTa − ssh γ − dsh γ̇

Jr Jg

Jr+Jg
γ̈

eom2
= Jg

Jr+Jg
δTa − ssh γ − dsh γ̇ + Jr

Jr+Jg
δTg

(5)

with linearised torque variationδTa by (equation 1 2, 3):

δTa =
B
∑

i=1

[hMx
ũi + kMx

θi]−B hMx
ẋfa (6)

The drive-train parameters are the slow-shaft equivalent moments of inertiaJr andJg of the rotor
and generator and the stiffness and damper constantssh anddsh. The values are to be tuned such
that torsion behavior agrees with the first collective lead mode; this yields a slightly underesti-
mated moment of inertiaJr in the equation of motion forΩr, which is of minor importance since
this hardly affects rotor speed regulation control.

The variables of the included tower model are the fore-aft andsideward tower top displacement
xfa andxsd. The fore-aft motion is driven by the thrust forceFa and aerodynamic tilt momentMt.
A positive tilt moment causes upward tilting of the rotor center, so positive fore-aft translation.
The sideward motion is driven by the generator torqueTg and the sideward aerodynamic force
Fs. The equations of motion for fore-aft and sideward tower bending are:

mtw ẍfa
eom3
= δFa +

3
2H δMt − stw xfa − dtw ẋfa

mtw ẍsd
eom4
= 3

2H δTg + δFs − stw xsd − dtw ẋsd
(7)

The multiplication factor 3
2H for the bending moment loads in the equationsof motion exactly

applies if a prismatic beam is involved.

For the linearised variation in the axial force, tilt momentand sideward force holds ((equation 1
2, 3;

∑B

i=1 sin
2 ψi = 1

2
B):

δFa =
B
∑

i=1

[hFx
ũi + kFx

θi]−B hFx
ẋfa .

δMt =
B
∑

i=1

sinψi [hMz
ũi + kMz

θi] + 3

2

9Rb
8H hMz

ẋfa

δFs =
B
∑

i=1

− sinψi [hFz
ũi + kFz

θi]− 3

2

9Rb
8H hFz

ẋfa

(8)

Equal values for the tower top equivalent massmtw, damper constantdtw and spring constantstw
apply in the fore-aft and sideward equation of motion. These are based on structural data:

• horizontal tower displacement at unity force;
• damping rate of the 1st bending mode(s);
• average of the 1st fore-aft and sideward frequency.

Output equations
Next to the equations of motion, output equations apply whenfeedback control is considered. The
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individual pitch control can be realized by feedback of the blade root bending moments, the shaft
bending moments or the yaw and tilt moment on the nacelle. In order to describe the approach
to multi-rotational mode individual pitch control as straightforward as possible, we choose the
feedback of the blade root bending moment variationsδMzi . It holds (oe1 means1st output
equation, etc.; use equation 1, 3):

δMz1
oe1
=−hMz

(1−sinψ1
9Rb

8H ) ẋfa + hMz
ũ1 + kMz

θ1

δMz2
oe2
=−hMz

(1−sinψ2
9Rb

8H ) ẋfa + hMz
ũ2 + kMz

θ2

δMz3
oe3
=−hMz

(1−sinψ3
9Rb

8H ) ẋfa + hMz
ũ3 + kMz

θ3

(9)

Next to IPC, also control concepts apply for speed regulation, torsion damping and tower damp-
ing. The involved additional model output signals are the slow-shaft equivalent generator speed
Ωg and the fore-aft and sideward tower speedva andvs:

Ωg
oe4
= Ωr − γ̇

va
oe5
= ẋfa

vs
oe6
= ẋsd

(10)

Although it is more realistic to assume that the fore-aft andsideward toweraccelerationwill
be measured instead of the speed, it is more straightforwardto use the speed signals from a
conceptual point of view on control.

In this study on individual pitch control, only a collectivepitch feedback loop for speed regulation
is added to the feedback loops for IPC-np. The damping loops for the tower and drive-train are
not considered here. The generator torque is tuned to the filtered rotor speed in order to maintain
rated power production on the average (cut-off frequency 0.1 Hz ).

1.3 1P Individual pitch control

As already mentioned, the design of feedback loops in this section is focused on

• rotor speed regulation by collective pitch control;
• blade load reduction by individual pitch control.

In [6] is argued that the reduction of the (flapwise) blade loading around the 1p-frequency can
be straightforward achieved by low-frequency control of the so-called ‘dq-axis loads’. The blade
flap loads become tilt- and yaw-oriented loads in a dq-axis representation, which is commonly
used in electric machine theory. Because of the modulating effect of the rotating blade, the low-
frequency contents of tilt- and yaw-loads correspond with the frequency contents around 1p of
the blade flap loads. Appropriate low-frequent ‘dq-axis pitch actions’ reduce the 1p blade loads
after having been transformed from the dq-axes to differential (1p-individual) pitch actions along
the rotating blade axes.

If the dq-axis representation for an electric machine is extended with the ‘DC-component’ then
this would correspond with adding the collective pitch actions to the 1p-individual actions. Ac-
tually, combined collective and 1p-individual pitch control can be derived from the same model
when themulti-blade coordinate transformationas proposed by Coleman and Feingold [18] is
effectuated on all model variables that are attached to the rotor blades (‘rotating variables’); the
feedback laws are then designed in the transformed model. Itis common use to apply the ‘Cole-
man transformation’ in the aeroelastic stability analysis[32] of wind turbines and helicopters
with polar symmetry (≥3 blades): the homogeneous part of the equations of motion istrans-
formed into multi-blade coordinates, which makes the periodic coefficients to vanish. In that case
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only the rotatingstatevariables are transformed, while in our case also the rotating input and
outputvariables are transformed. The latter yields a model formulation for control design which
is completely time-invariant.

The following two subsections deal with the transformation of the control design model in multi-
blade coordinates, the linear time-invariant1p-transformed model, and with the design of the
feedback laws for 1p-individual pitch control, combined with collective pitch control for speed
regulation.

1.3.1 Linear time-invariant model

The equations of motion that depend onψ from Section 1.2 do not include state variables attached
to the blades or the rotor shaft except the rotational speedΩr and shaft torsionγ. SinceΩr and
γ have a co-axial orientation, not any state variable is to be transformed. The flapwise bending
moments, pitch angles and blade effective wind speeds are the only variables to be transformed.
When the corresponding variables on the three rotor blades are assumed to set up a coordinate
vector, the Coleman transformation matrixP maps the so called multi-blade coordinates in vector
p
cm

to rotating coordinates in vectorp. It then holds (θ = [θ1 θ2 θ3]
′, θcm = [θcm1 θcm2 θcm3 ]

′, etc.):

θ = P θcm , ũ = P ũcm , δM zcm = P−1 δM z (11)

with

P =







1 sinψ1 cosψ1

1 sinψ2 cosψ2

1 sinψ3 cosψ3






, P−1=







1
3

1
3

1
3

2
3
sinψ1

2
3
sinψ2

2
3
sinψ3

2
3
cosψ1

2
3
cosψ2

2
3
cosψ3





 (12)

It can be observed from figure 3 and the transformation with matrix P−1 that the 2bd and 3rd

multi-blade flap moment coordinatesδMzcm2
andδMzcm3

have a tilt- and yaw-orientation. The
1p-transformed model equations are obtained by carrying through the signal transformations by
equation 11 in the periodic model of Section 1.2 (B = 3; equation 5, 7):

Jr Ω̇r
eom1
= −ssh γ − dsh γ̇ − 3hMx

ẋfa . . .

+3kMx
θcm1

+ 3hMx
ũcm1

Jr Jg

Jr+Jg
γ̈

eom2
= −ssh γ − dsh γ̇ − Jg

Jr+Jg
3hMx

ẋfa . . .

+ Jg

Jr+Jg
3kMx

θcm1
+ Jr

Jr+Jg
δTg +

Jg

Jr+Jg
3hMx

ũcm1

mtw ẍfa
eom3
=−stw xfa − (dtw + 3hFx

− 81Rb
32H2 hMz

) ẋfa . . .

+3kFx
θcm1

+ 9
4H kMz

θcm2
+ 3hFx

ũcm1
+ 9

4HhMz
ũcm2

mtw ẍsd
eom4
=−stw xsd − dtw ẋsd − 27Rb

16H hFz
ẋfa . . .

− 3

2
kFz

θcm2
− 3

2
hFz

ũcm2
+ 3

2H δTg

(13)

and (equation 9; expressions forvfa andvfa omitted):

δMzcm1

oe1
= −hMz

ẋfa + kMz
θcm1

+ hMz
ũcm1

δMzcm2

oe2
= hMz

9Rb

8H ẋfa + kMz
θcm2

+ hMz
ũcm2

δMzcm3

oe3
= kMz

θcm3
+ hMz

ũcm3

Ωg
oe4
= Ωr − γ̇

(14)
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The equations of motion forΩr, γ andxfa show that the 1st multi-blade pitch angle coordinate
θcm1

represents collective pitching; this can also be concludedfrom the transformation ofθcm1

with matrix P to contributions toθ1, θ2 andθ3. The output equations forδMzcm2
andδMzcm3

show that the 2nd and 3rd multi-blade pitch angle coordinatesθcm2
andθcm3

have also a tilt and
yaw orientation.

The use of this time-invariant 1p-transformed model is identical to the use of the periodic model
of Section 1.2 if

• blade input variables are demodulated before they enter the1p-transformed model:

θcm = P−1 θ , ũcm = P−1 ũ ,

• blade output variables are remodulated after they have leftthe 1p-transformed model:

δM z = P δM zcm

A general receipt for obtaining and handling a linear time invariant state space model for polar-
symmetric wind turbines (B ≥ 3)is as follows (see e.g. [78] ; co-axial, down-wind pointing
x-axis, vertically down-ward pointingz-axis at rotor azimuthψ equal to 0;ψ equals azimuthψ1

of 1st blade):

• set up periodic linear model equations in state space formatwith input vectorv, state vector
z and output vectory:

ż = A(Ω̄t) z +B(Ω̄t) v

y = C(Ω̄t) z +K(Ω̄t) v

• compose matricesT v, T z andT y with (i) multi-blade transformation matrix kernelsP for
all input, state and output variables attached to the rotor blade and (ii) shaft transformation
matrix kernelsR for all variables attached to the rotor shaft:

P =







1 sinψ1 cosψ1

1 sinψ2 cosψ2

1 sinψ3 cosψ3






R =







1 0 0

0 cosψ1 sinψ1

0 − sinψ1 cosψ1







• derive parameter matrices of the transformed model via matrix transformation with fixed
azimuth anglēψ:

Acm = T−1
z (ψ̄)A(ψ̄)T z(ψ̄)− T−1

z (ψ̄)Ṫ z(ψ̄)

Bcm = T−1
z (ψ̄)B(ψ̄)T v(ψ̄)

Ccm = T−1
y (ψ̄)C(ψ̄)T z(ψ̄)

Kcm = T−1
y (ψ̄)K(ψ̄)T v(ψ̄)

The matricesAcm up toKcm no longer depend onψ and are to be derived from matrices
with ψ-dependency for an instancēψ of ψ.

• use the transformed model with input demodulation and output remodulation in the actual
rotor azimuthψ:

ǫ = T−1
v (ψ) v

q̇ = Acm q +Bcm ǫ

η = Ccm q +Kcm ǫ

y = T y(ψ) η
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1.3.2 Feedback laws for IPC-1p

The layout of the feedback loops for rotor speed regulation and blade load reduction around 1p is
pictured below.

blade 1

Ω rot

ψ
θ1

θ2

θ3

setθ3

setθ2

setθ1

cosΨ1
Ψ2
Ψ3

cos
cos

sinΨ1
Ψ2
Ψ3

sin
sin

remodulation

desired pitch angle 1

desired pitch angle 3

azimut

Tgen

γ
genΩgenerator speed

desired pitch angle 2

Mz3

1
Mz

flap moment 1

2
Mz

flap moment 2

flap moment 3

low-pass
 ω3p cosΨ1 Ψ2 Ψ3cos cos3

2 sinΨ1 Ψ2 Ψ3sin sin
demodulaton  FB-kernel

    K    /s1p

  FB-kernel
    K    /s1p

M
3

δ cm

M
2

δ cm

flapθcm
2

flapθcm
3

low pass
 < ω3pτ ispd

         FB-kernel
    K     (1+1/        s)spdτ iDynInf

     (1+              s)/(1+              s)τdDynInf

phase lead-lag

feed forward
estimated wind speed

Ω rot
rated

powθcol 1

1

1

δ
δ
δ

Figure 4 Layout of control loops for pitch control

The feedback loops map

• the low-pass filtered rotational speedΩg to the collective pitch angle setpointθpowcol via a
proportional/integral scheme (PI-compensator), enforcedby ‘feedforward’ of the estimated
wind speed while catering for dynamic inflow effects.
• the identically low-pass filtered tilt- and yaw-oriented multi-blade flap moment coordinates
δMzcm2

andδMzcm3
to the tilt- and yaw-oriented multi-blade pitch angle coordinatesθcm2

andθcm3
via equal integral gains (I-compensator).

The latter implies the following (1p-demodulating) creation scheme for the ‘artificial measure-
ment signals’δMzcm2

andδMzcm3
(further referred to asδM (1)

zcm2
andδM (1)

zcm3
since they pertain

to IPC-1p):
[

δM
(1)
zcm2

δM
(1)
zcm3

]

=

[

2
3
sinψ1

2
3
sinψ2

2
3
sinψ3

2
3
cosψ1

2
3
cosψ2

2
3
cosψ3

)









δMz1

δMz2

δMz3









(15)

while pitch angle additions around the 1p frequency are obtained via a 1p-modulation scheme on
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the ‘artificial control signals’θcm2
andθcm3

(= θ
(1)
cm2 , θ

(1)
cm3):









θ
(1)
1

θ
(1)
2

θ
(1)
3









=









sinψ1 cosψ1

sinψ2 cosψ2

sinψ3 cosψ3













θ
(1)
cm2

θ
(1)
cm3



 (16)

The model equations below are derived from the 1p-transformed model and are used for the
parametrization of the three pitch feedback loops (delayτv models all dynamics of measuring,
data processing and pitch actuation; use equation 13, 14; drive-train torsion and tower fore-aft
motion excluded):

(Jr + Jg) Ω̇g(t) = 3 kMx
θcm1

(t− τv) + 3hMx
ũcm1

(t)

δMcm2
(t) = kMz

θcm2
(t− τv) + hMz

ũcm2
(t)

δMcm3
(t) = kMz

θcm3
(t− τv) + hMz

ũcm3
(t)

(17)

These equations are completely decoupled so that pure single-input/single-output (SISO) control
theory can be applied. A short note on the neglected interaction is added in the paragraph below.
As argued in the begin of Section 1.3, the 1p-load reduction objective is satisfied by zeroing
the tilt- and yaw-oriented multi-blade flap moment coordinatesMcm2

andMcm3
. Thus, three so

called SISO ‘regulator problems’ are to be solved.

The PI-compensator is commonly used as the basic feedback law for regulation of a system
characterized by a delayed integrator, which applies in thespeed regulation loop [74] . The cut-
off frequency loop must lay below 3p in order to avoid the feedthrough of rotor-wide rotational
sampling effects (̃ucm1

= ũ1 + ũ2 + ũ3), which occur around (multiples of) the 3p-frequency.
The lead-lag filter is derived for the compensation of dynamic inflow at collective pitching [84]
. The estimated wind speed̂Vw is fed forward to a pitch angle value that corresponds to rated
power capture in̂Vw [72] .

The load regulation loops actually behave as a delayed proportional system. In that case just an
I-compensator satisfies for regulation and thus IPC-1p. In these loops it is also required to filter
out the signal contents around and beyond 3p. This becomes clear when the multi-blade wind
speed coordinates̃ucm2

andũcm3
are decomposed in rotational modes.

For homogeneous turbulence in the rotor plane, atime-dependentFourier expansion of the wind
speed̃ui experienced in a rotating point on radiusr exists [21] :

ũi(t) =
∞
∑

p=−∞

epψi ûp(t), ûp(t) = 1
2π

∫ 2π

0

e−pφu(t, r, φ) dφ (18)

The Fourier coefficientŝup(t), the rotational modes, are time-dependent. A rotational mode is
a harmonic basis function over the circle on radiusr of the wind field. The time-dependency
represents the evolution of the amplitude and the phase of such a rotational mode, which mainly
occurs in frequencies below 0.1Hz1. For the multi-blade coordinates̃ucm2

andũcm3
then holds

(use row 2 and 3 ofP−1 by equation 12 and see expressions in Section 1.8 fork = 1)

ũcm2
(t) =

∞
∑

m=−∞

 e3mψ( û3m+1(t)− û3m−1(t) )

ũcm3
(t) =

∞
∑

m=−∞

e3mψ( û3m+1(t) + û3m−1(t) )
(19)

1In a linearized approach, tower shadow and wind shear can be considered as the mean-value part of the rotational
modes
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These expressions tell that the rotational mode pair{û1, û−1} contributes straightforward tõucm2

andũcm3
while the mode pairs{û2, û4} and{û−2, û−4} deliver contributions that are modulated

with the 3p-frequency. Similarly, the pairs{û5, û7} and{û−5, û−7} yield 6p-modulated contri-
butions.

It is clear that the integral action in the feedback loops compensate for the low frequent variations
in the modes{û1, û−1} as well as for the mean-value parts associated with tower shadow and
wind shear, and thus realizes IPC-1p. The pursued bandwidth ofthe feedback loop amounts
to ca. 0.1 Hz. In Section 1.5 it is analytically proved that regulation of δM (1)

zcm2,3
eliminates

all excitation by the wind of the blade root flap moment around the 1p-frequency. In order to
eliminate the influence of higher harmonics in IPC-1p it is required to apply low pass filtering
around and beyond 3p.

IPC-1p can thus be realized by solving a regulator problem. Thereceipt is:

• transform the three flapwise blade root momentsδMzi into artificial ‘1p-demodulated’

measurement signalsδM (1)
zcm2

andδM (1)
zcm3

by equation 15;

• generate artificial control signalsθ(1)cm2 andθ(1)cm3 via I-compensators forδM (1)
zcm2

andδM (1)
zcm3

with low pass filters around and beyond 3p;
• transformθ(1)cm2 andθ(1)cm3 into three ‘1p-modulated’ pitch signalsθ(1)i by equation 16.

Interaction between feedback loops
WhenΩg andMcm2

are fed back toθcm1
andθcm2

some interaction exists between the two loops
via the fore-aft speeḋxfa because bothθcm1

andθcm2
excite the tower fore-aft motion (see eom1,

eom3 in equation 13 and oe1 in equation 14). The interaction can be quantified by expressingẋfa
in θcm1

andθcm2
and substituting the result in the above equations forΩg andMcm2

, extended
with the influence froṁxfa. The effect on the closed loop behavior does not appear significant.

1.4 Higher harmonics control

In the previous section it was shown thatartificial measurement signals, viz. the 2nd and 3rd

multi-blade flap moment coordinatesδMzcm2
and δMzcm3

enable the realization of IPC-1p by
solving a regulation problem. The outputs of the regulator are artificial control signals, viz.
the 2nd and 3rd multi-blade pitch angle coordinatesθcm2

andθcm3
. These artificial signals are

linked to flap moment measurements and pitch angle additions around the 1p-frequency via the
Coleman transformation (equation 11 and 12). The transformation shifts the higher harmonics of
the wind to the 3p-frequency and higher. This allows for low pass filtering ofδMzcm2

andδMzcm3

conveniently far away from the pursued pass-band of the feedback loops (∼ 0.1Hz).

In the following two subsections it is proved that the same approach can be adopted for load
reduction in the rotor blades around the 2p-frequency and the 3p-frequency (IPC-2p and IPC-3p).

1.4.1 Feedback loops for IPC-2p

We assumed that pitch angle additions for IPC-2p could also be obtained from low-frequent
artificial control signals. These control signals were definedθ

(2)
cm2 andθ(2)cm3 and are as follows

related to the pitch angle variationsθ(2)1 , θ(2)2 andθ(2)3 for IPC-2p:









θ
(2)
1

θ
(2)
2

θ
(2)
3









=









sin 2ψ1 cos 2ψ1

sin 2ψ2 cos 2ψ2

sin 2ψ3 cos 2ψ3













θ
(2)
cm2

θ
(2)
cm3



 (20)

This 2p-modulation scheme was carried through in the periodic linear model of Section 1.2 and
yielded the2p-transformed model. It appeared that also these pitching actions donot affect
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aerodynamic torqueTa and axial forceFa butdoaffect the tilt momentMt and sideward forceFs

around 3p.

This 2p-modulation scheme was carried through in the periodic linear model of Section 1.2 and
yielded the2p-transformed model. It appeared that these pitching actions affect neither the
aerodynamic torqueTa nor the axial forceFa, tilt momentMt and sideward forceFs since
∑B

i=1 sin 2ψi = 0,
∑B

i=1 cos 2ψi = 0,
∑B

i=1 sinψi · sin 2ψi = 0 and
∑B

i=1 sinψi · cos 2ψi = −
3
2
cos 3ψ (see

equation 6 and 8). Thus, the proposed 2p pitch angle additionscan be used for reduction of 3p
tilt (and yaw) loading.

Theith blade flap moment is affected as follows byθ(2)cm2 andθ(2)cm3 (see equation 9):

δMzi=−hMz
(1−sinψi 9Rb

8H ) ẋfa + hMz
ũi+

kMz
(sin 2ψi θ

(2)
cm2 + cos 2ψi θ

(2)
cm3)

(21)

Now define the artificial measurement signalsδM
(2)
zcm2

andδM (2)
zcm3

as:

[

δM
(2)
zcm2

δM
(2)
zcm3

]

=

[

2
3
sin2ψ1

2
3
sin2ψ2

2
3
sin2ψ3

2
3
cos2ψ1

2
3
cos2ψ2

2
3
cos2ψ3

)









δMz1

δMz2

δMz3









(22)

Substitution of equation 21 in the right hand side of the creation scheme above mentioned yields:

δM
(2)
zcm2

= kMz
θ
(2)
cm2 + hMz

2

3

B
∑

i=1

sin2ψi ũi

δM
(2)
zcm3

= kMz
θ
(2)
cm3 + hMz

2

3

B
∑

i=1

cos2ψi ũi

(23)

These equations can be rewritten by use of the expressions forthe modulated Fourier expansion
of the rotationally sampled wind speed by equation18 as listed in Section 1.8 (k = 2)

δM
(2)
zcm2

oe2
= kMz

θ
(2)
cm2 + hMz

ũ
(2)
cm2

δM
(2)
zcm3

oe3
= kMz

θ
(2)
cm3 + hMz

ũ
(2)
cm3

(24)

with

ũ
(2)
cm2(t) =

∞
∑

m=−∞

 e3mψ( û3m+2(t)− û3m−2(t) )

ũ
(2)
cm3(t) =

∞
∑

m=−∞

e3mψ( û3m+2(t) + û3m−2(t) )
(25)

The dependency oṅxfa vanishes because
∑B

i=1 sin 2ψi = 0,
∑B

i=1 cos 2ψi = 0,
∑B

i=1 sinψi sin 2ψi = 0

and
∑B

i=1 sinψi cos 2ψi = 0.

Equations 24 and 25 tell that the rotational mode pair{û2, û−2} contributes straightforward to

the artificial measurement signalsδM (2)
zcm2

andδM (2)
zcm3

while the remaining mode pairs deliver
contributions that are modulated with (multiples of) 3p.

These equations also tell that integral action in SISO feedbackloops fromδM (2)
zcm2

andδM (2)
zcm3

to the artificial control signalsθ(2)cm2 andθ(2)cm3 will compensate for the mean and the low frequent
variations of the mode-pair{û2, û−2}. In Section 1.5 it is analytically proved that regulation

of δM (2)
zcm2,3

eliminates all excitation by the wind of the blade root flap moment around the 2p-
frequency.
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Low pass filtering is required around and beyond 3p in order to avoid unwanted controller exci-
tation from mode-pairs{û±5, û±1}, {û±8, û±4}, etc.

As mentioned above, the system dynamics are not excited at all by the 2p-modulated pitch angle
additions. IPC-2p can thus be realized by solving a regulatorproblem just as IPC-1p. The receipt
is:

• transform the three flapwise blade root momentsδMzi into artificial ‘2p-demodulated’

measurement signalsδM (2)
zcm2

andδM (2)
zcm3

by equation 22;

• generate artificial control signalsθ(2)cm2 andθ(2)cm3 via I-compensators forδM (2)
zcm2

andδM (2)
zcm3

with low pass filters around and beyond 3p;
• transformθ(2)cm2 andθ(2)cm3 into three ‘2p-modulated’ pitch signalsθ(2)i by equation 20.

1.4.2 Feedback loops for IPC-3p

Just as for IPC-2p, we defined artificial control signalsθ
(3)
cm2 andθ(3)cm3 for IPC-3p, but now with a

3p-modulation scheme:








θ
(3)
1

θ
(3)
2

θ
(3)
3









=









sin 3ψ1 cos 3ψ1

sin 3ψ2 cos 3ψ2

sin 3ψ3 cos 3ψ3













θ
(3)
cm2

θ
(3)
cm3



 (26)

This scheme was carried through in the periodic linear model of Section 1.2 and yielded the3p-
transformed model. The pitching actions nowdoaffect the aerodynamic torqueTa and axial force
Fa since forB = 3

∑B

i=1 sin 3ψi = 3 sinψ1,
∑B

i=1 cos 3ψi = 3 cosψ1 (see equation6 and 7):

δTa = −3hMx
ẋfa +

3
∑

i=1

hMx
ũi+

3 kMx
(sin 3ψ1 θ

(3)
cm2 + cos 3ψ1 θ

(3)
cm3)

δFa = −3hFx
ẋfa +

3
∑

i=1

hFx
ũi+

3 kFx
(sin 3ψ1 θ

(3)
cm2 + cos 3ψ1 θ

(3)
cm3)

(27)

The pitching actions donotaffect the tilt momentMt and sideward forceFs since
∑B

i=1 sinψi · sin 3ψi = 0

and
∑B

i=1 sinψi · cos 3ψi = 0.

Thus, the system dynamics are excited by the proposed 3p pitchangle additions via the driving
torque and the axial force. This excitation can be assumed to be caused by the 3p-modulated
artificial control signalsθ(3)cm2 andθ(3)cm3 .

Theith blade flap moment is affected as follows byθ(3)cm2 andθ(3)cm3 (see equation 9):

δMzi=−hMz
(1−sinψi 9Rb

8H ) ẋfa + hMz
ũi+

kMz
(sin 3ψi θ

(3)
cm2 + cos 3ψi θ

(3)
cm3)

(28)

Now define the artificial measurement signalsδM
(3)
zcm2

andδM (3)
zcm3

as:

[

δM
(3)
zcm2

δM
(3)
zcm3

]

=

[

2
3
sin3ψ1

2
3
sin3ψ2

2
3
sin3ψ3

2
3
cos3ψ1

2
3
cos3ψ2

2
3
cos3ψ3

)









δMz1

δMz2

δMz3









(29)

Substitution of equation 28 in the right hand side of the creation scheme above mentioned yields
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(ψ = ψ1):

δM
(3)
zcm2

= −2hMz
sin 3ψ 9Rb

8H ẋfa + hMz
2

3

3
∑

i=1

sin3ψi ũi+

kMz
( 2

3

3
∑

i=1

sin3ψi sin3ψi θ
(3)
cm2 + sin3ψi cos3ψi θ

(3)
cm3 )

δM
(3)
zcm3

= −2hMz
sin 3ψ 9Rb

8H ẋfa + hMz
2

3

3
∑

i=1

cos3ψi ũi+

kMz
( 2

3

3
∑

i=1

cos3ψi sin3ψi θ
(3)
cm2 + cos3ψi cos3ψi θ

(3)
cm3 )

(30)

These equations can be rewritten as follows (see equation18 and the expressions in Section 1.8
for k = 3):

δM
(3)
zcm2

= −2hMz
sin 3ψ 9Rb

8H ẋfa + hMz
ũ
(3)
cm2+

kMz
( θ

(3)
cm2 − cos6ψ θ

(3)
cm2 + sin6ψ θ

(3)
cm3 )

δM
(3)
zcm3

= −2hMz
cos 3ψ 9Rb

8H ẋfa + hMz
ũ
(3)
cm3+

kMz
( θ

(3)
cm3 + cos6ψ θ

(3)
cm3 + sin6ψ θ

(3)
cm2 )

(31)

with

ũ
(3)
cm2(t) =

∞
∑

m=−∞

 e3mψ( û3m+3(t)− û3m−3(t) )

ũ
(3)
cm3(t) =

∞
∑

m=−∞

e3mψ( û3m+3(t) + û3m−3(t) )
(32)

Equations 31 and 32 tell that the rotational mode pair{û3, û−3} contributes straightforward to

the artificial measurement signalsδM (3)
zcm2

andδM (3)
zcm3

while the remaining mode pairs deliver
contributions that are modulated with (multiples of) 3p.

These equations also tell that integral action in SISO feedbackloops fromδM (3)
zcm2

andδM (3)
zcm3

to the artificial control signalsθ(3)cm2 andθ(3)cm3 will compensate for the mean and the low frequent
variations of the mode-pair{û3, û−3}. In Section 1.5 it is analytically proved that regulation

of δM (3)
zcm2,3

eliminates all excitation by the wind of the blade root flap moment around the 3p-
frequency.

Low pass filtering is required around and beyond 3p in order to avoid undesired feedback that is
caused by:

• mode-pairs{û±6, û±0}, {û±9, û±12}, etc.;

• 6p-modulated terms like−kMz
cos6ψ θ

(3)
cm2 ;

• 3p-modulated term−2hMz
sin 3ψ 9Rb

8H ẋfa.
It has been mentioned above that the excitation of the systemdynamics via the 3p pitching scheme
by equation 26 is equivalent to excitation by the 3p-modulated artificial control signalsθ(3)cm2 and
θ
(3)
cm3 . It is shown by time-domain simulation in Section 1.6 that this interaction with the speed

regulation loop is favorable instead of undesired; this also holds for the tower fore-aft motion:
reductions of the 3p-component of the flap moment, the lead moment and the axial force coincide.

Since part of the 3p-excitation is shifted around the 6p-frequency, IPC-3p can thus be realized by
solving a regulator problem. The receipt is:

• transform the three flapwise blade root momentsδMzi into artificial ‘3p-demodulated’

measurement signalsδM (3)
zcm2

andδM (3)
zcm3

by equation 29;

• generate artificial control signalsθ(3)cm2 andθ(3)cm3 via I-compensators forδM (3)
zcm2

andδM (3)
zcm3

with low pass filters around and beyond 3p;
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• transformθ(3)cm2 andθ(3)cm3 into three ‘2p-modulated’ pitch signalsθ(3)i by equation 26.

1.5 Closed-loop analysis

The IPC-np feedback laws are designed independently while they will operate simultaneously.
The feedback laws, together with annp de- and re-modulation scheme, set up the ‘true’ feedback
loops for IPC-np. In this section it is analytically proved that the true feedback loops compensate
for thenp harmonic excitation from the wind if well-functioning lowpass filters are included.

The analytic proof for the proper working of the proposed feedback loops for IPC-np involves
the following steps:

• inclusion of the feedback laws in the output equations for the artificial measurement signals
(‘np-transformed’ output equations);
• expression of the artificial control signals in the rotational modes of the wind speed
• carrying through the expressions for the control signals inthe output equations for the blade

flap root moments

1.5.1 Feedback laws in output equations

The three sets of two identical feedback laws from the artificial measurement to control signals
all have the same structure. They involve an integrating action and low pass filter around and
beyond the 3p-frequency and are denoted as:

θ
(k)
cm2(t) = −L(k)(t) ∗ δM (k)

zcm2
(t)

θ
(k)
cm3(t) = −L(k)(t) ∗ δM (k)

zcm3
(t)

(33)

The asterisks ‘∗’ represents the convolution operation, which is a short hand notation of the
general response expression for the linear system with impulse responseL(k)(t). For θ(k)cm2(t)
then holds:

θ(k)cm2
(t) =

∫ t

−∞
L(k)(t− τ) δM (k)

zcm2
(τ) dτ (34)

The impulse responseL(k)(t) is the inverse Laplace transform of the transfer functionL(s)2:

L(k)(t) =

∫ ∞

−∞
es t L(k)(s) ds (35)

The feedback laws, together with annp de- and re-modulation scheme, set up the ‘true’ feedback
loops for IPC-np. In this section it is analytically proved that the true feedback loops do what
they are intended to do, viz. to compensate for thenp harmonic excitation from the wind if
well-functioning low pass filters are included.

With the feedback laws included, equation 14 for the artificial measurements signals for IPC-1p
becomes:

(1+kMz
L(1)(t))∗δM (1)

zcm2
(t)=hMz

9Rb

8H ẋfa(t) + hMz
ũ
(1)
cm2(t)

(1+kMz
L(1)(t))∗δM (1)

zcm3
(t)=hMz

ũ
(1)
cm3(t)

(36)

2The Laplace operators can be interpreted as the product of the frequencyω [rad/s] and imaginary unit number
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and equation 24 for IPC-2p:

(1 + kMz
L(2)(t)) ∗ δM (2)

zcm2
(t) = hMz

ũ
(2)
cm2(t)

(1 + kMz
L(2)(t)) ∗ δM (2)

zcm3
(t) = hMz

ũ
(2)
cm3(t)

(37)

and equation 31 for IPC-3p:

(1 + kMz
L(3)(t)) ∗ δM (3)

zcm2
(t) =−2hMz

sin 3ψ 9Rb

8H ẋfa(t)+

hMz
ũ
(3)
cm2(t) + kMz

cos6ψ (L(3)(t) ∗ δM (3)
zcm2

(t))−

kMz
sin6ψ (L(3)(t) ∗ δM (3)

zcm3
(t))

(1 + kMz
L(3)(t)) ∗ δM (3)

zcm3
(t) =−2hMz

cos 3ψ 9Rb

8H ẋfa(t)+

hMz
ũ
(3)
cm3(t)− kMz

cos6ψ (L(3)(t) ∗ δM (3)
zcm3

(t))−

kMz
sin6ψ (L(3)(t) ∗ δM (3)

zcm2
(t))

(38)

The ‘closed loop’ equations for IPC-1p and IPC-2p can be transformed into explicit equations for
δM

(k)
zcm(.)

(t) (k = 1, 2): then holds:

δM
(1)
zcm2

(t) = hMz
Ĝ(1)(t) ∗ (ũ(1)cm2(t) +

9Rb

8H ẋfa(t))

δM
(1)
zcm3

(t) = hMz
Ĝ(1)(t) ∗ ũ(1)cm3(t)

δM
(2)
zcm2

(t) = hMz
Ĝ(2)(t) ∗ ũ(2)cm2(t)

δM
(2)
zcm3

(t) = hMz
Ĝ(2)(t) ∗ ũ(2)cm3(t)

(39)

with Ĝ(k)(t) the inverse Laplace transform of the closed form of the so called ‘loop gain’kMz
L(k)(s):

Ĝ(k)(t) =

∫ ∞

s=−∞
es t

1

1 + kMz
L(k)(s)

ds (40)

The closed loop equations for IPC-3p can be transformed in a similar way as described above.
However, this still results in implicit equations. ForδM (3)

zcm(2)
(t) then holds (similar forδM (3)

zcm(3)
(t)):

δM
(3)
zcm2

(t) =hMz
Ĝ(3)(t)∗

(
ũ
(3)
cm2(t)−2 sin 3ψ 9Rb

8H ẋfa(t)

+ kMz

hMz
[ cos6ψ (L(3)(t) ∗ δM (3)

zcm2
(t))

− sin6ψ (L(3)(t) ∗ δM (3)
zcm3

(t) ) ]
)

(41)

The feedback lawL(3)(t) contains a low pass filter around and beyond the 3p-frequency.There-
fore, the contribution of the 6p-modulated termsL(3)(t)∗δMzcm(2,3)

to equation 41 in frequencies
below 3p will be negligible.

1.5.2 Rotational modes in control signals

The feedback scheme listed below applies when the feedback law for the 3rd multi-blade co-
ordinate in IPC-2p is effectuated (closed loop). are effectuated The scheme only includes the
artificial process signals and is equal for the 2nd multi-blade coordinate in IPC-2p and 3rd multi-
blade coordinate in IPC-1p; the 2nd multi-blade coordinate in IPC-1p inludes a contribution by
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Figure 5 Feedback scheme 2nd multi-blade coordinate IPC-2p

the fore-aft tower motion.

The following closed loop expressions hold for the artificial control signals in IPC-1p and IPC-2p
(substitute right hand side of equation 39 in equation 33;k = 1, 2):

θ
(1)
cm2(t) = G(1)(t) ∗ ( ũ(1)cm2(t) +

9Rb

8H ẋfa(t) )

θ
(1)
cm3(t) = G(1)(t) ∗ ũ(1)cm3(t)

θ
(2)
cm2(t) = G(2)(t) ∗ ũ(2)cm2(t)

θ
(2)
cm3(t) = G(2)(t) ∗ ũ(2)cm3(t)

(42)

with G(k)(t) the inverse Laplace transform given by:

G(k)(t) =

∫ ∞

s=−∞
es t
−hMz

L(k)(s)

1 + kMz
L(k)(s)

ds (43)

As mentioned above, the 6p-modulated terms in equation 41 hardly contribute in frequencies
below 3p. Because of the low pass filter in the feedback lawL(3)(t) in equation 33 the following
expressions approximately hold for the artificial control signals that belong to IPC-3p (G(3)(t) by
equation 43 fork = 3)

θ
(3)
cm2(t) ∼ G(3)(t) ∗ ( ũ(3)cm2(t)− 29Rb

8H sin 3ψ ẋfa(t) )

θ
(3)
cm3(t) ∼ G(3)(t) ∗ ( ũ(3)cm3(t)− 29Rb

8H cos 3ψ ẋfa(t) )
(44)

For the rotational mode decomposition of thekp-transformed wind speed signal holds (see Sec-
tion 1.8)

ũ
(k)
cm2(t) =

∞
∑

m=−∞

 e3mψ( û3m+k(t)− û3m−k(t) )

ũ
(k)
cm3(t) =

∞
∑

m=−∞

e3mψ( û3m+k(t) + û3m−k(t) )
(45)

The properties ofG(k)(t) can be derived from those of the feedback lawL(k)(t) via equation 43.
L(k)(t) represents an integrator and low pass filter around and beyond3p, which can be written as
the inverse Laplace transform of the product of integrator transfer functionK(k)/s and low-pass

filter transfer functionF (k)
3p (s). For the transfer functionG(k)(s) then holds (omit superscript(k);
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replaces by ω) :

G(ω) =
−hMz

K F3p(ω)

ω + kMz
K F3p(ω)

=

{
−hMz

kMz
if ω ≪ kMz

K

0 if ω ≥ ω3p − ǫ
(46)

For appropriate choices of controller gainK and offsetǫ from the 3p-frequency, just the rotational
modeŝuk andû−k appear in the artificial control signals for IPC-kp control:

G(k)(t) ∗ ũ(k)cm2(t) ∼  −hMz

kMz
(ûk(t)− û−k(t))

G(k)(t) ∗ ũ(k)cm3(t) ∼ −hMz

kMz
(ûk(t) + û−k(t))

(47)

1.5.3 Controlled blade root flap moments

The true pitch angle additionθ(1,2,3)i for the ith blade is as follows composed from the artifical
control signals (see 1p-modulation scheme in Fig. 4 and 2p- and 3p-modulation schemes in
equation 20 and 26):

θ
(1,2,3)
i (t) =

3
∑

k=1

sin kψi θ
(k)
cm2

(t) + cos kψi θ
(k)
cm3

(t) (48)

This expression can be rewritten as (carry through equation 47 in equation 42 and 44):

θ
(1,2,3)
i (t) ∼ −hMz

kMz

(
3
∑

k=1

ekψûk(t) + e−kψû−k(t)

)
+ f(ẋfa) (49)

Now use this expression forθ(1,2,3)i (t), together with the rotational mode decomposition by equa-
tion 18 for the wind speed on theith blade, in equation 9 for the blade root flap momentMzi .

δMzi ∼ −hMz
(1−sinψi 9Rb

8H ) ẋfa + hMz

∞
∑

p=−∞

epψi ûp(t)

+kMz

−hMz

kMz

(
3
∑

k=1

ekψûk(t) + e−kψû−k(t)

)
+ kMz

f(ẋfa)

∼ −hMz
(1−sinψi 9Rb

8H ) ẋfa + kMz
f(ẋfa)

+hMz

(
û0(t) +

∞
∑

p=4

epψi ûp(t) + e−pψi û−p(t)

)

(50)

This expression shows that the excitation of the blade root flapmoment by the first three rotational
modes is compensated completely with the adopted approach for multi-rotational mode individual
pitch control.

1.6 Simulation results

Time-domain simulations with the controlled model show theeffect of IPC-kp control on the
stationary blade and nacelle loads. These simulations are driven by the earlier mentionedblade
effectivewind input signals in Section 1.2, which cater for longitudinal turbulence, wind shear
and tower shadow.

The parameters of the model equations were determined for a mean wind speed of 16 m/s, mean
rotor speed to 15 rpm and mean pitch angle to 10o. The power and thrust coefficient data of a
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typical 3MW wind turbine were used. The rotor radiusRb amounted to 45 m, the tower heightH
to 70 m, the overall drive-train inertiaJr + Jg to 12 · 106 kgm2 and the 1st tower eigenfrequency
to 0.35 Hz. Parasite dynamics are supposed to be caused by thepitch actuators, sensors and data
processing equipment. These have been taken into account viaan overall loop delay of 0.2 s.

Simulations were performed in which four cases were addressed:

• collective pitch only;
• collective pitch and IPC-1p;
• collective pitch and IPC-1p, IPC-2p;
• collective pitch and IPC-1p, IPC-2p, IPC-3p.

Each box always contains the results for collective pitch control only as a blue (dark) line. The
results with any individual pitch control included are plotted as a green (light) line.

Figures 8-8 shows realizations and power spectra of the bladeroot flap moment and the tilt mo-
ment in the rotor center. The three boxes with realizations for a signal pertain to different levels
of activity of individual pitch control; the upper box includes results for IPC-1p, the middle box
for combined IPC-1p and IPC-2p, and the lower for combined IPC-1p, IPC-2 and IPC-3. The
three boxes with auto power spectra for a signals represent these IPC-activity levels from left to
right. Figures 9-11 provides these graphical results for theyaw moment in the rotor centre and
the aerodynamic driving torque.

The graphs show the respective reduction of blade loads around 1p, 2p and 3p and of yaw and
tilt loads in very low frequency and around 3p; the latter is caused by the reduction of blade flap
loads around 2p. The driving torque loads are reduced around 3p, which is caused by by the
reduction of bladeleadloads around 3p; it can be argued that full elimination of theflapwise load
variations coincides with partial elimination of leadwiseload variations.

Figures 12-14 shows the reduction in 1H equivalent fatigue damage for the blade root flap mo-
ment, tilt moment and yaw moment. These fatigure damage reduction estimations were derived
via rainflow counting. Rainflow counts were made from 6 time-domain simulations of 800 s each.
They were transformed into 1Hz equivalent fatique loads and translated into fatigue damage via
the industrially accepted approach by Palmgren and Miner [57] . The achieved reduction in fa-
tigue damage are shown for different values of the slopem; a low value of 3 or 4 is representative
for steel, while a high value of 9 or 10 is representative for reinforced plastic materials. Fatigue
damage reduction up to 20 to 30% in frequently occurring fullload conditions seems realistic.

Figures 15-17 shows the ‘cost’ of multi-rotational mode individual pitch control. Here also, the
three boxes per signal pertain to the three distighuised IPC activity levels, viz. IPC-1p (upper),
IPC-1p and IPC-2p (middle), and IPC-1p, IPC-2 and IPC-3 (lower); the reference ‘collective
pitch’ is represented in each box by a blue (dark) line. The required maximum pitch speed rises
from ca. 2o/s at collective pitch only, via 7o/s and 10o/s at IPC-1p and IPc-2 up to 12o/s at
IPC-3p. The respective pitch acceleration maxima are ca 3o/s2, 18o/s2, 27o/s2 and 50o/s2.
The fore-aft tower motion is somewhat raised by IPC-1p, which remains active when IPC-2p and
IPC-3p are added. This is caused by the presence of the 2nd multi-blade pitch angle coordinate
θcm2

in the equation of motion for the fore-aft speedẋfa (see equation 13; pitch angle variations
for IPC-1p are based on variations inθcm2

).

1.7 Model for stability analysis

In Section 1.3 it was proven that 1p individual pitch control (IPC-1p) can be approached as a
linear time invariant control problem after transformation of the rotor variables into multiblade
coordinates according to Coleman and Feingold [18] . The resulting ‘1p-transformed model’ can
be formulated generically in state space form, as was mentioned in the general receipt at the end
of Section 1.3.
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Figure 6 Time realizations the blade root flap moment (Mzb) at 16 m/s
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Figure 7 Time realizations of the tilt moment in the rotor center (Mtilt) at 16 m/s

In this section it is shown how the feedback loops for IPC-1p, IPC-2p and IPC-3p are linked to
the 1p-transformed model. This yields a model formulation that can be used for stability analysis.

When the model inputs and outputs are restricted to the pitchangles and blade root flap moments,
the linear time invariant state space representation of thewind turbine model from Section 1.3
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Figure 8 Power spectra for the blade root flap moment (Mzb) and the tiltmoment in the rotor
center (Mtilt) at 16 m/s
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Figure 9 Time realizations for the yaw moment in the rotor center (Myaw) at 16 m/s

looks as follows:
ǫt = P−1(ψ) θ

q̇
t

= At qt +Bt ǫt

η
t

= Ct qt +Kt ǫt

δM z = P (ψ) η
t

(51)
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Figure 10 Time realizations for the driving torque (Mxt) at 16 m/s
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Figure 11 Power spectra for the yaw moment in the rotor center (Myaw) and the driving torque
(Mxt) at 16 m/s

The state vector namėq
t

is used instead oḟq. The parameter matrices now have the subscriptt

(turbine) instead ofcm. It should be noted that

• Bt contains only 3 columns ofBcm;
• Ct contains only 3 rows ofCcm;
• Kt contains only 3 rows and 3 columns ofKcm.

A pair of feedback laws {L(k)(t) ,L(k)(t)} for IPC-kp can be formulated as a state space model.
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Figure 12 Relative fatigue damage reduction via 1Hz equivalent fatigue loading for blade root
flap moment at 16 m/s
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Figure 13 Relative fatigue damage reduction via 1Hz equivalent fatigue loading for tilt moment
at 16 m/s

The involved parameter matrices have subscriptf (feedback):

q̇(k)

f
= A

(k)

f q(k)

f
+ B

(k)

f ǫ(k)

f with ǫ(k)

f =

[
δM

(k)
zcm2

δM
(k)
zcm3

]

η(k)

f
= C

(k)

f q(k)

f
with η(k)

f
=

[
θ
(k)
cm2

θ
(k)
cm3

] (52)
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Figure 14 Relative fatigue damage reduction via 1Hz equivalent fatigue loading for yaw mo-
ment (Myaw) at 16 m/s
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Figure 15 Realizations of pitch speed (dThb1dt) at 16 m/s

Since the feedback laws include integral action and low pass filtering there is no feedthrough
from the inputǫ(k)

f to the outputη(k)

f
.

Define thekp-demodulation matrix̂D
(k)

andjp-remodulation matrixM̂
(j)

in accordance with
the modulation schemes for the artificial measurement and control signals in the IPC-loops as
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Figure 16 Realizations of pitch acceleration (dsqdThb1dt) at 16 m/s
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Figure 17 Realizations of fore-aft tower motion (xnod) at 16 m/s

dealt with in Sections 1.3-1.4:

D̂
(k)
=2

3

(

sin kψ1 sin kψ2 sin kψ3

cos kψ1 cos kψ2 cos kψ3

)

, M̂
(j)
=







sin jψ1 cos jψ1

sin jψ2 cos jψ2

sin jψ3 cos jψ3





 (53)
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The link between the wind turbine model and the feedback laws is established via these matrices:

ǫ(k)

f = D̂
(k)

P η
t

=D(k) η
t

for k = 1, 2, 3

ǫt =
3
∑

j=1

P−1 M̂
(j)
η(j)

f
=

3
∑

j=1

M (j) η(j)

f

(54)

with (k = 1, 2, 3 j = 1, 2, 3; Kroneckerδmk equals 1 ifk = m else 0):

D(k) =

(

2δ3k sin 3ψ δ1k − δ2k cos 3ψ δ2k sin 3ψ

2δ3k cos 3ψ δ2k sin 3ψ δ1k + δ2k cos 3ψ

)

M (j) =







δ3j sin 3ψ δ3j cos 3ψ

δ1j − δ2j cos 3ψ δ2j sin 3ψ

δ2j sin 3ψ δ1j + δ2j cos 3ψ







(55)

Substitution of the coupling conditions by equation 54 in theturbine and controller equations 51
and 52 yields the following coupled state equations (k = 1, 2, 3):

q̇
t
= At qt + Bt

3
∑

j=1

M (j) C
(j)

f q(j)

f

q̇(k)

f
= A

(k)

f q(k)

f
+ B

(k)

f D(k) ·

(Ct qt + Kt

3
∑

j=1

M (j) C
(j)

f q(j)

f
)

(56)

These results were obtained by elimination of the output vectorsη
t

andη(j)

f
which in first instance

appear in the right hand sides. The matrix productsD(k)KtM
(j) in the feedback state equations

imply that the coupled system is periodic in 3p and 6p. When written asone matrix-vector
equation the state equation becomes (q = [q′

t
q(1)

f
′ q(2)

f
′ q(3)

f
′]′):

q̇ =Ad q + cos 3ψAc q + sin 3ψAs q

+cos 6ψAcc q + sin 6ψAss q
(57)

Manageable expressions for the coefficient matricesAd etc. are obtained when the state space
formulation by equation 56 is rewritten in modulated sub-matrices:

q̇
t
= At qt +

3
∑

j=1

(A
(j)
tfd

+ cos 3ψA
(j)
tfc

+ sin 3ψA
(j)
tfs

) q(j)

f

q̇(k)

f
= (A

(k)
ftd

+ cos 3ψA
(k)
ftc

+ sin 3ψA
(k)
fts

)q
t
+ A

(k)

f q(k)

f

+
3
∑

j=1

(A
(k,j)
ffd

+ cos 3ψA
(k,j)
ffc

+ sin 3ψA
(k,j)
ffs

+cos 6ψA
(k,j)
ffs

+ sin 6ψA
(k,j)
ffss

) q(j)

f

(58)

The expressions for the coefficient matricesAd etc. then become:

Ad =




At A
(1)
tfd

A
(2)
tfd

A
(3)
tfd

A
(1)
ftd

A
(1)
f +A

(1,1)
ffd

A
(1,2)
ffd

A
(1,3)
ffd

A
(2)
ftd

A
(2,1)
ffd

A
(2)
f +A

(2,2)
ffd

A
(2,3)
ffd

A
(3)
ftd

A
(3,1)
ffd

A
(3,2)
ffd

A
(3)
f +A

(3,3)
ffd




(59)
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and (forx=c,s):

Ax =




0 A
(1)
tfx

A
(2)
tfx

A
(3)
tfx

A
(1)
ftx

A
(1,1)
ffx

A
(1,2)
ffx

A
(1,3)
ffx

A
(2)
ftx

A
(2,1)
ffx

A
(2,2)
ffx

A
(2,3)
ffx

A
(3)
ftx

A
(3,1)
ffx

A
(3,2)
ffx

A
(3,3)
ffx




(60)

and (forxx=cc,ss):

Axx =




0 0 0 0

0 A
(1,1)
ffxx

A
(1,2)
ffxx

A
(1,3)
ffxx

0 A
(2,1)
ffxx

A
(2,2)
ffxx

A
(2,3)
ffxx

0 A
(3,1)
ffxx

A
(3,2)
ffxx

A
(3,3)
ffxx




(61)

The matricesD(k) andM (j) are rewritten in order to ease the derivation of the above used
submatrices (k, j = 1, 2, 3):

D(k) =D
(k)
d + cos 3ψD

(k)
c + sin 3ψD

(k)
s

M (j) =M
(j)
d + cos 3ψM

(j)
c + sin 3ψM

(j)
s

(62)

with

D
(k)
d =

(

0 δ1k 0

0 0 δ1k

)

; M
(j)
d =







0 0

δ1j 0

0 δ1j







D
(k)
c =

(

0 −δ2k 0

2δ3k 0 δ2k

)

; M
(j)
c =







0 δ3j

−δ2j 0

0 δ2j







D
(k)
s =

(

2δ3k 0 δ2k

0 δ2k 0

)

; M
(j)
s =







δ3j 0

0 δ2j

δ2j 0







(63)

The expressions for the state transition submatrices are:

A
(j)

tfx
=BtM

(j)
x C

(j)

f for x = d,c,s

A
(k)

ftx
= B

(k)

f D
(k)
x Ct for x = d,c,s

A
(k,j)
ffd

= B
(k)

f D
(k)
d KtM

(j)
d C

(j)

f +

1

2
B

(k)

f (D
(k)
c KtM

(j)
c +D

(k)
s KtM

(j)
s )C(j)

f

A
(k,j)
ffs

= B
(k)

f (D
(k)
c KtM

(j)
d +D

(k)
d KtM

(j)
c )C(j)

f

A
(k,j)
ffc

= B
(k)

f (D
(k)
s KtM

(j)
d +D

(k)
d KtM

(j)
s )C(j)

f

A
(k,j)
ffcc

= 1

2
B

(k)

f (D
(k)
c KtM

(j)
c −D

(k)
s KtM

(j)
s )C(j)

f

A
(k,j)
ffss

= 1

2
B

(k)

f (D
(k)
s KtM

(j)
c +D

(k)
s KtM

(j)
c )C(j)

f

(64)

Inclusion of the IPC-1p loops yields an LTI closed loop model whereas the IPC-2p and IPC-3p
loops cause ‘3p periodic coefficients’ in the closed loop model. This model formulation is feasible
for performing stability analysis based on Floquet theory [35] .
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1.8 Rotational mode expansions

Expressions are listed for multi-blade wind speed coordinates in the rotational modes{ûp} of
the wind speed as experienced on corresponding blade locations of a 3-bladed rotor (̃u1, ũ2 and
ũ3). The multi-blade wind speed coordinatesũ(k)cm1 , ũ

(k)
cm2 andũ(k)cm3 are obtained via the following

transformation: 


ũ
(k)
cm1

ũ
(k)
cm2

ũ
(k)
cm3


 =




1

3

1

3

1

3

2

3
sin kψ1

2

3
sin kψ2

2

3
sin kψ3

2

3
cos kψ1

2

3
cos kψ2

2

3
cos kψ3






ũ1

ũ2

ũ3


 (65)

With rotor azimuthψ equal to the azimuthψ1 of the first blade it holds:

ũ
(k)
cm1 =

1

3

∞
∑

p=−∞

3
∑

i=1

(cos pψi +  sin pψi) ûp = 1

3

∞
∑

p=−∞

3
∑

i=1

e(p)ψi ûp = 1

3

∞
∑

m=−∞

3 e3mψû3m (66)

ũ
(k)
cm2 =

2

3

∞
∑

p=−∞

3
∑

i=1

(cos pψi +  sin pψi) sin kψi ûp

= 1

3

∞
∑

p=−∞

3
∑

i=1

(sin(p+ k)ψi − sin(p− k)ψi −  cos(p+ k)ψi +  cos(p− k)ψi) ûp

= 1

3

∞
∑

p=−∞

3
∑

i=1

−  e(p+k)ψi ûp +  e(p−k)ψi ûp

= 1

3

∞
∑

p′=−∞

3
∑

i=1

− ep′ψi ûp′−k + 1

3

∞
∑

p′′=−∞

3
∑

i=1

 ep
′′ψi ûp′′+k

= 1

3

∞
∑

m=−∞

3  e3mψ( û3m+k − û3m−k )

(67)

ũ
(k)
cm3 =

2

3

∞
∑

p=−∞

3
∑

i=1

(cos pψi +  sin pψi) cos kψi ûp

= 1

3

∞
∑

p=−∞

3
∑

i=1

(cos(p+ k)ψi + cos(p− k)ψi +  sin(p+ k)ψi +  sin(p− k)ψi) ûp

= 1

3

∞
∑

p=−∞

3
∑

i=1

e(p+k)ψi ûp + e(p−k)ψi ûp

= 1

3

∞
∑

p′=−∞

3
∑

i=1

ep
′ψi ûp′−k + 1

3

∞
∑

p′′=−∞

3
∑

i=1

ep
′′ψi ûp′′+k

= 1

3

∞
∑

m=−∞

3 e3mψ( û3m+k + û3m−k )

(68)

1.9 Conclusion

A simple design model has been derived for the parametrization of feedback loops for individual
pitch control around one time the rotational frequency (1p)for 3 bladed wind turbines. The model
has been obtained via a multi-blade transformation in the azimuthh angles of the rotor blades. It
allows for independent design of a feedback loop for rotor speed regulation and a pair of identical
uncoupled feedback loops for reduction of blade loads around 1p which arise from tower shadow,
wind shear and turbulence (IPC-1p). Basic scalar control theory can be applied in these three
loops (phase and gain margins).

The adopted approach has been extended to reduction of blade loads in multiples of the rotational
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frequency (IPC-2p, IPC-3p; multi-rotational mode individual pitch control). Now multi-blade
transformations in two and three times the blade azimuthh angles apply. A similar design ap-
proach for the feedback loops appeared to be valid. Especially IPC-2p allows for implementation
without any influence on the system dynamics and has a very beneficial effect on the tilt and yaw
loading: the excitation around the 3p-frequency is significantly reduced.

The decomposition of the sampled wind field by the rotor blades in rotational modes plays a key
role in the clarification of the working of the IPC.

Rainflow counting and power spectra were obtained from preliminary time-domain simulations.
Fatigue damage reduction of up to 20 to 30% in both the blade loads and the nacelle loads seems
realistic in frequently occurring full load conditions .

A general receipt has been given for the formulation of a linear model in which the feedback loops
for IPC-1p, IPC-2p and IPC-3p are included. The point of departure is a linear time invariant
(LTI) model formulation in multi-blade coordinates for a wind turbine with three or more blades.
Inclusion of the IPC-1p loops yields an LTI closed loop model whereas the IPC-2p and IPC-3p
loops cause ‘3p periodic coefficients’ in the closed loop model. This model formulation is feasible
for performing stability analysis based on Floquet theory.

It is recommended

• to include blade bending and unsteady aerodynamic behaviorin the design approach;
• to set up a procedure for stability assessment based on Floquet theory and the proposed

model formulation with feedback loops included.
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2 Feedback-feedforward IPC

Summary

This section explores the possibilities for wind turbine fatigue load reduction by applying ad-
vanced control design methods to the IPC design. The investigated control approach has a two-
degree-of-freedom structure, consisting of an optimal multivariable LQG controller and a feed-
forward disturbance rejection controller based on estimated wind speed signals. Similarly to the
standard IPC-1p approach (Section 1.3), the control design problem is first made time-invariant
by using the Coleman transformation to the non-rotating coordinates. In Coleman domain, the
LQG control objective is minimization of the rotor tilt and yaw moments, while the feedforward
controller tries to achieve an even further improvement by rejecting the influence of the low-
frequency components of the wind on the rotor moments. To this end, the tilt and yaw-oriented
components of the blade effective wind speeds are approximated using stochastic random walk
models, the states of which are then augmented with the turbine states and estimated using a
Kalman filter. The effects of these (estimated) disturbances on the controlled outputs are then
reduced using stable dynamic model inversion. The approach is tested and compared to the con-
ventional IPC method in simulation studies with models of different complexity. The results
demonstrate very good load reduction at not only low frequencies (1p blade fatigue load reduc-
tion), but also at the 3p frequency, giving rise to fatigue load reduction of the non-rotating turbine
components.

2.1 Introduction

This section describes a new IPC design method inspired by the optimal multivariable control in
Coleman domain [5, 37] on the one hand, and by the wind speed estimation methods, proposed in
[56, 68, 47] on the other hand. In particular, the axial, tilt-oriented and yaw oriented components
of the blade effective wind speed signals are modeled by stochasticrandom walk models, the
states of which are then augmented with the states of the turbine to be estimated all together using
a single Kalman filter. The wind signals estimates are subsequently used in a dynamic disturbance
feedforward controller [28, §10.5.2]. The feedforward control action is added to the control
action from an optimal feedback LQG controller. The resultingfeedback-feedforward control
structure is similar to the periodic disturbance accommodating control structure in [68], although
the design approach proposed in this section is fundamentally different in the following three
aspects. First, the complete control design is now performedon a linear time invariant system,
as obtained by making use of the Coleman transform. This offers many possibilities for further
improvements such as extension to LPV control for covering a wider range of operating points
of the wind turbine, similarly to the work of Bianchi for collective pitch control [4]. Secondly,
the disturbance attenuation in [68] is based on a simple (static) pseudo-inverse of the system
B matrix, while the present approach focuses on a dynamic feedforward controller achieving
minimization of the effect of the disturbance on the tilt andyaw moments. To this end, stable
dynamic model inversion is used [25]. And third, the currentmethod deals with blade effective
wind speeds, which allows for more accurate approximation of the loads on the individual blades
than when only rotor effective wind speed is considered, as in [68].

The method is tested in simulation on two models of different complexity. First, a simple rigid
turbine model with just a few degrees of freedom is used that provides useful insights and serves
as a good basis for analysis of the presented control strategy. Next, a detailed aero-elastic linear
model, generated by the computer program Turbu [76], is usedfor more detailed study of the
control strategy. The results are compared to the results obtained with a conventional PI-based
IPC. It is demonstrated that the present method achieves a significant improvement over the con-
ventional one in that it reduces the rotor tilt and yaw moments over a much larger frequency band,
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Figure 18 Frequency response from multi-blade pitch angles to rotor speed, tilt moment and
yaw moment, both for the multibody (solid) and the lumped models (dashed)

including the fatigue-relevant 3p components.

2.2 Wind turbine model

The ECN computer code TURBU [76] generates elaborate linearised aero-elastic models of 3-
bladed horizontal axis wind turbines. These models include considerable features that are neces-
sary for control design and aero-elastic stability analysis, like bending and torsion deformation,
(unsteady) aerodynamic and hydrodynamic conversions and wake dynamics. All model inputs
for the drive-train and rotor blades are transformed into multi-blade coordinates before they enter
the LTI model, and the model outputs from the drive-train and rotor blades are transformed back
to rotating coordinates. A linear model is computed for a given aerodynamic equilibrium state.
The latter is derived via the blade element momentum theory. The average deformation state is
matched to the aerodynamic equilibrium. This is based on non-linear propagation of the defor-
mation of the individual elements caused by the average loading. The average deformation per
element is based on slender beam bending theory. A multibodyapproach is used to model the
structural dynamics, as illustrated in [76]. The multibody wind turbine model hasN elements per
blade ({Di, Ei, Fi}, i = 1, 2, . . . , N ) andM elements for the tower (Si, i = 1, 2, . . . ,M ), with
each element having 5 degrees of freedom. There are 6 degrees of freedom in the rotor shaftRr.

A typical TURBU model (withN = 14 andM = 15) has around 600 state variables, and there-
fore needs simplification when used for control design. For reducing the model order, TURBU
provides model reduction based on elimination of high-frequency modes. This allows signifi-
cant model order reduction without any loss of accuracy in the dynamic behavior of the lower
frequency modes which are within the bandwidth of the controllers. This yields a model order
of about 150. This reduced order model is here referred to as the multibody model. In addition
to that, TURBU allows for modeling only a distinct number of degrees of freedom in the blade
roots and tower bottom. The model obtained in this way is referred to as thelumped model. It
has only 28 states and still models dynamic pitch servo actuation. Figure 18 shows the frequency
responses from the multiblade pitch angle signalsθcmi , i = 1, 2, 3, to the rotor speedΩ, tilt mo-
mentMtilt and yaw momentMyaw for both the full multibody (solid line) and reduced lumped
(dashed line) models. Sufficient accuracy is observed at frequencies below 1 Hz.

From the frequency plots it is clear that at low frequencies (below about 0.3Hz) there is little

68 ECN-E–12-028



coupling between the channelθcm1 → Ω on the one hand, and the IPC channelsθcm2 →Mtilt and
θcm3 → Myaw on the other hand. However, above this frequency there is a clear interaction be-
tween these loops. Therefore, when the collective controller is separately designed from the IPC
it is very important that these loops are further “decoupled” using suitable filters. It is especially
important that structural resonant frequencies that are well inside the bandwidth of the collective
controller (e.g. the tower frequency at about 0.47 Hz) are filtered out fromθcm1 so that it does not
get influenced by the IPC control actions.

Similar conclusions can be made for the IPC loops, these are only decoupled from the collective
loop at low frequencies, and if designed independently, filtering should be used to reduce high
frequency effects from the collective pitch action. However, in this section a different approach
is used for IPC design that does not need additional filter design. The starting point is the design
of the collective pitch controller and the generator torquecontroller using conventional methods,
including filters, as discussed above. These controllers are then interconnected with the turbine,
so that the IPC design is performed on the closed-loop turbinesystem with the generator torque
control and the collective pitch control in the loop. Then, a multivariable robust control design
approach is used to synthesize one MIMO IPC loop that stabilizes the turbine and minimizes a
suitably defined performance criterion based on the rotor moments. Of course, one could choose
to include also the collective pitch and generator torque control loops into the MIMO controller;
this is not done here as the present approach assumes that thespeed and power loops are given,
and it focuses on the inclusion of additional actuation via IPC for the purpose of fatigue load
reduction. Notice that this MIMO approach also takes into account the coupling between the tilt
and the yaw-oriented multi-blade coordinates, which coupling is clearly much stronger than the
coupling with the collective pitch loop (see Figure 18). This coupling was absent in the simple
model from the previous subsection.

2.3 Controller design

In this section the proposed IPC design approach is explained. Since it is compared in the next
section to the conventional SISO approach to IPC, it is briefly described next.

2.3.1 Conventional SISO control approach

The conventional IPC is a scalar approach based on the assumption that the multi-blade coordinate
transformation, described in Section 1.3.1, results in three independent time-invariant control
loops: from collective pitch angle to rotor speed, from yaw-oriented pitch angle to yaw moment,
and from tilt-oriented pitch angle to tilt angle. It is assumed that the generator speed is measured.

The speed regulation loop is usually based on a PI compensator that has as input the difference
between the filtered generator speed and its rated value. The filter, used in the simulations, in-
cludes

• a low-pass filter (inverse Chebychev [type II], 4th order, 20dB reduction) with cut-off fre-
quency of(3p− 0.8) rad/s.

• notch filter (elliptic filter, 4th order, 30dB reduction) withstop-band[0.8ωtsd, 1.05ωtsd],
whereωtsd is the first tower naying frequency.

• notch filter (elliptic filter, 2nd order, 30dB reduction) withstop-band[0.8ωcll, 1.05ωcll],
whereωcll is the collective lead-lag frequency of the blades.

The PI compensator is designed to achieve a gain margin of 2 and aphase margin of 45 degrees.

The torque controller is designed for achieving constant power production by keeping the gen-
erator torque equal to the rated powerPr divided by the rotor speed. After linearization around
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the rated generator speedΩg,r, the generator controller has the form of a P-compensator with
gain (− Pr

ngbΩ2
g,r

), wherengb is the gearbox ratio. It should be noted that this generator controller
has a slightly destabilizing effect on the rotor speed as thegenerator torque decreases when the
generator speed increases.

The load regulation loops aim at blade fatigue load reductionby reducing the 1p load component
in the blade root bending moments. It is demonstrated in [75], that(3m ± 1) components,m =
1, 2, . . . , in the load spectrum of the blade effective wind speed signals ui, i = 1, 2, 3, contribute
to the3m components in the multi-blade wind coordinatesucmi . In other words, 1p loads on the
blades are modulated into 0p loads on the tilt and yaw moments, meaning that the former can be
reduced by reducing the static loads on the rotor moments. This can be achieved by means of
a simple I-compensator. In order to prevent the influence of higher harmonics it is necessary to
apply low pass filtering around and beyond 3p.

2.3.2 Feedback-Feedforward multivariable control approach to IPC

In this section the multivariable control approach to IPC, proposed in this section, will be intro-
duced. It has a two-degree-of-freedom structure, containing an optimal feedback LQG controller
from the rotor tilt and yaw moments to the multi-blade pitch anglesθcmi , and a feedforward
disturbance rejection controller acting on the estimated multi-blade wind signals and producing
additional multi-blade pitch angles.

As discussed above, this section assumes that the collective pitch controllerCcol(s) and generator
torque controllerCgen(s) (including the filters) are available and interconnected with the wind
turbine to regulate the produced power by controlling the generator torque and the rotor speed, as
explained in the previous subsection. Below it is assumed that the controllersCcol(s) andCgen(s)
are interconnected to the linear turbine model, be that the simple rigid model in Section 1.3.1, or
the multibody TURBU model, (by substitutingθcm1 = Ccol(s)Ω andTg = CgenΩ in the turbine
model), after which discretization is performed, resulting in

xwt(k + 1) = Awtxwt(k) +Bwt,θθ
cm
23 (k) +Bwt,uu

cm(k),
y(k) = Cwtxwt(k) +Dwt,θθ

cm
23 (k) +Dwt,uu

cm(k) + v(k),
(69)

where the statexwt contains the state of the wind turbine model and the states ofthe torque and
pitch controllers,θcm23 = [θcm2 , θcm3 ]T is the input,ucm = [ucm1 , ucm2 , ucm3 ]T is the disturbance
input, y = [Mtilt,Myaw] is the measured output, andv ∈ R

2 is zero-mean white noise process
with covariance matrixQv = QTv > 0. Notice that the rotor tilt and yaw moments are assumed
measured. In practice, conventional wire strain gauges canbe used to measure the flapwise
bending moments at the blade roots, which can be then converted intoMtilt andMyaw using
the Coleman transformation. While strain gauges are not very reliable devices as such for this
application, due to the potential danger caused by lighting. The recent developments of optical
strain gages are likely to overcome this disadvantage.

2.3.2.1 Design of optimal LQG controller

The optimal LQG controller consists of a linear quadratic regulator (LQR) and a Kalman filter.
However, the conventional assumption in the Kalman filter design that the external input is a
random white Gaussian process is clearly not satisfied for themodel (69), as the multi-blade
wind signalsucm(k) have no flat spectrum. To circumvent this problem, one can identify a
stochastic linear modelMwind(z) that has (approximately) the same spectrum as the wind signals
ucm(k). This would allow modeling ofucm as the output of a filtered white noise process,ucm =
Mwind(z)w. Substituting this into the turbine model (69), and augmenting the statesxwt with the
filter model states, will yield a new model that has the white noise processw as external input,
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so standard Kalman filter design can be performed. This approach, however, requires (a) that the
spectrum of the multi-blade wind signals is given, and (b) that it is accurately represented by a
linear model of low order (in order to keep the order of the finalcontroller low). To avoid this
approach, one might instead use a much simpler wind modeling, by noting that

• the energy ofucm is concentrated at low frequencies (below 0.1 Hz), and

• the signalucm is stationary under mild assumptions, as proved in the following Lemma.

Lemma 1 (Stationarity of multi-blade wind speeds). Under the assumption homogeneous turbu-
lence, constant rotational speed and non-oblique orientedwind flow, the multi-blade components
ucmi , i = 1, 2, 3, of the blade effective wind speeds are stationary processes.

Proof.
For homogeneous turbulence and purely axial wind direction, the blade effective wind speedui
on a fixed point on a rotating blade, can be expressed as a time-varying Fourier expansion

ui(t, ψi) =

∞∑

p=−∞

ejpψi(t)ûp(t), ûp(t) =
1

2π

∫ 2π

0
ejpφu(t, φ)dφ

whereûp(t) are time-dependent rotational modes. It has been shown in [75] that the following
expression holds for the multi-blade coordinates of the blade effective wind speeds



ucm1 (t)
ucm2 (t)
ucm3 (t)


 =

∞∑

m=−∞

ej3mψ




û3m(t)
j(û3m+1(t)− û3m−1(t))
j(û3m+1(t) + û3m−1(t)).




Then, witha∗ denoting the conjugate ofa, it can easily be shown that



ucm1 (t+ τ)
ucm2 (t+ τ)
ucm3 (t+ τ)



∗

=

∞∑

n=−∞

e−j3nψ




û3n(t+ τ)
−j(û∗3n+1(t+ τ)− û∗3n−1(t+ τ))
−j(û∗3n+1(t+ τ) + û∗3n−1(t+ τ))


 .

Therefore, for the variance ofucm2 one has

E{ucm2 (t)(ucm2 (t+ τ))∗}

= E

{
∞∑

m,n=−∞

ej3(m−n)ψ (û3m+1(t)− û3m−1(t))
(
û∗3n+1(t+ τ)− û∗3n−1(t+ τ)

)
}

=

∞∑

m,n=−∞

ej3(m−n)ψE
{
(û3m+1(t)− û3m−1(t))

(
û∗3n+1(t+ τ)− û∗3n−1(t+ τ)

)}

since under assumption of constant rotational speed one hasthatψ = Ωt+ψ(0), so thatej3(m−n)ψ

are purely deterministic signals. Furthermore, in [81] it isproved that, under the considered
assumptions, the rotational modes are orthogonal and stationary, i.e.

E
{
ûp(t)û

∗
q(t+ τ)

}
= δp,qσûp

(τ),

whereδp,q denotes the Kronecker delta function, andσûp
(τ) is the covariance function of̂up.

Therefore, in the above expression forE{ucm2 (t)(ucm2 (t+ τ))∗} all terms forn 6= m drop, giving

E{ucm2 (t)(ucm2 (t+ τ))∗} =
∞∑

m=−∞

(σû3m−1
(τ) + σû3m+1

(τ)).
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Clearly, the correlation function ofucm2 (t) is not a function of the timet. The same lines can be
followed for the first and third multi-blade componentsucm1 (t), anducm3 (t) to arrive at the same
conclusion. Therefore,ucmi (t), i = 1, 2, 3, are stationary processes. �

This suggests that a random walk model could be sufficient to represent the relevant low frequency
behavior ofucm

ucm(k + 1) = ucm(k) + w(k). (70)

Where,w is a random white Gaussian process with zero-mean and covariance matrixQw. Usu-
ally, the covariance matrixQw is viewed as a design parameter that provides a trade-off between
tracking speed and smoothness of the estimates. For simplicity, it is often selected as a diago-
nal matrix. Faster tracking of the true signals can be obtained by appropriately increasing the
elements ofQw, which however results in less smooth (i.e. more noisy) estimates, and vice
versa. A value of0.1I2 is selected for the simulations in this section. The random walk model is
particularly suitable, and often used, for the estimation of an unknown time-varying bias on the
state and output equations [45], that has already proved to be an accurate and robust approach to
rotor-effective wind speed estimation [56].

Interconnecting the random walk model (70) with the turbinemodel (69) results in

[
xwt(k + 1)
ucm(k + 1)

]
=

[
Awt Bwt,u
0 I

] [
xwt(k)
ucm(k)

]
+

[
Bwt,θ
0

]
θcm23 (k) +

[
0
I

]
w(k),

y(k) =
[
Cwt 0

] [xwt(k)
ucm(k)

]
+

[
Dwt,θ

0

]
θcm23 (k) + v(k).

(71)

A Kalman filter is used to estimate the state of this augmented system. The state estimatêxwt(k)
will then be used by the LQR controller, discussed next, whilethe wind signal estimatêucm(k)
will be used by the feedforward controller, discussed lateron.

The conditions, under which the system (71) is observable, are discussed in [56]. A sufficient
condition for the observability is that the pair(Awt, Cwt) is observable, and that the turbine
system (69) has no poles and zeros atz = 1, which holds for the models considered in this
section. Notice, however, that the augmented system isnot controllable, due to the fact that part
of the states belong to the wind model. It is assumed that the remaining part of the augmented
states (i.e. the pair(Awt, Bwt)) is controllable.

Given the Kalman filter turbine state estimate,x̂wt(k), the LQR control action has the form
(Klqrx̂wt(k)), where the gainKlqr is chosen to optimize the following standard quadratic crite-
rion

Jlqr =

∞∑

k=0

[
xwt(k)
θcm

]T [
Q

R

] [
xwt(k)
θcm

]
.

2.3.2.2 Feedforward estimated wind disturbance rejection

An additional IPC action is added to the optimal LQG control action, discussed above. It uses
a feedforward disturbance rejection control algorithm based on the estimated multi-blade wind
speed signal̂ucm23 (k). To this end, define the following transfer functions

G(z) = Cwt(zI −Awt)−1Bwt,θ + Dwt,θ,
H(z) = Cwt(zI −Awt)−1Bwt,u,

(72)
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so that (with slight abuse of notation) it can be writteny(k) = G(z)θcm23 (k)+H(z)ucm(k)+v(k).
Under the assumption of unbiasedness of the Kalman filter estimates, it follows that

y(k) = G(z)θcm23 (k) +H(z)ûcm(k) + ṽ(k),

whereṽ(k) is a zero-mean random process. The feedforward controllerCff (z) should hence
be designed in such a way, that the control actionθcm23 (k) = CffG(z)û

cm
23 (k) minimizes the

influence ofûcm(k) ony(k). The optimal controller will then be given by

Cff (z) = −H(z)G−1(z).

However, it can happen (as is the case with the numerical models, considered in this section) that
the transfer functionG(z) is non-minimum phase, resulting in an unstable optimal feedforward
controller. To avoid that, the inverse ofG(z) will be substituted by a stable inverse, as obtained
using the stable dynamic model inversion (SDMI) method in [25].

The basic idea behind the SDMI method is, similar to the wind estimation method above, the
use of a random walk model. To summarize the method, suppose thatn(k) is some (unknown)
signal and letq(k) = G(z)n(k). Then finding a stable inverse means computing a stable transfer
functionGinv(z) such that̂n(k) = Ginv(z)q(k) ≈ n(k). To this end, the signaln(k) can be
viewed as an unknown bias, that can be estimated using the same idea of random walk model
in combination with a Kalman filter. Writingn(k + 1) = n(k) + η(k), with E{ηk} = 0 and
E{η(k)η(k)T } = Qη, adding this to the state ofG(z) and including (if necessary for numerical
reasons) small additional process and/or measurement noise terms, results in an augmented model
Gaug(z), for which a Kalman filter can be designed. The Kalman filter transfer function fromq(z)
to n̂(k) represents the inverse ofG(z). Hence, for the considered model (72), the SDMI method
results in the following stable inverse ofG(z)

Ginv = [0, I]

(
zI −

[
Awt Bwt,θ
0 I

]
+K[Cwt, 0]

)−1

K.

The feedforward controller then takes the formCff (z) = −H(z)Ginv(z), so that the complete
feedback-feedforward control action is formed as shown in Figure 19. This IPC loop, together
with the basic power control loop, including the generator torque P-controller and the collective
pitch PI-controller, is depicted in Figure 20. The figure shows both the conventional collective
pitch control and generator torque control loops, acting onthe rotor speedΩ, as well as the indi-
vidual pitch control algorithm, acting on the measured flapwise blade root bending momentsMzi

and computing additional actions to the collective pitch angles. Notice the required modulation
and demodulation of the signals, discussed above.

Kalman
filter  

Controller

+

+

θcm23
y

ûcm

x̂wt Klqr

−H(z)Ginv(z)

Figure 19 The feedback-feedforward IPC control scheme
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Figure 20 Layout of the complete control structure

2.4 Frequency domain analysis

This section presents results that demonstrate a significant improvement in the load reduction of
the non-rotating turbine components, obtained with the presented feedback-feedforward IPC, as
compared to the conventional PI-based IPC. The controllers aredesigned and compared on both
the simple rigid model, developed in Section 1.3.1, and the detailed multibody TURBU model
described in Section 2.2. The parameters of the simple model ofSection 1.3.1 for a fictitious 2,5
MW wind turbine are listed in Table 1. This model, as well as theTURBU model, is derived for
wind speed of 16 m/s, pitch angle of 10 degrees, and rotor speed of 1.806 rad/sec.

parameter value parameter value
H 55.953 m hMx

8.3806× 104 N.s
Rb 40 m hFz

4.0683× 103 N.s/m
J 11.2553× 106 kg.m2 hMz

−1.8948× 105 N.s
mtw 1.5657× 105 kg kFx

−6.1478× 103 N
stw 1.235× 106 N/m kMx

−3.7711× 104 N.m
dtw 2.7995× 103 N.s/m kFz

−1.8306× 103 N
hFx

7.2019× 103 N.s/m kMz
1.6174× 105 N.m

Table 1 Numerical values of the model parameters in the simple modelof Section 1.3.1

The basic speed and power control loops are the same for both IPCs. These are designed as
discussed in Section 2.3.1. The conventional IPC consists of two integrators, one for the tilt-
oriented and one for the yaw-oriented channels. The new feedback-feedforward IPC controller is
designed as discussed in Section 2.3.2. The parameters used inthe design process are summarized
in Table 2.

The comparison between the two control designs is performed in frequency domain. The fre-
quency response plot for the simplified model is depicted in Figure 21. The figure shows the

74 ECN-E–12-028



parameter Qv Qw Q R Qη
value 0.01I 0.1I2 I 0.8I 0.01

Table 2 Parameters used for the design of the feedback-feedforwardIPC controller

transfer functions from the multi-blade wind signalsucm23 to the rotor tilt and yaw momentMtilt

(left plot) andMyaw (right plot). The solid lines in the plots represent the case of no IPC, the
dash-dotted lines correspond to the conventional IPC method, while the dashed lines are for the
new feedback-feedforward method. Only the diagonal channels of the transfer function fromucm

to y are given, since the off-diagonal ones are zero (even with the new MIMO controller, which
preserves the intrinsic diagonal structure of the simple model). It can be clearly seen from the
figure that the conventional IPC approach (dashed line) has good load reduction only at very low
frequencies, while at 1p and higher frequencies in the fixed reference frame there is no reduction,
and even a slight increase. The low frequency reduction is dueto the integrator structure of this
control method, making the method suitable for blade load reduction (as 0p reduction inMtilt

andMyaw corresponds to 1p reduction in the flap-wise blade root bending moments), but cannot
achieve fatigue-relevant load reduction on the non-rotating components of the wind turbine. On
the other hand, by trading off low-frequency load reduction, the proposed feedback-feedforward
method achieves reduction over a much wider frequency range, including the 3p frequency which
is very relevant for fatigue on the non-rotating components, such as the nacelle, yaw bearing and
tower [7]. Improved reduction at low frequencies can be obtained by including integral action in
the controller.
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Figure 21 Frequency response plot of tilt momentMtilt (left) and yaw momentMyaw (right)
due to the multi-blade wind inputsucm2 anducm3 , respectively, for the simple rigid
turbine model with no IPC (solid), conventional IPC (dash-dotted) and new feedback-
feedforward IPC (dashed).

Similar conclusions can be made based on the results with the TURBU model, as depicted in Fig-
ure 22. Now there is coupling between tilt and yaw-oriented moment, so the off-diagonal channels
are also plotted. Notice that, although the IPC controller design has been performed based on the
reduced lumped TURBU model, the results in the figure representthe closed-loop system with
the detailed multibody TURBU model. Note also that the advanced feedback-feedforward con-
troller achieves improved load reduction over a much wider frequency band than the conventional
IPC method, which only leads to improvement at very low frequencies, whereas it actually results
in load amplification at frequencies of 1p (here 0.3Hz) and higher in the fixed reference frame
(observe the high peak on the top-left plot in Figure 22, whichis at about 1p). The performance
of the present method at low frequencies can easily be improved by including integral action
in the controller. Finally, it needs to be mentioned that the improved high-frequency reduction
inevitably requires pitch control activity at these frequencies, which might in practice be unde-
sirable. This can be circumvented by introducing additionalpenalty on the control signal at high
frequencies in the optimal control optimization.
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Figure 22 Frequency response plot of tilt momentMtilt (first row) and yaw momentMyaw (sec-
ond row) due to the multi-blade wind inputsucm2 (left column) anducm3 (right column)
for the TURBU model with no IPC (solid), conventional IPC (dash-dotted) and new
feedback-feedforward IPC (dashed).
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3 Constraints handling in IPC

Summary

Bringing modern IPC algorithms into practice necessitates the consideration of the actuator lim-
itations, expressed as position, velocity and acceleration constraints on the blade pitch signals.
Due to the intrinsic integral type of the IPC algorithms, anti-windup schemes must be imple-
mented to avoid instability. In this section, such an anti-windup IPC scheme is developed. To this
end, the original pitch actuator limits are transformed into constraints on the IPC tilt and yaw-
oriented pitch signals. This is performed in such a way that the IPC for blade load reduction uses
only the actuation freedom that is not used up by the CPC algorithm, achieving proper operation
under the given blade pitch actuator limits.

3.1 Introduction

The pitch actuators in wind turbines have limits, and it is crucial that these limits are properly
taken care of in the control algorithm. This is especially important for controllers with inte-
gral terms, as is the case with the discussed IPC algorithms above, as otherwise the well-known
windup effect can occur, resulting in degraded performanceor even instability. In this section, it
is shown how anti-windup can be achieved for the IPC algorithm. Implementation of anti-windup
scheme for the CPC algorithm is just as important, but less involved and is not reported here.

Since the IPC algorithm is defined in the non-rotating referenceframe, the original blade pitch
angle, speed and acceleration limits need to be translated to multi-blade coordinates before an
anti-windup scheme can be applied. Moreover, in order to make sure that the IPC algorithm does
not tamper with the CPC, it should only use the actuation freedom that is not used up by the CPC.
In this way, proper simultaneous operation of all control algorithms is achieved, with priority to
CPC.

The following positions, speeds and accelerations hard limits are considered for the blade actua-
tors,i = 1, 2, 3,

θmin ≤ θi ≤ θmax,
θ̇min ≤ θ̇i ≤ θ̇max,
θ̈min ≤ θ̈i ≤ θ̈max,

(73)

where the minimum and maximum values are assumed given. Partof this total actuation free-
dom is attributed to the basic CPC algorithm and the rotor balancing IPC (Section??), and it is
assumed that the following limits are met at all time

θmin ≤ θcolmin ≤ θcol ≤ θcolmax ≤ θmax,
θ̇min < θ̇colmin ≤ θ̇col ≤ θ̇colmax < θ̇max,

θ̈min < θ̈colmin ≤ θ̈col ≤ θ̈colmax < θ̈max.

(74)

Notice that the speed and acceleration constraints for the CPC action are chosen strictly inside
the actuator limits, hence always leaving some freedom for the IPC controller. For the pitch angle
it is not always possible to selectθmin < θcolmin strictly, as would be the case when the lower pitch
angle boundθmin coincides with the working position at below-rated conditions.

3.1.1 Multi-blade pitch limits

Without loss of generality, we assume for simplicity of the derivations below that IPC control is
limited to 1p load reduction on blades (i.e. no higher harmonics IPC control). The results below
can easily be extended to IPC-2p and higher. Definingψi

.
= ψk+

2π(i−1)
3 as the azimuth angle of
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bladei, remember from Section 1 that the pitch setting angle of bladei has the following form,
containing contributions from the collective pitch controller for power/rotor speed regulation and
the IPC-1p controller for load reduction

θi = θcol + sin(ψi)θcm,2 + cos(ψi)θcm,3, i = 1, 2, 3.

Clearly, the IPC actionsθcm,2 andθcm,3 have effect on all three blade angles, speeds and acceler-
ations. Still, they should not lead to the original actuator limits (73) getting exceeded. To achieve
this, limits on the IPC actionsθcm,2 andθcm,3 will be derived for which (73) remain valid. It is
desirable that these limits do not (explicitly) depend on the rotor azimuthψk. To this end, the
remaining freedom in the actuators after the CPC controller will be distributed among the two
IPC controls. Define

θrest
.
= max{0,min{θmax − θcol, θcol − θmin}},

θ̇rest
.
= max{0,min{θ̇max − θ̇col, θ̇col − θ̇min}},

θ̈rest
.
= max{0,min{θ̈max − θ̈col, θ̈col − θ̈min}},

where the current collective pitch speedθ̇col and acceleration̈θcol should be substituted by their
finite difference approximations.

Denoting
J(ψ, θcm,2, θcm,3)

.
= sin(ψ)θcm,2 + cos(ψ)θcm,3,

the purpose of this section is to derive limits on the IPC anglesθcm,2 andθcm,3, as well as on their
speeds and accelerations, such thatfor anyψ the following inequalities are satisfied

∣∣∣∣∣∣



J(ψ, θcm,2, θcm,3)

J̇(ψ, θcm,2, θcm,3)

J̈(ψ, θcm,2, θcm,3)



∣∣∣∣∣∣
≤



θrest

θ̇rest

θ̈rest


 . (75)

To keep the problem tractable, we distribute the available freedom between the two IPC controls.
In doing this, however, we do not use a constant factor, but rather look at the “activity” of the
two signals. If, for instance, there is large rotor yaw misalignment, this will give raise to a large
rotor tilt moment, so thatθcm,2 will need to get larger to compensate this, while at the same
time the yaw-oriented componentθcm,3 might be negligible. Hence, we will distributeθrest (and,
of course,θ̇rest and θ̈rest) by looking at the values ofθunlimcm,2 andθunlimcm,3 , required by the IPC
controllerbefore applying any limits on them, so that the signal that is larger in absolute value
gets more freedom than the “less active” signal. This idea is used in the following to derive the
limits on the IPC signalsθcm,j , θ̇cm,j , θ̈cm,j , j = 2, 3.

3.1.1.1 Position limit: J(ψ, θcm,2, θcm,3) ≤ θrest

To begin with, consider the first constraint in (75), and suppose thatα2 > 0 andα3 > 0 are two
given scalars, such that

|θcm,j | ≤ αjθrest, j = {2, 3}. (76)

Then it holds that,

[maxψ J(ψ, θcm,2, θcm,3) ≡
√

(θ2cm,2 + θ2cm,3]

≤ θrest
√
α2
2 + α2

3.

Since we need to make sure thatJ(ψ, θcm,2, θcm,3) ≤ θrest for all ψ, the scalarsα2 andα3 should
be such thatα2

2 + α2
3 = 1. Moreover, from the discussion above, we would like that theratio
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Figure 23 IPC anti-windup scheme

between the limits forθcm,2 andθcm,3 is proportional to the ratio between|θunlimcm,2 | and|θunlimcm,3 |
(i.e. the ratio between the IPC controller outputs before applying any limits). This implies that

α2

α3
=
|θunlimcm,2 |
|θunlimcm,3 |

.

Solving this equality together withα2
2 + α2

3 = 1 gives

αj
.
=

∣∣∣θunlimcm,j

∣∣∣
√

(θunlimcm,2 )2 + (θunlimcm,3 )2
, j = {2, 3}, (77)

which, with (76), ensures the first inequality in (75).

3.1.1.2 Speed limit:J̇(ψ, θcm,2, θcm,3) ≤ θ̇rest

Consider the speed constraint in (75), written as

J̇(ψ, θcm,2, θcm,3)= J̇2(ψ, θcm,2) + J̇3(ψ, θcm,3),

J̇2(ψ, θcm,2)
.
=Ωcos(ψ)θcm,2 + sin(ψ)θ̇cm,2,

J̇3(ψ, θcm,3)
.
=−Ωsin(ψ)θcm,3 + cos(ψ)θ̇cm,3.

In this case, similarly to what we did above for the position limit, we distributeθ̇rest between
J̇2(ψ, θcm,2) andJ̇3(ψ, θcm,3) by usingβ2 andβ3, such that

|J̇j(ψ, θcm,j)| ≤ βj θ̇rest, j = {2, 3}, (78)

implying
max
ψ

J̇(ψ, θcm,2, θcm,3) = (β2 + β3)θ̇
rest,

soβ2 + β3 = 1 must hold. This, together with

β2
β3

=
|θunlimcm,2 |
|θunlimcm,3 |

,

gives

βj
.
=

∣∣∣θunlimcm,j

∣∣∣
∣∣∣θunlimcm,2

∣∣∣+
∣∣∣θunlimcm,3

∣∣∣
, j = {2, 3}. (79)
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Figure 24 IPC pitch limiter realization

It remains to rewrite (78) in terms ofθcm,j and θ̇cm,j . Here, there is another degree of freedom
in the choice of distributingβj θ̇rest over the positionθcm,j and speeḋθcm,j . For that purpose,we
choosefactorsγpos > 0 andγspd > 0 such that for somėθrestj > 0 (derived below) we require
that

|θcm,j | ≤ γposθ̇restj ,

|θ̇cm,j | ≤ γspdθ̇restj .
(80)

To derive an expression forθ̇restj , note that

maxψ J̇j(ψ, θcm,j) =
√

(Ωθcm,j)2 + θ̇2cm,j

≤ θ̇restj

√
γ2posΩ

2 + γ2spd.

Hence, inequality (78) will be satisfied for

θ̇restj =
βj θ̇

rest

√
γ2posΩ

2 + γ2spd

, (81)

with βj defined in (79).

3.1.1.3 Acceleration limit: J̈(ψ, θcm,2, θcm,3) ≤ θ̈rest

For the acceleration limit in (75), we can write

J̈(ψ, θcm,2, θcm,3) = J̈2(ψ, θcm,2) + J̈3(ψ, θcm,3),

J̈2(ψ, θcm,2)
.
= (θ̈cm,2 − Ω2θcm,2) sin(ψ)

+(2Ωθ̇cm,2 + Ω̇θcm,2) cos(ψ),

J̈3(ψ, θcm,3)
.
= (θ̈cm,3 − Ω2θcm,3) cos(ψ)

−(2Ωθ̇cm,3 + Ω̇θcm,3) sin(ψ).

Similarly to the speed limit case, we distributeθ̈rest betweenJ̈2(ψ, θcm,2) and J̈3(ψ, θcm,3) by
usingthe samescalarsβ2 andβ3 as in (79)

|J̈j(ψ, θcm,j)| ≤ βj θ̈rest, j = {2, 3}, (82)

since then we getmaxψ J̈(ψ, θcm,2, θcm,3) = θ̈rest, as required in (75). Now we have even
more freedom than in the speed limit case above, since we haveto distributeβj θ̈rest between
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three components: the positionθcm,j , the speeḋθcm,j and the acceleration̈θcm,j . To do this, we
choose, in addition to the already chosen factorsγpos andγspd, a third factorγacc > 0, and we
impose the following constraints for someθ̈restj > 0 that is yet to be derived

|θcm,j | ≤ γposθ̈restj ,

|θ̇cm,j | ≤ γspdθ̈restj ,

|θ̈cm,j | ≤ γaccθ̈restj .

(83)

Under these constraints we have

maxψ J̈j(ψ, θcm,j)

=
√

(θ̈cm,j − Ω2θcm,j)2 + (2Ωθ̇cm,j + Ω̇θcm,j)2

≤ θ̈restj

√
(γacc +Ω2γpos)2 + (2Ωγspd + Ω̇γpos)2

Inequality (82) will then be satisfied under constraints (83)with

θ̈restj =
βj θ̈

rest√
(γacc+Ω2γpos)2+(2Ωγspd+Ω̇γpos)2

(84)

andβj defined in (79).

3.1.2 Anti-windup scheme

To summarize, the final limits on the IPC actions in multi-blades coordinates are obtained by
combining (76),(80),(83) together with the scalings (77),(79),(81),(84). In order to describe how
the anti-windup scheme should finally be implemented into thewind turbine controller,we as-
sume below that the IPC controller is discretized with sampling period ofts seconds, and will
approximate the speeds and accelerations with finite differences. At time instantk, the following
constraints should then be active

|θcm,j(k)|
≤ min

{
αjθ

rest, γposθ̇
rest
j , γposθ̈

rest
j

}
(85)

|θcm,j(k)− θcm,j(k − 1)|
≤ min

{
tsγspdθ̇

rest
j , tsγspdθ̈

rest
j

}
(86)

|θcm,j(k)− 2θcm,j(k − 1) + θcm,j(k − 2)|
≤ t2sγaccθ̈restj (87)

Notice, that a typical IPC controller consists of two (usually) independent channels, each contain-
ing an integrator and a filter (see Section 1). Hence, an IPC controller, discretized with sampling
periodts, has the same general representation

CIPC(z) =

[ ts
1−z−1

ts
1−z−1

]
C∞
IPC(z).

As discussed in [28], in order to achieve an anti-windup mechanism one needs to make sure that
the integrator states are driven by the actual (constrained) inputsθcm,2 andθcm,3. This can be
achieved easily by implementing the integrators by using one sample delay feedback around the
limiters, as shown in Figure 23. The two limiters, having the same structure, but realizing the
bounds in (85)-(87) forj = {2, 3}, are shown in Figure 24.
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Figure 25 Limiter realization under speed control

3.1.3 Limits under blade speed control

Above, the discussion was focused on the blade pitchanglesθi being the control signals. In
practice, however, it is sometimes the case that the pitchspeedsθ̇i are the control variables,
which leads to controller structures that contain no integrators. Indeed, an I-compensator for IPC
will take the form of a P-compensator when the pitch speed is used. For P and PD controllers,
windup is not an issue, so the anti-windup scheme, presentedin section 3.1.2, will not be an
issue. In this case, the limiter block can be positioned simply after the controller. However,
the limiter will have a different structure than the one in Figure 24. The reason for this is that
the controller does not output a position signal. In order toincorporate position constraints,
actual blade angle measurementsθmeasi (k) are necessary, which we again transform to multi-
blade coordinatesθmeascm,j using the Coleman demodulation matrixP−1, defined in (12). The
corresponding limiter scheme is depicted on Figure 25.

3.2 Nonlinear simulation study

In this section, the methods, discussed above are demonstrated via realistic nonlinear wind turbine
simulations. The simulation model is briefly described in the next subsection, after which the
results of different simulations are presented, aiming to illustrate the influence of IPC on the
blade loads as well as the effect of the proposed IPC anti-windup scheme.

3.2.1 Simulation model

The nonlinear wind turbine simulation model, used for generating the results in this section,
consists of the following components:

• 156-th order linearized structural dynamics model (SDM), obtained using the software
Turbu [76]. A multi-body approach has been used to obtain this detailed SDM. The multi-
body model has14 elements per blade and15 elements for the tower, with each element
having5 degrees of freedom. There are6 degrees of freedom in the rotor shaft, and12 for
the pitch-servo actuation system. A linearization is computed for an aerodynamic equilib-
rium state at a mean wind speed of15 m/s, rotor speed of approx.17, 7 rpm and blade pitch
angle of7, 24 deg.

• nonlinear aerodynamic conversion module (ADM), based on blade element momentum
(BEM) theory, including dynamic wake effects, the effects ofoblique inflow on the axial
induction speed, and angle of attack correction due to rotorconing. The ADM computes
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parameter θmin θmax θ̇min θ̇max θ̈min θ̈max θcolmin θ
col
max θ̇

col
min θ̇

col
max θ̈

col
min θ̈

col
max γpos γspd γacc

value 0 85 -8 8 -15 15 0 85 -4 4 -5 5 4 1 8
dimension o o o/s o/s o/s2 o/s2 o o o/s o/s o/s2 o/s2 - - -

Table 3 Numerical values of the algorithm parameters

forces and torques per blade elements, which are used to loadthe SDM. See [43] for details
on the ADM.

• basic CPC controller, regulating the filtered generator speed at its rated level (when operat-
ing at above-rated conditions). It consisting of a PI-controller in series with low-pass filter
at the3p blade frequency, notch filter at the first tower sidewards frequency, and notch filter
at the first collective lead-lag frequency. An anti-windup scheme is implemented for this
CPC controller to guarantee that constraints (74) are satisfied.

• nonlinear generator torque controller based on static optimal-λ QN-curve at below rated
conditions andconstant powerproduction above-rated, operating on the filtered generator
speed signal (same three filters used as in pitch controller).

• IPC: the advancedH∞ controller does not perform significantly better than the conven-
tional I-compensator, the later is used in the simulations reported here. The gain scheduling
is done based on support points corresponding to mean wind speeds, equally spaced over
intervals of 1 m/s.

• realistic blade effective wind speed signals are generated based on the helix approxima-
tion concept, as proposed in [43, App. C], including both deterministic terms for wind
shear, tower shadow, tilt and yaw misalignment, wind gust, and a stochastic term for blade-
effective turbulence. The mean wind speed, used in the simulations, is20 m/s, reaching the
rotor at oblique inflow angle of10 degrees.

To evaluate the performance of the proposed advanced IPC scheme for1p blade load reduction,
three simulations have been performed:

• Case 1: without IPC control.

• Case 2: with IPC for blade load reduction, no pitch limits,

• Case 3: with IPC for blade load reduction, pitch limits included.

The resulting blade 1 flapwise root bending moment spectrum forthe three cases are plotted in
Figure 26. Clearly, a significant reduction of blade loads is achieved around the1p frequency, both
without and with pitch limits (anti-windup), although the later case gives slightly less reduction,
as expected. Figure 27 shows the pitch angle, speed and acceleration under Case 3, together with
their limits, given in Table 3.
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4 Stability analysis using Floquet theory

Summary

In Section 1 it is shown how modulation/demodulation matrices can utilized to target specific load
reductions at frequencies that are a multiple of the rotational frequency of the rotor (the2p, 3p,
and higher loads). The IPC-1p control, aiming1p blade load reduction, results in a linear time-
invariant (LTI) model in fixed-frame coordinates, the stability of which can be analyzed using
standard methods. However,2p modulation, and higher, no longer results in LTI models, but in
linear models with periodic coefficients. The stability of such periodic models can be examined
using Floquet theory.

4.1 Floquet stability analysis

This appendix describes how the stability of controller withtime-varying constants should be
analysed. This analysis will be of particular use for windturbines with controllers that target
specificnp modes.

The analysis is based on Floquet-Lyapunov stability theory asdescribed in [35].

4.1.1 Time-invariant vs periodic systems

Most control engineers will be familiar with a statespace descriptions of a Linear Time Invariant
(LTI) system:

ẋ = Ax+Bu (88)

This system is stable of the real part of all the eigenvalues ofA is negative (i.e. all the eigenvalues
are in the left-hand part of the complex plane.

We know that for a wind turbine, there are at least some variables that depend on the position of
the rotor. Considering that the position of the wind turbineis part of the state vectorx:

ẋ = A(x)x+Bu (89)

To be able to actually work a system like this, we need to linearize this matrix around a operating
pointx0. Substitutingx = x0 +∆x:

˙(x0 +∆x) = A(x0 +∆x) (x0 +∆x) +Bu (90)

∆ẋ = A(x0)∆x+Bu (91)

A constant rotor speed should results in changes that depend(in first order approximation) on that
speed to become periodic, so the above equation can also be written as:

∆ẋ = A(t)∆x+Bu (92)

or even:
∆ẋ = P(t)Ac∆x+Bu (93)

To illustrate the problem, a simple model is used as an example.

Example 4.1(A simple example system). Assuming a simple model: a system of two coupled
mass-spring-damper (MSD) systems. The equation of motion ofone MSD, excluding external
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Figure 28 Two coupled mass-spring dampers

forces is:

ẋ =

[
0 1

−k1/m1 −d1/m1

]
x (94)

Which can also be written as:

ẋ =

[
0 1
−ω2

1 −ζ1ω1

]
x (95)

Coupled the system becomes:

ẋ =




0 1 0 0
−ω2

1 −2ζ1ω1 ω2
1 2ζ1ω1

0 0 0 1
k1/m2 d1/m2 −ω2

2 − k1/m2 −2ζ2ω1 − d1/m2


x (96)

Now, we will assume that one of the stiffnesses is time-varying, in a very simple sinusoid way:

ẋ =




0 1 0 0
−ω2

1 −2ζ1ω1 ω2
1 2ζ1ω1

0 0 0 1
k1/m2 d1/m2 −(1 + a sin(t/b))ω2

2 − k1/m2 −2ζ2ω1 − d1/m2


x (97)

Note that this the time-variation does not have to be sinusoid, it can be any (finite) periodic
variation.

Now we have a simple example model, we will continue with the theory.

4.1.2 Applying Floquet theory

Floquet theory is concerned with a linear, but time-varying dynamic system, described by:

ẋ = A(t)x+B(t)u (98)

The theory is based around the special case whereA(t+T ) = A(T ), i.e.A(t) varies periodically.
The general solution of the above equation must be of the form:

x(t) = Φ(t, t0)x(t0) (99)
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This is because the system is linear and the solution at a time,t, must thus be a linear combination
of the inputs at time,t0. The matrixΦ(t, t0) is called the state transition matrix.

The Floquet theorem states that the state transition matrix ofa system with a periodic variable
must be of the form:

Φ(t, t0) = P(t)eβt (100)

whereβ is a constant matrix andP(t) is a periodic function. That means thatP (t) = P (t+ T ).
Combining the fact thatP(t) is periodic and equations (100) and (99) results in:

x(0) = Φ(0, 0)x(0)

= P(0)eβ0x(0)

= P(0)x(0) (101)

for anyx(0), thus:
P(0) = P(T ) = I (102)

This covenient equality will be used later on.

Now substituting equation (100) back into the original differential equation, equation (98), gives
us:

Ṗ = AP−Pβ (103)

This looks like we just hit a dead end, because this is still a differential equation with periodicly
varying coefficients. Indeed, this equation can only be solved directly in special cases.

Lets have another look at equation (100). The transition matrix describes how the system behaves
from an initial input. We see that the response at timet + T is eβT times the response at timet.
This means that stability of the system is defined by this matrixβ. But we just saw that is very
hard to find this matrix.

Lucky for us, we don’t need to findβ to show that the system is stable. We only need to show
that the real part of its eigenvalues is equal to or smaller than zero (depending on what stability
criterion you use).

To do this, we need numerical approximations to make the stability analysis work. In particular,
we need to calculateeβT by numerically3 integratingẋa = Axa from 0 toT , with xa(t0) = I: 4

α = eβT =

∫ T

0
ẋa dt =

∫ T

0
Axa dt (104)

A simple numerical way to calculateα is to set all the initial states of the system to zero and then
sequentially set the next initial state to 1 and simulate thesystem over one periodT and add the
values of the states at the end of the period to one big matrix:

• Simulate equation (98) from an initial statex01 = [1 0 0 . . . ]T during one periodT ,
record the endstatesxT1

• then simulate from an intitial statex02 = [0 1 0 . . . ]T during one periodT and record
xT2, etc . . .

• Now assembleα:
α = [xT1 xT2 xT3 . . .] (105)

3That we need to do this numerically is obvious, otherwise we would already have the solution and thusβ
4Note thatxa(t0) is a matrix rather than a vector. The response of the system at timeT to any initial statex(t0)

can now be calculated by simply multiplyingα by x(t0). It is a linear system after all
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Figure 29 Example system reponse, no time variance

The matrix thus obtained satisfies equation (104).

Note that, because of equations (100) and (102) the solutionof the system at times a multiple of
the periodT can thus be written as:

x(nT ) = αnx0 (106)

This shows a seeming similarity to discrete-time state-space systems.

One can relate the rootsλ of β to the rootsθ of α according to:

λ = 1/T lnθ (107)

If these roots are in the left-half of the complex plane, the system will be stable. However,
these eigenvalues are ’mirrored’ in the frequency domain toreappear at frequencies2(n−1)π

T with
n = 1, 2, 3, . . . above/below the orginal frequency. The poles can also move along those mirror
frequencies, as continuous poles would do along the real axis.

Example 4.2(Variation in amplitude). To see how time-dependence can influence the response
of a system, we will simulate the response of the simple example system of example 4.1, starting
each time with the displacement of the second mass set to 1.

Figure 29(a) shows the response for the case where the amplitude of the periodic variable is 0.
The response seems damped and stable. The poleplot confirms this.

Now lets have a look for when the periodic variable is not 0. Figures 30(a) to 30(c) show the
response for 3 different amplitudes of the periodic variable. The last one is clearly unstable,
but with the other two it is more difficult to see. Figure 30(d)shows the poles of the system for
different amplitudes of the periodic variable, as calculated with the Floquet theory. The three
poles in the right-half-plane occur for gains of 1.6, 1.8 and2.0. So despite the fact that figure
30(b) seems to be stable, Floquet predicts that the system is,in fact, unstable.

If we continue the simulation with the gains 1.4 and 1.8 we cansee that they are, respectively,
stable and unstable (figure 31(a) and 31(b))

One important thing to note is the fact the poles of the systemcalculated with Floquet do not
match the poles of the LTI system even when the amplitude is zero. The poles and corresponding
modeshapes calculated with Floquet behave differently thanthose of continuous or disctrete LTI
systems.
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Figure 30 Example system reponse, periodic frequencyω = 1
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Figure 31 Example system reponse, periodic frequencyω = 1

In comparison to a continuous time system, the poles in the plot in figure 31(a) move in a very
unusual way whenthe amplitude of the periodic variable is increased. We can see that the pole
plot becomes asymetric around the real axis and that the poles can move in the direction of the
real axis once they reach a frequencyω/2π. Once a pole reaches this frequency, it can quickly
become unstable.

The Floquet system also behaves unlike discrete time-systemswith which equation (106) implied
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similarity. In discrete time-system, the poles indicate whether the system expands or contracts
from time-step to the next, depending on whether the absolute value of the pole is larger or smaller
than one. Poles that have a magnitude close to one are usually the biggest threat to stability. If
one plotted the valuesθ rather than the values ofλ, the poles on or near the real axis are most
likely to become a problem, regardless of what their initialabsolute value was. One could well
see little movement of the poles, until, near instability, apole will move quickly along the real
axis to outside the unit-circle, i.e. almost jump, from 0 to instability.

Thus Floquet modeshapes should not be thought of in the same wayas the modeshapes calculated
for a structure.

In a structure oscillating in a modeshape at its corresponding eigenfrequency, the motions of the
structure occur at the same frequency and remain in same phase.

For a Floquet modeshape, the ’modeshape’ is rather a configuration of initial states, that after a
periodT happens to be a (complex) scaled version of itself, i.e.:

x(t+ T ) = αx(t) = cx(t) (108)

The motions of the system in between these two points in time can not be calculated fromα, but
would need to be calculated from bothP(t) (the periodic matrix) andα.

The above would also imply that the phase of the motions of the system is very important to the
calculation of the modes. Thus one can also predict that the system is likely to be sensitive to
changes in the frequency of the periodic variable.

Example 4.3(Frequency variations). We have seen what impact amplitude variations have on
the stability of a system with a periodic system. Now would also be a good time to have a look at
how the stability of the system is influenced by changes in thefrequency of the periodic variable.

Figure 32 shows how the poles move as function of gain for varying frequencies. It shows that
stability can be heavily influenced by the period of the periodic variable. Depending on the
frequency the system can become unstable at an amplitude between 1.0 and 1.2 or between 1.8
and 2.0.

4.1.3 Modal analysis with Floquet

The previous section have showed that using simulation, we can calculate if a system is stable
or not. However, the eigenvectors calculated with Floquet are not directly insightful as they only
show which combination of states achieve a scaled value after one periodT . It would be useful
to know how the system behaves withing a periodT , so it can be established what gives rise to
this instability. This means we want to calculateP(t).

To calculate what happens within a period, some further number crunching is needed. First, a
small recap of what we already know, regardingP(t):

• The solution of a linear system with a time varying constant that varies with a periodT , is
given by:

Φ(t, t0) = P(t)eβt

whereP(t) is a periodical, time varying matrix and the matrixβ is time-invariant. Further-
more:

P(0) = P(T ) = I

• The eigenvalues of the matrixβ can be found by calculating the response of the system
from a series of different initial states over a periodT and they dictate the stability of the
system. The eigenvectors ofβ do not imply that states move in phase during the periodT ,
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Figure 32 Example system, floquet poles for varying gains and varying frequencies

but only that they have an equal phase and magnitude relativeto each other, at the end of a
periodT .

To see how the response behaves within a single period, we need to calculate the matrixP(t). To
do this we need:

• The (3D) matrixΦ(t, t0), calculated by simulation betweent = 0 andT (of which the
matrix α is the value atT . The size of this matrix isNs × Ns × Nt, whereNs is the
number of states in the system, andNt the number of points in time where we wish to
calculateP(t).
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• The matrixα

First we calculate the matrixβ from α using equation (104):

β = 1/T lnα (109)

Then we can calculateP(t) using equation (100):

P(t) = Φ(t, t0)
[
eβt
]−1

(110)

For this to work, the inverse ofeβt must exist. The ’eigen’ motion of thekth mode calculated from
the matrixα during one period at its eigenfrequency (see equation (107)), can then be calculated
as:

xk(t) = P(t)Xαk (111)

whereXαk is thekth eigenvector of the matrixα.

Though this works for systems with only a few degrees of freedom, it is not an appropriate way
to handle large scale systems as it requires a significant computational effort and may suffer from
numerical issues.

[35] suggests calculating the motions of the system associated with an eigenvalue as:

xk(t) = e−λktΦ(t)Xαk (112)

This is a much simpler and more numerically stable way of calculating the motions of the mode-
shapes.

Both equation (111) and (112) result in the same values, confirming that these methods are equal.

Example 4.4(Floquet modal time analysis). For the simple example system, we can show that
we can actually calculate the motion with equation(111) or (112). Figure 33(a) shows how
the values of the elements ofP(t) vary during one period. As required by equation(102), the
calculatedP(t) is indeed equal to the unit matrix att = 0 andt = T .

Figure 33(b) shows the response of the states during one period at the eigenfrequency of one of
the four modes of the system. As can be seen, the Floquet mode is made up of motions of states,
that can fluctuate at a different frequency than either the periodic variable or the frequency of the
Floquet mode.

4.2 Floquet stability analysis of 1p+2p controller

The 1p + 2p controller design is applied to a 6MW reference windturbinedesign. The time-
dependent variables are the caused by the 1p and 2p coleman transformations. To obtain a clear
periodic variable, these coleman transforms are calculated using an azimuth that is based on the
mean rotor speed and time only. The difference between the actual azimuth and the mean azimuth
due to rotor speed variations can not, as far as the author is aware, be taken into account using
Floquet theory,

The controller is analysed using Floquet theory. It is stable with this model as can be seen from
the fact that all the poles are in the left half-plane in figure 34. The controller has a gain margin of
a factor 6 on the2p modulated part of the controller. The main component of this unstable mode
is the first tower fore-aft mode.

Because of the way Floquet theory has to be applied, it is difficult to analyse how the system
responds to changes in phase or delay. It is also difficult to predict whether or not the system
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Figure 34 Poles calculated with Floquet analysis

remains stable if one uses the actual rotor azimuth for the Coleman transforms, rather than the
approximate, mean rotor azimuth calculated with the mean rotor speed. These are also reasons
for a fairly conservative gain margin.
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5 Modeling external wind conditions in relation to IPC

Summary

For the development of IPC control algorithms, a simplified wind turbine model is derived in
Section 1.2.2. The model includes degrees of freedom for modeling the first modes of the drive-
train and tower in fore-aft and side-to-side directions. Theaerodynamic modeling relates the
three blade pitch setting angles and three fictivethe blade effective wind speedsto the moments
and forces acting on the blade and on the rotor. Therefore, forproper simulation and analysis of
the IPC control algorithms it is necessary to be able to generate blade-effective winds to feed the
model with. This section presents an algorithm for generation of realistic blade-effective wind
speeds.

5.1 Introduction

A compact real-time simulation setting is obtained in Section 1.2.2 wherein three fictive, the so-
called blade effective wind speed signals are used instead of a complete three-dimensional (3D)
wind field. The three wind speed signals are designed in this section in such a way that they
cause “realistic” blade root loads; in other words, the loads are similar to those that arise when a
rotating rotor blade samples a 3D homogeneous turbulent wind field for longitudinal turbulence
only. Deterministic effects, such as wind shear and tower shadow, can also be included to the
blade effective wind speeds.

A point on a rotating blade experiences the wind velocity along a spiral-shaped trajectory (helix)
in the “wind cylinder”. Thus, a rotating point experiences the intersection of a helix with the
rotor plane; in the figure, the rotating blades “move forward”along thex-axis at increasing rotor
azimuth angleψ.

Since the three blades have an azimuth separation of 120o, each blade tip samples along a specific
helix. The derived blade effective turbulence signal effectively represents a weighted average
of helix realizations over radial coordinater for a blade. Actually, thethree blade effective
turbulence signals are obtained as a realization-setfor a 3×3 power spectrum matrix.

At a constant rotational speed, the time separation betweenthese helices is equal to the revolution
time (2πΩ ) divided by the number of blades (3). Consequently, the samenon-moving location in

blade 1 tip-helix for = 4πΨ

blade 1 tip-helix for Ψ = 2π

Ψ   1U + u(     ,r )

U + u(t,x,y,z)

longitidunal wind speed

lateral wind speed

vertical wind speed

Ω

v(t,x,y,z)

w(t,x,y,z) r

= 0πblade 1  tip-helix for rotor azimut Ψ= 0π

Figure 35 The sampling of helices in the wind field by one blade tip
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the wind cylinder is “sampled” every2π3Ω seconds. The latter is of importance when oblique inflow
is considered in the context of a limited number of additional helix realizations.

5.2 Definition of blade-effective wind speeds

This section describes the idea behind the notion of blade-effective wind speeds, and paves the
way for creating an algorithm for generation of such wind signals (which is the purpose of the
next sections). The aim is summarized as follows.

Objective
The aim is to generate the three helices containing the blade-effective wind speeds in
such a way that by using them into the simplified model in Section1.2.2 results in blade
root inplane moments that have approximately the same spectral properties as the those
that would result from a conventional 3D wind field.

As an alternative, the blade flapping moments can be used in theapproximation, instead of the
aerodynamic torqueTa.

To this end, consider first the following nonlinear static expression for the aerodynamic power
based on the power coefficientCP

P =
1

2
ρπR2CP (λ

(i), θ(i))(uax)
3

whereuax is the undisturbed rotor-uniform longitudinal wind speed.SinceP = TaΩ, the follow-
ing expression for the aerodynamic torque on the rotor holds

Ta =
1

2Ω
ρπR2CP (λ

(i), θ(i))(uax)
3.

Assuming now that each blade has its own wind speed, above expression can be generalized to
aerodynamic torque per blade as

T (i)
a =

1

6Ω
ρ
(
πR2

)
C

(i)
P (λ(i), θ(i))(u(i)ax)

3, i = 1, 2, 3, (113)

or per blade element, by assuming that each bladei is divided into a number of elements (sections)
e = 1, 2, . . . , N of equal width∆R

T e,ia =
1

6Ω
ρ (2πRe∆R)C

e,i
P (λe,i, θ(i))(ue,iax)

3, i = 1, 2, 3, e = 1, 2, . . . , N, (114)

whereRe is the radial position of sectione, andue,iax is the wind experienced by elemente of blade
i. In above expressions,C(i)

P andCe,iP are the aerodynamic power coefficients per blade and per
blade element, respectively. For simplicity, however, it is assumed that all blades, and all blade
elements, have the same aerodynamic efficiency.

Assumption 5.1(Uniform aerodynamic efficiency). The blade elements have equal aerodynamic

efficiency, i.e.Ce,iP = C
(i)
P = CP .

By defining the parameterK = 1
3Ωρπ∆R, and representing the wind as a sum of mean wind

speed̄U and turbulenceu(i) (orue,i), the expressions in equations (113) and (114) can be rewritten
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as follows

T
(i)
a = K

N∑

e=1

ReCP (Ū + u(i))(Ū + u(i))3

N∑

e=1

T e,ia = K

N∑

e=1

Re.CP (Ū + ue,i).(Ū + ue,i)
3

In an attempt to equate the two expressions above, the goal would be to construct blade-effective
wind turbulenceu(i) such that

N∑

e=1

ReCP (Ū + u(i))(Ū + u(i))3 ≈
N∑

e=1

Re.CP (Ū + ue,i).(Ū + ue,i)
3 (115)

Since a typical blade design achieves a power coefficientCP that is relatively flat around its
optimum, small wind variations due to turbulence have little effect onCP , so that the following
holds

CP (Ū + u(i)) ≈ CP (Ū + ue,i),

and, therefore, expression (115) becomes

N∑

e=1

Re(Ū + u(i))3 ≈
N∑

e=1

Re(Ū + ue,i)
3. (116)

The objective was defined as derivingu(i) such that the spectral properties ofT
(i)
a and

∑N
e=1 T

e,i
a

are approximately the same. However, for simplifying the derivation process we will further
concentrate at obtaining a “linearized stochastic equivalence” by first linearizing both sides of
(116) aroundu(i) = ue,i = 0, leading to the following expression (wherein now equalitysign is
used as this forms a basis for the derivation process in the sequel)

u(i)
N∑

e=1

Re
stochastic sense

=

N∑

e=1

Reue,i

Notice that this equation implies that the blade effective wind speedsu(i) will be a weighted aver-
age of the blade-element effective wind speedsue,i, with the weighting factor increasing linearly
with the radial position of the element. Indeed, this conclusion is not unexpected considering
the fact that, under the assumption of equal aerodynamic efficiency, for rotor uniform wind the
leadwise (tangential) blade element forces are equal over the blade length, and hence the corre-
sponding contributions to the aerodynamic torque increases linearly with the radial position.

Performing Fourier transform on the equation above gives

U (i)(jω)

N∑

e=1

Re
stochastic sense

=

N∑

e=1

ReUe,i(jω)

and for two different blades,i1 andi2, and two different blade elements,e1 ande2, it holds that

U (i1)(jω)
(
U (i2)(jω)

)∗

︸ ︷︷ ︸
S

u(i1),u(i2)

(
N∑

e=1

Re

)2

=

N∑

e1=1

N∑

e2=1

Re1Re2 Ue1,i2(jω) (Ue2,i2(jω))
∗

︸ ︷︷ ︸
Sue1,i1

,ue2,i2

ECN-E–12-028 97



0

blade i

element e
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2πr(e)

s = ξ(i)r(e)

s

Figure 36 Turbulent wind experienced by a rotating blade element.

This implies the following expression for the cross power spectral density (CPSD) between two
blade effective wind speedsu(i1) andu(i2)

Su(i1),u(i2) =
1

(
N∑

e=1

Re

)2

N∑

e1=1

N∑

e2=1

Re1Re2Sue1,i1
,ue2,i2

. (117)

Notice that the termSue1,i1
,ue2,i2

, representing the cross power spectral density between thewinds
speedsue1,i1 andue2,i2 , includes rotational wind field sampling effects due to the rotor rotation,
and still needs to be expressed in terms of the given turbulence model for the fixed wind field.
This is the purpose of the next section.

It should be pointed out again that this equation was derivedby aiming to equate the aerodynamic
torques on the rotor resulting from three blade effecting wind speeds on the one side, and a
3D wind field on the other side. If one, instead, wishes to approximate the blade root flapping
moments, then it can be shown in a similar fashion that equation (117) then gets the form

Su(i1),u(i2) =
1

(
N∑

e=1

R2
e

)2

N∑

e1=1

N∑

e2=1

R2
e1R

2
e2Sue1,i1

,ue2,i2
.

5.3 CPSD between two blade elements

In this section, an expression is derived for the CPSDSue1,i1
,ue2,i2

in equation (117) will be
derived. For convenience, we will denote the wind speed at elemente of bladei as

u(ξ(i), r(e), t) = ue,i(t),

whereinξ(i) = Ωt + i−1
3 2π is the azimuth angle of bladei, andr(e) = Re is the distance from

the rotor center to blade elemente (see Figure 36).
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Figure 37 Definition of distanced between points(r1, ξ1) and(r2, ξ2)

To begin with, defineSuu(ω) as the (auto) power spectral density (APSD) of a fixed (non-rotating)
point in space,γ(ω, d(ξ1, ξ2, r1, r2)) is the coherence function,

d(ξ1, ξ2, r1, r2) = r21 + r22 − 2r1r2 cos(ξ2 − ξ1).

is the distance between elemente1 on bladei1 and elemente2 on bladei2 (see Figure 37), andω is
the frequency. Next, the following assumption is made (which holds with the standard turbulence
model used in the norm IEC61400-1).

Assumption 5.2(Homogeneous stationary turbulence). The turbulence in the wind field is ho-
mogeneous and stationary, i.e. the spectral properties areindependent on the position in space
and on time. More specifically,

Su(ξ,r)u(ξ,r)(ω) = Suu(ω)

Su(ξ2,r2)u(ξ1,r1)(ω) = Suu(ω)γ(ω, d(ξ1, ξ2, r1, r2))

are all independent onξ, r andt.

The homogeneity of the wind field allows an azimuth expansion ofthe wind speed felt by a blade
element. Consider Figure 36 again. If we “freeze” the wind field(i.e. for a fixed timet) and look
along the path followed by the point(ξ(i), r(e)) (to be shortly denoted as(ξ, r) in the sequel) as
time evolves, then the functionu(ξ, r, t) will be periodic in the azimuthξ. Therefore, a Fourier
series expansion ofu(ξ, r, t) has the form

u(ξ, r, t) =

∞∑

p=−∞

ejpξ.ûp(r, t)

ûp(r, t) =
1

2π

∫ 2π

0
e−jpξ.u(ξ, r, t)dξ

whereinûp(r, t) are the Fourier coefficients, also called in the sequel therotational modes. This
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Fourier series expansion is used in the sequel for the derivation of an expression for the CPSD
Sue1,i1

,ue2,i2
between the wind speeds on two elements on two blades, to be used in equation (117)

for the formation of the CPSDSu(i1),u(i2) between two blade effective wind speeds.

For the rotational modes at two radial positionsr1 andr2 it then holds that

ûq(r2, t+ τ) =
1

2π

∫ 2π

0
e−jqξ2u(ξ2, r2, t+ τ)dξ2

ûp(r1, t) =
1

2π

∫ 2π

0
e−jpξ1u(ξ1, r1, t)dξ1

and, therefore, for the cross-correlation function between up(r1, t) anduq(r2, t) the following
expression follows

C(ûq(r2, t+ τ), ûp(r1, t)) = E[ûq(r2, t+ τ)û∗p(r1, t)]

=
1

4π2

∫ 2π

0

∫ 2π

0
e−jqξ2e+jpξ1E[u(ξ2, r2, t+ τ)u∗(ξ1, r1, t)]dξ1dξ2.

Due to the assumed stationarity of the turbulenceu(ξ, r, t) (Assumption 5.2),

E[u(ξ2, r2, t+ τ)u∗(ξ1, r1, t)] = E[u(ξ2, r2, τ)u
∗(ξ1, r1, 0)] = C(u(ξ2, r2), u(ξ1, r1), τ),

and hence

C(ûq(r2, t+ τ), ûp(r1, t)) =
1

4π2

∫ 2π

0

∫ 2π

0
e−jqξ2e+jpξ1C(u(ξ2, r2), u(ξ1, r1), τ)dξ1dξ2

= C(ûq(r2), ûp(r1), τ)

Therefore, the cross-correlation function of the rotation modes is independent on timet, implying
that therotational modes are stationary. To show that the rotational modes are also orthogonal,
notice first that homogeneity ofu(ξ, r, t) (Assumption 5.2) implies

C(u(ξ2, r2), u(ξ1, r1), τ) = C(u(ξ2 − ξ1, r2), u(0, r1), τ)

so that

C[ûq(r2), ûp(r1), τ ] =

=
1

4π2

∫ 2π

0

∫ 2π

0
e−jqξ2e+jpξ1C[u(ξ2 − ξ1, r2), u(0, r1), τ ]dξ1dξ2

=
1

4π2

∫ 2π

0
e−j(q−p)ξ2

(∫ 2π

0
e−jp(ξ2−ξ1)C[u(ξ2 − ξ1, r2), u(0, r1), τ ]dξ1

)
dξ2

=
1

4π2

∫ 2π

0
e−j(q−p)ξ2



∫ ξ2

ξ2−2π
e−jp(ξ2−ξ1)C[u(ξ2 − ξ1, r2), u(0, r1), τ ]︸ ︷︷ ︸

periodical

d(ξ2 − ξ1)


 dξ2

Due to to periodicity of the integrand:

C[ûq(r2), ûp(r1), τ ] =

=
1

4π2

∫ 2π

0
e−j(q−p)ξ2

(∫ 2π

0
e−jp(ξ2−ξ1)C[u(ξ2 − ξ1, r2), u(0, r1), τ ]d(ξ2 − ξ1)

)
dξ2

=

(
1

4π2

∫ 2π

0
e−j(q−p)ξ2dξ2

)(∫ 2π

0
e−jp(ξ2−ξ1)C[u(ξ2 − ξ1, r2), u(0, r1), τ ]d(ξ2 − ξ1)

)
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The first integral inC[ûq(r2), ûp(r1), τ ]

∫ 2π

0
e−j(q−p)ξ2dξ2 = 2π.δpq, δpq

{
1, p = q
0, p 6= q

so that
C[ûq(r2), ûp(r1), τ ] =

= δpq
1

2π

∫ 2π

0
e−jp(ξ2−ξ1)C[u(ξ2 − ξ1, r2), u(0, r1), τ ]d(ξ2 − ξ1)

Therefore, therotational modes are orthogonal.

For the CPSD between two rotational modes it then holds that

Sûq(r2),ûp(r1)(ω)

=

∫ ∞

−∞
e−jωτC[ûq(r2), ûp(r1), τ ]dτ

= δpq
1

2π

∫ 2π

0
e−jp(ξ2−ξ1)

(∫ ∞

−∞
e−jωτC[u(ξ2 − ξ1, r2), u(0, r1), τ ]dτ

)
d(ξ2 − ξ1)

= δpq
1

2π

∫ 2π

0
e−jp(ξ2−ξ1)Su(ξ2−ξ1,r2),u(0,r1)(ω)d(ξ2 − ξ1)

From Assumption 5.2 it follows that

Sûq(r2),ûp(r1)(ω) = δpq
1

2π

∫ 2π

0
e−jpξSuu(ω)γ(d, ω)dξ. (118)

Now that we have derived an expression for the CPSD between two rotational modes in terms of
the APSD of a fixed pointSuu and the coherence functionγ, lets step back and write the Fourier
expansion of the wind turbulence felt by elemente of bladei

ui,e =

∞∑

p=−∞

ejpξ(i).ûp(r(e), t) =

∞∑

p=−∞

ejp(Ωt+
i−1

3
2π).ûp(re, t).

The CPSD between two elements,e1 ande2, of two bladesi1 andi2 is then given by

Sui2,e2
,ui1,e1

(ω) =

∫ ∞

−∞
e−jωτC[ui2,e2 , ui1,e1 , τ ]dτ (119)

Due to orthogonality of rotational modeŝup it holds that

C[ui2,e2 , ui1,e1 , τ ] =

∞∑

p=−∞

ejp(Ωτ+
i2−i1

3
2π)E[ûp(r2, τ)û

∗
p(r1, 0)]

=

∞∑

p=−∞

ejp(Ωτ+
i2−i1

3
2π)C[ûp(r2), ûp(r1), τ ]
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Substitution of this expression into equation (119) yields

Sui2,e2
,ui1,e1

(ω) =

∞∑

p=−∞

ejp
i2−i1

3
2π

∫ ∞

−∞
e−j(ω−pΩ)τC[ûp(r2), ûp(r1), τ ]dτ

=

∞∑

p=−∞

ejp
i2−i1

3
2πSûp(r2),ûp(r1)(ω − pΩ). (120)

Hence, the CPSD between the wind at two elements on two blades isequal to an infinite sum of
shifted spectra of the rotational modes.

Substitution of equation (118) into equation (120), and the result into equation (117) yields the
following final expression for the CPSD between two blade-effective wind speeds, expressed in
terms of the APSD of a fixed pointSuu and the coherence functionγ

Su(i1),u(i2) =

N∑

e1=1

N∑

e2=1

Re1Re2

(
N∑

e=1

Re

)2

∞∑

p=−∞

ejp
i2−i1

3
2π 1

2π
Suu(ω − pΩ)

∫ 2π

0
e−jpξγ(d, ω − pΩ)dξ.

(121)

For the APSD of a blade-effective wind speed,d = 0, γ = 1 andi1 = i2, so that the expression
(121) significantly simplifies

Su(i),u(i) =

N∑

e1=1

N∑

e2=1

Re1Re2

(
N∑

e=1

Re

)2

∞∑

p=−∞

Suu(ω − pΩ)

Notice the sum of shifted spectra in this expression. As a result, the spectrum of a blade-effective
wind speed exhibits peaks at frequencies equal to multiplesof the rotational frequency of the
rotor.

5.4 Realization algorithm for blade-effective wind speed signals

A realisation algorithm as proposed by Shinozuka [66] is applied. Such a realisation algorithm is
also included in the ECN 3D-wind field simulation program SWIFT [105]. Here, the generation
process is only outlined.

Consider the 3×3 spectral matrix

Sbl =



Su(1),u(1) Su(1),u(2) Su(1),u(3)

Su(2),u(1) Su(2),u(2) Su(2),u(3)

Su(3),u(1) Su(3),u(2) Su(3),u(3)


 (122)

with elements obtained from equation (121). Then the following procedure can be used to gener-
ate time realizations of three blade effective wind speed signals.

1 Define the APSD of a fixed point in spaceSuu and the coherence functionγ (e.g. according
to the specification IEC61400-1),
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2 Construct the spectral matrixSbl in equation (122),

3 Evaluate theSbl for a set of frequencies, and attribute a random phase angle to each,

4 Apply inverse Fourier transform to obtain time realizations of the blade effective wind
speeds.

5.5 Modeling oblique inflow

In the sections above, the generation of blade-effective wind speeds has been considered in case
of constant rotor speed, constant wind speed and non-oblique stream. This results in a set of
three helices, one per blade. In case of oblique inflow (and/orvarying rotational speed of the
rotor), a number of intermediate helices can be used for interpolation purposes, as depicted on
Figure 38 where the rotor is yawed at 40 degrees. As a result, the wind speed for a give blade is
formed by interpolating between its corresponding blade-related helix and its nearest neighboring
(intermediate) helix.

h1h2
h3h4h5h6

nominal rotor plane

zero azimuth

Figure 38 Interpolation based on six helices is used to approximate the blade effective wind
speed in case of oblique wind flow

5.5.1 Preliminaries

The the derivation of the obligue inflow approximation algorithm below, some additional notation
needs to be introduced first. The orientations of the rotor fixed frame axes, in the case of non-
oblique inflow, is such that thex axis is perpendicular to the rotor plane and is positive downwind,
thez axis points downwards and they-axis points to the right as seen from a point on the negative
x-axis (upwind). In case of oblique inflow (or, equivalently, tilted and yawed rotor), the rotor
fixed reference frame(0, xr, yr, zr) is rotated with respect to the nominal (non-oblique) rotor
fixed reference frame(0, x, y, z) as visualized on Figure 40. The rotor yaw angleφyw is defined
as the angle between they-axis andyr-axis, measured fromy to yr in anti-clockwise direction as
seen from a point on the positivez-axis. The rotor tilt angle,φtlt, on the other hand, is the angle
between thez-axis and thezr-axis inclockwisedirection as seen from the positiveyr-axis. The
turbulent wind flow is assumed to have only a longitudinal component. It is further assumed that a
turbulence realization on six helixes is given, denoted ashi(ψ

hx
i ) for helix i = 1, 2, . . . , 6, where

ψhxi is the helix azimuth angle. The helixes are computed under theassumption of constant rotor
speedΩ̄ and wind speed̄U , so that under the Taylor’s frozen wave hypothesis the helixazimuth
angle explicitly defines a fixed point in time and space. The helixes are numbered anti-clockwise,
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h1

h2

h3

h4

h5

h6

nominal rotor orientation

oblique rotor orientation

blade1

bl
ad

e2

blade3
ψ1

ψhx6
y
rz r

y

z

Figure 39 Visualization of tilted and yawed rotor, blade numbering, and helix numbering.

while the rotor blades - clockwise (see Figure 39). The azimuthal angles are measured clockwise
starting from the positiveyr-axis. The helixes are azimuthally equally spaced over the rotor plane.
Table 4 summarizes some of the notation used. The helix azimuth angleψhxi (t) at a given time

notation description
ψi(t) azimuth of bladei
ψ(t) ≡ ψ1(t) rotor azimuth
ψhxi (t) azimuth of helixi
U(t) wind speed

Ū wind speed used in helix realization
Ω(t) rotor speed

Ω̄ rotor speed used in helix realization
φtlt(t) rotor tilt angle
φyw(t) rotor yaw angle

Table 4 Definitions of symbols.

instantt is defined as the azimuthal position of the intersection pointof helix hi with thenominal
(non-oblique) rotor plane, and is hence independent on the rotor orientation (see angleψhx6 on
Figure 39). An algorithm for generating such helices for 3 blades was presented in the previous
section, although it can easily be extended to helices for 6 blades as required in this section.

Finally, for a vectorv ∈ R
n, the notationvi is used to denote thei-th element ofv.

5.5.2 The interpolation algorithm

Given the rotor speedΩ(t) and the initial rotor positionψ(0) = ψ1(0), the azimuth angles of the
rotor and the blades at time instantt are given by

ψ(t) = ψ1(0) +

∫ ∞

0
Ω(t)dt,

ψb(t)
.
= ψ(t) +

2π(b− 1)

3
, b = 1, 2, 3.

(123)
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xr

yr

zr

x

y

z

O
φyw

φtlt

wind

Figure 40 Nominal(0, x, y, z) and oblique(0, xr, yr, zr) reference frames, tilt and yaw angle
definition and orientation.

The helix azimuth positions at timet, on the other hand, depend on the wind speedU(t) and the
initial azimuth angle of the first helixψhx1 (0):

ψhx1 (t) = ψhx1 (0) +
Ω̄

Ū

∫ ∞

0
U(t)dt,

ψhxi (t)
.
= ψhx1 (t)− π(i− 1)

3
, i = 1, 2 . . . , 6.

(124)

Assuming rigid rotor for simplicity of the presentation, for a given blade, sayb, a point lying at
distance2R3 from the blade root5 has the following coordinates in(0, xr, yr, zr) at timet

pr,b(t) =




0
cos(ψb(t))
sin(ψb(t))


 2R

3
, b = 1, 2, 3. (125)

whereR is the rotor radius. The coordinates of the same point in the non-oblique coordinate
system(0, x, y, z) can be computed using the following transformation matrices

Ptlt(φ)
.
=




cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)


 ,

Pyw(φ)
.
=




cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1




that represent rotations around thez-axis (yaw) and around they-axis (tilt) in the defined direc-
tions. Therefore, the coordinates of the2R3 point on bladeb in reference frame(0, x, y, z) are
given by

pb(t) =



xb(t)
yb(t)
zb(t)


 = Ptlt

(
− φtlt(t)

)
Pyw

(
− φyw(t)

)
pr,b(t), b = 1, 2, 3. (126)

5This point is assumed to be the effective location for taking into account theblade position relative to the helixes.
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lh

x+i,bx−i,b

xb

nominal rotor plane

helix
i

ψhxi (t) + δψhxi,b (t)

ψhxi (t)

ψprojb (t) ψhxi (t) + δψhxi,b (t)− 2π

Figure 41 Visualization of the defined azimuth angles and lengths.

Hence, theprojectedblade onto the nominal rotor plane has azimuth (modulus2π)

ψprojb (t) =





π − arcsin

(
|zb(t)|√

y2b (t)+z
2
b (t)

)
, if yb(t), < 0 andzb(t) > 0

π + arcsin

(
|zb(t)|√

y2b (t)+z
2
b (t)

)
, if yb(t) < 0 andzb(t) < 0

2π − arcsin

(
|zb(t)|√

y2b (t)+z
2
b (t)

)
, if yb(t) > 0 andzb(t) < 0

arcsin

(
|zb(t)|√

y2b (t)+z
2
b (t)

)
, if yb(t) > 0 andzb(t) > 0

(127)

For helixi, the difference between the helix azimuthψhxi (t) and the projected azimuth of bladeb
is then

δψhxi,b (t) = (ψprojb (t)− ψhxi (t)) mod (2π). (128)

Figure 41 depicts the helix tube on which the six helixes lie, as well as the nominal rotor plane,
and some azimuth angles and lengths, needed in the sequel. Attime instantt, the 2R

3 point on

bladeb lines on the azimuth line throughψprojb (t), which line intersects with helixi at infinitely
many points, but the closest two to the nominal rotor plane correspond to helixi azimuth angles
(ψhxi (t) + δψhxi,b (t)) and (ψhxi (t) + δψhxi,b (t) − 2π). In reference frame(0, x, y, z), these two
points have cetrainx-coordinatesx−i,b(t) andx+i,b(t). Given that the helix is generated under the
assumption of constant wind speed and rotor speed, the helixlength is given by

lh = Ū
2π

Ω̄
, (129)

so that

x−i,b(t) =
−δψhxi,b (t)

2π
lh,

x+i,b(t) = lh + x−i,b(t).
(130)

Given the currentx-position of the2R
3 point of bladeb at time instantt, xb(t), the next thing to

do is to determine the closest two helixes, so as to subsequently interpolate between them. To this
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end, define the matrices

X(b)(t)
.
=




x−1,b(t)
...

x−6,b(t)

x+1,b(t)
...

x+6,b(t)




, H(b)(t)
.
=




h1(ψ
hx
1 (t) + δψhx1,b(t))

...
h6(ψ

hx
6 (t) + δψhx6,b(t))

h1(ψ
hx
1 (t) + δψhx1,b(t)− 2π)

...
h6(ψ

hx
6 (t) + δψhx6,b(t)− 2π)




. (131)

Then the closest helix in downwind direction isH(b)
idnb

(t) with

idnb = argmin
i

{
X

(b)
i (t)− xb(t) : X(b)

i (t) ≥ xb(t)
}
, b = 1, 2, 3. (132)

Similarly, upwind the closest helix isH(b)
iup
b
(t) with

iupb = argmin
i

{
xb(t)−X(b)

i (t) : X
(b)
i (t) ≤ xb(t)

}
, b = 1, 2, 3. (133)

Notice that the indexesidnb andiupb are also time depended, although not explicitly denoted.

Then a linear interpolation is performed based on the distances between the blade point and the
closest helixes. This is done by defining the interpolation weighting factor

αb(t) =
6
(
X

(b)
idnb

(t)− xb(t)
)

lh
∈ [0, 1], b = 1, 2, 3, (134)

so that the following convex combination between the two selected helixes can be used

ũb(t) = (1− αb(t))H(b)
idnb

(t) + αb(t)H
(b)
iup
b
(t), b = 1, 2, 3.

In the above expression for̃ub(t), a convex combination is taken between two stochastic signals,

namelyH(b)
idnb

(t) andH(b)
iup
b
(t). Assuming stationary homogeneous turbulence field with spectrum

at (any) fixed point in spaceSu(w), and denoting̃u(t) as the turbulence at (any) fixed point in
space at timet, the following two expressions hold for the first two moments of ub(t)

E{ũb(t)} = E{ũ(t)} = 0,

E{ũ2b(t)} = ((1− αb(t))2 + α2
b(t))E{ũ2(t)}︸ ︷︷ ︸

σ

+2αb(t)(1− αb(t))E{H(b)
idnb

(t)H
(b)
iup
b
(t)}

︸ ︷︷ ︸
c(d,0)

,

whereσ denotes the variance of a fixed point in space, whilec(d, τ) is the covariance function

between two fixes points in space at a distanced =
(
X

(b)
idnb

(t)−X(b)
iup
b
(t)
)

. Hence, the variance of

ũb(t) is not equal to the turbulence varianceσ. In order to make the two variances the same, an
additional covariance correction factor,ρb(t), will be used, so thatE{(ρb(t)ũb(t))2} = σ.

Then denotingγ(d, ω) as the coherence function between any two points in space at adistanced
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Figure 42 Plot of the covariance correction factorρ as a function of the interpolation weighting
factorα.

one has

σ =

∫ ∞

−∞
Su(ω)dω,

c (d, 0) =

∫ ∞

−∞
γ (d, ω)Su(ω)dω.

(135)

Then, since the distance,
(
X

(b)
idnb

(t)−X(b)
iup
b
(t)
)

, between the (neighboring) helixesH(b)
idnb

(t) and

H
(b)
iup
b
(t) is exactly1

6 lh, it can easily be verified that

ρb(t) =
1√

(1− αb(t))2 + α2
b(t) + 2αb(t)(1− αb(t))

c( lh
6
,0)

σ

, b = 1, 2, 3. (136)

achievesE{(ρb(t)ũb(t))2} = σ. The parameterρ as a function of the interpolation factorα is
depicted on Figure 42 for the following specific choices for thespectrumSu(ω) and coherence
γ(d, ω)

Su(ω) = σ2
w2L1/Ū

(1+6L1ω/(2πŪ))
5/3 (Kaimal spectrum),

γ(d, ω) = e−8.8d
√

(ω/(2πŪ))2+(0.12Λ/3.5)2 ,

with Ū = 15 m/s, σw = I15(15+aŪ)
a+1 , I15 = 0.17, a = 3, L1 = 170.1 m, andΛ = 21 m.

Hence, adding the rotor-wide wind speedU(t) to the correctedexpression for the turbulence
(ρb(t)ũb(t)), the final expression for the blade-effective wind speed takes the form

ub(t) = U(t) + ρb(t)
(
(1− αb(t))H(b)

idnb
(t) + αb(t)H

(b)
iup
b
(t)
)
, b = 1, 2, 3. (137)

5.5.3 Numerical implementation

The complete algorithm for approximation of blade effectivewind speeds under oblique wind
inflow conditions consists of evaluation of the expressions in equations (123)-(137) at each time
instantt and for each bladeb. In practice, the rotor speed and the azimuth angle of the rotor is
measured, so (123) need not be numerically evaluated.

In a numerical implementation the same steps can be followedat discrete time instants(kts),
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k = 0, 1, . . . , after making the following small modifications:

Equation (124) Assuming that the wind speed does not change between any two time instants,
i.e. U(kts + τ) = U(kts) for τ ∈ [0, ts), the expression for the azimuth of the first helix
takes the form

ψhx1 (kts) = ψhx1 (0) +
Ω̄

Ū

k−1∑

l=0

U(lts)ts.

A better option would to use more advanced numerical integration methods to compute
ψhx1 (kts).

Equation (131) In a numerical implementation the helixes are only given at discrete azimuth
angles, so that it is in general not possible to evaluateH(b)(t) at the desired azimuth angles.
One way to circumvent this problem is to evaluateH(b)(t) instead at the closest azimuth
angles at which the helixes are given. Assuming that helixi is defined at azimuth angles
(ψhxi (0) + kδψhx), k = 0, 1, . . . , and define the following projection

Πi(x)
.
= ψhxi (0) +

(
argmink

∣∣ψhxi (0) + kδψhx − x
∣∣) δψhx

(124)
= ψhx1 (0)− π(i−1)

3 +
(
argmink

∣∣∣ψhx1 (0)− π(i−1)
3 + kδψhx − x

∣∣∣
)
δψhx

= ψhx1 (0)− π(i− 1)

3
+ round

(
x− ψhx1 (0) + π(i−1)

3

δψhx

)
δψhx

that mapsx onto the set of azimuth angles at which helixi is defined. In this way, the
expression forH(b)(t) in (131) should simply be replaced by

H(b)(t) =




h1

(
Π1(ψ

hx
1 (t) + δψhx1,b(t))

)

...

h6

(
Π6(ψ

hx
6 (t) + δψhx6,b(t))

)

h1

(
Π1(ψ

hx
1 (t) + δψhx1,b(t)− 2π)

)

...

h6

(
Π6(ψ

hx
6 (t) + δψhx6,b(t)− 2π)

)




.

5.5.4 Numerical example

The algorithm is numerically tested with the data given in Table 5. The helixes are generated
based on the assumption of Kaimal fixed point turbulence spectrum, and under an extreme wind
condition, occurring att = 5 s, and comprising of a rising wind gust of15 m/s in combination of
a yaw angle of 30 degrees. The wind gust and the yaw angle are given on Figure 43 as functions
of time. On each plot in Figure 44 there are four lines. The threedashed lines on all three plots
are the same and correspond to the three blade related helixes (helixes 1,5 and 3); these coincide
with the blade effective wind speeds in the case of non-oblique inflow and constant rotor and
wind speeds. The other three helixes are not plotted. The solidlines on the plots represent the
blade effective wind speeds as computed by the proposed algorithm, one per plot.
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symbol value description

Ū 15 m/s mean wind speed
U(t) see Figure 43 (left) wind gust

Ω̄ 1.85 rad/s mean rotor speed
Ω(t) Ω̄ rotor speed
ψ(0) 354.7 deg initial rotor azimuth
ψhx1 (0) -5.3 deg initial azimuth helix1
ts 0.02 s sampling time
δψhx 5.3 deg helix azimuth sampling angle
φyw(t) see Figure 43 (right) rotor yaw angle
φtlt(t) -5.1271 deg rotor tilt angle
c(lh/6, 0)/σ 0.6879 parameter in equation (136)

Table 5 Data used in the numerical example
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Figure 43 Wind gustU(t) (left) and yaw angleφyw(t) (right).
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Figure 44 Helixes 1,3 and 5 (dashed lines) and the blade effective windspeeds (solid) of blades
1 (left), 2 (middle) and 3 (right).
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Part III

Fault-tolerant control (FTC)
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6 GLRT for detecting blade moment sensor faults

Summary

This section develops a method for the identification of faultsin the blade root bending moment
sensors fault in horizontal axis 3 bladed wind turbines. The underlying problem is crucial to the
successful application of IPC control algorithms (as developed in Sections 1-2), which plays a key
role for reducing the blade loads of large offshore wind turbines. In this section, a wind turbine
model in non-rotating coordinates is constructed based on closed-loop identification. This linear
time-invariant model includes the dynamics of the wind process. The fault detection is performed
using the residuals generated by dual Kalman filters. The method deals with different types
of fault models, including additive and multiplicative fault modeling. For additive faults, the
mean value change detection of the residuals and the generalized likelihood ratio test are used.
Multiplicative faults are handled by using the variance change detection of the residuals. Fault
diagnosis is possible in case of dual sensor redundancy. The proposed approach is validated in
simulations.

6.1 Introduction

Even though the availability of onshore wind energy can be as high as 98%, offshore it is much
lower and gets sometimes as low as 60% due to long downtime of the wind turbines. This is often
caused by the failures of wind turbines components. Therefore, much effort is needed in order to
enhance the reliability of the wind turbines. Fault detection and diagnosis is expected to lead to a
significant improvement of the availability of wind energy offshore.

In the wind energy field, the fault detection of components hasalready received significant atten-
tion. In [63], a survey on failures of wind turbine systems inSweden, Finland and Germany is
done, where the data are from the maintenance records in the last two decades. In [11, 12] and
the references therein, the rotor condition monitoring andsome other topics for improving the re-
liability and safety of offshore wind energy converters arepresented, where the main techniques
for fault detection are based on spectral analysis of the measurements. Some available techniques
on wind turbine system monitoring are reported in [89]. Model based fault detection for wind
turbine systems has also received some attention recently [90]. In [19], the pitch actuator delay
and pitch actuator gain faults are considered based on the Kalman Filter technique and multiple
model estimation technique respectively.

The focus of this section lies on the detection of blade root moment sensor faults. These sensors
are typically used for the reduction of blade loads by IPC, as developed in Sections 1-2 (see also
[83]). Strain gauge sensors are commonly used in the wind turbine field. However, its lifetime
is normally not very long compared with that of other sensors. There are several reasons which
cause higher failure rates. The strain in the blades is ratherhigh, which has effect on the gauges
themselves as well as on the bonding. The harsh environment factors, such as lightning, salty
spray, moisture and corrosion, have direct effects on the bond and wiring. In addition, the sensors
may be easily damaged during maintenance in general. On average, a sensor has one failure per
year, which implies three failures for a 3 bladed wind turbine. This is undesired since the sensor
failures would lead to wrong behavior of the individual pitch control system; the latter is crucial
for reduced blade loads that prolong the wind turbine lifetime. Therefore, fault detection of blade
moment sensors is extremely important.

This section presents a composite approach to blade moment sensor fault detection and isolation
for a 3 bladed horizontal axis wind turbines. The approach includes detection techniques for
both additive and multiplicative faults. These techniques utilize the residues of Kalman filters,
wherein the residual (i.e. the difference between a sensor output and its filter estimate) is used for
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fault detection. The residual has the property of being whitenoise with constant intensity under
normal, fault-free operation, while these properties change under faults. In this way, any observed
significant deviation of the statistical properties of the residual can be used for the detection of a
sensor failure.

Additive faults are detected from mean value changes of residual, for example based on the so-
called generalized likelihood ratio test (GLRT). In each timestep, this test yields the upper limit
for a likelihood ratio, viz. the ratio between the probabilities of two suppositions on a set of
sensors:‘an additive fault has occurred within that sensor set’versus‘the complete sensor set is
healthy’. A low value of the ratio’s upper limit then implies NO additive fault.

Multiplicative faults are detected from the mean value change and the variance change of the
residues via the so-called energy detector.

6.2 Problem Statement

In this section, the simple linearized model, developed in Section 1.3.1, us used. For convenience,
this model is written in state-space form as follows

ẋ = Acmx+Bcm1dcm +Bcm2ucm
ycm = Ccmx+Dcm1dcm +Dcm2ucm

(138)

Here the indexcm is used to express that the variables are in the Coleman domain. The system
states, inputs, disturbances and outputs are defined as

x =
(
Ωr xfa ẋfa xsd ẋsd γ γ̇

)T
(139)

dcm =
(
vcm1 vcm2 vcm3

)T
(140)

ucm =
(
θcm1 θcm2 θcm3 δTg

)T
(141)

ycm =
(
Ωg ẋfa ẋsd δMzcm1 δMzcm2 δMzcm3

)T
(142)

The control structure of the underlying wind turbine system is shown in Figure 45, whereCT ,Cθ
andCind are the generator torque controller, the collective pitch controller and the individual
pitch controller respectively.Vw is the wind speed which is the energy source of the wind turbine
system. Due to its stochastic property, it is also a disturbance source of the control system.

The sensors of the blade root momentsMzi, i = 1, 2, 3 provide the feedback signals to the indi-
vidual pitch controller for load reduction. If the sensors send incorrect signals to the controller,
the loads are probablyenlargedinstead of reduced. So, it is extremely important to detect a sensor
fault as soon as possible.

In the subsection on the wind turbine model, it appeared thatthe wind speed signals are unknown
disturbances in the stateandoutput equation.

The classical fault detection methods such as the unknown inputs observer in [14] cannot be
directly applied since the disturbance term in the output equation cannot be nulled successfully.
Application of the parity space approach to fault detectionfor deterministic systems may be
successful. However, it does not work so well for most of the stochastic systems [30]. The
handling of the wind speed disturbance appears a major difficulty.

Although the Coleman transformation yields a time invariant system description in fixed-frame
coordinates (138), theoriginal system, defined in rotating coordinates, remains time varying.
Since one single sensor fault is defined in rotating coordinates, it will result in faults in all three
sensors in fixed coordinates (138) due to the Coleman transformation (11). Nevertheless, it is
preferable to develop the fault detection approach for the fixed-frame model (138), due to its
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Figure 45 The control structure of wind turbine systems

linearity and time-invariance.

The point of departure for the method development is dual sensor redundancy. It is assumed that
two identical blade moment sensors are installed at each blade root for the purpose of reliability
and fault tolerance. The dual sensors are divided into two sets. Initially, one set supplies feedback
signals to the individual pitch controller while the other set contains the redundant sensors.

The problem considered in this section is the fault detection and isolation issue of the blade
root moment sensors for a 3 bladed wind turbine with dual sensors installed,driven by
non-white wind speed disturbances; the wind turbine can be modeled by linear periodic
equations which can be transformed to linear time invariant equations with modulation
requirements on the input and output signals.

6.3 Wind Turbine Modeling via Closed-loop Subspace Identification

The introduction told that the examined methods of fault diagnosis are based on residues from on-
line operating Kalman filters. In order to parameterize a Kalman filter, the dynamic wind turbine
behavior must be modeled as a linear time-invariant model that is driven by white noise. A wind
turbine is driven by the wind, which varies both slowly and fast. The slow, uniform variations
in the wind field allow for considering the operation of a wind turbine in a working point during
a certain time, say ten minutes. This enables to linearize thehighly non-linear aerodynamic
behavior, which is the starting point of the model description in the previous section.

As already mentioned in the previous section, the effect on the wind turbine of fast variations
in the wind field, known as turbulence, cannot be assumed to be caused by a limited number of
white noise sources. However, this effect can be reasonablywell approximated by letting work
three partially correlated stochastic signals on the rotoras pure stationary “blade effective wind
speeds”.

The previous section also showed that a linear model of a wind turbine in a working point is still
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time varying. A modulated coupling exists between small deformations in the rotor blades and
the tower; the model coefficients depend on the azimuth position of the rotor (instantaneous value
of the “rotation angle”). It was shown that a linear time invariant model (LTI) can be derived via
azimuth dependent mappings of corresponding variables on the three rotor blades, the Coleman
transformation [80]. This yields a model in so called ‘fixed-frame coordinates’; coordinates with
a meaning of perpendicularto, or vertical or horizontalin the wind plane. The price of it is
azimuth dependent preprocessing of model inputs and post-processing of model outputs.

The transformation of the blade effective wind speeds to fixed-frame coordinates, and thus to
inputs of the LTI-model, appears not to introducecyclo-stationarity for a 3 bladed rotor. The
fixed-frame wind speed coordinates are stillpurestationary processes, which is a consequence of
the polar symmetry of the turbine rotor (see Lemma 1 on page 71). Thus it is valid to assume an
extendedLTI-model with independent white noise sources as input signals for the wind turbine
behavior in turbulence. Such a white-noise drivenextendedmodel can be successfully derived
with an adequate closed-loop system identification technique from records of the three blade
root flap moments. The structure of a thus obtained model, theinnovation form, is such that
its parameter matrices can be uniquely and simply mapped to the desired Kalman filter for the
generation of residues. Be aware that the Kalman filter is driven by (control) input signals and
sensor output signals that are both processed with the azimuth angle. Actually, two identical
Kalman filters work parallel: one is driven by a primary sensorsetA, the other by a secondary,
redundant sensor setB.

So, we chose to derive an extended model via system identification with blade root moments as
output signals; the “extension part” of this model filters, the white noise input signals in such a
way that the “wind turbine part” responds in fixed-frame coordinates as if it experienced trans-
formed turbulence, as experienced by three rotating rotor blades, in fixed-frame coordinates.

Another approach to the derivation of such an extended modelcould be based on factorization of
the spectrum matrix of the fixed-frame coordinates of the blade effective wind speeds. This will
yield an innovation model with the fixed-frame wind speeds as output signals; see [1] for details
on spectral factorisation. This ‘wind model’ must then be combined with an analyticly derived
wind turbine model like the simple one in the previous section or a full dynamic model, which
can be obtained with a computer program like Turbu[76].

There are some fault detection approaches for handling systems subjected to unknown inputs
[14]. Closed loop subspace identification appeared a suitable technique for the derivation of an
extended system model driven by white noise (‘innovation model’) with active controller. The
extended model includes the behavior of the wind and of the open loop wind turbine. The applied
technique is also successful if the open loop system is unstable, which is the case for a wind
turbine.

The controlled wind turbine system can be represented by the structure shown in Figure 46, where
v represents the wind speed and it is approximated by the output of a linear system driven by white
noisee. Since we only consider the fault detection issue of the threeblade root moments in this
section, the other outputs{Ωr, ẋfa, ẋsd} are not included in the model afterwards. The extended
model for the wind turbine behaviour, which has an innovation model structure as argued before,
has the following state space parameterisation:

xk+1 = A xk +Bucmk +K ek (143)

ycmk = C xk +D ucmk + ek (144)

The identification issue now is to determine the system matrix set{A,B,C,D,K}. The gainK
can be directly utilized as the steady Kalman filter gain. Detailed explanations on this model are
in [91].

Subspace identification has attracted much attention in the last decades. Some pioneered work
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can be found in [85, 86, 93, 92]. Recent years the closed loop subspace identification technique
also makes a great progress [86, 33, 51, 61, 16, 15]. In all these methods, it is shown in [16, 15]
that the methods based on [33, 16, 15] have some potential advantages which is suitable for
unstable systems and high order systems. The method adopted in this section is the one described
in [33, 16, 15].

The identified model on blade root moment records from simulation data has an order of20; the
wind turbine has7 states while the other states set up the wind model. Validation results show
that the identified model has satisfied precision. The variance account for (VAF ) values are over
84%, where VAF is defined as

V AF = max{1− var(yk − ŷk)
var(yk)

, 1} × 100% (145)

whereŷk denotes the estimated output signal andvar denotes the variance of a stationary signal.

6.4 Fault Detection and Isolation

Next to fault detection, which has already been discussed inthe introduction, also fault isolation
is a non-trivial issue in the examined sensor failure case. Since the fault detection is performed
with the LTI model in fixed-frame coordinates, it is clear thatonesensor fault results in deviations
of the threefixed-frame coordinates that relate to the blade moments (3virtual sensorfaults). A
sensor fault can nevertheless be isolated by combination oftwo detection procedures, which are
based on the difference in the

• mean value and variance between the members of a sensor signal pair on each blade;

• Kalman filter residue behavior between the sensor setsA andB.

These two procedures respectively tell on which blade a sensor fault occurred and to which sensor
set the faulty sensor belongs.

6.4.1 Fault Modeling

The faults considered in this section are the additive fault,multiplicative fault, sensor output stuck
on a fixed value and slow drifting fault:

• Additive faultMf
zi =Mzi +∆Mzi, which is mainly used for describing the sensor bias.

• Multiplicative fault Mf
zi = δMzi, where0 ≤ δ ≤ ∞, which is mainly for sensor gain

change.
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• Output stuckMf
zi = Co, whereCo is a constant, which describes sensor output stuck into

a constant value.

• Slow driftingMf
zi =Mzi + αt, which is used for the slow varying sensor bias.

wherei = 1, 2, 3, α is a small variation rate andt is the time.

With the inverse Coleman transformation (see Section 1.3.1), one sensor fault results in the vari-
ation of all the virtual momentsMcm1,Mcm2,Mcm3 in Coleman domain as follows (i = 1, 2, 3):

Additive fault 


Mf
cm1

Mf
cm2

Mf
cm3


 =




Mcm1 +
1
3∆Mzi

Mcm2 +
2
3 sin(ψi)∆Mzi

Mcm3 +
2
3 cos(ψi)∆Mzi




Multiplicative fault




Mf
cm1

Mf
cm2

Mf
cm3


 =




Mcm1 +
1
3(δ − 1)Mzi

Mcm2 +
2
3 sin(ψi)(δ − 1)Mzi

Mcm3 +
2
3 cos(ψi)(δ − 1)Mzi




Output stuck 


Mf
cm1

Mf
cm2

Mf
cm3


 =




Mcm1 +
1
3(Co −Mzi)

Mcm2 +
2
3 sin(ψi)(Co −Mzi)

Mcm3 +
2
3 cos(ψi)(Co −Mzi)




Slow drifting 


Mf
cm1

Mf
cm2

Mf
cm3


 =




Mcm1 +
1
3αt

Mcm2 +
2
3 sin(ψi)αt

Mcm3 +
2
3 cos(ψi)αt




Note that e.g. in the additive fault the constant sensor bias∆Mzi results in three virtual sensor
faults in the Coleman domain: one constant and two time varying biases.

6.4.2 Residue Generation by Kalman Filters

The residue generator that is used for sensor fault detectionis shown in Figure 47. For each of
two sensor sets, the output signal vector predictionŷk on time pointk is obtained via a Kalman
filter from output signal measurements up tok−1 and input signal values up tok. The residues
rA,k andrB,k for the two sensor sets are obtained as the differencesyA,k − ŷA,k andyB,k − ŷB,k
between the measured and predicted output signal vectors.

The actual Kalman filters are represented by blocksKFA andKFB in Figure 47 and work in
the Coleman domain. This implies that the filter inputs are obtained from the true input and
output signals via the inverse of the Coleman transformation matrix (P−1 defined in equation 12).
Similarly, the filter outputs are mapped to output signal predictions for the determination of the
residues via the Coleman transformation matrix itself (P defined in equation 12). As explained
in the previous subsection, the sensfor faultsfA andfB can be additive or multiplicative while
a single non-zero element infA or fB will affect all three elements of the actual Kalman filter
inputycmA or ycmB .

In the previous subsection, it was mentioned that a white-noise drivenextendedmodel has been
derived, which includes the wind and the open loop wind turbine behavior. Further, the obtained
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Figure 47 Dual Kalman filter fault detection scheme

state equation 143 and output equation 144 of the model are driven by the same white noise vector
processek (innovation form). The latter feature, which is specific for the innovation form, allows
for expressingall noise input signals as a function of state and output signals:

ek = ycmk − C xk −D ucmk (146)

By use of relationshipyk = Pk · ycmk the model equations 143 and 144 can then be rearranged as
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(consider update ofxk−1 instead ofxk):

xk = (A−KC) xk−1 + (B −KD) ucmk−1 +KP−1
k−1yk−1 (147)

yk = PkC xk + PkD ucmk + Pk ek (148)

The matrix(A−KC) has eigenvalues in the unit disc [91, 55].

Sinceek has no relationship with passed valueek−1, ek−2, . . ., it is intuitively clear that the best
output prediction̂yk based on output measurements up tok − 1 is obtained with the following
algorithm:

ycmk−1 = P−1
k−1 yk−1 (149)

x̂k = Ã x̂k−1 + B̃ucmk−1 +K ycmk−1 (150)

ŷcmk = C̃ x̂k + D̃ ucmk (151)

ŷk = Pk ŷ
cm
k (152)

The equations 150 and 151 establish the Kalman filter for the innovation model by equation (143)
and 144, wherẽA = A−KC, B̃ = B −KD, C̃ = CandD̃ = D.

In case of a perfectly modeled system by equation (143) and 144, the difference between the
measured and predicted output value in the Coleman domain isgiven by.

ycmk − ŷcmk = C̃ εk + ek (153)

whereεk = xk − x̂k, εk ∼ (0, σε) and ek is a three-element white noise sequence with mean
valueE{ ek} = 0 and3× 3 diagonal covariance matrixcov(ek) = σ2I.

We defined the residue as the difference between output measurement and prediction in the ‘real
domain’. If no sensor failure has occurred before or on time point k, the residue is identified by
rk and is expressed by:

rk = yk − ŷk = Pk(C̃(xk − x̂k) + ek) = PkC̃εk + Pk ek (154)

The ‘state estimation error’εk will go to zero becausẽA = A −KC has eigenvalues within the
unit circle. The residualrk then becomes the modulated white noise processPk ek; Since the
three elements ofrk are linear combinations of those ofek only, so they do NOT depend onek+m
for m 6= 0, it is clear the the vector processrk is also white noise. The covariance matrix ofrk is
derived by elaborating the expectationE[Pk ek e′k P

′
k], with Pk being the Coleman modulation

matrix, andE[ek e′k] equal toσ2I. It then appears thatcov(rk) is time-independent but the
elements ofrk do depend upon each other. The covariance matrixcov(rk) is further referred to
asRk and is expressed by:

Rk
∆
= cov(rk) = σ2Pk I P

′
k = σ2




2 1

2

1

2

1

2
2 1

2

1

2

1

2
2


 (155)

Since the elements ofek have a Gaussian distribution, the residue vectorrk consists of three
correlated Gaussian distributed processes with zero-meanand with equal variances2σ2 and co-
variances12σ

2 as given by equation (155).

In case of a sensor fault, the residues are equal to the difference between the faulty measurements
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yfk and the ‘sensor fault affected’ output predictionsŷfk :

rfk = yfk − ŷ
f
k (156)

where outputyfk equals in case of any sensor failure

yfk = yk +

3∑

i=1

f ik (157)

and output predictionŝyfk follow from the Kalman filter driven byuk andyfk :

x̂fk+1 = Ãx̂fk + B̃ ucmk +KP−1
k yfk (158)

ŷfk = PkC̃x̂
f
k + PkD̃ ucmk (159)

With state estimatêxfk split up intox̂k and∆x̂fk , the residue by equation (156) can be expressed
as (combine equation (154), 157 and 159):

rfk = yk +

3∑

i=1

f ik − PkC̃ x̂k − PkD̃ ucmk − PkC̃ ∆x̂fk

= rk +∆rfk

(160)

with

∆rfk =

3∑

i=1

f ik − PkC̃ ∆x̂fk , (161)

while separate Kalman filter state equations are derived fromequation (159) for the update ofx̂k
and∆x̂fk (allowed because of linearity; use equation (157) for filter input separation):

x̂k+1 = Ã x̂k + B̃ ucmk +KP−1
k yk (162)

∆x̂fk+1 = Ã ∆x̂fk +KP−1
k

3∑

i=1

f ik (163)

Since after some timerk equals the innovationek, it does not contribute to the mean valuerfk of

the residue. Thus,∆rfk is the only contributor to the meanrfk so that the non-stochastic{f ik} are

fully responsible for the evolution ofrfk via equation (163) and 161.

6.4.3 Additive fault detection based on mean value observation

The fault detection algorithm according to [30], the so called CUSUM LS Filter, is utilized for
the mean value change detection of signalζk.
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ϑ̂ =
1

t− t0

t∑

k=t0+1

ζk

εk,i = ζk − ϑ̂
s1k = εk

s2k = −εk
g1k = max(g1k−1 + s1k − µ, 0)
g2k = max(g2k−1 + s2k − µ, 0)

Alarm if g1k > h or g2k > h. After alarm, reset g1k = 0, g2k = 0. Parameterµ and h need to
be designed.µ is used to prevent positive drifting of the mean value and it can be chosen as
one half of the expected change magnitude.The robustness and decreased false alarm rate can
be achieved by requiring severalg1k > h or g2k > h [30].

This method strongly appeals to the intuitive way of fault detection and appears suitable for any
additive fault. However, it normally takes a long time to send an alarm after the fault has occurred
and it is hard to estimate the time instance of the occurrenceof the fault.

6.4.4 Additive abrupt jump fault detection based on Generalized Likelihood Ra-
tio Test (GLRT)

In case of an additive abrupt jump fault, the changing statistic properties of the residues can be
used for fault detection. A generalized likelihood ratio test (GLRT) in accordance with [104, 30,
29, 88, 55], is suited for this class of faults. The GLRT method will here be reviewed for the
purpose of informing experts in the field of wind energy while fitto the wind turbine system for
additive abrupt jump fault detection. A good overview of thestrong and weak points of the GLRT
is given in [55].

The GLRT yields in each time pointk the upper limit of the probability ratio‘YES/NO occurrence
of additive fault in a sensor set’anywhere in the interval[k − L, k] (L to be chosen). The
determination of this ratio-maximum requires knowledge onthe evolution of the mean valuerfk
of the residue vector process. Of course,{f ik} in equation (163) and 161, which is responsible
for the evolution ofrfk , cannotbe isolated from the measurementyfk ; otherwise the measurement
errors would be known! However, if we assume a potential stepwise error in the measurement,
the errorf ik in the measurement on bladei is defined by its starting pointτ i and sizeνi; it can be
expressed as:

f ik = V i · sk−τ i · νi (164)

with V i the unit vectore1, e2 or e3 for i = 1, 2, 3 respectively andsk−τ i the unit step function
that starts in the (unknown) time pointτ i. Since the amplitudeνi is constant and the equations
{163, 161} for residue affection by sensor faults are linear, it is allowed to:

• consider the evolution of the sensor fault influences in normalized form;

• deal with the faults from different sensors in separate equation sets.

As a consequence, the equations 163, 161} for∆rfk can be replaced by the following set (i =
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1, 2, 3):

∆ξ̂f
i

k+1 = Ã ∆ξ̂f
i

k −KP−1
k V i sk−τ i (165)

gik−τ i = V i sk−τ i + PkC̃ ∆ξ̂f
i

k (166)

∆rfik = νi g
i
k−τ i (167)

while

∆rfk =

3∑

i=1

∆rfik (168)

The intermediate variablegik−τ i represents the mean residue value from the normalized additive
sensor faultV i sk−τ i . When we focus on the GLRT it will become clear that the ‘scaledmean
residues’{gik−τ i} enable to compute the searched ratio-maximum of probability density func-
tions. Therefor, eachgik−τ i has to be evaluated for a range of starting pointsτ i with the failure
signature equations165 and 166.

Assume residue realization{ρj} on time points{j|j = k − L, . . . , k} and letP ({ρj − 1
2∆ <

̺j < ρj +
1
2∆}) be the probability that the residues{̺j} get values in aδ-environment around

this realization (∆ = (δ δ δ)′). This probability follows straightforward from the probability
density functions{p(̺j)} because the residue vectors are independent stochastic processes. For
smallδ then holds for the considered probability (short formP ({|̺j − ρj | < 1

2∆})):

P ({|̺j−ρj | < 1
2∆}) = p(ρk−L)·δ3 · p(ρk−L+1)·δ3 ·. . .· p(ρk)·δ3 =

k∏

j=k−L

p(ρj)·δ3 (169)

If no sensor failure has occurred before or on time pointj the residue̺ j becomes equal to the
Coleman transformation of the innovationej after some initialization time (rj by equation (154)).
The residuerj consists of three zero-mean correlated Gaussian processeswith variances2σ2 and
covariances12σ

2 as by matrixRk in equation (155). Identify the supposition ‘no sensor failure’
asH0 and let the belonging distribution function of the residue bep(̺j |H0). It then holds:

p(̺j |H0) =
1√

(2π det[Rj ])3
· e [−

1
2 ̺

′
j R

−1
j ̺j ] (170)

If a failurehasoccurred on theith sensor before or on time pointj the residue̺ j equalsrj+∆rfij
with rj the zero-mean Gaussian vector process with covariance matrix Rj and∆rfij the evolving
mean value ofrj in accordance with equation (165), 166 and 167. Identify thesupposition ‘failure
on ith sensor on time pointτ i with amplitudeνi ’ asH i

1(τ
i, νi) and let the belonging distribution

function of the residue bep(̺j |H i
1(τ

i, νi)). It then holds:

p(̺j |H i
1(τ

i, νi)) =
1√

(2π det[Rj ])3
· e [−

1
2 (̺j − νi gij−τ i)′ R

−1
j (̺j − νi gij−τ i) ] (171)

The probability that the residues get values in aδ-environment around the realization{ρj} can
now be calculated under the suppositionsH i

1(τ
i, νi) andH0. In other words we can compute the

chance that the residue lies in aδ-environment around{ρj} in case of a failure on theith sensor
on time pointτ i with amplitudeνi and in case of no sensor failure. Actually, we are interestedin
the ratio between these chances. Forτ i anywhere in the closed interval[k−L, k], this likelihood
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ratioΛik is expressed as:

Λik
∆
=
P ({|̺j − ρj | < 1

2∆} |H
(
1τ
i, νi))

P ({|̺j − ρj | < 1
2∆} |H0)

∣∣∣∣∣
j=k−L,...,k

=

τ i−1∏

j=k−L

e
[−1

2 ρ
′
j R

−1
j ρj ]

√
(2π det[Rj ])3

· δ3 ·
k∏

j=τ i

e
[−1

2 (ρj − νi gij−τ i)′ R−1
j (ρj − νi gij−τ i) ]

√
(2π det[Rj ])3

· δ3

k∏

j=k−L

e
[−1

2 ρ
′
j R

−1
j ρj ]

√
(2π det[Rj ])3

· δ3

(172)
It is clear that the factors in the numerator and denominatorcancel forj=k−L...τ i−1. So the
likelihood ratioΛik on time pointk, which is used for testing if a failure on theith sensor has
occurred in the interval[k − L, k], depends onτ i and νi. Since the same covariance matrix
Rj and the same multiplierδ3 are in the numerator and denominator, only the exp-functions are
retained as factors. It is allowed to replace the product of exp-functions by one exp-function with
summed exponents:

Λik(τ
i, νi) =

e
∑k

j=τi [−1
2 (ρj − νi gij−τ i)′ R−1

j (ρj − νi gij−τ i) ]

e
∑k

j=τi [−1
2 ρ

′
j R

−1
j ρj ]

(173)

If Λik >> 1 then a fault in theith sensor is very likely, or at least a fault in the sensor set for
whichΛik is computed is very likely. However, three items prohibit straightforward detection of
a sensor fault with constant amplitude:

• what is a reliable threshold value for sensor fault detection? (>> arbitrary)?

• if a sensor fault has occurred, when did it happen (τ i unknown)?

• if a sensor fault has occurred, what is its amplitude (νi unknown)?

Although the starting pointτ i and amplitudeνi are unknown, it is yet possible to base the fault
detection on the likelihood ratioΛik. Actually, the threshold test is performed with the potential
maximum value ofΛik. It appears possible to computeνi such thatΛik is maximal for a certainτ i

in [k − L, k]:

• compute the evolving normalized residue mean{gij−τ i} for j = τ i . . . k from the failure

signature equations 165 and 166 (replacek by j with initialization∆ξ̂f
i

τ i = 0);

• derive νimax from the residue realization{ρj} and its evolving mean{gij−τ i} such that

the exponent
∑k

j=τ i [−1
2 (ρj − νimax g

i
j−τ i)′ R−1

j (ρj − νimax g
i
j−τ i) ] in equation (173) is

maximal.

The potential maximum ofΛik is typed as theGeneralized Likelihood RatioLik (GLR) and the
associated threshold test as theGeneralized Likelihood Ratio Test(GLRT).

The quadratic form of the exponent in the numerator of equation (173) allows for straightforward
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determination ofνimax from the first derivative:

d
∑k

j=τ i [−1
2 (ρj − νi gij−τ i)′ R

−1
j (ρj − νi gij−τ i) ]

d νi
=

k∑

j=τ i

[−νi gij−τ i

′
R−1
j gij−τ i + 1

2(g
i
j−τ i

′
R−1
j ρj + ρ′j R

−1
j gij−τ i)]

(174)

Because of the equal variances 2σ2 and equal covariances12σ
2 in matrixRj , the zero-making of

the first derivative can be expressed as:

−νi
k∑

j=τ i

gij−τ i

′
R−1
j gij−τ i +

k∑

j=τ i

gij−τ i

′
R−1
j ρj = 0 (175)

The amplitudeνi = νimax(τ
i), determined by:

νimax(τ
i) =

∑k
j=τ i gij−τ i

′
R−1
j ρj

∑k
j=τ i gij−τ i

′
R−1
j gij−τ i

, (176)

will yield themaximumvalue ofΛik(τ
i, νi) for νiǫR because the second derivative of the exponent

of the numerator equals
∑k

j=τ i [−gij−τ i

′
R−1
j gij−τ i ], which is always negative.

Thus the GLR or ratio-maximumLik is determined each time pointk by (i) evaluation ofΛik via
equation (173) forτ i = k − L . . . k with amplitudeνmax

i (τ i) by equation (176), and (ii) taking
the maximum ofΛik(τ

i, νimax(τ
i)) overτ i in [k − L, k]:

Lik = max
τ iǫ[k−L,k]

Λik(τ
i, νimax(τ

i)) (177)

The GLRT still requires choices for the ‘window length’L and the threshold value for fault
detection; the GLRLik represents the upper limit for the ratio between the probabilities of the
suppositionsH i

1 andH0: ‘an additive fault has occurred in the sensor set, most likely sensor
ith ’ versus‘the complete sensor set is okay’; a value of the ratio’s upper limit below a chosen
threshold value then implies NO additive fault. Threshold selection is a trade off between the
false alarm rate and the detection time.

Since a single sensor faultf i affects all three elements of the Kalman filter inputycm, it will
also affect all elements of the output predictionŷcm in the Coleman domain. Further, although
the ‘true’ output predictionŝy are obtained via the ‘modulation matrix’P from ŷcm, the sensor
fault f i will yetaffect all elements of̂y. Thus, all three elements of the ‘disturbed’ residue vector
rf will differ from the ‘undisturbed’r. This implicates that the GLRT, when performed for all
assumed sensor faults, that is to say for the (alternate) suppositionsH i

1 for i = 1, 2, 3, may yield
high values in all three cases. So, the GLRT does not tellwhich sensor in the fault-identified
sensor set is fault. However, when we in addition monitor themean value change, the faulty
sensor can yet be selected from the faulty set. This is fixed by direct comparison of the outputs of
the sensor pairs: the output difference from the faulty pairwill show a sharp increase of its mean
value.
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6.4.5 Multiplicative fault detection based on residue variance observation

Detection The multiplicative sensor fault can be described as

yfk = ∆iyk (178)

= ∆i(PkC̃ xk + PkD̃ ucmk ) + Pk ek (179)

where∆i is a unit diagonal matrix except that one element isδi and 0 < δi < +∞. The
expression for the residue then becomes:

rfk = PkC̃ε
f
k + (∆i − I)PkC̃ xk + (∆i − I)PkD̃ uk + Pk ek (180)

Just in the case of additive faults, the residue can be split up in the valuerk by equation (154) that
would occur without sensor fault and a contribution from thesensor fault:

rfk = rk + ηk + (∆i − I)PkC̃ xk + (∆i − I)PkD̃ uk,

with ηk resulting from the sensor fault(∆i − I)yk that is fed into the Kalman filter:

ξ̂k+1 = ξ̃x̂k +KP−1
k (∆i − I)yk (181)

ηcmk = C̃ξ̂k (182)

ηk = PkC̃ξ̂k (183)

The deterministic part from(∆i−I)PkD̃ uk does not contribute to the residue variance. However,
ηk and(∆i − I)PkC̃ xk definitely make the residue variance change.

The change of the residue variance can be easily observed withthe so calledenergy detector
according to [46]. The energy detector monitors the sum of thesquared residue in a sliding
window. An alarm is generated if

V (ri) =

k∑

i=k−N+1

r2i > h

whereN is the window size andh is the threshold. This method also appeals to the intuitive way
of fault detection.

Since all three elements of the residue are affected by any multiplicative sensor fault, it is not
trivial to isolate the faulty sensor. Fortunately, this canbe done by the comparison of the outputs
of the sensor pairs, just as mentioned above in the case of theadditive sensor fault.

6.4.6 Sensor Fault Isolation Logic and Recombination

As shown in Figure 48, there are two sets of sensors, identified by SA andSB, which send signals
to the corresponding Kalman filtersKFA andKFB. The individual sensors areSA1 , S

B
1 , · · · , SA3 , SB3 .

For the two sensors at each blade, the differencesγi = SAi − SBi , i = 1, 2, 3 of their output are
monitored all the time. Due to measured noise,γi is not equal to zero even when the sensors
are not faulty. However, we can monitor the mean value changeor variance change of these
differences in order to detect in which sensor pair a fault has occurred. Of course, this kind of
examination of sensor pairs only works in case of only one sensor fault. In the meanwhile, the
sensor set in which a fault has occurred can be detected from the changes of the residuesrA,k or
rB,k of the two parallel Kalman filters by the CUSUM, GLRT and Energy detector presented be-
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Figure 48 Dual sensor redundancy and dual Kalman filters for fault isolation

fore. For instance, ifγ2 andrA,k have changed, whilerB,k, γ1 andγ3 have not, we can conclude a
fault in sensorSA2 has occurred. If both the residuesrA,k or rB,k have changed while the compar-
ison outputsγi, i = 1, 2, 3 have not, the faults are from other parts of the system ratherthan from
the sensors, under the assumption that faults can occur in only one sensor set in a time instance
or short time interval. For example, our approach is insensitive to model errors and uncertainties.
Althoug the model may be perfect for the wind turbine in its ‘design state’, a model error will
arise when the behavior of a component changes, e.g. by icing, contamination and deterioration.

6.4.7 Fault detection from difference outputs based on GLRT (concepts)

The GLRT could possibly also be applied to the difference output γi of sensor pairs In case of
dual sensor redundancy, the GLRT would then just tell that a sensor fault has occured close to a
certain time-instance. However, the sensor set cannot be identified. When three sensor sets are
installed (SA, SB andSC), three configurations of difference outputs exist:γABi , γACi andγBCi .
In case of a sensor fault in a specific set, the GLRT ononeconfiguration will not give an alarm;
this very configuration identifies the two sound sensor sets.

We expect that the GLRT on the difference outputs is very well suited for fault detection in case of
output stuck and multiplicative faults. In both cases the difference outputs often show arelatively
very significant abrupt jump when the fault appears. The relative size of the jump is often much
smaller when the sensor sets are individually considered.

The way of determining the likelihood ratio-maximum (GLR) forsuppositions on the residues of
the difference outputs must be substantially reviewed: thevariance matrix of the residue vector
hugely changes when a sensor fault appears. In addition, it is not allowed to use the failure
signature equations for the normalized residue affection in case of output stuck and multiplicative
faults. Normalized residue affection plays a key role in thedetermination of the GLR: it enables
simple computation of the fault amplitude that maximizes the likelihood ratio. However, we

ECN-E–12-028 127



believe that the concept of normalized residue affection still can be applied as an approximation
because of the expected relatively strong abrupt jumps and the limited time window ‘k − L, k’
for evaluation of the GLR.

6.5 Simulation Results

In this section, we will show some simulation results for several fault scenarios. The simulation
is done with a linearized wind turbine model. The wind speed signals for the blades are generated
by a lookup table, which caters for the rotational sampling of the wind turbulence by the rotor
blades, for the wind shear and for the tower shadow.

Fig 49 to 51 are the simulation results in case of an additive abrupt jump fault in sensorSA2 (the
first sensor at the second blade). Figure 49 shows the comparison outputγ2 of the sensor pair
{SA2 , SB2 } and the mean value change detection output from the CUSUM LS filter. The detector
begins to alarm repeatedly after188s, which identifies a fault in sensorSA2 or SB2 . Figure 50
shows the mean value change of the residue of Kalman filterKFA. The residue of Kalman filter
KFB did not change; the trivial results are not included in a picture. The three subplots in Figure
51 show the likelihood ratio-maximum for the GLRT under the three alternate suppositions of an
additive fault in sensorSA1 , SA2 amdSA3 (H1

1 ,H2
1 andH3

1 versusH0). It can be seen that under
all these three alternate suppositions, the likelihood ratio-maximum has a large peak after the
abrupt jump fault in the only sensorSA2 has occurred. Thus, the faulty sensor in a set can be
only detectedby the GLRT, but it can not beisolatedout of the sensor set in which it has been
detected. The likelihood ratio-maxima for the GLRT on the residues of Kalman filterKFB were
also determined. Since no fault has occurred in sensor setB, the results are trivial (no peaks) and
are not pictured.

Figure 52 shows the comparison outputγ2 of the sensors at the second blade when a slow drifting
fault starts inSA2 or SB2 . The lower subplot shows the estimate of the mean value from the
CUSUM LS filter. It can be seen that the alarm frequency is increasing after the slow drifting
fault appears. The mean value change of the residue of Kalman filter KFA is shown in Fig.53.
The GLR are shown in Fig.54 for the three alternate suppositionsof anabrupt jumpfault (H i

1, i =
1, 2, 3). These GLR’s show some peaks after the slow drifting fault appears on time point100s
but donot estimate the time instance of the fault at all. Nevertheless, we can still conclude from
the sensor pair output difference and the GLRT on the residuesof KFA that sensorSA2 has a slow
drifting fault.

The simulation results in case of a sensor output stuck are shown in Fig. 55 and Fig. 56. The
CUSUM LS filter has an irregular output. The figures show that the mean value ofγ2 and that
of the residue of Kalman filterKFA have changed. Finally, a multiplicative fault in sensorSA2
is considered. The fault is a gain change to1.5 times of its normal value that appears from
300s. Figure 57 and Figure 58 show the detection results of energy detector, which are based
on the variance of the sensor pair output differenceγ2 and the residues of Kalman filterKFA
respectively. The sum of the squared output differenceγ2 in a finite window (N points) undergoes
a large change quite soon after the appearance of the fault on300s. The variance of the residues
of KFA also change significantly after300s; this does not occur with the residues ofKFA (not
pictured). It is not difficult to draw a conclusion that the sensorSA2 has a fault.

6.6 Conclusion

This section presents a method for sensor fault diagnosis (detection and isolation) applied to large
scale wind turbine systems. The diagnosis of sensor faults, focused on the flapwise blade root
bending moments, is very important for successful reduction of blade loads by controlling the
aerodynamic conversion of the rotor blades individually. In a working point, the model of a wind

128 ECN-E–12-028



0 100 200 300 400 500 600
-2

0

2

4

6

8
x 10

5

γ 2

0 100 200 300 400 500 600
0

2

4

6

8

10

12
x 10

7

g k(γ
2)

Time [Second]

 

 
g

k
(γ

2
)

threshold

Figure 49 Upper subplot shows the comparison outputγ2 of the sensors at the second blade.
The lower subplot shows the mean value change detection estimate from the CUSUM
LS filter, where the dashed line is the threshold.

0 100 200 300 400 500 600
0

1

2

3
x 10

5

g k(r
1 1)

0 100 200 300 400 500 600
0

1

2

3
x 10

5

g k(r
1 2)

0 100 200 300 400 500 600
0

1

2

3
x 10

5

g k(r
1 3)

Time [Second]

Figure 50 Mean value change detection results of the three residues ofKalman filterKFB from
the CUSUM LS filter, where the dashed line is the threshold.

turbine is still time varying and it is subjected to unknown inputs; the latter cannot be considered
as white noise. With the aid of the Coleman transformation and a closed loop subspace identifi-
cation technique, a linear time invariant model description can be obtained, which is subjected to
white noise disturbance. A modified Kalman filter is derived forresidue generation.

To the end of sensor fault diagnosis, a mean value method and ageneralized likelihood ratio
test (GLRT) are derived for additive fault detection. A variance change method has been fit
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Figure 52 Upper subplot shows the comparison outputγ2 of the sensors at the second blade
while sensorSA2 has slow drifting fault since 100s. The lower subplot shows the
mean value change detection estimate from the CUSUM LS filter,where the dashed
line is the threshold.

to the detection of multiplicative faults. The fault isolation is proceeded with the aid of the dual
redundancy sensors (sensor pairs on each blade) where two Kalman filters are utilized. Simulation
results show that the proposed methods are suitable for bothsensor fault detection and sensor fault
isolation.
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Figure 53 Mean value change detection results of the three innovationoutputs of Kalman filter
1 from the CUSUM LS filter while sensorSA2 has slow drifting fault since 100s.
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Figure 54 The top subplot is the GLRT result while assuming sensorSA1 has slow drifting
change. The middle one is the GLRT output while assumingSA2 has slow drifting
change. The bottom subplot is the result while assuming thatSA3 has fault.

The sensor fault diagnosis method based on mean value observations appears suitable for the
abrupt jump additive fault, the slow drifting additive fault and the output stuck additive fault.
However, it cannot provide the time instance on which the fault appears. In contrast, the proposed
GLRT gives a good estimate of this time instance in case of abrupt jump fault and this kind of
fault is very fast detected. Although the GLRT can also be usedfor thedetectionof slow drifting
faults, the time-instance of appearance cannot be accurately estimated; the test measure is not
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Figure 55 Upper subplot shows the comparison outputγ2 of the sensors at the second blade
while sensorSA2 is stuck at a constant output since 200s. The lower subplot shows the
mean value change detection estimate from the CUSUM LS filter,where the dashed
line is the threshold.
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Figure 56 Mean value change detection results of the three residues ofKalman filterKFA from
the CUSUM LS filter while sensorSA2 is stuck at a constant output since 200s, where
the dashed line is the threshold.

sensitive to small slow variations, so the GLRT only respondsafter a while. Output stuck faults
can be fairly well detected with the proposed GLRT while it is expected that a modified GLRT
enables much better detection of these faults. As so far, only the proposed variance change
method appeared suited for the detection of multiplicativefaults.
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Figure 57 Upper subplot shows the comparison outputγ2 of the sensors at the second blades
while sensorSA2 has a1.5 times of its normal gain since 300s. The lower subplot
shows the variance change detection estimate from energy detector, where the dashed
line is the threshold.
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Figure 58 Variance change detection results of the three innovation outputs of Kalman filter
KFA from the energy detector while the gain of sensorSA2 is changed to its1.5 times
since 300s, where the dashed line is the threshold.

The method presented in this section is limited to one workingpoint. Extending the current result
to a large working region or the full region of the wind turbine system is our future work. We
foresee to examine alternate designs of the GLRT, like configurations focused on output stuck
and multiplicative errors. Furthermore, the modeling errorwill also be considered into our future
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analysis. Some techniques for sensor fault diagnosis in [17,34] are very useful for our future
investigation.
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7 Accommodation of yaw motor failures using IPC control

7.1 Summary

The objective of this section is the design of an integrated fault tolerant control (FTC) scheme
against the yaw motor failure. To this end, first a yaw motor fault detection scheme is developed.
Once the motor failure is detected, the blade pitch angles are controlled individually (IPC) in
such a way as to create a yawing moment of the rotor. Advanced algorithms are used for the
design of the fault detection scheme and the IPC yaw controller. To this end, firstH−/H∞ index
observer approach in finite frequency domain is used in designing the fault detection observer.
Next, anH∞ pitch controller is designed and integrated with the the fault detection observer. The
performance of the integrated FTC solution is verified in TURBU simulations.

7.2 Introduction

In the previous Section 6, methods are developed for the detection and diagnosis of faults in the
blade root bending moment sensors. The objective of the present section is to design an integrated
fault tolerant control (FTC) scheme that handles yaw motor failures. To this end, a wind turbine
model constructed with the software TURBU [76], is used (see Figure 59). Here, the IPC is used
to replace the yaw motor, once its failure is detected. The main focus is on the development of a
an integrated fault detection and FTC scheme.

Figure 59 FTC scheme of yaw motor failure in the TURBU model

In the rest of the section, first the TURBU model is described in Section 7.3. It is chosen to
design the fault detection observer based on the mixedH−/H∞ index observer approach in finite
frequency domain as proposed in [96]. The detailed observer design and results are presented in
Section 7.4. In section 7.5, anH∞ controller is developed and integrated with the fault detection
observer. The performance of the entire fault tolerant control system is then verified in simulation.
Section 7.6 gives some concluding remarks.
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7.3 TURBU wind turbine model

TURBU wind turbine model [76] generates a complete linearized aerohydro-elastic model with
control, wave and wind inputs for 3-bladed wind turbines.

Specifically, TURBU models the following substructures or components: support structure, drive
train, rotor blades, and wake. These individual physical models are then linearized under equilib-
rium conditions, defined by the equilibrium driving variables, the mean induction speeds in the
rotor annuli, and the mean values of linear (set as zero) and angular degrees of freedom (DOFs).
These individual models are lumped into one single state-space model description, as schemati-
cally illustrated in Figure 60.

Figure 60 Interdependency of state space models for the distinct substructures of the wind tur-
bine [76].

The matrices in the lumped state-space model depend on the rotor azimuth angle, and are hence
periodically varying. As described in Section 1.3.1, Coleman transformation can be used to
transform the variables to fixed-frame coordinates, which results in an LTI model. ECN’s TURBU
program generates a reduced-order continuous-time state-space model of this LTI form with80
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states,8 inputs, and10 outputs. This model can be represented as,

ǫ = T−1
vcm(ψ̄) · v, (184)

ẋcm = Acmxcm +Bcmǫ, (185)

ycm = Ccmxcm +Kcmǫ, (186)

y = Tycm(ψ̄) · ycm. (187)

Here,v, y represent the I/Os in the fixed coordinates;ψ̄ is the rotor Azimuth angle; andTycm and
T−1
vcm are respectively the Coleman and inversion Coleman transformation.

Due to the model order reduction, the states have no physicalmeaning. On the other hand, Table
6 shows the physical entities of the I/Os in the Coleman domain; i.e. ǫ, ycm.

Table 6 I/O description of the TURBU model.

No. Inputs ǫ Outputs ycm
1 axial wind collective pitch angle
2 tilt-oriented wind tilt pitch angle
3 yaw-oriented wind yaw pitch angle
4 collective pitch angle mean flap moment
5 tilt pitch angle tilt flap moment
6 yaw pitch angle yaw flap moment
7 yaw torque rotor speed
8 generator torque yaw orientation
9 tower nodding speed
10 tower naying speed

7.4 Detecting yaw motor failure by robust detection observer

In this project, we design the fault detection observer based on the mixedH−/H∞ index ob-
server approach in finite frequency domain as proposed in [96]. Since the technical details of this
approach have been presented in section 6 of [96], we shall not repeat them here, but show the
details of how to apply this approach in designing the robustdetection observer for the yaw motor
failure in the TURBU model.

7.4.1 Modeling yaw motor failure as an additive fault

Recall the TURBU model in the Coleman domain:

ẋcm = Acmxcm +Bcmǫ,
ycm = Ccmxcm +Kcmǫ.

Here,xcm ∈ R
80, ǫ ∈ R

8, ycm ∈ R
10.

From the I/O descriptions in Table 6, we know that the first threeinputs are wind signals,ǫ1, ǫ2, ǫ3,
which are not measurable. We hence have to treat them as unknown disturbances. The seventh
input channel,ǫ7, is the yaw torque, and is hence the signal that can be changeddue to a yaw
motor failure. Therefore, we can define the control and disturbance signals as:

ucm =
[
ǫ4 ǫ5 ǫ6 ǫ7 ǫ8

]T
,

dcm =
[
ǫ1 ǫ2 ǫ3

]T
;
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and correspondingly the control, disturbance, and fault input matrices as

Bcm,u =
[
Bcm,4 Bcm,5 Bcm,6 Bcm,7 Bcm,8

]
,

Bcm,d =
[
Bcm,1 Bcm,2 Bcm,3

]
,

Bcm,f = Bcm,7.

Here,Bcm,i, i = 1, · · · , 8 represents the i-th column of the matrixBcm. The control, disturbance,
and fault feedthrough matrices,Dcm,u, Dcm,d, Dcm,f , can be defined in the same way.

We can now rewrite the TURBU model in a more convenient fashionfor fault detection observer
design; i.e.

ẋcm = Acmxcm +Bcm,uucm +Bcm,ddcm +Bcm,ffcm, (188)

ycm = Ccmxcm +Dcm,uucm +Dcm,ddcm +Dcm,ffcm. (189)

In the case that the yaw motor fails, it cannot provide the yawing torque to the TURBU model;
i.e. ucm,4 = 0. This is equivalent toucm,4 = ǫ7 andfcm = −ǫ7 in the above model with additive
faults.

7.4.2 Optimal observer design method

Fault detection relies on comparing the difference betweenthe measured outputsycm and the
estimated ones from a model, denoted byŷcm. This difference is called residual, i.e.r = ycm −
ŷcm. The output estimates,̂ycm, can be computed via an observer; i.e.

˙̂xcm = Acmx̂cm +Bcm,uucm + Lo(ycm − ŷcm), (190)

ŷcm = Ccmx̂cm +Dcm,uucm, , (191)

r = ycm − ŷcm. (192)

Denotee = xcm − x̂cm. The error dynamics can be written as

ė = (Acm − LoCcm)e+ (Bcm,d − LoDcm,d)dcm + (Bcm,f − LoDcm,f )fcm,

r = Ccme+Dcm,ddcm +Dcm,ffcm,

The transfer function fromdcm, fcm to r is therefore

r = Nd(s)dcm +Nd(s)dcm,
Nd(s) = Ccm[sI − (Acm − LoCcm)]−1(Bcm,d − LoDcm,d) +Dcm,d,
Nf (s) = Ccm[sI − (Acm − LoCcm)]−1(Bcm,f − LoDcm,f ) +Dcm,f .

Note that in the observer, only the measurable I/Os are processed. Neither wind nor fault signals
is used, because they are unknown. The objectives of the observer (190,191,192) are hence to

• stabilize the error dynamics, orstability;

• minimize the effect of the unknown disturbancedcm to the residualr, or robustness;

• and maximize the effect of the unknown faultfcm to the residualr, or sensitivity.

The design, which takes all the three objectives into accountis called mixedH−/H∞ index
observer approach [95]. Here, theH∞ index deals with the robustness; while theH− index treats
the sensitivity.
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Figure 61 Wind signals.

In this specific wind turbine application, we are only interested in finite specific frequency bands.
The wind signals along three directions and their spectrums are respectively plotted in Figures 61
and 62. Obviously, the wind signals have dominating power atlow frequencies. We therefore
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Figure 62 Power spectrums of the wind signals.

consider the robustness of the observer against the wind disturbance especially in the frequency
range of[0, 2]Hz, or [0, 4π]rad/s. On the other hand, the yaw motor failure can be described
by fcm = −ǫ7, which is as slow as0.4deg/s, or0.007rad/s, due to the limitation in the yawing
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motion. The mixedH−/H∞ approach in finite frequency domain as proposed in [96] is hence a
suitable tool to solve this problem. This approach respectively requires solving three groups of
linear matrix inequalities (LMIs), listed in the following subsections.

7.4.2.1 Stability conditions

Given arbitrary real scalarq, p, satisfyingpq < 0. FindX,Y , such that

P0 ≻ 0, (193)[
0 P0

P0 0

]
≺ He

([
−X

ATcmX − CTcmY

] [
−qI pI

])
, (194)

Here,He(M) = M + M∗, for a square matrixM . The superscript “*” denotes conjugate
transpose.

7.4.2.2 Robustness conditions

Denote the frequency range of the disturbance signals as[ωdl, ωdh]. Specifically, in this wind
turbine application,ωdl = 0 andωdh = 4π. Defineωdc = (ωdl + ωdh)/2. Chooseγ > 0.
Let X,Y satisfy (194). Let the following matrices be defined, with the new decision variables
Q1, P1, V1.

T =




I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I


 ,Π1 =

[
I 0
0 −γ2I

]
,Ξ1 =

[
−Q1 P1 + jωdcQ1

P1 − jωdcQ1 −ωdlωdhQ1

]
,

R1 =
[
0 0 I 0

]
,Ψ1 = T

[
Ξ1 0
0 Π1

]
T T .

FindQ1, P1, V1, such that

Q1 ≻ 0, (195)

Ψ1 ≺ He







−I 0 0
0 −I 0

ATcm CTcm −CTcm
BT
cm,d DT

cm,d −DT
cm,d






XR1

V1
Y R1





 , (196)

0 ≻




−I 0 0
0 −I 0

ATcm CTcm −CTcm
BT
cm,d DT

cm,d −DT
cm,d




⊥

Ψ1




−I 0 0
0 −I 0

ATcm CTcm −CTcm
BT
cm,d DT

cm,d −DT
cm,d




⊥,T

. (197)

Here, the superscript “⊥” denotes orthogonal complement. Then the maximum singular value of
Nd(s) in the frequency range[ωdl, ωdh] is upper bounded byγ.

7.4.2.3 Sensitivity conditions

Denote the frequency range of the fault signal as[ωfl, ωfh]. Specifically, in this wind turbine
application,ωfl = 0 andωdh = 0.007. Defineωfc = (ωfl + ωfh)/2. Chooseβ > 0. LetX,Y
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satisfy (194). Let the following matrices be defined, with the new decision variablesQ2, P2, V2.

Π2 =

[
−I 0
0 β2I

]
,Ξ2 =

[
−Q2 P2 + jωfcQ2

P2 − jωfcQ2 −ωflωfhQ2

]
,

R2 =
[
I 0 I −Bcm,f

]
,Ψ2 = T

[
Ξ2 0
0 Π2

]
T T .

FindQ2, P2, V2, such that

Q2 ≻ 0, (198)

Ψ2 ≺ He







−I 0 0
0 −I 0

ATcm CTcm −CTcm
BT
cm,f DT

cm,f −DT
cm,f






XR2

V2
Y R2





 , (199)

0 ≻




−I 0 0
0 −I 0

ATcm CTcm −CTcm
BT
cm,f DT

cm,f −DT
cm,f




⊥

Ψ2




−I 0 0
0 −I 0

ATcm CTcm −CTcm
BT
cm,f DT

cm,f −DT
cm,f




⊥,T

. (200)

Then the minimum singular value ofNf (s) in the frequency range[ωfl, ωfh] is lower bounded
by β.

7.4.2.4 Summary of the design method

Algorithm 7.1 (Observer design by the mixedH−/H∞ index approach in finite
frequency domain).

1 Choose the bounds,γ, β > 0, the frequency ranges,[ωdl, ωdh] and[ωfl, ωfh],
and the scalarsp, q.

2 Find X,Y,Q1, P1, V1, Q2, P2, V2, such that the LMIs (193, 194, 195, 196,
197, 198, 199, 200) hold.

3 Compute the observer gain by

Lo = (Y ·X−1)T .

The observer such designed stabilizes the error dynamics of the observer, and guarantees the per-
formance of the observer, in terms of its robustness to the wind disturbances and its sensitivity to
the fault signal. This design problem can be solved by the standard SDP toolboxes, like YALMIP
[52].

7.4.3 Implementation of the design method

Recall thatxcm ∈ R
80. The order of the model is too large for the optimal design algorithm 7.1

to be computed on a normal PC. A model order reduction is hence essential. To this end, we
follow the standard procedures of a balanced realization, and an elimination of those balanced
model states corresponding to relatively small Hankel singular values. The criteria of the model
reduction is to enforce the DC gain of the reduced model to match that of the original system.
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In this particular wind turbine application, we found that the order of the reduced state-space
model has to be smaller than 9, in order for the optimal designalgorithm to be computable on a
normal PC. In fact, with a ninth order reduced model, it took1.8 hours to solve the LMIs (193,
194, 195, 196, 197). On the other hand, by plotting the magnitude responses of the transfer
functions of the original system, we found that the bandwidth of the system is as low as 1rad/sec;
and the transfer functions behave like first-order systems. These motivated us to reduce the order
of the original TURBU model to 2, which was further reduced to 1by a minimal realization.

With this first-order model, we then implemented Algorithm 7.1, with following parameters:

γ = 10−3, β = 10−2, ωdl = 0, ωdh = 4π, ωfl = 0, ωfh = 0.007, p = 1, q = −2.

Unfortunately, Algorithm 7.1 did not end up with a feasible solution. We also tried to tune the
parameters listed above, but still could not get a feasible solution. This motivated us to get rid of
some of the LMI constraints listed in Algorithm 7.1.

Indeed, what we can discard are the LMIs for the sensitivity performance. This is because the
fault that we are dealing with is the yaw motor failure. This isa very severe fault, rather than a
tiny change in the yawing torque that has to be detected by an observer, which is highly sensitive
to it. After deleting the sensitivity LMIs, a feasible solution was found for the set of LMIs (193,
194, 195, 196, 197); i.e. with only the stability and robustness constraints. The observer gainLo
was found to be

[10.0315, −83.4437, 1230.1, 0.0002, −0.00035, 0.0059, 142.8778, −813.15, −226.6369, 3.7882].

The continuous-time observer (190,191,192) then has to be discretized at the sampling frequency
of 50Hz, which is the sampling frequency used by the controllers in the TURBU model.

7.4.4 Simulation results

In this section, we show the fault detection results using the optimal observer designed in the
previous section, which is robust against wind disturbances.

We used theMatLabfile “sim_ttb_tbu_incl_YAW.m” from ECN in simulating the TURBU model,
together with the wind data contained in “wind.mat”. Three “abnormal” events were considered
in the simulations:

• a big step change in the axial wind from 50 seconds on, see Figure 61;

• a wind gust in the time interval[50, 60] seconds, see Figure 61;

• yaw motor failure from 80 seconds on, see Figure 63.

The wind orientation and rotor orientation during the simulation are shown in Figure 64. Obvi-
ously, without the yawing torque, the rotors could not follow the wind orientation, which then
reduced the power production of the turbine. This is obviously what we have to handel by the
controller reconfiguration later on.

The fault detection result is shown in Figure 65. The 2 norm of theresidual vectors at each
sampling instant was computed. The detection threshold was chosen as2.5×1018. The detection
delay was1.44 seconds. Two observations were made from the result.

• The residual is robust to the step change in the axial wind. Tofurther elaborate on this,
we designed an observer, only stabilizing the error dynamics, instead of guaranteeing the
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0 50 100 150
−10

0

10

20

30

40

50

60
wind orientation (solid) and rotor orientation (dashed)

de
g

Time [s]

Figure 64 Wind and rotor orientation with the yaw motor failure from 80seconds.

robust performance. The detection result is shown in Figure 66. Clearly, without the ro-
bustness, the yaw motor failure is masked beneath the wind disturbances, and cannot be
detected.

• The yaw motor failure results in an increase in the residual energy, much bigger than the
wind gust did.

We finally did a further verification of the robustness of the designed observer to the wind distur-
bances. We doubled the two outputs from theMatLab funciton “genwindgust.m”, and simulated
the TURBU model and the observer all over again. The result is shown in Figure 67. Obviously,
the doubling of the wind gust strength did not invalidate therobust performance of the observer.
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Figure 66 Detecting the yaw motor failure with a stable-only observer.

It is also worth mentioning that the large magnitudes of the residual energy are due to the reduc-
tion of the TURBU model from 80-th order to first order, since themodel reduction is inevitable
in using Alg. 7.1.
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Figure 67 Detecting the yaw motor failure with a robust observer in thepresence of doubled
wind gust.

7.5 Control reconfiguration via IPCs

7.5.1 Control objectives

The consequence of the yawing motor failure has been illustrated in Figure 64. Obviously, the
rotor cannot be directed to the wind orientation, when no yawing actuation is available in the
plant. This then significantly reduces the power production, and may even damage the turbine.

The main objective is therefore to use the “redundant” actuators in the turbine to compensate for
the loss of the yawing motor. As introduced in section 7.2, weintend to use the individual pitch
controllers (IPCs) to fulfill this task. This is possible, because the input “yaw pitch angle” has a
significant influence on the output “yaw orientation”, whose transfer function is shown in Figure
68. Here, the transfer function is derived from the TURBU model in the Coleman domain as
given in (184, 185, 186, 187), and has an order of80. The first control objective is to track the
wind orientation by designing the control signal of the “yawpitch angle”.

On the other hand, from Figure 61, the “yaw-oriented wind” is the disturbance to the yawing
dynamics, and has to be taken into account in the controller design. The transfer function is
shown in Figure 68. The second control objective is hence to reject the effect of the unknown
“yaw-oriented wind”.

Besides, the actuator limitations have to be taken into account. Since ECN is still in the process
of patenting its constrained IPC controller, it is not the scope of the current SusCon project to
verify it in the FTC design.

Taking into account the above objectives, we chose to useH∞ control design to improve the
tracking and disturbance rejection performance.

7.5.2 Control design

TheH∞ control design considers the closed-loop plant with a structure illustrated in Fig. 70.
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Here,Wr,Wu,We,Wd are weighting filters. TheH∞ controllerKc(s) can be designed by solv-
ing the following problem.

min
Kc(s)

‖H(s)‖∞,

where the “interconnection matrix” is defined by

[
Ze(s)
Zu(s)

]
= H(s) ·

[
D(s)
R(s)

]
.

Here,Z,D,R respectively represent the Lapalace transform of the time-domain signalsz, d, r.
This problem can be solved by an LMI approach [24].

Unfortunately, the original 80th-order model induces heavy computational burden for anH∞

control design. We shall also first reduce the model order. Similar to the observer design, we
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Figure 70 Interconnection structure forH∞ control design.

reduced the plant model to the following 2nd-order description,

Ycm,8(s)

E6(s)
=

0.06101s2 − 0.4258s+ 3.768

s2 + 2.245s+ 0.06244
. (201)

For the disturbance model, we simply used an upper-bounding1st-order filter, i.e.Wd, with
matched DC gain of the following form,

Wd(s) =
−0.05387
s+ 0.05

. (202)

The other weighting filters were chosen as

Wu = 0.5, Wr(s) =
0.1

s+ 0.1
, We(s) =

5s+ 0.05

s2 + 5s+ 0.01
.

Here,We was chosen to yield good tracking performance and also to reduce the speed of the
closed-loop response due to the yawing motion limitation,whose bode plot is illustrated in Fig.
71.
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The designedH∞ controller turned out to be

Kc(s) =
27.55s5 + 510.1s4 + 1151s3 + 251.7s2 + 18.52s+ 0.4351

s6 + 44.99s5 + 505.6s4 + 1978s3 + 316.5s2 + 12.79s+ 0.08032
. (203)

The unit step response of the closed-loop plant is shown in Fig.72.

7.5.3 Simulation results

We now show the integrated FTC results using both the optimal observer designed in section 7.4
and theH∞ IPC controller designed in this section.

We used the sameMatLabfile “sim_ttb_tbu_incl_YAW.m” in simulating the TURBU model, to-
gether with the wind data contained in “wind.mat”, as in section 7.4. The yaw motor failure was
injected into the simulation from 80 seconds on, see Figure 63. The motor failure was detected
at 81.44 seconds, when the IPC controller (203) was switched on. The resulted rotor orientation
was illustrated in Figure 73. Obviously, the IPC controller (203) re-directed the turbine toward
the wind orientation, after the yaw motor failed. The controlsignal, yaw pitch angle, is shown in
Figure 74, which had acceptable amplitude.

7.6 Conclusions

In this report, we have studied the TURBU model with yawing motion, designed a robust fault
detection observer against yaw motor failure, tuned a robust IPC controller as a remedy of the
motor failure, and developed an integrated FTC scheme for the TURBU model.

The designed observer has a good performance, in terms of its robustness to wind gust and step
changes in the axial wind. The integrated FTC scheme is effective in reconfiguring the yawing
system of the wind turbine.

On the other hand, through the experience in implementing the model-based optimal observer
design on the TURBU model, we found two difficulties in implementing model-based methods:

• For a large-scale system, a model itself is very difficult to build (c.f. [76]).

• Even if a very accurate mode is available, it may not be directly utilized in observer (and
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controller) design, because its order may be too large for the optimization problem to be
computable. When model reduction is necessary, model-plant mismatch is then inevitable.

The difficulties in model-based designs have motivated data-driven designs in the recent funda-
mental development of the fault detection literature; e.g.[20, 60]. This then provides a new future
direction for data-driven FTC of wind turbines.
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Part IV

Extreme Event Control (EEC)
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8 Dealing with wind gusts in combination with wind direction changes

Summary

This section focuses on the problem of extreme wind gust and direction change recognition
(EG&DR) and control (EEC). An extreme wind gust with direction change can lead to large
loads on the turbine (causing fatigue) and unnecessary turbine shut-downs by the supervisory
system due to rotor overspeed. The proposed EG&DR algorithm isbased on a nonlinear observer
(extended Kalman filter) that estimates the oblique wind inflowangle and the blade effective
wind speed signals, which are then used by a detection algorithm (CUSUM test) to recognize
extreme events. The nonlinear observer requires that blade root bending moments measurements
(in-plane and out-of-plane) are available. Once an extremeevent is detected, an EEC algorithm
is activated that (i) tries to prevent the rotor speed from exceeding the overspeed limit by fast
collective blade pitching, and (ii) reduces 1p blade loads by means of individual pitch control
algorithm, designed in anH∞ optimal control setting. The method is demonstrated on a complex
nonlinear test turbine model. For the EEC method, a Dutch patent is granted [79] and a world
patent is pending.

8.1 Introduction

Extreme wind conditions, such as wind gusts and/or wind direction changes, can lead to very
large turbine loads causing fatigue, automatic shut-downsor even damage to some turbine com-
ponents. Such effects could be circumvented by means of timely recognition of the extreme
event (extreme event recognition), followed by a promptly and proper control system reaction
(extreme event control). In this section, the extreme wind gust and direction change recognition
(EG&DR) is performed by means of estimating the oblique inflow angle (yaw misalignment) to-
gether with blade-effective wind speed signals from measurements on the flapwise (out-of-plane)
and leadwise (in-plane) bending moments in the blade roots.These estimates are used to recog-
nize extreme events (wind gusts and/or wind direction changes), which activates an extreme event
control (EEC) algorithm. The EEC has on the one hand the purpose of preventing rotor overspeed
(which can trigger complete turbine shutdown by the supervisory system) by collectively pitching
the blades toward feather, and on the other hand to reduce 1p (once per revolution) blade loads
by individually pitching the blades.

The problem ofrotor-effectivewind speed estimation has been addressed in the literature on sev-
eral occasions, where the usual approach is to estimate the aerodynamic torque on the rotorTa(u),
which is subsequently inverted to obtain the rotor-uniformwind speedu. The estimation ofTa
is done either by neglecting the rotor dynamics and using thestatic power-wind curve [69, 54],
or by considering a simple first-order model of the rotor dynamics (i.e. neglecting shaft torsion)
[72, 48, 64]. Recently, somewhat more advanced models have been used, including first shaft
torsion mode to the rotor dynamics [59]. In estimating the aerodynamic torque, the majority of
these methods rely on the computation of the time-derivative of the rotor speed measurement, and
are as such very sensitive to measurement noise as well as to unmodelled higher order dynamics
such as tower sidewards motion and collective blade lead-lag motion. To avoid this, appropri-
ate filtering of the rotor speed is necessary, which inevitably introduces time delay and, hence,
sacrifices the performance of the wind estimator. More advanced methods have, though, also
been studied, including extended Kalman filter [54], linear Kalman filter in combination withTa-
tracking control loop [59], or augmented-state nonlinear filters [64]. Still, all these publications
have several things in common: they all assume one single rotor-effective wind speed signal, no
yaw misalignment, a rigid rotor and tower, and use equilibrium-wake aerodynamics based on
static power-wind curves.

To the best of the authors’ knowledge there has been no publication on simultaneous estimation

ECN-E–12-028 153



linear
structural

model
(Turbu)

nonlin.
BEM

D

M

D

controller

blade
effect.
wind

helix
realiz.

wind gust

θcmθ

Tg

Ω ψ β

hi

u1

u2

u3

∫



δφA,b

δV A,b
n

δV A,b
l






δφA,b

δV A,b
n

δV A,b
l



cm



δqA,bf,n

δqA,bf,l

δqA,bt






δqA,bf,n

δqA,bf,l

δqA,bt




cm

Figure 75 Turbine simulation scheme

of blade-effective wind speeds and yaw misalignment angle, which isin the basis of the EG&DR
algorithm developed in this section. More specifically, an augmented state extended Kalman fil-
ter (EKF) is utilized, based on a nonlinear wind turbine model.This model consists of a linear
structural dynamics module (SDM) on which aerodynamic forces and torques are acting as com-
puted by a nonlinear aerodynamic conversion module (ADM), driven by realistic blade-effective
wind speed signals. Compared to the model used in the Kalman filter, a model of an even higher
complexity is used for simulation and analysis, the main components of which are given in block-
schematic form in Figure 75 (in which the physical meaning of the signals is described later on).
These components are:

• 40-th order linearized structural dynamics model (SDM), obtained using the software TURBU

[76], with degrees of freedom in tower foundation, blade flanges and drive train, and in-
cluding pitch actuator dynamics,

• nonlinear aerodynamic conversion module (ADM) based on blade element momentum
(BEM) theory, including

- dynamic wake effects as modeled by theECN Differential Equation Model[67],

- Glauert’s azimuth-dependent correction term for the axialinduction speed in case of
oblique inflow [73],

- correction on the angle of attack due to rotor coning, as implemented in the nonlinear
aero-elastic wind turbine simulation tool PHATAS [49],

• linear blade pitch controller regulating the filtered generator speed at its rated level (when
operating at above-rated conditions), and consisting of a PI-controller in series with low-
pass filter at the 3P blade frequency, notch filter at the first tower sideward frequency, and
notch filter at the first collective lead-lag frequency,

• nonlinear generator torque controller based on static optimal-λ QN-curve at below rated
conditions andconstant powerproduction above-rated, operating on the filtered generator
speed signal (same three filters used as in pitch controller),

• additional azimuth-dependent nonlinearities arising from the Coleman transformations be-
tween the fixed reference frame (in which the input/output signals of the SDM are defined)
and the rotating reference frame (in which the signals of theADM are defined), see blocks
M (modulation) and D (demodulation) in Figure 75,

• realistic blade effective wind speed signals are generated based on the helix approximation
concept, as proposed in [43, App. C], including both a deterministic term for modeling
wind shear, tower shadow, tilt and yaw misalignment, wind gust, and a stochastic term that
models blade-effective turbulence.
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The EKF uses a simplified model in which the structural dynamics model is reduced to order
20, and the ADM model excludes dynamic wake effects, as well as the effects of the structural
dynamics onto the aerodynamics, i.e. the effects of the vibration and deformation of the blades
and the tower onto the apparent wind speeds are neglected (the leadwise speeds of the blade
elements resulting from the rotation of the rotor is, of course, not neglected, only the variations
around these speeds).

Based on the blade-effective wind speeds and oblique inflow angle, estimated by the EKF, an
extreme event detection mechanism is used, consisting of a cumulative sum (CUSUM) test that
detects (significant) changes in the mean value of the estimated signals. Once the extreme event
flag is raised by the CUSUM test, an EEC algorithm is activated thatconsists of two components.
The first one is a rotor overspeed prevention algorithm that immediately starts pitching the blades
to feather with the maximally allowed pitch speed, and at thesame time sets the reference genera-
tor torque equal to its rated value. This action has the purpose to prevent rotor overspeed in order
to avoid a possibly unnecessary turbine shutdown by the supervisory system. The conventional
power control is switched on again when either the (filtered) rotor speed begins decreasing, or
the pitch angles have reached a suitably defined reference value, which is a function of the axial
component of the (estimated) wind speed. The last one is computed off-line under the assump-
tion of rated rotor speed and rated generator torque. The process of switching the conventional
control algorithm back on is performed in a bumpless manner by means of proper controller state
re-initialization. The second component of the EEC consists ofan individual pitch control (IPC)
algorithm aiming at the reduction of 1p blade loads, which are rather large under oblique inflow
conditions. A modern optimal-H∞ control methodology is used for the design of the IPC. This
loads reduction control should be only activated after the rotor overspeed prevention system is
deactivated, as their simultaneous activity would requireblade pitch speeds exceeding the max-
imal allowable speed. In fact, the IPC could, principally, belet working even when there is no
extreme event, although the resulting continuous cyclic blade pitching might be undesirable. In
the implementation in this section, the IPC is only active whenever the estimated oblique inflow
angle is larger (in absolute value) than10o.

The section is organized as follows. The next subsection explains the notation used throughout
this section, as well as the physical meaning of the used variables. Subsection 8.3 describes the
structure and the main components of the turbine simulationmodel. The algorithm for detection
of extreme events is developed in Subsection 8.4, while extreme event control is the topic of
Subsection 8.5. The complete EG&DR-EEC method is tested in simulations in Section 8.6.

8.2 Notation and Symbols

For a scalar or vector variablev, v̄ denotes its equilibrium or mean value, whileδv = v − v̄
is called the (current) variation around the equilibrium value. An superscriptcm, as invcm,
means that the variable is defined in multi-blade coordinatesas obtained by performing a Coleman
demodulation (see Section 8.4.1) of the signalv (v being defined in the rotating reference frame).
Subscripts/subscriptsb andA, as inUA,bn , denote the number of the blade (b = 1, 2, 3) and
the number of the blade element (A = 1, 2, . . . , Nann) for which the variable is defined. For
simplicity of notation it is assumed in the ADM that the number of blade elements is equal to the
number of annuli, and that the length of theA-th blade element is equal to the breadth of annulus
A. The operationA ⊗ B denotes the Kronecker product betweenA andB, while vec (()A)
stacks the columns of the matrixA below each other into one vector. The operator⊕ represents
the direct sum of matrices, i.e.A⊕B = blockdiag(A,B). Then-by-n identity matrix is denoted
asIn, andδb,i is the Kronecker delta function.

The following symbols (with SI dimensions) are used in the text:

cA cord length of blade elementA,
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CL, CD, CM lift, drag, and pitch-wise torque coefficients,
M b
x,M b

z lead-wise (in-plane) and flap-wise (out-of-plane) bladeb root bending moment,
Mk (= [M1

x ,M
2
x ,M

3
x ,M

1
z ,M

2
z ,M

3
z ]
T ) vector of blade root bending moments,

Pk state covariance matrix in the extended Kalman filter,
qA,bt aerodynamic pitch-wise moment (nose-down positive) of elementA of bladeb,
qA,bf,n , qA,bf,l aerodynamic forces in normal and leadwise direction of elementA of bladeb,
R rotor radius,
rA distance from hub center to center of blade elementA,
Tg generator torque reference (output of controller),
Ts, T

ctr
s sample time turbine model, sample time of controller

Ū mean undisturbed wind speed in the longitudinal wind field direction,
Ūax, Ūyw, Ūtlt axial, yaw-oriented and tilt-oriented components ofŪ
ŪAi , V̄ A

i equilibrium axial and tangential induction wind speeds,
δUAi dynamic term on the axial induction wind speed,
δUA,bi,corr Glauert’s correction term toUAi for oblique inflow,

U
A2/3

i axial induction wind speed of annulus at2/3R
ub bladeb effective wind speed,
V̄ A
n , V̄ A

l equilibrium normal and lead-wise effective wind speed at blade elementA,
δV A,b

n , δV A,b
l normal and lead-wise effective wind speed variation at elementA of bladeb,

x, xa state of the (reduced) SDM model, augmented state
αA,b angle of attack of elementA of bladeb,
β additional (toφ̄yw) yaw misalignment angle for modeling wind direction change,
θb pitch angle reference for bladeb (output of controller),
ρ air density,
φA,b pitch angle of elementA of bladeb,
φ̄yw, φ̄tlt equilibrium yaw and tilt angles of the wind speedŪ (see Figure 76),
ψb, ψ azimuth angle of bladeb, rotor azimuth
δψ azimuth offset angle due to oblique inflow orientation,
Ω, Ωf rotor speed, filtered rotor speed,

8.3 Turbine Simulation Model

The turbine simulation model represents a typical 3-bladed horizontal axis wind turbine (HAWT).
The model consists of an integration of several blocks, as sketched on Figure 75. These blocks
are explained in more detail in the following subsections.

8.3.1 Structural dynamics system (SDM)

The SDM block consists of a linearized model, obtained with thesoftware TURBU [76]. The
model assumes rigid blades and tower, but contains degrees of freedom in the blade flanges, in
the tower foundation, in the rotor shaft, and includes the pitch actuator dynamics. Although the
blades are considered rigid, there areNann = 14 blade elements per blade, allowing for a better
representation of the aerodynamic forces, as computed fromthe ADM block, described in Section
8.3.3. The model (see Figure 75) has:

• 40 states: positions and speeds in 3 directions for the three blade flange elements and the
tower bottom element, rotational position and speed for thetwo drive-train elements, and 4
states per blade for modeling the servo-pitch actuators at the three blades (all states defined
in multi-blade coordinates, see Section 8.4.1),

• 130 inputs: 3 reference blade pitch anglesθcm, one reference generator torqueTg, 3Nann
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Figure 76 Definitions of tiltŪtlt, yawŪyw and axialŪax oriented components of the equilibrium
wind vectorŪ , and yawφ̄yw and tilt φ̄tlt angles.

blade element torquesqcmt , 3Nann normal forcesqcmf,n and3Nann leadwise forcesqcmf,l , all
in multi-blade coordinates, and

• 133 outputs: rotor speedΩ, 3 blade root out-of-plane bending momentsM cm
z , 3 blade root

in-plane bending momentsM cm
x , 3Nann blade element pitch angles(δφA,b)cm, 3Nann

normal velocities(δV A,b
n )cm and3Nann leadwise velocities(δV A,b

l )cm, also in multi-blade
coordinates.

The inputsθcm andTg are controlled inputs, the outputsΩ, M cm
z , andM cm

x are assumed mea-
sured, and the remaining inputs and outputs are used for interconnecting the SDM with the ADM.

8.3.2 Wind generation

The generated blade effective wind speedsub have two components: a deterministic component
which is the same for all blades and is used to represent wind gusts, wind shear and tower shadow,
and a stochastic turbulence component, which is computed onthe basis of the helix interpolation
algorithm, described in [43, App. C]. These blade-effectivewind speeds are computed in such a
way that the resulting flapwise blade root bending moments approximate (in terms of spectrum)
those arising from a three-dimensional wind field turbulence. The blade effective wind speed
signals are defined in longitudinal wind field direction (i.e. parallel to the undisturbed wind
vector Ū ). In addition to that, an oblique inflow angleβ is generated by the wind generation
module, which represents yawed flow.

8.3.3 Aerodynamic module (ADM)

Due to page limitation, only a summary of the ADM algorithm isgiven here. For details, see
[43].

Algorithm 8.1 (ADM) .
Equilibrium values and parameters fromTURBU: Ūax, Ūyw, Ūtlt, ŪAi , V̄ A

i , V̄ A
n , V̄ A

l , φ̄A,b, q̄A,bf,n ,

q̄A,bf,l , q̄A,bt , rA, cA,R, ρ, CL(α), CD(α), CM (α).

From SDM and wind module:ψ, δφA,b, δV A,b
n , δV A,b

l , β, ub
From ADM at previous time instant:δUAi
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Step 1 Compute the undisturbed wind speeds in axial, yaw and tilt orientation, including turbu-
lence and wind gusts contained in the blade-effective wind speed variationsub:



Uβ,gustax

Uβ,gustyw

Uβ,gusttlt


 =



cos(φ̄tlt) cos(φ̄yw + β)
cos(φ̄tlt) sin(φ̄yw + β)

sin φ̄tlt



(
Ū +

1

3

3∑

b=1

ub

)
(204)

Step 2 Compute Glauert’s correctionδUA,bi,corr to the axial induction speed

δUA,bi,corr =
15π

64R
rA tan


arctan




√(
Uβ,gustyw

)2
+
(
Uβ,gusttlt

)2

Uβ,gustax − UA2/3

i


 /2


 cos(ψb − δψ)UA2/3

i

Step 3 Compute setting angles of blade elementsφA,b, including angle of attack correction due
to rotor coning.

Step 4 Compute normalUA,bn and leadwiseUA,bl effective wind speeds and angle of attacks:



δubax
δubyw
δubtlt


 =



cos(φ̄tlt) cos(φ̄yw + β)
cos(φ̄tlt) sin(φ̄yw + β)

sin φ̄tlt



(
ub − 1

3

∑3
b=1 ub

)

UA,bn = Uβ,gustax − ŪAi − V̄ A
n + δubax − δUAi + δUA,bi,corr − δV

A,b
n ,

UA,bl = δV A,b
l − V̄ A

l − V̄ A
i + sin(ψb)

(
Uβ,gustyw + δubyw

)
− cos(ψb)

(
Uβ,gusttlt + δubtlt

)
,

αA,b = arctan
(
UA,b

n

UA,b
l

)
− φA,b.

(205)

Step 5 Compute normal and lead-wise forces and pitch-wise torquesper blade element

δqA,bf,n = 1
2ρcA

(
CL(α

A,b)UA,bl + CD(α
A,b)UA,bn

)√(
UA,bn

)2
+
(
UA,bl

)2
− q̄A,bf,n ,

δqA,bf,l = 1
2ρcA

(
CL(α

A,b)UA,bn − CD(αA,b)UA,bl

)√(
UA,bn

)2
+
(
UA,bl

)2
− q̄A,bf,l ,

δqA,bt = −1
2ρc

2
ACM (αA,b)

((
UA,bn

)2
+
(
UA,bl

)2)
− q̄A,bt .

(206)

Step 6 Update dynamic term on axial induction speed, to be used in next time instant,δUAi ,
using the ECN Differential Equation Model.

8.3.4 Conventional controller

The conventional controller is typical and contains two loops [71]: pitch control for generator
speed regulation (active above rated only) and generator torque control for power regulation (ac-
cording to optimal-λ QN-curve below rated, and constant power above rated). Bothloops act
on the rotor speed filtered with a series of low-pass filter at the3P frequency (4th order inverse
Chebyshev type II filter with cutoff frequency of(3P − 0.8) rad/s and 20 dB reduction), band-
stop filter around the first tower sidewards frequencyfsd (2nd order elliptic filter with stop-band
[0.85fsd, 1.15fsd] rad/s, 30 dB reduction and 1 dB ripple), and a band-stop filter at the first col-
lective lead-lag frequencyfll (4th order elliptic filter with stop-band[0.8fll, 1.05fll] rad/s, 30 dB
reduction and 1 dB ripple). The pitch controller is a PI compensator designed to achieve a gain

158 ECN-E–12-028



0 2 4 6 8 10 12 14 16 18 20
15

20

25
Rotor speed

[r
pm

]

0 2 4 6 8 10 12 14 16 18 20

0

10

20
Pitch angles

[d
eg

]

0 2 4 6 8 10 12 14 16 18 20
2

2.5

3
x 10

4 Generator torque reference

Time [s]

[N
m

]

0 2 4 6 8 10 12 14 16 18 20
−5

0

5
x 10

6 Blade root out−of−plane bending moments

Time [s]

[N
m

]

0 2 4 6 8 10 12 14 16 18 20

−2

0

2
x 10

7 Tower foundation fore−aft bending moment

Time [s]

[N
m

]

Figure 77 Turbine simulation under extreme rising gust and directionchange att = 5 sec,
without EEC

margin of 2 and a phase margin of 45 degrees.

8.3.5 Problem Formulation

In this section, an extreme rising wind gust with simultaneous wind direction change is simulated.
These have been chosen as specified in IEC 61400-1 as “extreme coherent gust with direction
change (ECD)”: 15 m/s rising wind gust (on top of the mean windŪ = 15 m/s and the additional
blade-effective turbulence) in conjunction with a direction change of720/Ū = 48o. A simulation
of the complete turbine model with the described extreme event occurring5 sec after the begin-
ning of the simulation, is shown in Figure 77. On the top subplot of the figure the rotor speedΩk
(the fluctuating [black] curve), together with its filtered versionΩfk (the smoother [green] curve)
are given. The rated speed̄Ω, being approximately17.7 rpm is given by the bottom dotted line,
while the overspeed limit, which should not be exceeded as this would trigger the supervisory
system to start an emergency stop of the turbine, is given by the top dashed line. The overspeed
limit is set to 15 % above the rated value (20.3 rpm). The supervisory system is not modeled
in the simulation, so the turbine is not stopped after the rotor speed exceeds the overspeed limit
aroundt = 9 sec. The second subplot in Figure 77 gives the collective pitchangle of the rotor
blades. In the beginning of the simulation the controller works at below-rated operation region,
and switches to above rated when the filtered rotor speed exceeds18.7 rpm (= Ω̄ + 1 rpm). The
third subplot (middle) shows the generator torque. The constant-power control strategy above
rated is easily recognizable by the inverse proportionality of the generator torque to the filtered
rotor speed. The fourth subplot gives the three flap-wise bladeroot bending moments. The 1p
loads, resulting from the oblique inflow, are clearly seen in the second half of the simulation.
Finally, the last (fifth) subplot in Figure 77 shows the tower base fore-aft bending moment.

The purpose of the section is to develop algorithm for extremeevent control that
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• is capable of preventing rotor overspeed, when possible, and

• achieves 1p blade root bending moment reduction.

To this end, the extreme event should be detected at an early stage, which is the focus of the next
section.

8.4 Extreme Event Recognition

The recognition of extreme events, proposed here, is based onthe estimation of the wind pa-
rametersub andβ by means of a nonlinear estimator (EKF), which estimates are then used in
a CUSUM test for detecting changes in their mean values as resulting from extreme wind gusts
and/or extreme wind direction changes. This section describes these components in detail.

8.4.1 Simplified model

The algorithm for EG&DR utilizes an EKF for the estimation of a so-calledaugmented statexa,
consisting of the turbine structural model statex and the unknown inputs (i.e. the three blade
effective wind speed signalsub and the oblique inflow angleβ). In order to somewhat reduce
the computational complexity of the EKF, it is based on a more simplified model than the one
used for turbine simulation, described in Section 8.3. This simplified model also consists of an
interconnection of an SDM and ADM blocks, although their complexity is somewhat simplified
as described below:

(ADM) The aerodynamics neglects the effects of the movement of the blades and tower onto
the torques and forces acting on the blade elements (with theexception of the leadwise
blade element velocity due to rotor rotation, which is, of course, not neglected). This boils

down to settingδV A,b
l =

V̄ A,b
l

Ω̄
(Ω − Ω̄) and δV A,b

n = 0 in Section 8.3.3. Furthermore,
the blade element pitch angle variations are assumed to be constant over the blade, i.e.
δφA,b = δφb, and are assumed measured at the blade roots. The third simplification is that
equilibrium wake is considered, being equivalent to setting δUAi = 0 (and skipping Step 6
in the algorithm of Section 8.3.3). The variations of the axialinduction wind speed around
the equilibrium value will then be (approximately) incorporated into the blade effective
wind speed estimates as if there was equivalent longitudinal wind speed variation.

(SDM) The order of the structural model which is used for simulatingthe wind turbine (being
40), is reduced to 20 using the model reduction by balanced truncation technique. In this
way, the 20 least controllable and observable states in the SDM model are removed. This
model reduction is performed on the SDM model with all 130 inputs inputs, but only the
10 measured outputs (i.e.Ω, δφb,M cm

x andM cm
z ).

(Ts) The model reduction, mentioned above, is performed after resampling the SDM model to
T ctrs = 0.02 sec (the sampling time SDM for turbine simulation isTs = 0.005 sec).

Define the Coleman transformationTM (·) (modulation) and inverse Coleman transformation
TD(·) (demodulation)

TD(ψ)
.
=

1

3




1 1 1
2 sin(ψ1) 2 sin(ψ2) 2 sin(ψ3)
2 cos(ψ1) 2 cos(ψ2) 2 cos(ψ3)


 , TM (ψ)

.
=



1 sin(ψ1) cos(ψ1)
1 sin(ψ2) cos(ψ2)
1 sin(ψ3) cos(ψ3)


 = T−1

D (ψ).

The mapTD is used to transform variables, defined in the rotating reference frame, to the non-
rotating reference frame (e.g.M cm

z = TD(ψ)Mz), while TM is used for the inverse operation.
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Using this notation, the simplified model can be compactly described in the following state-space
form

Aerodynamics: δdk = fADM (δΩk, δφk, uk, βk)

Structural dynamics:
xk+1 = Axk +Bδvcmk +Bdδd

cm
k

δM cm
k = Cxk +Dδvcmk +Ddδd

cm
k

δΩk = CΩxk +DΩδv
cm
k

δφcmk = Cφxk +DΩδv
cm
k

Coleman (de)modulation:
δMk = (I2 ⊗ TM (ψk))δM

cm
k

δφk = TM (ψk)δφ
cm
k

δdcmk = (I3Nann
⊗ TD(ψk))δdk

δvcmk = (TD(ψk)⊕ 1)δvk

(207)

wherexk ∈ R
n contains the (reduced) SDM model state,δMT

k = [δM1
z , δM

2
z , δM

3
z , δM

1
x , δM

2
x , δM

3
x ]k

is a vector of in-plane and out-of-plane blade root bending moments,δvTk = [δθT , δTg]k ∈ R
4

contains the control signals (being the reference blade pitch angles and generator torque),uTk =
[u1, u2, u3]k represents the blade-effective wind speeds,δφTk = [δφ1, δφ2, δφ3]k contains the
blade pitch angles, and

δdk = vec






δq1,1n . . . δqNann,1

n δq1,1l . . . δqNann,1
l δq1,1t . . . δqNann,1

t

δq1,2n . . . δqNann,2
n δq1,2l . . . δqNann,2

l δq1,2t . . . δqNann,2
t

δq1,3n . . . δqNann,3
n δq1,2l . . . δqNann,3

l δq1,3t . . . δqNann,3
t



k




(208)
is a long vector consisting of all blade element normal and lead-wise force variations and pitch-
wise torque variations. The functionfADM (δΩk, δφk, uk, βk) represents the ADM output equa-
tions (206), rewritten in terms of the variables{Ωk, δφk, uk, βk} under the simplifying assump-
tions for the ADM, described in the beginning of this section.

The following nonlinear model then relates the inputs to the measured outputs

xk+1=Axk +B(TD(ψk)⊕ 1)δvk +Bd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk)

δMk=(I ⊗ TM (ψk)) (Cxk +D(TD(ψk)⊕ 1)δvk +Dd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk))
δΩk=CΩxk +DΩ(TD(ψk)⊕ 1)δvk,
δφk=TM (ψk)(Cφxk +Dφ(TD(ψk)⊕ 1)δvk)

(209)
where the rotor azimuthψk is viewed as known time-varying parameter sinceψk is needed in
fADM (δΩk, δφk, uk, βk) but depends only on the rotor speedΩ up to time instant(k − 1), but
not onΩk (and, hence, is not a function of the current state).

The goal is to construct a filter that uses the blade root bendingmoment measurementsMk to
estimate the statexk together with the unknown inputsuk andβk.

8.4.2 Augmented-state extended Kalman filter

For the purpose of EG&DR, the unknown inputsuk andβk in model (209) need to be estimated.
One way to do this is model them as the response of a given stochastic model to a random
white noise process, to append this model to the turbine dynamics model and then use a Kalman
filter to estimate both the state of the turbine and the state ofthe stochastic model from which
uk andβk are computed. Although blade-effective wind turbulence models do exist [81], their
parametrization is in practice not an easy task. A much more practical approach is the so-called
augmented-stateKalman filter technique, which is often used in the literaturefor the estimation
of (time-varying) unknown input signals (disturbances), see e.g. [45] and the references therein.
The basic idea behind this approach is to model the unknown input using arandom walk model

[
uk+1

βk+1

]
=

[
uk
βk

]
+ rk, (210)
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whererk is a zero-mean white Gaussian process with covariance matrix Rr. Usually, the co-
variance matrixRr of the noise termrk is viewed as design parameter that provides a trade-off
between tracking speed and smoothness of the estimates. Forsimplicity, it is often selected as
diagonal matrix. Faster tracking of the true signals can be obtained by appropriately increasing
the elements ofRr, which however results in less smooth (i.e. more noisy) estimates, and vice
versa.

Basically, the model (210) represents an integrated white noise variable, so that the output will
have its energy concentrated in the lower frequency band, and hence using such model is mostly
suitable for modeling constant or slowly varying signals. The blade effective wind speeds and
the wind orientation angle are naturally low frequency signals, making such kind of modeling
sufficient. Given the random walk model (210), the statex of the system (209) is augmented with
the unknown inputs, resulting in the following augmented-state model

xa
k+1︷ ︸︸ ︷


xk+1

uk+1

βk+1


 =

f(xa
k,ψk)︷ ︸︸ ︷


Axk +Bd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk)

uk
βk


+

B̃k(ψk)︷ ︸︸ ︷

B(TD(ψk)⊕ 1)

0
0


 δvk +

E︷︸︸︷[
0
I4

]
rk,

δMk =

g(xa
k,ψk)︷ ︸︸ ︷

(I ⊗ TM (ψk)) (Cxk +Dd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk))

+ (I ⊗ TM (ψk))D(TD(ψk)⊕ 1)︸ ︷︷ ︸
D̃k(ψk)

δvk,

that, using the equations forδΩk andδφk in (209), can compactly be written in the form

xak+1 = f(xak, ψk) + B̃k(ψk)δvk + Erk,

δMk = g(xak, ψk) + D̃k(ψk)δvk + ek.
(211)

The signalek, which is included in (211), is a zero mean white Gaussian processes with co-
variance matrixRe, which can be used to represent measurement noise. Of course, additional
measurements can be added to the blade root bending moments in (211) such as the rotor speed
and blade pitch setting angles, as in equation (209). However, this does not noticeably improve
the quality of the estimation and hence the measurementsδΩk and δφk will only be used to
parameterize the nonlinear functionfADM (δΩk, δφk, uk, βk).

An extended Kalman filter [8] can now be applied to the nonlinear state-space model (211) to
estimate the augmented statexak, containing the blade effective wind speedsuk and the oblique
inflow angleβk. The EKF can be summarized as follows

Algorithm 8.2 (Extended Kalman Filter).

Initialization x̂a0 = E{xa0}, P0 = E{(xa0 − x̂a0)(xa0 − x̂a0)T }.

Step 1 ComputeAk−1 = ∂f(xa, ψk)/∂x
a|xa=x̂a

k−1

Step 2 Time update

∣∣∣∣∣
x̂ak|k−1 = f(x̂ak−1, ψk) + B̃kδvk−1

Pk|k−1 = Ak−1Pk−1A
T
k−1 + ERrE

T

Step 3 ComputeCk = ∂g(xa, ψk)/∂x
a|xa=x̂a

k|k−1
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Step 4 Measurement update:

∣∣∣∣∣∣∣

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k +Re

)−1

x̂ak = x̂ak|k−1 +Kk(δMk − g(xak|k−1, ψk)− D̃kδvk)

Pk = (I −KkCk)Pk|k−1

Remark 8.1. The EKF requires the partial derivatives of the nonlinear functions with respect to
the state variables. These can be analytically computed [43,App. A]. Of course, they can also be
computed numerically; however, this results in a significant increase of the computational burden,
as well as in numerical inaccuracies. Another, still computationally involved, but derivative-free
alternative to the EKF is the unscented Kalman filter [94, 36].The author’s experience, however,
is that for the model described here it often runs into numerical problems due to the output
covariance matrix becoming numerically singular.

8.4.3 CUSUM test for Extreme Event Detection

The EKF, discussed above, estimates the turbine structural model statex, together with the blade
effective wind speed signalsu and the oblique inflow angleβ, contained in the augmented state
xa. Under normal conditions,u andβ will be stochastic signals with zero mean value, while
under extreme conditions their mean values will undergo a change. In order that appropriate
extreme event control actions are triggered timely, it is necessary to be able to detect such mean
value changes promptly (with small detection delay and no missed alarms), yet accurately (no
false alarms). An algorithm that directly looks at the current values of the estimateŝuk andβ̂k
would be fast but too sensitive to noise and inaccuracies in the estimates, and would trigger many
false alarms:

To circumvent this, a one-sided CUSUM test [2] is used here that offers a good speed/accuracy
trade-off. This algorithm, in combination with the EKF, detects an extreme wind gust at a very
early stage, before any significant increase of the (filtered) rotor speed. This makes it possible to
react timely by pitching the blades, keeping the rotor speedwithin allowable limits. The algorithm
can be summarized as follows

Algorithm 8.3 (CUSUM test).

Initialization Choose integersku (moving window length),ν (insensitivity parameter),h (thresh-
old) and set̂uf0 = û0 (vector with initial wind speed estimates),ǫ0 = 0.

Update Compute

∣∣∣∣∣∣∣

ûfk =
(ku − 1)ûfk−1 + ûk

ku
ǫk = max

(
0, ǫk−1 + ûk − ûfk − ν

)
.

Detection If (‖ǫk‖1 > h), setfee,k = 1, else setfee,k = 0.

The signalǫk ∈ R
3, computed by the CUSUM test, remains small under normal circumstances.

The first equation in the update step represents a moving average filter used to estimate the mean
value of the three blade effective wind speed signals. If thewind speed estimatêuk starts in-
creasing,ǫk will also increase until̂uk converges, at which point(ûk − ûfk) < ν andǫk will start
decreasing to zero again. In this way, an easy detection mechanism would be to put a threshold
h on the sum of the elements of the vectorǫk, so that an extreme event flag is raised (fee,k = 1)
whenever‖ǫk‖1 > h, where‖ · ‖1 denotes the vector1-norm. Oncefee,k gets one, the EEC al-
gorithm, described later on, will be activated, aiming at preventing rotor overspeed and reducing
blade loads. This is the subject of the next section. It shouldbe pointed out at this stage that
the extreme event flagfee,k can be pulled-down by either the CUSUM test algorithm above (i.e.
when‖ǫk‖1 ≤ h), or by the EEC algorithm itself (when it decides that no further pitching of
the blades is necessary, see Algorithm 8.4). In the later case the extreme event might not have
finished when the flag is pulled-down, but the EEC algorithm reckons no (further) action needed.
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8.5 Extreme Event Control

This section develops an algorithm for EEC that consists of two parts, (i) collective feedforward
pitch control for preventing rotor overspeed, and (ii) individual pitch control for blade load re-
duction. These two control loops are described in more detailin the following subsections.

8.5.1 Rotor Overspeed Prevention

As already shown in the simulation on Figure 77, the conventional PI pitch controller is uncapable
to keep the rotor speed within its limits under extreme wind gusts. The reason for that is that (a) it
reacts on the filtered rotor speedΩfk which is delayed by about 1 sec with respect to the true speed
Ωk, and (b) it does not respond quick enough. In order to react asfast as possible for preventing
rotor overspeed, once an extreme event flag is raised by the CUSUM algorithm in Section 8.4.3,
the EEC starts pitching the blades to feather with the maximally allowable pitch speed under
extreme conditionṡθmx,ext. This results in fast reduction of the rotor speed, but has as aside
effect a very large tower base fore-aft moment due to the large reduction of the rotor thrust force.
In order to limit the tower base moment, after some time∆teec (about 1 sec) the pitching speed
is reduced to the maximum pitch speed under normal conditions, θ̇mx.

The conventional generator torque control at above-rated conditions was designed to achieve
constant power, equal to the rated power (see Section 8.3.4).This implies a negative generator
torque sensitivity to rotor speed variation, i.e.∂Tg/∂Ω < 0. This has a destabilizing effect on
the rotor speed, which is stabilized by the pitch control algorithm. However, due to the very
slow dynamics of the pitch actuators, this results in higheroscillations of the rotor speed around
its reference (rated) value. At extreme conditions, this destabilizing effect is removed by using
a constant generator torque curve equal to the rated valueT̄g. This results, of course, in an
increase of the generated power of up to 10-15%. Whenever this is not acceptable for the power
electronics, the original constant-power generator torque curve should be used.

The EEC for rotor overspeed prevention is switched off once the extreme event flagfee,k is pulled
down to zero by CUSUM algorithm in Section 8.4.3, or whenever the pitch angleθk gets “close”
to a reference pitch angleθref,ext, dependent on the estimated axial wind speedÛβ,gustax,k

Ûβ,gustax,k = cos(φ̄tlt) cos(φ̄yw + β̂k)

(
Ū +

1

3

3∑

b=1

ûb,k

)
. (212)

More specifically,θref,ext(Û
β,gust
ax,k ) is defined as the collective pitch angle that, for axial wind

speedÛβ,gustax,k , rated rotor speed̄Ω and rated generator torquēTg, achieves azimuth-averaged

static aerodynamic torquēTa = T̄g. For a givenUβ,gustax , θref,ext is computed by solving the
following nonlinear optimization problem

θref,ext(U
β,gust
ax ) = argmin

θ
‖T̄a(Ω̄, θ, Uβ,gustax )− T̄g‖2.

The functionθref,ext(U
β,gust
ax ) is numerically computed off-line and stored for different values of

Uβ,gustax . Simple linear interpolation is then performed on-line.

To avoid unnecessary on/off switchings of the EEC due to fluctuations inθref,ext(Û
β,gust
ax ), hys-

teresis is introduced: the EEC will switch on only when the extreme event flag gets raised (i.e.
fee,k = 1 andfee,k−1 = 0) and the current collective pitch angle is at least∆θonee (e.g.5o) below
the reference pitch angle. The extreme event flag gets pulled down to zero (fee,k = 0), implying
EEC switch-off, by either the CUSUM test in Algorithm 8.3 (meaning that the extreme event has
ended), or when the difference between the reference pitch angle θref,ext(Û

β,gust
ax ) and the true
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current collective pitch angle drops below∆θoffee (e.g.4o), meaning that no further EEC action is
needed. The rotor speed limitation algorithm is can be summarized as follows.

Algorithm 8.4 (Collective EEC).

Initialization Select∆θonee , ∆θoffee < ∆θonee , teec = 0.

Step 1 Use the current EKF estimateŝuk andβ̂k to computeÛβ,gustax,k using(212).

Step 2 Run CUSUM test in Algorithm 8.3. Iffee,k = 0 then setteec = 0 and go to Step 5.

Step 3 Compute∆θee,k = θref,ext(Û
β,gust
ax,k )− 1

3

∑3
b=1 φ

b
k.

Step 4 If (fee,k−1 = 1 and∆θee,k ≥ ∆θoffee ) or (fee,k−1 = 0 and∆θee,k ≥ ∆θonee )
then ∣∣∣∣∣∣∣∣∣∣

switch conventional control off
teec ← teec + T ctrs ,

θk =

{
θk−1 + θ̇mx,extT

ctr
s if teec ≤ ∆teec,

θk−1 + θ̇mxT
ctr
s otherwise.

Tg,k = T̄g.

else ∣∣∣∣
teec = 0,
fee,k = 0.

Step 5 If fee,k−1 = 1 andfee,k = 0 then

∣∣∣∣
reinitialize conventional pitch control
switch on conventional control.

Notice that the conventional pitch and generator torque controllers are switched off when the EEC
becomes active. The selected EEC strategy causes no transient effects after the transition from
conventional control to EEC. The inverse transition (back to conventional PI control), however,
should be performed with much care since this can result in a very large transient. To prevent
this, the conventional controllers are properly reinitialized before being switched on. This can be
achieved by considering an interval ofN time steps back,[k −N, k − 1], and choosing the state
of the conventional controller at time(k − N) in such a way that, if the conventional controller
was active in the interval[k−N, k− 1], it would have produced a control signal that matches the
true control signal observed in this interval. This is described in more detail in [43, App. B].

8.5.2 Blade load reduction

As mentioned in the beginning of Section 8.5, besides rotor overspeed prevention, an important
issue under extreme wind gusts with direction change is the reduction of blade loads. A yawed
wind inflow results in large 1p blade load variations (see Figure 77), and a 0p (i.e. static) rotor
tilt moment, that can be reduced by means of individual bladepitch control. This is the purpose
of this section.

For IPC control design purposes, the nonlinear model (207) islinearized at a given operating
point, resulting in the following linear model in Coleman domain

T :

{
xk+1 = Ãxk + B̃θtyk + B̃uu

ty
k ,

M ty
k = C̃xk + D̃θtyk + D̃uu

ty
k

where the signalsutyk , θtyk andM ty
k contain the tilt and yaw oriented components of themulti-
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zk

Figure 78 Block scheme for IPC design.

blade blade effective wind speed vectorucmk , blade pitch anglesθcmk and flapwise blade root
bending momentsM cm

z , respectively6. The considered extreme event in this report (gust with
direction change) can be modeled by a nonzero constant tilt-oriented (i.e. first) component inutyk .
The collective pitch control loop has only a negligible influence on the rotor tilt and yaw moments
and has been left out for simplicity. Similarly, the controlsθtyk also barely affect the rotor speed
dynamics and need not be taken into consideration in the conventional rotor speed control design.

The goal here is to design a stabilizing controller that uses the rotor momentsM ty
k as inputs and

computes the control actionsθtyk so as to minimize the low frequency components of the rotor
moments’ signals. In the rotating reference frame this corresponds to the suppression of 1p load
components in the blades. In order to achieve zero steady state rotor moments, an integral action
will be included in the controller. Furthermore, the controlaction should not be too active at
certain frequencies, excited by the external wind disturbance, such as the 3p frequencyf3P , and
eventually the 6p frequencyf6P and the first tower frequencyftow. In addition to that, no high
frequency control activity is desired.

To achieve all these performance specifications, anH∞-optimal controller with integral action
will be designed, optimizing the transfer from the externalinputsutyk to some suitable chosen
weighted versions of the rotor moments and control action. More specifically, Figure 78 provides
an block-schematic view of the IPC design model. In order to include integral action into the
controller, the output of the systemT is appended with integrators (one integrator per output),
which integrated model is used for an optimalH∞ controller designKipc. Once designed, the
final controller is constructed by moving the integrators, used in the design model, to the inputs
of the computed controller (see the area inside the dashed curve on Figure 78).

Of course, an optimal controller designed based on the linearized turbine modelT will only
remain optimal at the working point at which the model is linearized. As the working point
continually changes, it is important that once the controller has been designed, its stability and
performance are evaluated at different working points. To achieve improved robustness proper-
ties to unmodelled dynamics, anH∞ controller is designed. It should be pointed out that it is
relatively simple to achieve better performance throughout the whole operation range of the tur-
bine by means of gain-scheduling. To this end, an approach similar to the conventional way of
including gain-scheduling collective pitch control algorithms [71] can be used, i.e. the gain of
the IPC controller can be scheduled as a function of the pitch angle in such a way that the DC

6Note that the tilt and yaw components (u
ty

k ) of themulti-bladewind signals should not be mistaken with the tilt
and yaw oriented components of the wind velocity vector relative to the rotorplane (see Figure 76). The former are
obtained as a result of the Coleman transformation of the three axial bladeeffective wind speeds and are such that
the yaw-oriented (tilt-oriented) component ofuty

k affects (mainly) the yaw (tilt) rotor moment. On the other hand,
the yaw-oriented (tilt-oriented) component of the wind velocity vector mainlyaffects the tilt (yaw) rotor moment,
respectively.

166 ECN-E–12-028



10
−1

10
0

10
1

10
2

10
3−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (rad/sec)
10

−2
10

−1
10

0
10

1
10

226

28

30

32

34

36

38

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (rad/sec)

Figure 79 Bode magnitude plots of the weighting functionsWu (left) andWM (right)

gain of the resulting open-loop transfer function remains constant. In practice, gain-scheduling
of the IPC controller is usually not necessary due to the limited open-loop gain change over the
operating region (it changes typically by a factor 2 over thefull load region).

In order to comply with these frequency domain design specifications, the controllerKipc is
designed by minimizing theH∞ norm of the closed-loop transfer from the external inputsutyk
to the weighted integrated rotor moments and weighted control signals, as shown in Figure 78
(see the generalized output signalzk). To this end, two weighting functions,WM andWu, can
be selected with Bode magnitude plots as shown on Figure 79. For producing the left subplot on
Figure 79, the weighting function for the control signals hasbeen chosen as

Wu(z) = 10(Fhp(z) + F3p(z)F6p(z)Ftow(z)− 2)I2, (213)

whereFhp(z) is a second order inverse Chebyshev high-pass filters (frequency fhp = 4P , re-
duction 20 dB, ripple 1dB), andF3p(z), F6p(z) andFtow(z) are second order inverse Cheby-
shev bandpass filters with the same reduction and ripple and bandpass intervals of[0.9, 1.1]f3P ,
[0.9, 1.1]f6P and [0.9, 1.1]ftow, respectively. All filters have been scaled to achieve unity DC-
gain, so thatWu computed via (213) has a DC gain of zero. The so-selected weighting function
Wu punishes control activity at frequenciesftow, f3P , f6P and higher. The weighting function
WM , on the other hand, puts a frequency domain weighting on the integrated rotor moments. As
there is integral action in the controller anyway, the lowerfrequencies need not to be weighted
additionally. Instead,WM could be used to eventually put some weighting on certain frequen-
cies within the desired controller bandwidth which are otherwise not sufficiently actuated by the
integral type control action. The weighting functionWM used for producing the right subplot
in Figure 79 is a lead-lag filter with lead frequency of 1 rad/sec, lag frequency of 5 rad/sec and
DC-gain of 20. Notice thatWM acts on the integrated rotor moments. Translating this to the
original the rotor momentsM ty, this results in some additional weighting of the frequencyband
[1, 5] rad/sec.

The augmented plant with the integrators and the weighting filters has then the following form

T a(z) :



 zk =




[
0 Wu(q

−1)
]

T ctr
s

1−q−1WM (q−1)T (q−1)

T (q−1)



[
utyk
θtyk

]
.

TheH∞ optimal controller forT a(z) is computed via the following optimization problem

Kipc = argmin
K
‖F(T a(z),K(z))‖∞,
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Figure 80 Simulated (solid blue) and estimated (dotted red) blade effective wind speedsub (top,
left) for case 1, and oblique inflow angleβ (right) for case 1 (top, right), case 2
(bottom, left) and case 3 (bottom, right)

whereF(T a(z),K(z)) denotes the closed-loop system,‖ · ‖∞ denote theH∞ system norm, and
wherein the optimization is defined over all controllersK(z) that have the same number of states
as the augmented modelT a(z). For more details on modern robust control design, the reader is
referred to [106]. The controllerKipc, designed in this way, will be a MIMO (2-by-2) transfer
function, mapping theintegratedrotor tilt and yaw moments to the tilt and yaw oriented blade
pitch angles. Moving the integrators back to the controllerresults in the final IPC

Kiipc = Kipc
[
T ctr
s

z−1
T ctr
s

z−1

]
.

8.6 Simulation

The performance of the complete algorithm, including extreme event recognition and control,
is demonstrated on simulation data, obtained with the nonlinear test turbine model described in
Section 8.3. The model represents a 3-bladed HAWT with rated power of 2.5MW, rotor radius
of R = 40 m, and rated rotor speed of̄Ω = 1.85 rad/sec. In the BEM module, the blades are
represented byNann = 15 elements. The structural model is linearized around an equilibrium
point corresponding to rated rotor speed, mean longitudinal wind speed ofŪ = 15 m/s (with
φ̄tlt = −5.138o [mainly due to tilted rotor] and̄φyw = 0.01o) and blade pitch angles of̄φb =
7.24o. The values selected for the tuning parameters of the EG&DR andEEC schemes are given
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Alg. Variable Value Description
EKF n 20 state dimension

x̂a0 0 initial state estimate

P0

[
10−4In+3

10−5

]
initial state covariance matrix

Rr

[
10−2I2

10−4

]
process noise covariance matrix

Re

[
103I3

102I3

]
measurement noise covariance matrix

Cusum ku 25 moving window length
ν 1 insensitivity parameter
h 100 threshold

EEC θ̇mx,ext 10o/s max pitch speed under extreme event
θ̇mx 4o/s max pitch speed under normal conditions
∆θonee 5o EEC activation zone
∆θoffee 4o EEC deactivation zone
F3p(z)

z4−3.973z3+5.948z2−3.977z+1.002
z4−3.953z3+5.883z2−3.908z+0.9774 3p band pass filter

F6p(z) 1 6p band pass filter
Ftow(z) 1 tower frequency band pass filter
Fhp(z)

10z2−19.48z+9.57
z2−1.554z+0.6415 control signal weighting filter

FM (z) 100z−98.1
z−0.9048 integrated rotor moments lead-lag filter

Table 8 Parameters used in the described algorithms.

case 1 2 3
Vgust [m/s] 15 15 3
βgust [deg] 48 30 -3

Table 9 Simulated wind gust cases

in Table 8. In order to evaluate the performance of the proposed algorithm under different wind
gust conditions, three different cases are simulated, as summarized in Table 9. The first case
corresponds to theextreme direction change(EDC) as specified in the norm IEC 61400-1. The
EDC consists of a risingVgust = 15 m/s wind gust with a simultaneous wind direction change
of βgust = 720/Ū degrees. The effects of this on the turbine loads have been described in
Section 8.3.5. The second case corresponds to the same rising wind gust (Vgust = 15 m/s) but a
different, smaller wind direction change angle (βgust = 30 degrees). This results in even larger
1p loads on the blades as compared to the first case due to the much larger axial component of
the wind velocity vector, i.e.cos(βgust)(Ū + Vgust). Hence, the second case has the purpose to
test the capabilities of the proposed algorithm to even moreserious wind gust conditions, than
specified in the IEC norm. The third case, on the other hand, has the purpose to test whether the
algorithm is not overly sensitive, and is not responding to minor events, which is not desirable
as the conventional controller should be able to handle them. For that purpose, the third case
comprises a 3 m/s wind gust in combination with a−3 degrees direction change. This last case
should not trigger the EEC algorithm. Different simulations are run. The turbine dynamics
is simulated at a sample rate of 200 Hz, while the controllers(CPC and IPC) work at 50 Hz.
In the time series, presented in the figures below, only the first20 seconds are plotted. The
(extreme) events occur 5 sec from the beginning of each simulation. For the power spectra plots
later on, the time series from the 10th sec to the end of the simulations are used, so that only
the data after the event occurrence (and after the transients have died out) is taken. The first
two cases are simulated two times, once with the EEC algorithm turned off (i.e. conventional
controller active all the time), and once with the EEC algorithm turned on. This makes it possible
to investigate to what extend the proposed EEC algorithm improves on the rotor speed control
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Figure 81 Turbine simulation under case 1 (extreme 15 m/s rising gust and 48 deg direction
change att = 5 sec) without EEC (left) and with EEC (right)

and load reduction under extreme gust conditions. The third case is simulated only once, since
even when the EEC algorithm is turned on, it doesn’t get activated by the EG&DR scheme as the
event is not recognized as major.

Evaluation of the EG&DR

The performance of the EG&DR scheme is determined by the accuracy of the estimates of the
EKF. To evaluate that, we will compare the simulated blade effective wind speedsub and the
simulated wind direction change angleβ to their estimates, computed by the EKF.

Figure 80 shows the performance of the EKF scheme under the three simulated scenarios. The
top left subplot represents the three simulated blade effective wind speeds (solid blue curves) and
their estimates (dotted red curves) by the EKF for case 1 only.The excellent accuracy of the wind
estimates remains unchanged under cases 2 and 3, though these are not reported here for the sake
of brevity. The remaining three subplots in Figure 80 depict the simulated oblique inflow angle
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Figure 82 Turbine simulation under case 2 (extreme 15 m/s rising gust and 30 deg direction
change att = 5 sec) without EEC (left) and with EEC (right)

β (solid blue curves) together with its EKF estimates (dotted red curves) for the three different
cases. Clearly, these estimates are sufficiently accurate for the detection of wind direction changes
since the estimates do not differ more than about±3 degrees from the simulated values.

Evaluation of the EEC

As discussed in Section 8.3.5, the purpose of the EEC algorithm is to prevent rotor overspeed
(that can trigger unnecessary emergency shutdown of the turbine) and to reduce large blade 1p
loads under extreme wind gust conditions. On the other hand,the EEC algorithm should remain
inactive under mild gust conditions. To demonstrate its performance, the rotor speedΩ, the blade
pitch anglesφb and the blade root out-of-plane bending momentsM b

z are next investigated under
the above-mentioned three load cases. Figure 81 pertains to load case 1, where the subplots on
the left hand side correspond to the case without EEC, while thesubplots on the right – to the
case with EEC. Clearly, when the EEC algorithm is not present, this load case leads to the rotor
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Figure 83 PSD of blade root flapwise bending momentsM b
z for case 1 (left) and case 2 (right),

without EEC (solid curves) and with EEC (dashed curves)

speedΩ getting much above its limit. This is due to the conventional controller remaining in
partial load regime until thefiltered rotor speedΩf (dashed green line) exceeds the rated speed
Ω̄ by 1rpm, at which point the true speedΩ is already too large. The EEC algorithm, on the
other hand, detects the gust at an early stage (at time6.125 seconds) and starts pitching the
blades to feathering position, preventing rotor overspeed(see top and middle right-hand side
subplots). Moreover, once the estimated oblique inflow angleexceeds 10 degrees (the red dashed
curve on top-right subplot in Figure 80), the IPC control is activated achieving substantial blade
load reduction, as observed by comparing the bottom subplots on Figure 81 during the second
half of the simulation (where the IPC is active). The achieved blade load reduction can be also
appreciated by observing the left subplot on Figure 83 that depicts the spectra of the blade root
out-of-plane bending moment variationsδM b

z in the cases without (solid red curve) and with
(dashed black curve) EEC. The simulation results under case 2 are depicted in Figure 82. Again,
the subplots on the left hand side correspond to the case without EEC, while the subplots on the
right – to the case with EEC. As already mentioned, this load case is even more serious than the
first one. This can indeed be seen by observing that the rotor speed (top left subplot in Figure
82) rises to as much as 23 rpm (i.e. more than 30% above the rated value). Similarly, the 1p
blade loads also have a much higher amplitude as compared to case 1. With EEC, again, the rotor
speed remains within its limits (top right subplot in Figure 82), while the IPC action, initiated
after the oblique inflow angle exceeds 10 degrees, achieves significant 1p blade load damping, as
can be seen from the bottom right subplot in Figure 82, as well as from the power spectra in the
right-hand side subplot of Figure 83.

Finally, case 3 is simulated only once, i.e. with the EEC algorithm on, although it does not get
activated by the EG&DR scheme since the simulated event does not get recognized as a major
one by the CUSUM test. As a result, the conventional controller remains active through the whole
simulation. The rotor speedΩ, the blade pitch anglesφb, and the blade root out-of-plane bending
momentsM b

z are given in Figure 84. It can be observed, indeed, that no EEC is necessary in this
case as the rotor speed remains well within its limits, and the blade root bending momentsM b

z

after the event occurrence remain comparable to those before the gust.
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Figure 84 Turbine simulation under case 3 (3 m/s rising gust and -3 deg direction change at
t = 5 sec). Due to the mild gust condition, the EEC does not get activated.
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9 Fast wind gust detection with GLRT

Sumamry

Extreme conditions are detected from wind speed estimates orresidues of a Kalman filter. The
Kalman filter is derived from an augmented turbine model with ‘wind dynamics’, similar to that
for fault detection in the previous section. ECN developed detection algorithms that are based on
the cumulated sum of the wind speed estimates or on generalized maximum likelihood ratio tests
(GLRTs) for the residues.

Likelihood ratio tests can be performed for the residues of the Kalman filter. These tests allow
for the identification of abnormal behavior that relates to gusts.

9.1 Brief method description

In this section, an alternative method to the CUSUM test, presented in Section 8.4.3, is described
using the GLRT. A detailed description of the method can be found in the patent [79]; here only
a brief summary is provided.

Contrary to the model-free (signal-based) CUSUM method, theGLRT method relies on a discrete-
time linearized model of the wind turbine of the form

x(n+ 1) = Ax(n) +B u(n) +Bd d(n)

yvalid(n) = C x(n) +Du(n) +Dd d(n)
(214)

whereinu is the control signal vector containing the generator torque and three blade pitch angle
setpoints in fixed coordinates,x is the state of the wind turbine,y is the vector of measurements
on the wind turbine, andd is the disturbance signal dominated by wind speed variations. This
model can be constructed, e.g., by discretizing the model described in Section 1.3.1.

The wind speed variations that dominate the disturbance signal d can be modeled as blade (root)
effective wind speed signals; one or two per blade. If only axial wind speed variations are taken
into account, then only one wind speed signal per blade applies. A power spectrum matrix for-
mulation for these blade effective wind speed signals is given in equation 122 on page 122. The
existence of such a power spectrum matrix allows for the deriavation of a linear state space model
(wind model) that generates the wind speeds ind from completely uncorrelated Gaussian dis-
tributed noisee (white noise):

xw(n+ 1) = Aw xw(n) +Bw e(n)

d(n) = Cw xw(n) + e(n)
(215)

It is clear that we can add this wind model to the above wind turbine model formulation by
equation 214. This yields a so called augmented model. For this model, a Kalman filter can be
constructed which now directly relates to (three) Gaussianwhite noise sourcese.

Now, assume that an extreme wind speed or wind direction change occurs. The evolution of the
residuer in addition to its “gust-free value”e can then be approximated by the outputs of the
turbine state space model by equation 214 that is driven by anassumed related gust evolution
with amplitudeAg. Of course, we measure the overall values of the residues.

The white, Gaussian character ofe now allows to derive expressions for the joint probality density
functions of the residue in case of the occurence of the assumed gust and in the gust-free case;
the attribute ‘joint’ pertains to the simultaneous consideration of the time points in a fixed-length
window of which the end point moves with the current time instancen. The ratio of these joint
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Figure 85 Gust detection by likelihood ratio test

probability expressions can be analyticallymaximizedover the gust amplitudeAg. The resulting
Geralized Maximum Likelihood Ratio(GLR) will grow very rapidly during the occurrence of a
gustof which the normalized evolution is fed through in the probabality density function ratio.

It is known that rotor uniform wind speed changes affect the thrust force and driving rotor torque
while uniform wind direction changes affect the tilting rotor torque and horizontal force. So
it is clear that residue analysis for different measurementsignals is needed for different rotor
coherent wind condition changes (gust classes). Six wind classes are distinguished in [79]. Next
to the uniform gust and change of wind direction, these include the fast change of a backing and
veering wind, of a jet stream, of a partial wake condition, and of a sloping wind.

The total involved measurement signals are the thrust force and driving torque, the yawing rotor
torque and vertical force, and the tilting torque and horizontal force. Alternatively, load measure-
ments can be done in a rotating frame, as long as a non-singular relationship exists with the six
rotor loads. Of course, it can be decided to detect gust from less classes. In that case the according
rotor loads can be left out the detection algorithm. Note that the wind (disturbance) generating
model as per equation 215 is to match to the considered load signals.

For a certain gust class, it is of course allowed to perform a GLRT for more than one assumed evo-
lution of the related normalized gust (gust class evolutionprototype [GCP]). GCPs for a uniform
gust can be a ‘1 minus cosine’ evolution and a “Mexican hat”; details are in [79].

Figure 85 gives an example of GLRT based detection of a uniform gust that starts at time instance
120 s. The left hand boxes show the enveloping time frame whereas the right hand boxes show
details around the start of the gust. The solid horizontal line in the lower plots identifies the
detection threshold; the solid vertical line the time instance of detection. The upper right plot
tells that detection occurs after a ‘fast moving average’ wind speed increase of ca. 1.5 to 2
m/s. The nearly exceedance of the detection threshold at 118 sproves the probability of ‘over
detection’. An other choice for the length of the moving window may release this ambiguity at
the cost of a slightly later gust detection.
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Effectively, an involved GLRT agrees with a threshold test for the ratio between the auto-correlation
of the residues and its cross-correlations with assumed normalized extreme event evolution. These
correlations are determined over a relatively short movingtime window.
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Part V

Optimal shutdown control (OSC)

Summary

This section considers the design of an Optimal Shutdown Controller (OSC). It has the purpose
to bring the wind turbine to a stop under serious system failures in such a way that the loads are
kept as low as possible in order to reduce the chance of (further) damage. Serious failures and
occasions that require a shutdown, and which are consideredin this section, include failure of
one pitch actuator and a sudden drop to zero of electric torque (as a result of, e.g., loss of electric
grid, or rotor axis fracture). For control (design) a relatively simple (nonlinear) wind turbine was
developed, based on physics. The performance of shutdown control is quantified using a cost
function that weighed generator speed deviations from idlespeed, tower foot moment deviations
from 0, and rotor axis bending moment deviations from zero. The shutdown control problem are
analyzed, which showed that with conventional shutdown, the tower fore-aft oscillations were
caused mainly by exciting the tower eigenfrequencies by thepitch actuators. Furthermore, the
rotor bending moments can be reduced by pitching more slowly. Based on the analysis, three
novel shutdown control methods are proposed:

1 a simple variation on the conventional procedure, namely,by filtering the (open-loop) con-
trol signals first (and choosing the filter such that the tower isnot excited),

2 a closed-loop shutdown control method where the rotor speed reference slowly drops to0,
and where conventional pitch control is used,

3 a closed-loop shutdown control method using Nonlinear Model Predictive Control (NMPC).

The latter method directly uses the performance objective and the control-oriented model to cal-
culate control actions.

The shutdown control methods are compared with conventionalmethod in simulations on a
detailed aeroelastic model of a hypothetical wind turbine (referred to as TTURB). The results
showed that the first method achieves a considerable reduction in tower fore-aft movements, even
though a simple first order low pass filter was used. Still, NMPC realizes the best results in
reducing tower foot oscillations, rotor bending and avoiding rotor overspeed.
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Figure 86 Snapshots of a movie of a wind turbine ’run-away’. As a result,the blades were torn
away from the wind turbine.

10 Introduction

This section focuses on the design of OSC algorithm capable of stopping the wind turbine after
a serious system failure in such a way, that the extreme loadsare as low as possible. In this way,
(the accumulation of) damage can be prevented during operation. Ultimate loads, especially at
the tower bottom, can also be reduced by OSC, which can be used during the design process for
optimizing the design and saving on material costs.

Serious failures and occasions that require a shutdown, and which are considered in this section,
include:

• failure of one pitch actuator

• sudden drop to zero of electric torque (loss of electric grid, or rotor axis fracture)

Pictures below (see figure 86) show what can happen if a turbine is not or cannot shutdown
correctly after a serious failure. In this case, the rotor speed ran away, leading to a complete
destruction of the wind turbine.

The basic reason to shut down the wind turbine, after one of theabove mentioned cases, is to
avoid (further) damage to the wind turbine: the loads on the wind turbine are smallest when the
rotor speed is zero (or sufficiently low). The conventional shutdown procedure, with a variable
pitch regulated wind turbine, is (at the time of writing thissection) to pitch the blades to vane
position at a fixed speed. Essentially, this is an open-loop control method. The question is if
there exist better control methods that would lead to smaller peak loads during a shutdown. Such
a control method can lead to better (lighter) wind turbines.To clarify this: wind turbines are
designed to survive various load cases, among which severe failures. Experience by ECN wind
turbine specialists has shown that the stresses and strainsoccurring during a shutdown can be
design leading; hence, a shutdown procedure that induces smaller stresses and strains can result
in less material use.

To be more specific, we introduce the following definitions.

Definition of a shutdown
A shutdown is defined as an operation where the rotor speed is reduced to idle speed or lower.

Optimal Shutdown
A shutdown is optimal if (subsequent) damage is minimized during shutdown. Subsequent dam-
age, in this section, refers to

• structural damage to the tower due to excessive peaks in thefore-aft tower root moment

• structural damage to the blades and/or generator due to generator over speed

• structural damage to the rotor shaft, main bearing, or the yaw bearing due to excessive
peaks in the rotor shaft bending moment
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The main question posed in this section is:
Is it possible to develop Shutdown Control algorithms that shut down a wind turbine in such a
way, that the rotor speed does not exceed a given maximum value, and that peaks in the rotor axis
bending moment and tower foot fore-aft moment are minimized?

To answer this question, the following subquestions need tobe answered:

1 how can the wind turbine dynamics be modeled during the serious failure conditions lead-
ing to a shutdown, and during the shutdown, such that the model is suited for control
(design) purposes?

2 how can the performance of a shutdown controller be quantified?

3 what shutdown control methods can be found/developed to achieve the desired goal of an
Optimal Shutdown?

4 how do the developed shutdown control methods compare withthe conventional shutdown
method (where the blades pitch to vane with a fixed speed)?
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11 Control-oriented model for OSC design

This section presents a control-oriented model of a wind turbine that is suitable for (nonlinear)
control (design) purposes. Since we are considering controlduring a shutdown, the model should
be ’valid’ for shutdown conditions. As specified in chapter 1,these conditions include the case
where at least one blade has a different pitch angle.

11.1 Modeling structural dynamics and aerodynamics

For control design, a model that is as simple as possible, yetis sufficiently accurate, is desirable.
The wind turbine model presented below consists of a simple linear model for the structural
dynamics (described below), and a Blade Element Model for theaerodynamics (described in
Section 8.3.3).

The structural dynamics of the wind turbine have been based on[4], and are modeled by

Jrω̇r = Ta −Kdθ − Cdθ̇
Jgω̇g = −Tg +Kdθ + Cdθ̇

θ̇ = ωr − ωg
mtwv̇fa = Kb(x1 + x2 + x3) + Cb(v1 + v2 + v3) + ktMt − stwxfa − dtwvfa
mi(v̇b + v̇fa) = Fb −Kbxb − Cbvb b = 1, 2, 3
ẋfa = vfa
ẋb = vb b = 1, 2, 3

ψ̇1 = ωr
β̇b = −1/τ(βb + ub) b = 1, 2, 3

Mt =
∑B

b=0 sin(ψb)Mf,b

Mf,b =(
2
3R
)
(Kbxi + Cbvi)

(216)

with
ωr = rotation speed of rotor (rad/s)
θ= torsion angle between rotor shaft and generator shaft (rad)
ωg = rotation speed of generator (rad/s)
b = blade number
xfa = fore-aft position of tower top (m)
vfa = fore-aft velocity of tower top (m/s)
xb = position of blade tipb in axial direction, relative to tower top position (m)
vb = velocity of blade tip in axial direction (m/s)
mb = effective mass of (one) rotor blade (kg)
Jr = inertia of rotor (kgm2)
Jg = slow shaft equivalent inertia of generator (kgm2)
Fb = aerodynamic force on bladeb in fore-aft direction
kt = tilt gain (m−1)
Ta = aerodynamic torque by the blades (Nm)
Mt = tilt moment exerted by the blades (Nm)
Ng = transmission ratio (-)
Kd = stiffness of transmission (Nm/rad)
Bd = damping of the transmission (Nm/rad/s)
βb = pitch angle of bladeb (rad)
ψb the azimuth of the b-th blade
Mf,b the blade root moment in a blade , in flap-wise direction
with R the blade length (m)
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Outputs of the model
The control oriented model should relate the controlled outputs to the states and inputs of the
model. The controlled outputs are:

• Generator speed (ωg)

• Rotor axis bending moment (Mrb)

• Tower foot moment in fore-aft direction (Mtw)

• Torsion angle between generator and rotor shaft (θ)

The generator speed and torsion angle are states of the structural model. The rotor axis bending
moment, fixed to the rotor axis, is the vector sum of all flap-wiseblade moments. This moment
has two components (in y and z direction):

Mrb =
√
M2
rby +M2

rbz

Mrby =Mf3 cos
(
2
3π − 1

2π
)
+Mf2 cos

(
4
3π − 1

2π
)

=Mf3 cos
(
1
6π−

)
+Mf2 cos

(
5
6π
)
≈ 0.86Mf3 − 0.86Mf2

Mrbz =Mf1 +Mf2 cos
(
4
3π
)
+Mf3 cos

(
2
3π
)

=Mf1 − 0.5Mf2 − 0.5Mf3

(217)

The tower foot moment is calculated from:

Mtw =
(
2
3H
)
(stwxfa + dtwvfa) (218)

with H being the height.

Measured outputs
It is assumed that the following outputs can be measured (andused in feedback control, if appli-
cable):

• Generator speedωg

• Blade root moments of each blade (Mf,i)

• Tower foot moment (Mtw)

• Pitch angle of each blade (β)

11.2 Blade effective wind model

The blade effective wind speedVw,b acting on bladeb is modeled as the sum of integrated white
noise (Vm) and a wind speed variation (Vp,b) that is periodic (deterministic):

Vw,b = Vm + Vp,b (219)

with
dVm

dt = w1 (220)

with w1 being white noise process.

The periodic component (Vp,b) models wind speed variations due to wind shear, rotationalsam-
pling, and tower shadow. One possibility is to model the periodic wind speed variations acting on

184 ECN-E–12-028



bladeb by:
Vp,b = Apcos(ψb) b = 1, 2, 3
dAp

dt = k2w2
(221)

However, in this section the periodic components of the windare ignored to simplify matters.

11.3 Fatigue modeling

This section briefly considers the modeling of fatigue, although the model has not been used
directly in this study on shutdown: if shutdowns occur frequently, fatigue can be important and
during normal operation, fatigue is of dominant importance.

11.3.1 Summary of control-oriented fatigue model

Fatigue is usually computed by a rain-flow analysis in combination with an SN curve (load S
versus the maximum number of cycles N, above which fatigue damage can be expected). In this
method, the loads are “transformed” by rainflow analysis to anequivalent load at one frequency,
after which the life time/fatigue is inferred from an SN curve. For control purposes, this method
is not suitable. A, for control purposes suitable, fatigue model was presented in [53]:

d = Ḋ = − 1
bσf

(
|σ|
σf

)−(1+b)/b
|σ̇|

whered is the damage rate (s−1, D is a damage number between 0 and 1 (0 indicating “no
damage”, and 1 - failure), andb andσf material constants from the SN curve. The derivation is
summarized in Section 11.3.2 below.

Based on this model, the fatigue damage rate at for instance the tower foot, due to fore-aft move-
ments, can be modelled by:

dfa = −
1

bσf

( |σfa|
σf

)−(1+b)/b

|σ̇fa| (222)

with σfa = Kfaxfa andσ̇fa = Kfavfa. Clearly, the fatigue damage rate is smaller, ifxfa, or
vfa is smaller.

11.3.2 Derivation of the control-oriented fatigue model

For wind turbine design, fatigue damage is usually calculated using Palmgren-Miner’s damage
rule:
D =

∑N
i=1

ni

Ni

whereinD is quantifies the damage (withD = 1 meaning total failure),ni is the number of
cycles with stress rangeσi, Ni is the number of cycles to failure at stress levelσi, andNi can
be related toσi by the SN curve, i.e.Ni =

K
σk
i
, N is the total number of cycles,σi is the stress

range of cycle(s)i, andK andk are material constants of the SN curve (for steel, typical values
areK = 6.251032 andk = 4, while for glass/epoxySmin/Smax = 0.1,K = 1019, k = 6 [58]).

The Palmgren Miner rule requires the stress history to be divided into stress cycles with fixed
stress ranges. Rainflow counting is often used to convert arbitrary signals in equivalent stress
cycles. Roughly speaking, rainflow counting identifies local maximaMj in the stress history, then
finds the maximum of the local minima (left (m−

j and rightm+
j ) surroundingMj , and calculates

the equivalent rainflow cycle as:sj =Mj −max(m−
j ,m

+
j ).

However, this fatigue quantification method is not suitable for on-line estimation of the fatigue
damage.
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In [3] fatigue damage is estimated from spectral propertiesof the stress signal. In this work, the
stress signal, which is assumed to be Gaussian distributed,is approximated by a narrow banded
approximation with the same variance as the original process. The damage rate of this approxi-
mation forms an upper bound on the damage rate of the originalprocess, and is given by:

E[ḋ] = 1
2π

√
λ4

λ2

1
K (2
√
2λ0Γ(1 +

k
2 )

with λi being thei-th spectral moment of the signalx (note that it can be shown thatλ0 = σ2x,
λ2 = σ2ẋ, λ2 = σ2ẍ). This expression can be extended with a correction factor toaccount for
the signal not being narrow banded. In [31] this fatigue model is used in (linear) control design
calculations for a wind turbine. This fatigue model is specifically suitable for that purpose, but it
is not directly applicable for on-line estimation of the fatigue rate. For that, the spectral moments
would have to be estimated on-line.

In [53] and [62] a control oriented fatigue model is presented. There, under the assumptions of

• zero means stress

• Plamgren’s Miner damage rule

the number of cycles until failure (Nf ) is given by:

Nf = 0.5

(
σa
σf

)1/b

with dcyc being the damage per cycle (with 0: no damage, 1: failure),σa the amplitude of the
stress variation,σf and b are material constants (e.g.σf = 1.19 ∗ 108 Pa, b = −0.25, and
for steel). Note that this model is similar to the above described SN curve withb = −1/k and
σf = (2 ∗K)1/k.

Define the damage per cycle as (dcyc) asdcyc = 1/Nf . Then

dcyc = 2

(
σa
σf

)−1/b

Define the damage rateδ as
∫ σa

0 δdσ = dcyc, then

dδ

dσ
= − 2

bσf

( |σ|
σf

)−(1+b)/b

The damage rate, as a function time, is given by

Ḋ =

{
dδ
dσ σ̇ if σ > 0, if σ̇ > 0
0 otherwise

This model is even accurate (though somewhat conservative) for nonzero mean stress levels, not
exceeding 92% ofσf . To avoid the discontinuity in this damage model, the damagerate model is
simplified to

Ḋ = 0.5| dδ
dσ
||σ̇|.

11.4 Control-oriented model parameters for TTURB

The control oriented model described above has been parameterized for the hypothetical wind
turbine TTURB, which consists of a linear model for the structural dynamics (40-th order), cre-
ated by TURBU, that is coupled (via a Coleman transformation)to the nonlinear BEM model of

186 ECN-E–12-028



Parameter Meaning Value Unit
Jr Rotor Intertia 8.16 · 106 kg ·m2

Jg Slow shaft generator intertia 1.125 · 106 kg ·m2

Ng Transmission ratio 50 −
Kd Stifness of transmission 2.37 · 104 Nm/rad
Cd Damping of transmission 1.42 · 108 Nm/(rad/s)
mtw Equivalent mass at hub heigt 300 · 103 kg
stw Stifness of tower 1.72 · 106 Nm/m
dtw Damping of tower 110 Nm/(m/s)
mi Blade mass 9800 kg
Kb Blade stifness 7.9 · 105 Nm/m
Cb Blade damping 7056 Nm/(m/s)
kt Gain for tilt moment 0 −
/tau Time constant of pitch actuator 0.08 s
r1 Distance of centre of blade element 1 to rotor axis11.48 m
r2 Distance of centre of blade element 2 to rotor axis31.8 m
R Blade length 40 m
H Hub height 60 m

Table 10 Wind turbine model parameters

the aerodynamics with 14 blade elements described in Section8.3.3. In this section, the TTURB
is considered as the “reference” model, using which the simulations are performed.

The parameters of the Control Oriented model have been fit to theTTURB wind turbine, and
are shown in Table 10. Note thatkt is assumed0. This assumption allowed to avoid using the
Coleman transformation and therefore, simplified matters, while the model accuracy was hardly
effected.

Figure 87 shows a comparison between the control-oriented model and the detailed TTURB
model. Both models were fed with the same inputs (wind speed,pitch setpoint and electric
torque). Blade 1 is not pitching, while blades 2 and 3 pitch atmaximum speed until the pitch
angle (β) is 0.09 rad. At t = 10 s, the electric torque (Tg) is increased. The wind speed was not
varied.

Clearly, the control-oriented model agrees roughly with the ECN model, but there are significant
differences. Its fore-aft moment agrees reasonably well, although the variations around the eigen-
frequency of3 rad/s are smaller with the control-oriented model than the ECN model. The rotor
axis bending moments agree roughly with the ECN model, but theoscillations of the Control Ori-
ented model are still different, in spite of the flexible blademodel included in the control-oriented
model. Similarly, the drive train oscillations of the control-oriented model are smaller than those
of the ECN model.

The results of this comparison suggest that the control Oriented model can be used for con-
trol (design) purposes, but its inaccuracies must be taken into account. Furthermore, the results
suggest that the blade dynamics may as well be removed from the model, since those are not
captured correctly. This would simplify the model, reduce the amount of parameters that need to
be known/estimated, and save computation time. It should benoted that this single comparison
is not sufficient to conclude about the suitability of the Control Oriented model. The best test
of suitability is performed when using the Control Orientedmodel for its purpose, and checking
whether its serves it well. This will be done in chapter 4.
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Figure 87 Simulated responses of the Control Oriented model and the ECNfull model.
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Figure 88 Simulation of a shutdown with a constant pitch speed of 0.17 rad/s, while pitch actu-
ator 1 is inactive (blade 1 is stuck)

12 Shutdown control

This section presents shutdown control methods. Section 12.1analyses the shutdown control
problem. Section 12.2 presents a simple improvement on the conventional open-loop shutdown
control method. Section 12.2 proposes a closed-loop shutdown control method using classical
control. Section 12.4 presents an closed-loop shutdown using Nonlinear Model Predictive Control
(NMPC).

12.1 Shutdown analysis

Wind turbines must have at least 3 independent brake systemsfor IEC certification. In case of
three bladed wind turbines, three independent actuated pitch actuators can serve as the required 3
independent brake systems. We assume the conventional shutdown procedure is as follows:

• all (remaining) blades pitch to vane position at a fixed speed(Sopt),

• if possible (e.g. if there is no grid loss), the electric torque setpoint is set to its maximum
value, so as to slow down the rotor

Figure 88 shows a Conventional shutdown after pitch actuator1 failed at t= 0, during constant
wind speed of 15 m/s (and no wind shear, tower shadow, etc.), simulated on the control oriented
model presented in chapter 2.

Figure 89 shows a shutdown after grid loss at t= 0 (i.e.Tg = 0, during constant wind speed of 15
m/s (and no wind shear, tower shadow, etc.), simulated on thecontrol oriented model presented
in chapter 2.

Clearly, the tower oscillates considerably in both shutdown occasions, and dampens only slowly,
since the aerodynamic damping of the fore-aft movement is reduced to a minimum as soon as the
blades have pitched to vane.
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Figure 89 Simulation of a shutdown with a constant pitch speed of 0.17 rad/s, the electric torque
Tg = 0.

In case one blade is stuck during shutdown, the rotor axis bending moment peaks considerably for
an obvious reason. In case of grid loss, the possible danger of overspeed is avoided by pitching
at maximum speed to vane.
The challenge is now to reduce, during shutdown, the peak moments in the rotor and tower foot
to a minimum, while avoiding rotor overspeed.

12.1.1 Optimal shutdown

Given a model of the wind turbine, and known wind speed conditions, it is possible to optimize
the control inputs so as to achieve an optimal shutdown. Such an exercise gives insight into ‘how
does an optimal shutdown ideally look like’?
The cost function, to be minimized in the optimization, is chosen as:

J(k) =

∞∑

k=0

cra(MAy(k)
2 +MAz(k)

2) + ctw(Mtw(k))
2 + crs(ωg(k)− ωe)2 (223)

wherecra is the cost factor for rotor bending,ctw is the cost factor for tower bending, andωe
is the cut-in rotor speed (rad/s). Hence, this cost functionpenalizes the (weighed) sum of rotor
bending moment, tower fore-aft moment and generator speed deviations from idle speed. The
weigh factors influence the importance of the three objectives.

The following constraints must be satisfied at all times

umin < ui < umax
|∆ui(k)| < smax
Tg < Tmax

(224)

with umin = −0.06 rad,umax = 1.48 rad, limits on the pitch angle setpoint (rad/s),smax = 0.17
rad/s, limit on pitch (setpoint) speed (rad/s),Tmax = 1.35 · 106 Nm. Furthermore, the rotor speed
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Figure 90 Result of optimised shutdown with one pitch actuator stuck att = 0

should not exceed the maximum value ofωmax which we set at 1.9 rad/s.

Optimal shutdown after failure of a pitch actuator
To get insight into how an optimal shutdown looks like in caseof a pitch actuator failure, the
cost function (223), subject to the constraints (224), and the Control Oriented model, presented in
chapter 2, has been minimized with respect to the pitch setpoints of the two active blades (u2(k))
and the Electric TorqueTg(k) at the discrete timesk = 0, 1, 2, ..., N .

We used NMPC (which will be presented in section 3.3) to find a (possibly suboptimal) solution
to the optimization problem, although any other nonlinear optimization method could have been
used for this optimization problem as well. In case a pitch actuator fails, the main issue is to
minimize the rotor bending peak moment. Therefore, the weighcoefficients inJ were chosen
as cra = 1, ctw = 0.01, crs = 0.1. Figure 90 shows the result. Clearly, the rotor bending
moment has decreased considerably, compared to the simple conventional shutdown procedure
at a fixed pitch speed of 0.17 rad/s: the peak rotor bending moment has been reduced by roughly
60 %. Furthermore, tower fore-aft oscillations do not occur at all. Appearently, they are damped
actively.

Optimal shutdown after grid loss
Similarly as before, an optimal shutdown was calculated for the case the electric torque suddenly
drops to 0 at t=0. As before, initial conditions were chosen such that the wind turbine was in
a steady state atk = t = 0. During shutdown, the pitch setpoints for blade 1, 2 and 3 were
assumed to be the same (u1(k) = u2(k) = u3(k). The optimisation problem was to find the pitch
setpoints of the blades (u1(k)) at the discrete timesk = 0, 1, 2, ..., N that optimizedJ (equation
223), subject to the constraints 224, and the additional constraintTg(k) = 0.

In case of electric grid loss, the main issues are to minimizerotor overspeed, and tower fore-aft
bending. Therefore, the weigh coefficients inJ were chosen ascra = 0.1, ctw = 1, crs = 1.
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Figure 91 Result of optimized shutdown when the electric torque (Tg) suddenly drops to 0 at t
= 0

Figure 91 shows the result. Clearly, the tower foot moment oscillations have decreased consider-
ably, compared to the conventional shutdown procedure at a fixed pitch speed of 0.17 rad/s.

Discussion
The conventional shutdown methods result in large oscillations of the tower fore-aft movement,
and large rotor bending moments in case one pitch actuator fails. The optimized results showed
that in case one pitch actuator fails, it is optimal to pitch slowly to vane. This is logical, since
the asymmetric loading on the blades (that causes the rotor bending) is minimal as long as the
difference between the pitch angles is minimal. A danger of pitching slowly (using an open loop
control adjustment of the pitch angle) is that in case of windspeed increase the rotor speed may
exceed the maximum or even run away.

In case of an electric grid loss, the pitch speed must increase sufficiently to avoid rotor overspeed.
In the conventional procedure, the pitch speed is immediately set to its maximum, by which it ex-
cites the tower fore-aft movement. In the optimized shutdown, tower oscillations are completely
damped.

12.2 Improvement on the Conventional Shutdown Control method

The previous section indicates that a conventional shutdownin case of grid loss or pitch actuator
failure can result in large oscillatory bending moments on the tower foot if the blades pitch at
maximum speed to vane. These oscillations are primarily induced by the pitch control actions,
that excite the wind turbine at the eigenfrequencies. Therefore, they can be reduced considerably
with a simple measure: instead of stepping the pitch speed toits maximum value, filter the pitch
(speed) reference first by a low pass filter with a cutoff below the tower fore-aft eigenfrequency.
Alternatively, a more advanced filter with notches at the tower eigenfrequencies can be selected,
or an input shaping technique.

For the wind turbine TTURB considered in this section, the lowest tower eigenfrequency is
around 3 rad/s. We therefore choose a first order low pass filter with cutoff at 1 rad/s. Simi-
larly, the electric torque can be filtered by a low pass filter (ora filter with notches) to avoid rotor
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Figure 92 Closed Loop Controller for Shutdown

shaft oscillations.

The rotor axis bending moment can be reduced by pitching at a lower speed. However, the lower
the pitch speed, the more risk at generator overspeed. To reduce that risk, a closed loop method
is proposed in the next section.

12.3 Closed Loop Shutdown with classical control

As shown in section (12.1), a low pitch speed and a slow reduction of rotor speed is optimal in case
of a constant wind speed and one pitch actuator stuck. However, if the wind speed increases, the
pitch speed needs to be increased to avoid rotor overspeed (and an increasing rotor axis bending
moment). This problem can be avoided by applying a closed-loop shutdown strategy, where
the generator reference speed decreases slowly with time. Figure 92 shows a block-scheme of
the proposed control scheme for shutdown (either due to gridloss or pitch actuator failure). It
is proposed to apply a pre-defined generator speed profile with aslow decent. In principle, the
existing wind turbine rotor speed control system can be used, while it is useful to add feedforward
on the (generator speed) reference change.

12.4 Optimal Shutdown with Nonlinear Model Predictive Control (NMPC)

When applying NMPC for shutdown, the following algorithm is applied:

1 based on the measured outputs of the wind turbine, estimatethe state of the CO-model

2 optimizeu(k) enTg(k) for k = 0, 1, 2, ..., np to minimize (an approximation of) the cost
function defined by (223), subject to the constraints defined in(224).

3 apply of the optimized control signal onlyu(0) andTg(0)

4 return to step 1

For step 1 an extended Kalman filter was applied. The approximation of the cost function 223, as
mentioned in step 2, was chosen as:

JNMPC(k) =
np∑

k=0

cra(MAy(k)
2 +MAz(k)

2) + ctw(Mtw(k))
2 + crs(ωg(k)− ωe)2 + x(np + 1)TPex(np + 1)

with x(np + 1)TPex(np + 1) being the optimal LQ solution of minimizingJNMPC , with initial
conditionx(k + np + 1), subject to a linear model that was obtained by linearizing the control-
oriented model aroundxe. Note that the approximationJNMPC allows to prove stability.
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The steady statexe was computed by iterating the pitch angle until both the generator speed was
close to0.2 rad/s, and the aerodynamic torque was sufficiently close to zero.
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13 Simulation results

In this section, 3 shutdown control strategies are tested onthe wind turbine model TTURB:

• Conventional shutdown (where pitch actuators pitch to vane as fast as possible)

• the Improvement on Conventional shutdown (by filtering the open loop control signal to
avoid excitation); this method will be referred to as “Filtered Control”

• NMPC

Section 13.1 presents the simulation results in case of normal wind speed variations. Section 13.3
presents the results in case a gust occurs at the same time of afailure (grid loss or pitch actuator
stuck).

13.1 Normal wind speed variations

In all simulations the three blade effective wind speeds areas shown in Figure 93

Figure 93 Blade effective windspeed

13.1.1 Grid loss

In case of grid loss, the electric torque suddenly drops to0 at t = 0, i.e.Tg = 0. Figure 94 shows
the simulations results for the three shutdown methods in case of grid loss. Clearly, the method
“Filtered Control” where the pitch angle setpoint is filtered by a low pass filter, reduces the tower
foot oscillations considerably. With NMPC the tower foot deviations from zero are smallest.
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Figure 94 Shutdown (for three different control methods), after gridloss

13.2 Pitch actuator stuck

Figure 95 shows the shutdown simulations in case pitch 1 of blade 1 is stuck. Again, the method
“Filtered Control” reduces the tower foot oscillations, butdoes not reduce the rotor axis bending
moment. With NMPC, the tower foot oscillations are reduced, and in addition, the rotor axis peak
moment is reduced by more than 40%.

13.3 Shutdown during a strong gust

So far, the wind speed in the simulations was assumed to vary around 14 m/s (see Figure 93).
This section considers the case where the wind speed increases during shutdown, as shown in
Figure 96. The wind speed increases at the same time a failure occurs.

Figure 97 shows the simulation results for the three control methods when the pitch actuator of
blade 1 fails (and the pitch angle of blade 1 remains constant). Figure 98 shows the simulation
results during grid loss. The Conventional control method does not lead to overspeed, but the
filtered Control method does lead to some overspeed, in the case of grid loss. Again, the tower
oscillations are reduced, compared to the conventional control method. With NMPC, the gen-
erator speed is only slightly exceeding the constraint, setat 1.9 rad/s. To achieve this, NMPC
pitches at maximum speed until the generator speed is below its maximum again. After that, it
actively reduces tower foot oscillations, resulting in thelowest tower foot moment fluctuations of
all control methods. This simulation illustrates that NMPC isalso capable of dealing with output
constraints, in this case a generator speed constraint.
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Figure 95 Shutdown (for three different methods), with blade 1 stuck

Figure 96 Blade effective windspeed
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Figure 97 Shutdown (for three different methods), after blade 1 got stuck and during a strong
gust
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Figure 98 Shutdown (for three different methods), after grid loss andduring a strong gust

ECN-E–12-028 199



200 ECN-E–12-028



14 Conclusions

This section investigate the possibility to develop ShutdownControl algorithms that shut down
a wind turbine after a serious failure in such a way, that the rotor speed remains below a given
maximum value, and that peaks in the rotor axis bending moment and tower foot fore-aft moment
are minimized. Two failure types were considered: grid lossand one blade stuck.

For control (design) a relatively simple wind turbine was developed (referred to as the Control
Oriented model), consisting of a linear model of the structural dynamics, and a nonlinear BEM
model for the aerodynamics. The structural model consisted of one flexible mode in fore-aft
direction, one flexible mode for each blade in fore-aft direction, and one mode in the drive-train.
The BEM model consisted of only two elements, and oblige inflow effects, as well as wake
dynamics, were ignored.

The performance of shutdown control was quantified using a costfunction that weighed generator
speed deviations from idle speed, tower foot moment deviations from zero, and rotor axis bending
moment deviations from zero.

Three novel shutdown control methods were proposed:

1 a simple variation on the conventional procedure, namely,by filtering the (open-loop) con-
trol signals first (and choosing the filter such, that the eigenmodes are not excited);

2 a closed-loop shutdown control method where the rotor speed reference slowly drops to0,
and where conventional pitch control is used;

3 a closed-loop shutdown control method using NMPC

The shutdown control methods (except for the 2nd) were compared with conventional method in
simulations on the ECN model of TTURB. The results showed that method1 showed a consider-
able reduction in tower fore-aft movements, even though a simple first order low pass filter was
used. However, reducing the rotor bending moment is more complicated. To achieve the best
result (in reducing the rotor bending moment), a closed-loop method should be used, since this
moment can only be reduced by slow pitching. If, however, thewind speed increases, the pitch
speed must be increased (to avoid overspeed, and increased rotor bending). NMPC was able
to realise the best results in reducing tower foot oscillations, rotor bending and avoiding rotor
overspeed.

The results of this section suggest that shutdown can indeed be improved considerably, starting
with very simple means.
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Part VI

Experimental methods
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15 Wind turbine model identification: method development

Summary

This section is focused on wind turbine model identification based on closed-loop measurements
in above-rated conditions with the purpose of obtaining accurate and compact models suitable for
control design. Both collective and individual settings are considered. In the collective setting,
the goal is the identification of the transfer functionT+trq

Ωθ from the collective blade pitch angle
to the rotor speed, as necessary for the design of the collective pitch controller in the rotor speed
regulation loop. This transfer function needs to be identifiedin the presence of the torque con-
troller. In the individual setting, in addition to the transfer functionT+trq

Ωθ , the transfers from the
tilt-wise and yaw-wise pitch angles to the tilt-wise and yaw-wise blade bending moments (in the
so-called Coleman domain) need to be estimated.

A number of closed-loop identification methods have been summarized and applied to the col-
lective identification setting. Among these are the direct, indirect, instrumental variable, joint
input-output, two-stage, tailor-made instrumental variable and the closed-loop N4SID method.
The CL-N4SID method is chosen as the most suitable method as it (a) provides the most accurate
identification results, and (b) is directly applicable to MIMO problems in which some input-
output channels participate in the feedback loop, while others not. This method is subsequently
used in the MIMO identification setup corresponding to the individual pitch setting.

The presented results have been obtained on the basis of simulation data from a simplified lin-
earized model of a wind turbine under realistic blade effective wind speed conditions. In section
16, the methods are applied on experimental data and the results are discussed.

15.1 Introduction

Control design of wind turbines is conventionally based on physical modeling of the turbine be-
havior with imprecise and uncertain turbine parameters. This results in suboptimal controllers
that, when interconnected with the real-life turbine, might have unsatisfactory performance. A
significant performance improvement could be expected when the controllers are designed on ac-
curate, yet simple, mathematical models that describe the most significant dynamics of the turbine
by fitting the model parameters to the field input/output measurements. Such system identification
approach to turbine modeling for control design would require the following approach:

1 initial (conventional) controller design based on (uncertain) turbine physical parameters,

2 controller implementation and collecting field measurements,

3 turbine model identification,

4 model validation on a “fresh” data batch, i.e. data not usedfor the identification,

5 final controller design based on identified and validated model.

To avoid confusion, in the sequel all transfer function willbe expressed in discrete-time. The
sampling time is assumedTs = 0.1 s, which is considered sufficient to capture the control-
relevant turbine dynamics.

Open vs. closed-loop
It is important to notice that the data from field measurementsat above-rated wind conditions
will usually be collected with the pitch controllerCθ(z) in the loop, and will therefore represent
closed-loop measurements, as shown in Figure 99. One might prefer, whenever possible, to
perform the measurements in open-loop with the pitch controller turned off in order to make
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Figure 99 System identification setup in Coleman domain

the use of conventional open-loop identification techniquespossible. However, one should make
sure that the loop with only the torque controllerCT (z) remains stable. This is not the case
with the usual constant-power torque control approach, where the torque controller on itself has
a destabilizing effect on the turbine generator speed in full load conditions due to the decreasing
generator torqueTg with the increase of the generator speedΩg. Although it is possible to adapt
the torque control algorithm so that the generator speed is stabilized, this may not be desirable
as it can result in overloading of the generator. For that reason, only the closed-loop approach
with the pitch controller kept in the loop, which is preferable in practice, will be considered here.
In any case, whether one choses for the open-loop or the closed-loop approach, an additional
persistently excited signal will have to be added to the collective pitch angle (seeθextcm1

on Figure
99).

Linearity
Another important issue is the availability of a well developed field of system identification for
linear time-invariant (LTI) systems. The wind turbine systemis, of course, highly nonlinear
with respect to the wind speedV , the blade pitch anglesθcmi

and rotor speedΩ. Still, for control
design, it is common practice to linearize the turbine modelaround a given working point in order
to make use of the very well developed control design theory for LTI systems. In the identification
process, the same approach will be pursued by assuming that the wind turbine is operating in the
vicinity of some working point{V ∗, θ∗cm1

,Ω∗}.
Another source of nonlinearity is the azimuth dependence ofthe out of plane blade root bending
momentsMflpi , i = 1, 2, 3. This is important for individual pitch control design that aims at
reduction of the frequency contents ofMflpi at multiples (kp) of the rotor frequencyp. This
periodicity, caused by the azimuth dependence, can howevereasily be removed by means of a
coordinate change, i.e. by projecting the momentsMflpi defined on the rotating blade reference
frame(x, y1, z1) to the non-rotating hub reference frame(x, y, z), see Figure 100. This projec-
tion, called Coleman demodulation, is given by



Mcm1

Mcm2

Mcm3


 =

1

3




1 1 1
2sin(ψ) 2sin(ψ + 2

3π) 2sin(ψ + 4
3π)

2cos(ψ) 2cos(ψ + 2
3π) 2cos(ψ + 4

3π)




︸ ︷︷ ︸
P−1



Mflp1

Mflp2

Mflp3


 ,

whereψ is the azimuth angle. The demodulated bending momentsMcm2
andMcm3

, scaled
by factors of−2

3 and+2
3 , respectively, are good approximations of the tilt-wise and yaw-wise
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Figure 100 Rotating and fixed reference frame conventions

bending moments at the hub center [80]. The momentMcm1
has no physical meaning, and will

be left out in the sequel. A similar demodulation of the threeindividual blade pitch anglesθi,
i = 1, 2, 3, using the same Coleman transformation matrix, gives



θcm1

θcm2

θcm3


 = P−1



θ1
θ2
θ3


 ,

where nowθcm1
represents the collective pitching, whileθcm3

and θcm3
can be though of as

tilt-wise and yaw-wise components, and are used for individual pitch control. The transfer from
pitch actions in the fixed coordinate systemθcmi

to the Coleman demodulated blade root bending
momentsMcmj

is no longer dependent on the azimuth angle. However, noticethat the Coleman
transformed signalsMcmj

are not directly measured, but need to be computed from the measured
out-of-plane blade root bending momentsMflpi . Similarly, the tilt-wise and yaw-wise pitch
angles need also be computed from the blade pitch anglesθi.

Channels to identify
To simplify the discussion, we introduce the following notation. The wind turbine in “Coleman
domain” is represented by the transfer matrix

T (z) ,



TΩθ1 TΩθ2 TΩθ3 TΩTg

TM2θ1 TM2θ2 TM2θ3 TM2Tg

TM3θ1 TM3θ2 TM3θ3 TM3Tg


 (z)

from the inputs{θcm1
, θcm2

, θcm3
, Tg} to the outputs{Ωg,Mcm2

,Mcm3
}. By closing the loop

with the torque controller,Tg = CT (z)Ωg, one gets

T+trq(z) ,



T+trq
Ωθ1

T+trq
Ωθ2

T+trq
Ωθ3

T+trq
M2θ1

T+trq
M2θ2

T+trq
M2θ3

T+trq
M3θ1

T+trq
M3θ2

T+trq
M3θ3


 (z) (225)

with
T+trq
Ωθj

= (1− TΩTg
CT )

−1TΩθj , j = 1, 2, 3.

T+trq
Miθj

= TMiθj + TMiTg
CT (1− TΩTg

CT )
−1TΩθj , i = 2, 3, j = 1, 2, 3.
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When the (collective) pitch controllerCθ is also interconnected, resulting inθcm1
= CθΩg+θ

ext
cm1

,
the complete closed-loop mapping{θextcm1

, θcm2
, θcm3

} to {Ωg,Mcm2
,Mcm3

} has the following
transfer matrix

T cl(z) ,



T clΩθ1 T clΩθ2 T clΩθ3
T clM2θ1

T clM2θ2
T clM2θ3

T clM3θ1
T clM3θ2

T clM3θ3


 (z)

with

T clΩθj = (1− T+trq
Ωθ1

Cθ)
−1T+trq

Ωθj
, j = 1, 2, 3.

T clMiθj
= T+trq

Miθj
+ TM2θ1Cθ(1− T+trq

Ωθ1
Cθ)

−1T+trq
Ωθj

, i = 2, 3, j = 1, 2, 3.
(226)

There are several channels that need to be identified for control design, and others, that are of less
importance. First of all, whenever the generator torque controllerCT (z) will be simply based on
the QN-curve for constant power production above rated, itsdesign would require no knowledge
of the turbine dynamics. The pitch controllerCθ(z), on the other hand, has the purpose to regulate
the rotor speed at rated level, so the transferT+trq

Ωθ1
from the collective pitch angleθcm1

to the
generator speedΩg is necessary for its design, and should hence be identified as accurately as
possible. Note that this channel needs to be identified with the torque controller in the loop, since
the pitch controller is to be designed by accounting the presence ofCT (z). The identification of
T+trq
Ωθ1

is discussed in Section 15.2.

For individual pitch control design the channelsT+trq
Miθj

, i, j = 2, 3, are also needed, and should
also be identified. The individual pitch identification problemis treated in Section 15.3. The are
basically two possibilities:

1 open-loop setting: identify theclosed-looptransfersT clMiθj
, i, j = 2, 3, from the tilt and

yaw-oriented pitch componentsθcm2
and θcm3

to the tilt and yaw-wise momentsMcm2

andMcm3
in the presence of the pitch controllerCθ(z). This can be achieved by us-

ing open-loop identification technique on the data{θcm2
, θcm3

,Mcm2
,Mcm3

} collected in
closed-loop. This should only be done when there are reasons to believe that there is little
interaction between these channels and the speed regulation channelθcm1

7→ Ω, i.e. when
the dependence ofT clMiθj

, i, j = 2, 3, on the pitch controllerCθ(z) can be neglected. Oth-
erwise the so-identified models might be inaccurate after re-optimization of the pitch speed
controllerCθ(z). The open-loop setting is discussed in Section 15.3.1.

2 closed-loop setting: identify theopen-looptransfersT+trq
Miθj

, i, j = 2, 3, by means of closed-
loop identification techniques. This step could eventually becombined with the closed-loop
identification of the speed regulation channelT+trq

Ωθ1
as discussed above. This closed-loop

setting is treated in Section 15.3.2.

Before continuing with the identification methods, a simplified linearized model of a wind turbine
is presented in Section 15.1, that has the purpose to provide the necessary data for the identifi-
cation, and is also used for the purpose of model validation.In practice, no such model will
be available for validation purposes, so the validation will also need to be done on the basis of
input-output measurements. However, it should be pointed out that the conventional time-domain
identification is here not directly applicable due to the unstable open-loop system. For that reason,
a better suited alternative would be to perform the validation in the frequency domain, by using
nonparametric estimation methods, such as the spectral analysis discussed in Section 15.2.1.

Simplified linearized wind turbine model
For verification of the presented methods, ideintification data is obtained using the simplified
linearized wind turbine model described in Section 1.3.1. Themodel is based on linearized blade
element momentum theory, and contains the first bending mode of the tower in nodding and
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naying directions, the first shaft torsion mode, and the main rotation of a 3-bladed horizontal axis
wind turbine. The blades are assumed rigid; dynamic wake effects and unsteady aerodynamics
are neglected. The model has inputs: the three blade pitch positions, three blade effective wind
speeds and the generator torque. The simulations are performed with realistic blade effective
wind speeds, accounting forkp effects on the blades, due to rotational wind field sampling, tower
shadow and wind shear. A representative blade effective wind speed is depicted on Figure 101.
The Bode plots of the pitch and torque controllers used in the simulation, including the filters, are
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Figure 101 Blade effective wind speed: time series (left) and spectrum (right)

given on Figure 102.
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Figure 102 Bode plots of the pitch (left) and torque (right) controllers

Wind turbine model identification
Below, several method for closed-loop identification are briefly summarized and applied to the
identification of wind turbine models from closed-loop data7. To begin with, only the channel
T+trq
Ωθ1

will be considered, which can be used for the design ofcollective pitchcontrol for speed
regulation. Subsequently, the identification of other channels of the transfer matrixT+trq(z) (see
equation (225)) will be discussed, which can be used forindividual pitch controldesign.

15.2 Collective pitch identification

This section outlines different methods for the identification of a turbine modelT+trq
Ωθ1

(z) from
closed-loop data. The identification setup is depicted on Figure 103, where the rotor speedΩg is

7An exception is the open-loop setting for individual pitch identification, discussed in Section 15.3.1.
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Figure 103 System identification setup for collective pitch control design

formed as
Ωg(k) = T+trq

Ωθ1
(q)θcm1

(k) + T+trq
Ωu (q)ucm(k)︸ ︷︷ ︸

v(k)

.

The method that produces the best results will be further on applied in Section 15.3 to the problem
of identification of all three input and output channels of thetransfer matrixT+trq(z), which can
be used for individual pitch control design.

Notice that the channel to be identified includes the torque controllerCT (z), compare to Figure
99. It is also important to point out, that the to-be-identified system isopen-loop unstable, as
already discussed in Section 15.1. This is an important fact assome closed-loop identification
techniques require open-loop stability (e.g. the Two-StageMethod), which makes them not di-
rectly applicable here. Another consequence of the instability of T+trq

Ωθ1
(z) is that it significantly

complicates the validation of the identified models based on conventional time-domain criteria.
One may argue that the validation can take place after closing the loop with the pitch controller;
however, the pitch controller does not always stabilize theidentifiedmodelT̂+trq, which prevents
time-domain validation even in closed-loop. This necessitates the validation of the models in the
frequency domain.

All simulation results, provided in this section (i.e. related to collective pitch), are carried out
using the same simulation data, obtained with an external excitation signalθextcm1

based on apseudo
random binary signal(PRBS)sprbs(k) with length (213 − 1) samples. The external signal is
computed as follows:

θextcm1
(k) =

{
0, k ≤ 500 samples,
3
2 .sprbs(

⌈
k−500

4

⌉
), k > 500 samples,

where the operation⌈a⌉ denotes the smallest integer larger than or equal toa. Notice that the
final excitation used,θextcm1

, is formed by keeping each value of the PRBSsprbs constant during
four samples, and that the excitation is switched on after 500 samples. The time series zoomed in
the interval450 ≤ k ≤ 750 samples, as well as the power spectral density ofθextcm1

, are given on
Figure 104.

15.2.1 Nonparametric model identification using spectral analysis

To begin with, the identification of nonparametric models is briefly discussed. To this end, we
will restrain ourselves to frequency response functions only. Time domain nonparametric models
(e.g. step or impulse responses) would anyway be unappropriate due to the open-loop instability
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Figure 104 The external excitation signalθextcm1
used in the simulation of Section 15.2: time

series (left) and power spectral density (right)

of the system. Although nonparametric models might seem unappropriate for control design, they
can be used for the purpose of model validation.

One of the most popular methods for obtaining transfer function estimates is based onspectral
analysis(SA). To explain the method, consider first the open-loop situation8

Ωg(k) = T clΩθ1(q)θ
ext
cm1

(k) + v(k), (227)

whereq is the forward shift operator (qu(k) = u(k + 1)), and where the signalsθextcm1
(k) and the

wind-related signalv(k) are assumed to be uncorrelated, i.e.E(θextcm1
(k)v(k)) = 0. The signal

v(k) is a generalized wind signal that is related to (i.e., is a filtered version of) the Coleman
domain wind signalsucm1

anducm2
. Then the auto (Φθext

cm1
) and cross (ΦΩθext

cm1
) spectral densities

are related as follows
ΦΩθext

cm1
(ω) = T clΩθ1(e

jω)Φθext
cm1

(ω).

Given finite-time data sequence{θextcm1
(k)Ωg(k)}, k = 1, 2, . . . , N , these spectra can be approxi-

mated as

Φ̂Ωθext
cm1

(ω) =
1

N
F{Ω}F{θextcm1

}∗, Φ̂θext
cm1

(ω) =
1

N
|F{θextcm1

}|2,

F{·} denoting the discrete Fourier transform. Hence, an estimate of the transfer function is given
by

T̂ clΩθ1(e
jω) =

Φ̂Ωθext
cm1

(ω)

Φ̂θext
cm1

(ω)
.

Since in the limit caseN →∞ the spectral estimates become equal to the real spectra, it follows
that in the considered open-loop situation (227) the transfer function estimated is asymptotically
unbiased

lim
N→∞

T̂ clΩθ1(e
jω) = T clΩθ1(e

jω).

The application of this approach to closed-loop data{Ωg(k), θcm1
(k)}, obtained from the system

{
Ωg(k) = T+trq

Ωθ1
(q)θcm1

(k) + v(k),

θcm1
(k) = Cθ(q)Ωg(k) + θextcm1

(k).

leads in general to biased estimates. To see this, denote thesensitivity function asS(q) = (1 −

8The term “open-loop” might seem a bit misleading here since the closed-loop transfer functionT cl
Ωθ1

(q) appears
in equation (227). Nevertheless, we refer to it as open-loop as there is no feedback fromΩg(k) to θextcm1

(k).
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T+trq
Ωθ1

(q)Cθ(q))
−1, and observe that

Ωg(k) = S(q)
(
T+trq
Ωθ1

(q)θextcm1
(k) + v(k)

)
,

θcm1
(k) = S(q)

(
Cθ(q)v(k) + θextcm1

(k)
)
.

Then, still under the assumption thatθextcm1
(k) andv(k) are uncorrelated, one gets

T̂+trq
Ωθ1

(ejω) =
Φ̂Ωθcm1

(ω)

Φ̂θcm1
(ω)

=
F{Ωg}F∗{θcm1

}
|F{θcm1

}|2

=
|S(ejω)|2

(
T+trq
Ωθ1

(ejω)Φ̂θext
cm1

(ω) + C∗
θ (e

jω)Φ̂v(ω)
)

|S(ejω)|2
(
Φ̂θext

cm1
(ω) + |Cθ(ejω)|2Φ̂v(ω)

)

Clearly, in the absence of the disturbancev(k), i.e whenΦv(ω) = 0, this method gives an un-
biased estimate (̂T+trq

Ωθ1
(ejω) = T+trq

Ωθ1
(ejω) in the limit N → ∞). However, this case, corre-

sponding to the absence of turbulence in the wind, is of no practical relevance here. On the other
hand, when there is no external excitation (Φθext

cm1
(ω) = 0), the above expression simplifies to

T̂+trq
Ωθ1

(ejω) = 1/Cθ(q), i.e. the inverse of the controller is identified. When both external exci-
tation and disturbance are present, the result will be in between these two cases, giving abiased
estimate.

A much better alternative is to estimate the transfer function from the following relation

T̂+trq
Ωθ1

(ejω) =
Φ̂Ωθext

cm1
(ω)

Φ̂θcm1
θext
cm1

(ω)
=
|S(ejω)|2T+trq

Ωθ1
(ejω)Φ̂θext

cm1
(ω)

|S(ejω)|2Φ̂θext
cm1

(ω)
= T+trq

Ωθ1
(q), (228)

which is clearly unbiased wheneverE(v(k)θextcm1
(k)) = 0.

The application of this method to simulation data obtained from the linearized model, described in
Section 15.1, gives the results, depicted on Figure 105, wherethe bode plots of the real̂T+trq

Ωθ1
(ejω)

(black solid) and the estimatedT+trq
Ωθ1

(ejω) (red dashed) transfer functions are given. The results
show that the SA estimate is sufficiently accurate.

15.2.2 Parametric model identification

In what follows, several methods for the identification ofparametricmodels based on closed-loop
data will be discussed and tested on the linearized model, described in Section 15.1.

15.2.2.1 Direct ARX identification

In the direct identification approach a common open-loop identification method is applied to the
data, collected while the process is operating in closed-loop. The identification is hence per-
formed on a batch of input-output data{Ωg(k), θcm1

(k)} by completely disregarding the feed-
back. To summarize this, we will consider the identification of linear regression models, although
other identification structures could be used as well.
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Figure 105 Bode plots of the transfer functionT+trq
Ωθ1

(ejω) and its spectral analysis estimate
based on equation (228)

The starting point in the identification of linear regression models is an ARX model structure9

Ωg(k) =
B(q−1, p)

A(q−1, p)
θcm1

(k) +
1

A(q−1, p)
v(k), (229)

where the polynomialsA(q−1, p) andB(q−1, p) are given by

A(q−1, p) = 1 + a1q
−1 + a2q

−2 + · · ·+ ana
q−na ,

B(q−1, p) = b0 + b1q
−1 + b2q

−2 + · · ·+ bnb
q−nb ,

with p =
[
a1 . . . ana

b0 b1 . . . bnb

]T
being the unknown parameter vector. By defining

the regression vector

ϕT (k) =
[
−Ωg(k − 1) . . . −Ωg(k − na) θcm1

(k) . . . θcm1
(k − nb)

]
,

equation (229) can be rewritten in the more convenient for identification regression form

Ωg(k) = ϕT (k)p+ v(k). (230)

Suppose a set of input/output data of lengthN is collected, i.e.{Ωg(k), θcm1
(k)}Nk=1. The idea

is then to compute the optimal parameter vectorp that minimizes the following prediction error
cost function

V (p) =
1

N

N∑

k=1

(
Ωg(k)− ϕT (k)p

)2
, (231)

9Actually, FIR models also fall into this category, but we will not treat them separately as they can be viewed as a
special case of the ARX model withA(q−1, p) = 1.
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Figure 106 Bode plots of the transfer functionT+trq
Ωθ1

(ejω) and its estimate based on direct ARX
identification

that is,

p̂ = argmin
p
V (p) =

(
1

N

N∑

k=1

ϕ(k)ϕ(k)T

)−1(
1

N

N∑

k=1

ϕ(k)Ωg(k)

)
. (232)

It can be shown [70] that this method produces a consistent estimate provided that

• the true system has ARX structure, i.e. can be written in theform (229),

• the input signalθcm1
(k) is persistently exciting (which would be the case when the external

inputθextcm1
(k) is sufficiently exciting), and

• the disturbancev(k) is uncorrelated withΩg(k − 1 − τ) andθextcm1
(k − τ), τ ∈ N+. To

be more precise, it should hold thatE (ϕ(k)v(k)) = 0. This would hold ifv(k) is a white
noise process.

However, if the disturbance signalv(k) is non-white, as is the case with the wind, thenthe ARX
estimate will be biased.

The results of the application of this approach to the linearized example here is depicted on Figure
106. Three ARX models of different order have been identified, one withna = nb = 8 (dashed
curve), another withna = nb = 13 (dash-dotted curve), and the third one withna = nb = 20
(dotted curve). The true transfer function is represented bythe solid curve on the figure. In
real-life experiments when this transfer function is unknown, it should be substituted with its SA
estimate, i.e. the dashed curve in Figure 105. It can be seen from the figure that the most accurate
model is of order 13, and that increasing the model order further does not improve the accuracy.
The phase is approximated accurately, while the magnitude ismost accurately modeled in the
frequency range above approximately 0.2 rad/s. The zero is not accurately estimated by any of
the models.

Similar results are obtained with other model structures, such as ARMAX and Box-Jenkins mod-
els. The disadvantage of such more extended models is that thecorresponding prediction error
optimization criterion is no longer a quadratic optimization problem in the parameter vectorp,
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Figure 107 Bode plots of the transfer functionT+trq
Ωθ1

(ejω) and its IV estimate

but becomes a nonlinear optimization problem, with the consequence that only locally optimal
solutions forp can be computed using numerical iterative procedures.

15.2.2.2 Instrumental variable method

Similarly to the direct ARX identification, the instrumental variable (IV) method is also based
on the ARX model structure written in regression form, as in equation (230). In the IV method,
however, instead of obtaining the parameter vector by meansof a minimization of the quadratic
cost function (231), the estimate is constructed by correlation with a suitably defined auxiliary
signalζ(k), referred to as theinstrumental variable. For a reason that will become obvious in
what follows, the IV should be selected in such a way, that thefollowing expression holds

1

N

N∑

k=1

ζ(k)
(
Ωg(k)− ϕT (k)p

)
= 0,

with optimal solution given by

p̂ =

(
1

N

N∑

k=1

ζ(k)ϕ(k)T

)−1(
1

N

N∑

k=1

ζ(k)Ωg(k)

)
, (233)

provided that the matrix to be inverted is nonsingular. Notethat this estimate becomes equal to
the ARX least-squares estimate in equation (232) when the IVis selected asζ(k) = ϕ(k).

Under the assumption that (230) holds, (233) takes the form

p̂ = p+

(
1

N

N∑

k=1

ζ(k)ϕT (k)

)−1(
1

N

N∑

k=1

ζ(k)v(k)

)
,

meaning that the IV estimator provides a consistent parameter estimate, i.e.limN→∞ p̂ = p,
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under the conditions that (a) the matrixE(ζ(k)ϕT (k)) is nonsingular, and (b)E(ζ(k)v(k)) = 0.
Both conditions are satisfied by taking

ζT (k) =
[
θextcm1

(k) θextcm1
(k − 1) . . . θextcm1

(k − na − nb)
]
,

under the assumption thatθextcm1
is uncorrelated with the signalv.

Figure 107 visualizes the results, obtained with this identification method on the simulation data
with the linearized wind turbine model, described in Section15.1. The figure shows the Bode
plots of the true model (solid curve), and three identified models of different orders:na = nb = 7
(dashed curve),na = nb = 8 (dash-dotted curve), andna = nb = 20 (dotted curve). Similarly
to the direct ARX method, the IV estimates approximate the phase accurately. Regarding the
amplitude estimation, the 7th order model is the most accurate one. In real-life experiments
the transfer function if the true system is unknown, so the black curve in Figure 107 should be
interchanged with the estimate, obtained from measured data using SA analysis, i.e. the dashed
line on Figure 105.

15.2.2.3 Indirect identification

The idea, used in the indirect identification, is to first identify the closed-loop transfer function
T clΩθ1(z) by applying standard open-loop identification technique on the data{Ωg(k), θextcm1

(k)},
and then compute the system transferT+trq

Ωθ1
(z) using the knowledge of the pitch controllerCθ(z).

Clearly, givenCθ(z) and an estimatêT clΩθ1(z), an estimate of the system dynamics can be com-
puted from (226) as

T̂+trq
Ωθ1

(z) = T̂ clΩθ1(z)
(
1 + Cθ(z)T̂

cl
Ωθ1(z)

)−1
.

The disadvantage of this method is that the model order ofT̂+trq
Ωθ1

(z) will be equal to that of the
identified closed-loop system plus the order of the pitch controller.

In the first step of the indirect method, the open-loop identification can be performed with any ex-
isting method. For the simulation data used in this section,three open-loop identification methods
have been used to fit the model parameters to the data{Ωg(k), θextcm1

(k)}:

• prediction error identification based on an ARX model structure. This is similar to the
approach in Section 15.2.2.1 with the difference that it is now applied to data{Ωg, θextcm1

}
instead. Theoretically, this estimate should be biased due to the non-whiteness of the dis-
turbance processv(k), as discussed above.

• IV method is used to compute the parameters of an ARX model structure, with “optimal”
choice of the instrumental variable as implemented in the function IV 4 from the SYSTEM

IDENTIFICATION TOOLBOX of MATLAB [50].

• The N4SID subspace identification method is used to estimate the parameters of a state-
space model. This method is also implemented in the SYSTEM IDENTIFICATION TOOL-
BOX of MATLAB.

All three models have the same model order, 20. Other methods(MOESP [93]), model structures
(ARMAX [70, 50]), and orders (in the range 7-30) have also been tested, but do not lead to
significant improvement of the results, reported in Figure 108. The Bode plots on the right-hand
side of the figure depict the identified closed-loop modelsT̂ clΩθ1 . As it can be seen from the
figure, all methods are able to estimate an accurate model in the frequency range above 0.1 rad/s.
Below that frequency the models are inaccurate. Due to that,the computed open-loop models
T̂+trq
Ωθ1

(ejω) are also quite inaccurate. By increasing the length of the data one could improve the
accuracy at the lower frequencies.
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Figure 108 Bode plots of the transfer functionsT clΩθ1(e
jω) (left) andT+trq

Ωθ1
(ejω) (right). Both

true (solid), and estimated transfer functions are given, using the methods IV
(dashed), ARX (dash-dotted) and N4SID (dotted)

15.2.2.4 Joint input-output identification

The idea behind this approach is to use open-loop identification techniques to identify the trans-
fers fromθextcm1

(k) to bothωg(k) andθcm1
(k) simultaneously. Although any open-loop identifi-

cation method can be used here, we will employ subspace identification, as in [92], referred to as
CL-MOESP here.

Using the relations in equation (226) one can write

[
Ωg(k)
θcm1

(k)

]
=

(
1− T+trq

Ωθ1
(q)Cθ(q)

)−1
[
T+trq
Ωθ1

(q) 1

1 Cθ(q)

] [
θextcm1

(k)
v(k)

]

=

[
T1(q)
T2(q)

]
θextcm1

(k) + T2

[
1

Cθ(q)

]
v(k),

(234)

and suppose, that estimatesT̂1(q) andT̂2(q) of the transfer functionsT1(q) andT2(q) have been
identified. Then,

T̂+trq
Ωθ1

(q) =
T̂1(q)

T̂2(q)
. (235)

Notice that, just as the indirect identification method, the accuracy of the identified model̂T+trq
Ωθ1

(q)

is influenced by the accuracy of the estimated closed-loop transfer functionT1(q) = T clΩθ1(q). In
addition to that, any inaccuracies in the estimation of the second channel,T2(q), would addi-
tionally contribute to the final error in̂T+trq

Ωθ1
(q), which makes the method even more sensitive

to model imperfections than the indirect identification method. The results, obtained with the
joint input-output method are presented in Figure 109, wherethe Bode plot of the true transfer
functionT+trq

Ωθ1
(q) (black solid), and its estimate using the CL-MOESP joint input-output method

(red dotted).

15.2.2.5 Two-stage method

Another method for closed-loop system identification is the two-stage method. As its name im-
plies, the method consists of two steps, that are executed consequently. In the first step, the
transfer function from the external inputθextcm1

to the turbine inputθcm1
, i.e. the transfer function

T2(q) in equation (234), is identified. Then, the following auxiliary signal is computed based on
the identified model̂T2(q)

θauxcm1
(k) = T̂2(q)θ

ext
cm1

(k)
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Figure 109 Bode plots of the transfer functionsT+trq
Ωθ1

(ejω) (black solid), and its estimate using
the CL-MOESP joint input-output (red dotted)

which, unlike the true input signalθcm1
(k), is uncorrelated with the disturbancev(k). Thus, in

the second step of the method the input signalθcm1
(k) is substituted withθauxcm1

(k), resulting in

Ωg(k) = T+trq
Ωθ1

(q)θauxcm1
(k) + T2(q)v(k) + T+trq

Ωθ1
(q)(T2(q)− T̂2(q))θextcm1

(k)

= T+trq
Ωθ1

(q)θauxcm1
(k) +W (q)ṽ(k),

from which a model of the transferT+trq
Ωθ1

(q) is identified using again open-loop methods based
on the data{Ωg(k), θauxcm1

(k)}.
Similarly to the two-stage method, the choice of an identification method for the open-loop prob-
lem in the two steps is free. This method, applied to the present problem, was uncapable of
producing a reasonably accurate model ofT+trq

Ωθ1
(q), and the results are hence not reported here.

15.2.2.6 Tailor-made instrumental variable method

The advantage of the Tailor-made IV method is that it providesan unbiased estimate of the trans-
fer functionT+trq

Ωθ1
, while at the same time it pertains the simple linear regression type of algo-

rithms [26, 27]. The main idea is to parameterize the closed-loop modelT clΩθ1 with the open-loop
model parameters, which parameters are then estimated using linear regression algorithms ap-
plied on the closed-loop data.

To summarize the method, let

Cθ(q) ,
nc(q

−1)

dc(q−1)
,

T+trq
Ωθ1

(q) ,
np(q

−1)

dp(q−1)
,
b0 + b1q

−1 + b2q
−2 + · · ·+ bnq

−n

1 + a1q−1 + a2q−2 + · · ·+ anq−n
.
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From equation (234) it follows that

Ωg(k) =
T+trq
Ωθ1

(q)

1− T+trq
Ωθ1

(q)Cθ(q)
θextcm1

(k) +
1

1− T+trq
Ωθ1

(q)Cθ(q)
v(k),

or, equivalently,

(
dp(q

−1)dc(q
−1)− np(q−1)nc(q

−1)
)
Ωg(k) = np(q

−1)dc(q
−1)θextcm1

(k) + dp(q
−1)dc(q

−1)v(k).

(236)
Note also, that

θcm1
(k) = θextcm1

(k) + Cθ(q)Ωg(k) ⇒ dc(q
−1)θextcm1

(k) = dc(q
−1)θcm1

(k)− nc(q−1)Ωg(k).

Substitution of the last equation into (236) gives

dp(q
−1)dc(q

−1)Ωg(k) = np(q
−1)dc(q

−1)θcm1
(k) + v̄(k),

wherev̄(k) , dp(q
−1)dc(q

−1)v(k). Next, by defining

Ω̄g(k) , dc(q
−1)Ωg(k),

θ̄cm1
(k) , dc(q

−1)θcm1
(k),

p ,
[
a1 . . . an b0 b1 . . . bn

]T
,

ϕ̄(k) ,
[
−Ω̄g(k − 1) . . . −Ω̄g(k − n) θ̄cm1

(k) θ̄cm1
(k − 1) . . . θ̄cm1

(k − n)
]T
,

one finally obtains the following linear regression equation

Ω̄g(k) = ϕ̄T (k)p+ v̄(k).

Using the IV method with instrumental variable

ζ̄(k) =
[
θextcm1

(k) . . . θextcm1
(k − 2n)

]T
,

the following IV estimate of the parameter vectorp will be asymptotically unbiased

p̂ =

(
1

N

N∑

k=1

ζ̄(k)ϕ̄(k)T

)−1(
1

N

N∑

k=1

ζ̄(k)Ω̄g(k)

)
, (237)

provided thatθextcm1
(k) is persistently exciting and uncorrelated withv(k).

The method is applied to the simplified wind turbine model, described in Section 15.1. The
results are depicted on Figure 110 for three different model orders, ten (dashed curve), eleven
(dash-dotted curve), and twelve (dotted curve). The nominalBode plot is represented by the
solid curve on the figure. As it can be observed from the figure, the best model has order 10.
The amplitude is well approximated above 0.2 rad/s, while thephase is reasonably well-modeled
throughout the whole frequency range. For other model orders, though, the phase might be less
accurately modeled.

15.2.2.7 Closed-loop N4SID method

The closed-loop N4SID (CL-N4SID) method [87] is a generalization of the open-loop subspace
identification method N4SID [86]. The method has the following useful features:
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Figure 110 Bode plots of the transfer functionsT+trq
Ωθ1

(ejω) (solid), and its 10th (dashed), 11th
(dash-dotted) and 12th (dotted)) order estimate using the Tailor-made IV method

1 provides asymptotically unbiased estimates,

2 deals with MIMO systems,

3 deals with unstable open-loop systems,

4 simplifies to conventional open-loop N4SID algorithm when nocontroller is present.

The third feature is extremely important since the open-looptransferT+trq
Ωθ1

(z) is unstable in the
case of constant-power torque control, as explained in Section 15.1. The last feature will also
prove to be very useful when the closed-loop identification for individual pitch control design
is treated in the next section, where some of the input-output channels are interconnected with
feedback (θcm1

→ Ωg), while other are not (θcmi
→Mcmi

, i = 2, 3).

Below, the CL-N4SID will be outlined briefly. Since this method will later on also be used for the
MIMO identification case in Figure 99, a general notation will be used in this section, wherein
the inputs, outputs and the controller will not be explicitly specified. This is depicted on Figure
111. The SISO case of collective pitch, discussed in this section, corresponds to taking

u ≡ θcm1
, y ≡ Ωg, r ≡ θextcm1

, andK = Cθ.

The starting point of the CL-N4SID method is the following state-space model of the open-loop
system

T :

{
x(k + 1) = Ax(k) +Bu(k) + ξ(k),

y(k) = Cx(k) +Du(k) + ν(k),

whereu(k) ∈ R
m is the input signal,y(k) ∈ R

p is the output signal,x(k) ∈ R
n is the state of the

system, andξ(k) ∈ R
n andν(k) ∈ R

p are unobserved, zero mean, white noise vector processes.
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Figure 111 General closed-loop system identification setting

The controller, on the other hand, is governed by the equations

K :





xc(k + 1) = Acxc(k) +Bcy(k),
uc(k) = Ccxc(k) +Dcy(k),
u(k) = uc(k) + e(k).

The state-dimension of the controller is immaterial10.

Further, let

E

{[
ξ(k)
ν(k)

] [
ξ(l)
ν(l)

]T}
=

[
Q S
ST R

]
δ(k − l) ≥ 0,

whereδ(k) is the Dirac delta function, and where for a matrixM the expressionM > 0 (M ≥ 0)
means thatM is positive (semi-)definite.

Since the derivation of the method is rather involved, only analgorithmic summary, with some
add-ons for numerical efficiency and automatic model order selection, will be provided here. For
more details, the reader is referred to [87]. Before summarizing the complete algorithm, the
following additional notation needs to be defined:

Hi,j,r(v) ,




vi vi+1 . . . vi+r−1

vi+1 vi+2 . . . vi+r
...

...
.. .

...
vj vj+1 . . . vj+r−1




Ti(A,B,C,D) ,




D 0 . . . 0
CB D . . . 0
CAB CB . . . 0

...
...

...
...

CAi−2B CAi−3B . . . D




CL-N4SID Algorithm
Given: Data{yk, uk}, k = 0, 1, . . . , (N − 1),

controller matrices(Ac, Bc, Cc, Dc), and
integeri (larger than expected system order).

Step 1. Letj = N − (2i− 1) and define the matrices

10In fact, it is not necessary that the state-space matrices of the controllerare given; it suffices for the CL-N4SID
algorithm that just the first several Markov parameters are known.
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Ui|2i−1 , Hi,2i−1,j(u), Ui+1|2i−1 , Hi+1,2i−1,j(u)

U0|i−1 , H0,i−1,j(u), U0|i , H0,i,j(u)

Yi|2i−1 , Hi,2i−1,j(y), Yi+1|2i−1 , Hi+1,2i−1,j(y)

Y0|i−1 , H0,i−1,j(y), Y0|i , H0,i,j(y)

Hc
i , Ti(Ac, Bc, Cc, Dc), Hc

i−1 , Ti−1(Ac, Bc, Cc, Dc)

Mi|2i−1 , Ui|2i−1 +Hc
i Yi|2i−1, Mi+1|2i−1 , Ui+1|2i−1 +Hc

i−1Yi+1|2i−1

Step 2. Compute

Oi = Yi|2i−1



U0|i−1

Y0|i−1

Mi|2i−1



† 

U0|i−1

Y0|i−1

0


 , Zi = Yi|2i−1



U0|i−1

Y0|i−1

Mi|2i−1



† 

U0|i−1

Y0|i−1

Mi|2i−1


 ,

Zi+1 = Yi+1|2i−1




U0|i−1

Y0|i−1

Mi+1|2i−1



† 


U0|i−1

Y0|i−1

Mi+1|2i−1




Step 3. Compute an SVD ofOi

O1 = U




σ1
. . .

σip

0


V T ,

whereU andU are unitary matrices, andσl ≥ σl+1 ≥ 0, ∀l = 1, . . . , ip− 1.
Step 4. Determine the model order by either using the following ad-hocalgorithm∣∣∣∣∣∣∣∣∣

d = log10
([
σ1 . . . σip

])
,

εl =
1
l (dl − dl+1), l = 1, 2, . . . , ip− 1,

n = max

{
l : l ∈ {1, 2, . . . , ip− 1}, εl >

1

ip− 1

ip−1∑

t=1

εt

}

or let the user choose it using the plot ofd.
Further, partitionU andMi|2i−1 as follows

U =
[
U1 U2

]
=


 U1

UT2,0
...

UT2,i−1


 , Mi|2i−1 =



M0

...
Mi−1




with U1 ∈ R
ip×n, U2,l ∈ R

(ip−n)×p,Ml ∈ R
m×j , l = 0, 2, . . . , i− 1.

Step 5. LetG = U1diag
([√

σ1 . . .
√
σn
])

, and computeKl ∈ R
p×m,

l = 0, . . . , i− 1 from the following least-squares optimization problem

minimize
Kl

l=0,...,i−1

∥∥∥∥∥∥∥
vec

(
UT2 Zi

)
−

i−1∑

t=0

(MT
t ⊗

[
U2,t . . . U2,i−1

]
)vec







K0
...

Ki−1−t







∥∥∥∥∥∥∥
2

Step 6. Define the matrix

K =




K0 0 . . . 0
K1 K0 . . . 0
...

...
...

...
Ki−1 Ki−2 . . . K0


 ,

and determine the states
X̂i = G†(Zi −KMi|2i−1),

X̂i+1 =
(
[Ip(i−1), 0]G

)†
(
Zi+1 − [Ip(i−1), 0]K

[
Im(i−1)

0

]
Mi+1|2i−1

)
.

Step 7. Compute the matrices
Mi|i = Ui|i +DcYi|i[

S11 S12
S21 S22

]
=

[
X̂i+1

Yi|i

] [
X̂i

Mi|i

]†

T =

[
X̂i+1

Yi|i

]
−
[
S11 S12
S21 S22

] [
X̂i

Mi|i

]
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Step 8. Compute the system matrices
B̂ = S12(Im −DcS22)

−1

D̂ = S22(Im −DcS22)
−1

Â = S11 +BDcS21
Ĉ = (Ip + D̂Dc)S21

Step 9. Determine the covariance matrices[
Q̂ Ŝ

ŜT R̂

]
=

1

j

[
In B̂Dc

0 Ip + D̂Dc

]
TT T

[
In B̂Dc

0 Ip + D̂Dc

]T
.

Remark 15.1(Numerically efficient implementation). The CL-N4SID algorithm, as summarized
in [87], is computationally very involved even for problemswith moderate numberN of input-
output data of about a few thousand data points. The reason forthat is that the matrices, defined
in Step 1 of the algorithm all havej columns, and fori≪ N , j is a very large number (j ≈ N ).
Performing SVD decompositions, and other matrix operations, on such large matrices is compu-
tationally very involved and not practical. Indeed, theV matrix of an SVD decomposition of the
matrixOi will be a (j × j) matrix; to even store such a matrix would require in MatLab(8j2)
Bytes of RAM (meaning 200 MB forj = 5000), let alone performing computations with it. Fortu-
nately, the algorithm can be efficiently implemented by avoiding such large-scale computations.

Step 3. The computation of an SVD ofOi is computationally extremely involved due to the large
number of columns ofOi, resulting in very large matrixV . However, the matrixV is subsequently
not used in the algorithm, and thus need not to be computed, ifpossible. Fortunately, this is
possible, and the remaining elements of the SVD can efficiently be calculated as follows. First,
use the “Q-less” QR decomposition to compute a lower-triangular matrixR1 ∈ R

ip×ip for which
there exists a unitary matrixQ1 such that

[
R1 0

]
QT1 = Oi. (238)

The unitary matrixQ1 ∈ R
j×j is not needed, and should not be computed. Next, perform an SVD

on the matrixR1 to get
R1 = Ũdiag

([
σ̃1 . . . σ̃ip

])
Ṽ T ,

where theṼ matrix is now just an(ip)-by-(ip) matrix. It can easily be proved that̃U and the
singular values̃σl of R1 are also elements of the SVD ofOi in Step 3 of the algorithm. To see
that, notice that equation(238) impliesOiOTi = R1R

T
1 , so that it follows that an SVD ofOiOTi

can be written as
OiOTi = Ũdiag

([
σ̃21 . . . σ̃2ip

])
ŨT .

Hence,̃σl are the singular values ofOi and the matrixŨ contains the corresponding left singular
vectors. Notice that̃σl ≡ σl, and that for distinct and positive singular values alsoŨ ≡ U .

Step 5. The optimization in Step 5 of the CL-N4SID algorithm is also computationally rather
involved, so its efficient implementation is very important. The least-squares problem in Step 5 is
derived from the following matrix equation in [87]

UT2 Zi =
i−1∑

t=0

[
U2,t . . . U2,i−1

]



K0
...

Ki−1−t


Mt, (239)

which needs to be solved with respect to the matricesKl, l = 0, 1, . . . , i− 1. Indeed, vectorizing
this matrix equation, and solving the resulting system of linear equations in least-squares sense
is equivalent to the solution of the optimization problem inStep 5. This would be a system of
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j(pi − n) equations and(pmi) unknowns. The huge number of equations can be brought down
to im(pi − n), which is a substantial reduction of the computational burden whenim ≪ j. To
this end, use the QR factorization to compute a lower-triangular matrix M̃i|2i−1 ∈ R

im×im and

(unstructured) matrices̃Yi|2i−1, Ũ0|i−1 andỸ0|i−1 for which there exists a unitary matrixQT2 such
that the following equation holds




M̃i|2i−1 0

Ỹi|2i−1 ⋆

Ũ0|i−1 ⋆

Ỹ0|i−1 ⋆


Q

T
2 =




Mi|2i−1

Yi|2i−1

U0|i−1

Y0|i−1


 , (240)

where the symbols⋆ denote matrices that are of no importance in the sequel.

Notice that also here the matrixQ2 is not needed and should not be computed. Furthermore,
notice that in the right-hand side matrix of equation (240) only the first(im) rows, i.e. the matrix
Mi|2i−1, need to be made lower-diagonal, i.e. the QR factorization is only computed forMi|2i−1,
but transformation matrix is also applied to the remaining matrices. Hence, the following matrix
can be computed without the knowledge ofQ2

ZiQ2 = Yi|2i−1



U0|i−1

Y0|i−1

Mi|2i−1



† 

U0|i−1

Y0|i−1

Mi|2i−1


Q2 = Yi|2i−1



U0|i−1

Y0|i−1

Mi|2i−1



† 


Ũ0|i−1 ⋆

Ỹ0|i−1 ⋆

M̃i|2i−1 ⋆


 .

Therefore, by defining

Z̃i , Yi|2i−1



U0|i−1

Y0|i−1

Mi|2i−1



† 

Ũ0|i−1

Ỹ0|i−1

M̃i|2i−1


 , M̃i|2i−1 =



M̃0

...
M̃i−1


 ,

post-multiplication of equation(239)by the matrixQ2 gives

UT2
[
Z̃i ⋆

]
=

i−1∑

t=0

[
U2,t . . . U2,i−1

]



K0
...

Ki−1−t



[
M̃t 0

]
,

Hence, for the least-squares problem that corresponds to(239)can be written

K = argmin
K

∥∥∥∥∥∥∥
UT2 Zi −

i−1∑

t=0

[
U2,t . . . U2,i−1

]



K0
...

Ki−1−t


Mt

∥∥∥∥∥∥∥
F

= argmin
K

∥∥∥∥∥∥∥
UT2
[
Z̃i ⋆

]
−

i−1∑

t=0

[
U2,t . . . U2,i−1

]



K0
...

Ki−1−t



[
M̃t 0

]
∥∥∥∥∥∥∥
F

= argmin
K

∥∥∥∥∥∥∥
UT2 Z̃i −

i−1∑

t=0

[
U2,t . . . U2,i−1

]



K0
...

Ki−1−t


 M̃t

∥∥∥∥∥∥∥
F

= argmin
K

∥∥∥∥∥∥∥
vec

(
UT2 Z̃i

)
−

i−1∑

t=0

(M̃T
t ⊗

[
U2,t . . . U2,i−1

]
)vec







K0
...

Ki−1−t







∥∥∥∥∥∥∥
2
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Figure 112 Bode plots of the transfer functionsT+trq
Ωθ1

(ejω) (left) andT clΩθ1(e
jω) (right). Both

true (black solid), and estimated (red dashed) transfer functions are given.

where in deriving the last expression the propertiesvec (ABC) = (CT⊗A)vec (B) and‖A‖F =
‖vec (A) ‖2 were used. Clearly, the solution of the optimization problem, defined in Step 5 of the
CL-N4SID algorithm, coincides with the solution of the optimization problem, defined in the last
equation of the expression above, where the vector inside the norm has justim(pi−n) elements,
which is usually much less than thej(pi − n) elements that the vector inside the norm in Step 5
of the algorithm has.

With the implementation improvements, as suggested in Remark 15.1, the computational speed
of the CL-N4SID algorithm is significantly improved.

The CL-N4SID algorithm was tested on the data obtained with the linearized wind turbine model,
described in Section 15.1. The results are depicted on Figure 112, where the left-hand side
represents the Bode plots of the open-loop transferT+trq

Ωθ1
, and the right-hand side – the closed-

loop transferT clΩθ1 . The black solid lines in the figure correspond to the true transfer function,
while the red dashed lines – to the identified ones. The model order was chosen automatically,
as suggested at Step 4 of CL-N4SID algorithm, which resulted in model order 13. Notice that,
unlike most of the other methods, the CL-N4SID also accuratelyidentifies the zero point around
3 rad/s.

15.2.2.8 Combined open and closed-loop identification using CL-N4SID

One of the main advantages of the CL-N4SID algorithm is that it is a generalization of the open-
loop N4SID method in the sense that when in Figure 111 the controllerK is absent, the open-loop
solution can be obtained with the closed-loop CL-N4SID algorithm with the controller matrices
set to zero (i.e.Ac = Bc = Cc = Dc = 0). This feature allows to easily apply the method
to MIMO data, in which some inputs and outputs are used by the controller, while others not.
This is the case when, in addition to the rotor dynamics, one wishes to identify the tower fore-aft
dynamics as well. For instance, suppose that the tower top fore-aft speed is measured, then the
CL-N4SID can simply by applied to this problem by setting in thealgorithm (and in Figure 111)

u ≡ θcm1
, y ≡

[
Ωg
ẋnod

]
, e ≡ θextcm1

, andK = [Cθ, 0],

i.e. the part of the MIMO controller that corresponds to the output ẋnod is simply set to zero.
In the MIMO case, however, one should also bear in mind that when some of the input-output
signals are significantly larger than the others, the channels corresponding to the later might be
less accurately estimated. To prevent that it is sometimes advisable to scale some of the signals
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Figure 113 Bode plots of the transfer functionsT+trq
Ωθ1

(ejω) (left) andT clẋnodθ1
(ejω) (right). Both

true (black solid), and estimated (red dashed) transfer functions are given.

so that approximately equal weight is put to all channels in the identification. This scaling should
be performed with care when the channels to be scaled appear in the feedback. The result of
this MIMO closed-loop identification problem is demonstrated on Figure 113, where the transfer
functionsT+trq

Ωθ1
andT+trq

ẋnodθ1
are identified. To this end, the “measured” signalẋnod is first down-

scaled by a factor of 100, before it is used on the identification; at the end, the identified channel
T̂+trq
ẋnodθ1

is up-scaled by a factor of 100. Clearly, both channels are rather accurately identified.

15.3 Individual pitch identification

For individual pitch control design not only the channelT+trq
Ωθ1

is needed, but also the channels
from the tilt and yaw oriented pitch actions,θcm2

andθcm3
, to the tilt and yaw-wise bending mo-

ments,Mcm2
andMcm3

. As already discussed in Section 15.1, there are basically two possibilities
for identification of these channels: via open-loop identification, and via closed-loop identifica-
tion. In the first case the goal is the identification of the transfer functionsT clMiθj

, i, j = 2, 3, i.e.
with the pitch controllerCθ included. This has the disadvantage that the identified modelswill be
functions of the pitch controllerCθ, so that any subsequent changes in the pitch controller would
require a new identification ofT clMiθj

, i = 2, 3, j = 2, 3. The second option, i.e. identification

in closed-loop, aims at estimatingT+trq
Miθj

, i, j = 2, 3, which does not suffer from the above draw-
back, but requires a more involved identification due to the closed-loop setting and the necessity
to identify the speed regulation channelT+trq

Ωθ1
at the same time. These approaches are treated in

the following subsections. In both cases, the CL-N4SID algorithm will be used.

15.3.1 Individual pitch identification in open-loop setting

In the open-loop setting, depicted on Figure 114, the tilt-wise θcm2
and yaw-wiseθcm3

pitch
signals are both free to choose, which allows us to select them as uncorrelated random signals –
a necessary condition for computing unbiased estimates. Indeed, notice that

Mcm2
(k) = T clM2θ2

(q)θcm2
(k) + T clM2θ3

(q)θcm3
(k) + T clM2u

(q)ucm(k)

Mcm3
(k) = T clM3θ2

(q)θcm2
(k) + T clM3θ3

(q)θcm3
(k) + T clM3u

(q)ucm(k),
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Figure 114 Open-loop setting for individual pitch system identification

from which it can be written that

ΦMcm2
θcm2

(ω) = T clM2θ2
(ejω)Φθcm2

(ω) + T clM2θ3
(ejω)Φθcm3

θcm2
(ω) + T clM2u

(ejω)Φuθcm2
(ω),

ΦMcm3
θcm2

(ω) = T clM3θ2
(ejω)Φθcm2

(ω) + T clM3θ3
(ejω)Φθcm3

θcm2
(ω) + T clM3u

(ejω)Φuθcm2
(ω),

ΦMcm2
θcm3

(ω) = T clM2θ2
(ejω)Φθcm2

θcm3
(ω) + T clM2θ3

(ejω)Φθcm3
(ω) + T clM2u

(ejω)Φuθcm3
(ω),

ΦMcm3
θcm3

(ω) = T clM3θ2
(ejω)Φθcm2

θcm3
(ω) + T clM3θ3

(ejω)Φθcm3
(ω) + T clM3u

(ejω)Φuθcm3
(ω).

Hence, under the assumption that the signalsθcm2
, θcm3

andu are uncorrelated, a consistent
estimate will be obtained using the spectral analysis method, i.e.

lim
N→∞




Φ̂Mcm2
θcm2

(ω)

Φ̂θcm2
(ω)

Φ̂Mcm2
θcm3

(ω)

Φ̂θcm3
(ω)

Φ̂Mcm3
θcm2

(ω)

Φ̂θcm2
(ω)

Φ̂Mcm3
θcm3

(ω)

Φ̂θcm3
(ω)


 =

[
T clM2θ2

(ejω) T clM2θ3
(ejω)

T clM3θ2
(ejω) T clM3θ3

(ejω)

]

Similarly to Section 15.2, PRBS signals are used here for excitation

θcm2
(k) =

{
0, k ≤ 500 samples,
3
2 .s

(2)
prbs(

⌈
k−500

4

⌉
), k > 500 samples,

θcm3
(k) =

{
0, k ≤ 500 samples,
3
2 .s

(3)
prbs(

⌈
k−500

4

⌉
), k > 500 samples,

wheres(2)prbs ands(3)prbs are independent pseudo random binary signals of length (213− 1) samples,
uncorrelated with the wind-related signalu.

For collecting data, a simulation is performed with theseθcm2
andθcm3

. The remaining simulation
parameters (turbine parameters, controllers, filters, blade effective wind signals) are the same as
in the collective pitch identification case. To get an idea of the pitch activity, the pitch angle of
one of the blades is shown in Figure 115.

The CL-N4SID algorithms is next applied to this open-loopidentification problem by setting (see
Figure 111)

u ≡
[
θcm2

θcm3

]
, y ≡

[
Mcm2

Mcm3

]
, andK = [0, 0].

The result of the identification is depicted on Figure 116. It canbe observed from the figure
that the diagonal channels,T clM2θ2

andT clM3θ3
, are rather accurately estimated, although the phases

become less accurate at frequencies above 5 rad/s. The off-diagonal cross-terms are less accurate
(notice that these are completely absent in the true model, where the channelsθcm2

→Mcm2
and

θcm3
→Mcm3

are completely decoupled). The reason for the presence of these off-diagonal chan-
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Figure 115 Pitch activity of first blade through the whole simulation (left) and a zoom on the
interval [50, 100] s (right)

nels in the identified model is that for finite data lengthN <∞, the cross spectrâΦθcm2
θcm3

(ω),

Φ̂uθcm2
(ω) andΦ̂uθcm3

(ω) are not zero, resulting in nonzerôΦMcm2
θcm3

(ω) andΦ̂Mcm3
θcm2

(ω).
One way of reducing this effect is to increase the data length, which however increases the
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Figure 116 Bode plots of the identified transfer functionsT clMiθj
, i, j = 2, 3. Both the true (black

solid curves) and the identified (red dashed curves) models are shown.

computational burden. Another possibility is to increase the energy of the excitation signalsθcm2

andθcm3
, which will result in a decrease of the influence on the wind-related disturbance sig-

nal ucm as compared to the pitch excitation. This, however, requiresmore pitch activity which
might also be restrictive in practice. To demonstrate the improvement as a result of “more” pitch
excitation, another simulation is run with this time twice larger pitch excitation signals. To this
end, the same signals are usedθcm2

andθcm3
as in the first simulation, but scaled by a factor

of two. The resulting pitch angle of the first blade is shown in Figure 117 (compare to Figure
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Figure 117 Pitch activity of first blade through the whole simulation (left) and a zoom on the
interval [50, 100] s (right)

115). Again, the CL-N4SID algorithm is subsequently applied to the data to identify the transfers
T clMiθj

, i, j = 2, 3. The results are given in Figure 118. When compared with Figure 116, it can

be observed that the magnitude plots of the off-diagonal transfer functionsT clM2θ3
andT clM3θ2

are
indeed somewhat smaller. An evaluation of theH2 norms ofT clM2θ3

andT clM3θ2
(which is related

to the area below the magnitude plots) reveals that these arereduced by approximately a factor of
two.
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Figure 118 Bode plots of the identified transfer functionsT clMiθj
, i, j = 2, 3, when twice more

excitation is used. Both the true (black solid curves) and theidentified (red dashed
curves) models are shown.

Of course, one might also choose to estimate the channelsT clM2θ2
andT clM3θ3

separately by means
of two SISO identifications, one with the data{u = θcm2

, y = Mcm2
} and another with{u =

θcm3
, y = Mcm3

}. In this way one disregards the coupling of the tilt and yaw-wise dynamics.

ECN-E–12-028 229



Although in the simulation model, used in this section, there is no coupling anyway, this is not
the case in practice. As can be observed by comparison of Figure 119 with the diagonal plots
on Figure 116, separate identification of the tilt and yaw channels also results in some, though
minor, improvement of the identified channelsT clM2θ2

andT clM3θ3
.
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Figure 119 Bode plots of the separately identified transfer functionsT clM2θ2
andT clM3θ3

. Both the
true (black solid curves) and the identified (red dashed curves) models are shown.

15.3.2 Individual pitch identification in closed-loop setting

In this subsection, the most involved problem is discussed,i.e. the problem of identification of
the whole transfer matrixT+trq, defined in equation (225). The identification setup is depicted
on Figure 120, which is clearly a closed-loop identification problem. In this case, the dynamics
of the (linearized) system is governed by the following equation




Ωg
Mcm2

Mcm3


 =



T+trq
Ωθ1

T+trq
Ωθ2

T+trq
Ωθ3

T+trq
M2θ1

T+trq
M2θ2

T+trq
M2θ3

T+trq
M3θ1

T+trq
M3θ2

T+trq
M3θ3






θcm1

θcm2

θcm3


+



T+trq
Ωu1

T+trq
Ωu2

T+trq
Ωu3

T+trq
M2u1

T+trq
M2u2

T+trq
M2u3

T+trq
M3u1

T+trq
M3u2

T+trq
M3u3






ucm1

ucm2

ucm3


 .

Hence, the simplest way to address this MIMO problem is to putit into the general framework of
the CL-N4SID algorithm with

u ≡



θcm1

θcm2

θcm3


 , y ≡




Ωg
Mcm2

Mcm3


 , andK =



Cθ

0
0


 ,

which would only require sufficient excitation of the three input signalsθcmi
, i = 1, 2, 3. Al-

though such an approach indeed produces reasonable estimates of the diagonal terms of the trans-
fer matrix T+trq(z), the cross-couplings between the speed regulation, tilt-wise and yaw-wise
loops are much more difficult to estimate. To see that, consider for instance the generator speed
which in the present simulation model is only affected byθcm1

, θcm2
, ucm1

anducm2
. Figure 121

(left) shows the magnitude plots of the transfer functionsT+trq
Ωθ1

(black solid curve),T+trq
Ωθ2

(red

dashed curve),T+trq
Ωv1

(blue dotted curve). Clearly, the transfer from the tilt-wise pitchθcm2
to

the generator speedΩg is almost negligible as compared to the transfers from the collective pitch
θcm1

and the collective effective wind speeducm1
to Ωg, while at the same time the spectrum

of θcm2
is comparable (and even smaller at low frequencies) to the spectra ofθcm1

anducm1
.

Hence, especially the lower frequency contents ofθcm2
have a negligible effect on the genera-

tor speed, which makes this transfer function extremely difficult to identify. Notice that at the
(lightly damped) eigenfrequenciesT+trq

Ωθ2
the difference is much smaller, which should facilitate
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the identification (at those frequencies) as later on will be confirmed by the results.
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Figure 121 (left) magnitude plots of the transfer functionsT+trq
Ωθ1

(black solid), T+trq
Ωθ2
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dashed),T+trq
Ωv1

(blue dotted); (right) spectraΦθcm1
(black solid), Φθcm2

(red
dashed),Φucm1

(blue dotted).

Similar conclusions can be drawn regarding the cross-coupling of the tilt-wise momentMcm2

with the inputsθcm1
anducm2

, for instance. As becomes obvious from Figure 122,T+trq
M2θ1

is

negligible with respect toT+trq
M2v2

, which makes it very difficult to identify. One way to overcome
this bad identifiability is to significantly increase the energy of the pitch signalsθcm1

andθcm2
,

which is clearly not a practical approach as it would requirevery large excursions of the pitch
angles. Another possibility is to measure additional signals, e.g. the velocity of the fore-aft tower
vibrationsẋnod. This output is much more sensitive to variations in the pitchsignals (see Figure
123), which makes the identification of the transfer functions from the (measured) inputs to this
output easier. Then, by assuming that the tilt and yaw-wise momentsMcm2

andMcm3
are a linear

combination of the signalṡxnod, θcm2
andθcm3

(and, of course, the wind signalsucm2
anducm3

),
as is the case with the model presented in Section 15.1, one canwrite

Mcm2
(k) = c11ẋnod(k) + c12θcm2

(k) + c13θcm3
(k) + d1ucm2

(k),
Mcm3

(k) = c21ẋnod(k) + c22θcm2
(k) + c23θcm3

(k) + d2ucm3
(k).

which allows a very simple estimation of the unknown parameterscij whenever the above equa-
tions are assumed to be static (the dynamic case will also be considered below). In the static case
the above equations can be written for all data pointsk = 1, 2, . . . , N , and the resulting system
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Figure 122 (left) magnitude plots of the transfer functionsT+trq
M2θ1

(black solid), T+trq
M2θ2

(red

dashed),T+trq
M2v2

(blue dotted); (right) spectraΦθcm1
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of linear equations can be solved in a least squares sense as follows

[
ĉ11 ĉ12 ĉ13
ĉ21 ĉ22 ĉ23

]T
=




ẋnod(1) θcm2
(1) θcm3

(1)
ẋnod(2) θcm2

(2) θcm3
(2)

...
...

ẋnod(N) θcm2
(N) θcm3

(N)




† 


Mcm2
(1) Mcm3

(1)
Mcm2

(2) Mcm3
(2)

...
Mcm2

(N) Mcm3
(N)


 , (241)

where the symbol† denotes pseudo-inverse.

Suppose then that the following channels are first identified

[
Ωg
ẋnod

]
=

[
T̂+trq
Ωθ1

T̂+trq
Ωθ2

T̂+trq
Ωθ3

T̂+trq
ẋnodθ1

T̂+trq
ẋnodθ2

T̂+trq
ẋnodθ3

]

θcm1

θcm2

θcm3


+

[
⋆ ⋆
⋆ ⋆

] [
ucm2

ucm3

]

by using CL-N4SID algorithm with the datau = [θcm1
, θcm2

, θcm3
], y = [Ωg, ẋnod], andK =

Cθ ⊕ 02×1.
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Figure 123 (left) magnitude plots of the transfer functionsT+trq
ẋnodθ1
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dashed),T+trq
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Then,

T̂+trq =



1 0 0 0

ĉ11 ĉ12 ĉ13
ĉ21 ĉ22 ĉ23







T̂+trq
Ωθ1

T̂+trq
Ωθ2

T̂+trq
Ωθ3

T̂+trq
ẋnodθ1

T̂+trq
ẋnodθ2

T̂+trq
ẋnodθ3

0 1 0
0 0 1


 . (242)

Notice that the parameterscij do not need to be static, but can also be transfer functions in
which case, instead of using equation (241), the CL-N4SID algorithm can be used on the data
u = [ẋnod, θcm2

, θcm3
], y = [Mcm2

,Mcm3
], andK = 03×2.

Therefore, the transfer functions in the tilt-wise moment equation can be estimated by using the
following procedure:

Algorithm for individual pitch identification in closed-loop
Given: measurements{θcm1

, θcm2
, θcm3

,Ωg, ẋnod,Mcm2
,Mcm3

}
pitch controllerCθ

Step 1. Run the CL-N4SID algorithm on the data

u =



θcm1

θcm2

θcm3


 , y =

[
Ωg
ẋnod

]
, K =

[
Cθ

02×1

]
, obtaining the transfer functions

T+trq
Ωθi

andT+trq
ẋnodθi

, i = 1, 2.
Step 2. Compute the parameterscij either as static using equation (241), or

as transfer functions using the CL-N4SID algorithm with

u =



ẋnod
θcm2

θcm3
,


 , y =

[
Mcm2

Mcm3
,

]
, K = 03×2.

Step 3. Compute the transfer matrixT̂+trq from equation (242).

Running this algorithm on simulation data, obtained with the linearized model, described in Sec-
tion 15.1, and using three independent PRBS signals forθextcm1

, θcm2
andθcm3

, again bounded
between(−1.5) and (1.5) degrees as before. The results from the first step are presentedin
Figure 124. Notice that all transfers, butT+trq

Ωθ2
, are rather accurately estimated.T+trq

Ωθ2
remains

unidentifiable for the reason explained above. Notice thoughthat, as reasoned earlier in this
subsection, the two (lightly damped) eigenfrequencies ofT+trq

Ωθ2
are indeed estimated accurately.

In Step 2 of the algorithm one can either choose for the static,or the dynamic approach for
estimating thecij ’s. Using the static approach in Step 2, the result of Step 3 is plotted in Figures
125 and 126. The identified transfer functions in Figure 126 suggest negligible coupling between
the tilt and yaw-wise moments.

When the the dynamic approach is used in Step 2 for estimating thecij ’s, the result of Step 3 is
plotted in Figures 127 and 128. Comparison of Figure 128 to the open-loop results on Figure 116
one sees that there is very little difference between the open-loop and closed-loop behavior.
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Figure 129 Measurement setup for system identification

16 Experimental results

Summary

This section summarizes the results from applying closed-loop identification methods, developed
in Section 15, on field data. The data is collected by performing experiments on an ALSTOM
Wind Eco100 prototype wind turbine. The measurement campaignis performed at below rated
wind speeds between 3 and 8 m/s (at nacelle) by adding pseudo-random binary excitation to both
the control signals pitch angle reference and generator torque reference. The excitation signals
have been carefully designed to avoid the induction of undesired extra loads on the tower and
rotor. Identification methods are applied for estimating theeigenfrequency and damping rate of
the first fore-aft and sidewards tower modes and the first drive train mode. Due to the lack of
information about the controller and the exact excitation used (only the excited pitch angle and
generator torque are given), the following three closed-loop identification methods have been
used: Direct, SSARX and PARSIM methods. Model validation results indicate excellent model
accuracy.

16.1 The measurement campaign

16.1.1 The raw data

This section presents the results from applying closed-loopsystem identification on measurement
data from a ALSTOM Wind Eco100 wind turbine. The purpose of the identification is to estimate
the frequency and damping of the first tower fore-aft and side-to-side, and the first drive-train
modes. To this end, the control inputs pitch angle referenceand generator torque reference have
been simultaneously excited with special, mutually uncorrelated, filtered pseudo-random binary
test signals. The input/output signals, that have been measured, are summarized in Table 13 (see
also Figure 129).

Notice thatthe excitation signalsrθ andrg are not given. Also, no controller knowledge is used
in the identification. The nacelle wind speed,Vnac, is not used in the identification.

Four measurement time series (Test1, Test2, Test3 andTest4) are available, each taken
during partial load operation. In partial load the pitch controller is not active, the target pitch
angleθ∗ being equal zero (see Figure 129).
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Signal name Description dim
Generator_speed Generator speedΩ rpm
Nacelle_x_acceleration Tower top fore-aft acceleratioṅvfa m/s2

Nacelle_y_acceleration Tower top sidewards accelerationv̇sd m/s2

Blade_{1,2,3}_pitch_angle_ref Excited blade pitch angle demandθ deg
Generator_Torque_ref Excited generator torque demandTg Nm
Cup_anemometer_wind_speed Wind speed at nacelle,Vnac [m/s]

Table 13 Measured signals

Test case begin time end time data length mean(Vnac) purpose
Test1 70 s 1459 s 1389 s 4.5115 m/s ident. @ 4.5 m/s
Test2 27 s 1157 s 1130 s 4.7783 m/s valid. @ 4.5 m/s
Test3 95 s 1756 s 1651 s 6.1169 m/s ident. @ 6.3 m/s
Test4 105 s 1088 s 983 s 6.5285 m/s valid. @ 6.3 m/s

Table 14 Data concatenation for the four test cases

16.1.2 Data pre-processing

Due to the fact that each of these four measurement cases contain some irrelevant data from
identification point of view (i.e. data without excitation onthe inputs, data during turbine startup
or shutdown), they have been concatenated as summarized in Table 14. Besides the concatenated
data length, the Table also gives the mean nacelle wind speedand the purpose for which the test
cases will be used, i.e. identification or validation. As can be seen from the table, the first two test
cases (Test1 andTest2) correspond to mean nacelle wind speeds of about 4.5 m/s, so one test
case (Test1) can be used for model identification and the other one (Test2) – for validation.
Same holds for test casesTest3 andTest4, which correspond to a mean nacelle wind speed of
about 6.3 m/s, so thatTest3 will be used for identification at 6.3 m/s, whileTest4 will serve
as validation data at 6.3 m/s.

Another point that requires special attention is that the sampling rate is different per signal (Table
13), but is also time varying. For that reason, all signals have been first upsampled to 100 Hz by
applying linear interpolation on the data. Subsequently, the data is downsampled for identification
purposes, as explained later on.

For the estimation of the tower modes, the outputs tower top fore-aft v̇fa and sidewardṡvsd ac-
celerations can be used. However, experience shows that working with the tower top velocities
instead usually improves the quality of the identified modelsaround the first tower modes. For
that reason, the acceleration signals are integrated to velocitiesvnod andvnay, which are used in
the identification.

16.2 Identification and validation methods

16.2.1 Closed-loop identification methods

The following single-input-single-output models are identified:

• the open-loop transfer function from generator torque demandTg to generator speedΩ,
from which the first drive-train frequency and damping are extracted.

• the open-loop transfer function from the pitch angle demand θ to the tower top fore-aft
velocityvnod, from which the first tower fore-aft mode is estimated.
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• the open-loop transfer function from the generator torquedemandTg to the tower top side-
wards velocityvnay, from which the first tower sidewards mode is identified.

As mentioned above, the velocitiesvnod andvnay are used in the identification, obtained by inte-
gration of the measured accelerations.

Due to the lack of information about the controller and the exact excitation signals used (only
the excited pitch angle demandθ and generator torque demandTg are given), the following three
closed-loop identification methods, applicable to this situation, have been used:

• Direct method,

• SSARX method,

• PARSIM method.

For description of the methods, refer to Section 15.

16.2.2 Extraction of modal parameters

Given the identified models, the corresponding tower and drive-train frequency and damping
are computed as follows. First, model reduction is performed(using the method of balanced
truncation) to reduce the model order such that there is onlyone mode in a specified interval of
interest where the frequency is expected to lie (this interval is chosen as [0.25,0.40] Hz for the
tower, and [0.7,1] Hz for the drive train). The frequency and damping of this mode of the reduced
system are then selected.

16.2.3 Model validation methods

The models, identified with these methods, are validated usingthe following validation criteria:

• VAF (variance-accounted-for): a model validation index often used with subspace identi-
fication methods. Given the measured outputy and the output, predicted by the identified
modelŷ, the VAF criterion is defied as VAF(y, ŷ) = 1 − σǫ/σy, whereσy is the variance
of the signaly, andσǫ – the variance of the prediction errorǫ = y − ŷ. It is expressed in
%. A VAF above the 95% is usually labelled as a very accurate model.

• PEC (prediction error cost): this is the value of the cost function that is used for min-
imization by the prediction error methods (such as the Direct method). It is defied as
PEC(ǫ) = 1

N

∑N
k=1

1
2‖ǫ(k)‖22. The smaller the value, the better the model accuracy.

• Rix
ǫ (auto-correlation index): when a consistent model estimate is made (including the dis-

turbance model), the prediction errorǫ should be a white process so that its auto-correlation
functionRǫ(τ) should be small forτ 6= 0, whereτ denotes the discrete time step. For a
given confidence levelα (e.g.α = 99%), a boundRbndǫ (α) can be derived such that for an
accurate model the inequality|Rǫ(τ)| ≤ Rbndǫ (α) should hold for allτ ≥ 1. The indexRix

ǫ

is then computed as the square sum of the distance between each value of the correlation
function |Rǫ(τ)| and the boundRboundǫ (α), where only the values outside the bound are
used.

• Rix
ǫu (cross-correlation index): in the closed-loop situation the prediction error will be cor-

related with future values of the input, but should be uncorrelated with past inputs when
the model is consistent. The cross-correlation functionRǫu(τ) should then be limited in
absolute value forτ ≥ 1. The indexRix

ǫu is computed similarly toRix
ǫ .
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Due to the lack knowledge of the excitation signals used, frequency domain validation using
closed-loop spectral analysis is not possible here.

Besides these validation criteria, the identified models arecompared to linearized models ob-
tained with the software BLADED. Both Bode plots and modal parameters (eigenfrequency and
damping ratio) are compared. However, due to the fact that BLADED models are only available
at undisturbed mean wind speedsof 3, 5, 7, . . . , 25 m/s, and the measured data is collected at
nacelle mean wind speedsof about 4.5 and 6.3 m/s, it is decided to use in this comparison the
BLADED models at undisturbed wind speed of 5 and 7 m/s. Notice also that, for evaluation of the
accuracy of the identified models, comparison to BLADED should only be used with care because
discrepancy between BLADED and identified models could just as well result from inaccurate
BLADED modeling.

16.3 Tower first fore-aft mode identification

In order to estimate the tower first fore-aft frequency and damping, the transfer function from the
blade pitch angle demandθ to the tower top fore-aft velocityvnod is identified. To this end, as
explained above already, the measured accelerationv̇fa is integrated to get the speedvnod. The
methods Direct, SSARX and PARSIM are applied to the data{vnod, θ} from test setsTest1 and
Test3, as explained in Section 16.1.2. The validation results, based on setsTest2 andTest4,
are summarized in Table 15. As can be seen from the table, the validation results indicate that all
models have comparable, high accuracy. It should be pointedout here that the sample rate of the
data has an effect on the validation results. The results, presented in this subsection are obtained
by down-sampling the identification data to 4 Hz. Choosing higher or lower sample rate worsens
the validation results a bit.

wind [m/s] Method Rix
ǫ Rix

ǫu VAF PEC
4.5 Direct 0.7219 1.2× 10−2 97.43 3.592× 10−5

4.5 SSARX 2.744 1.344× 10−2 97.26 3.706× 10−5

4.5 PARSIM 2.517 6.346× 10−2 95.99 4.487× 10−5

6.3 Direct 0.7638 3.59× 10−2 97.36 4.684× 10−5

6.3 SSARX 0.6674 3.843× 10−2 97.36 4.68× 10−5

6.3 PARSIM 0.8528 4.164× 10−2 97.18 4.841× 10−5

Table 15 Validation results for identified models of the tower first fore-aft mode

The eigenfrequencies and logarithmic decrements, computedfrom the identified models, are com-
pared in Table 16 to those obtained from the BLADED models linearized at 5 and 7 m/s.

wind [m/s] Method Normalized freq. [Hz] Log. decr. [%]
5 BLADED 0.3133 27.45

4.5 Direct 0.3195 36.8
4.5 SSARX 0.3202 27.41
4.5 PARSIM 0.3204 21.38

7 BLADED 0.3161 33.49
6.3 Direct 0.3228 35.05
6.3 SSARX 0.3222 36.85
6.3 PARSIM 0.3278 29.55

Table 16 Frequency and logarithmic decrement of the tower first fore-aft mode computed from
linearized BLADED model and identified models with methods Direct, SSARX and
PARSIM

Figures 130-131 compare the Bode plots of the identified modelswith those of the BLADED
models. Figure 130 represents the models identified at 4.5 m/s nacelle wind speed, while Figure
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Figure 130 Bode plot of the identified tower fore-aft models from 4.5 m/s nacelle wind speed,
compared to BLADED model at 5 m/s undisturbed mean wind speed

131 is related to the data at 6.3 m/s nacelle wind speed. It canbe observed from the figures that
the identified models are very well comparable to the BLADED models around the first tower
frequency (in the intervals 0.1-1Hz).
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Figure 131 Bode plot of the identified tower fore-aft models from 6.3 m/s nacelle wind speed,
compared to BLADED model at 7 m/s undisturbed mean wind speed
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16.4 Tower first side-to-side mode identification

For estimating the tower first sidewards frequency and damping, the transfer function from the
generator torque demandTg to the tower top sidewards velocityvnay is identified. Again, the
measured accelerationv̇sd is integrated to get the speedvnay, and the methods Direct, SSARX and
PARSIM are applied to the data{vnay, Tg} from test setsTest1 andTest3, resampled to 2 Hz.
The validation results are given in Table 17. Similarly to the tower fore-aft mode identification
results, presented in the previous subsection, the validation results indicate here also very high
model accuracy.

The results, presented in this subsection are obtained by resampling the identification data to 2
Hz. Unlike the tower fore-aft case, the validation results here seem to be less sensitive to the
sample rate of the identification data.

wind [m/s] Method Rix
ǫ Rix

ǫu VAF PEC
4.5 Direct 1.118 8.9× 10−3 99.99 4.487× 10−5

4.5 SSARX 1.174 0 99.99 4.506× 10−5

4.5 PARSIM 1.467 0.136 99.99 5.03× 10−5

6.3 Direct 0.8991 0 99.99 5.514× 10−5

6.3 SSARX 0.8085 0 99.99 5.399× 10−5

6.3 PARSIM 0.9674 0.1165 99.99 6.557× 10−5

Table 17 Validation results for identified models of the tower first sidewards mode

As can be observed from Table 18, there is a very good correspondence between the eigenfre-
quencies and logarithmic decrements, computed from the identified models, and those obtained
from the BLADED models. To a certain extend, this is confirmed in the frequency domain as
seen from the Bode plots in Figures 132-133, although there isa good overlap only around the
first tower sidewards frequency. The first drive-train frequency, on the other hand, is not present
in the identified models. A possible reason for this is that this frequency not clearly present in
the tower sidewards motion due to, for instance, an active drive-train damping mechanism in the
controller.

wind [m/s] Method Normalized freq. [Hz] Log. decr. [%]
5 BLADED 0.3115 5.426

4.5 Direct 0.3151 3.037
4.5 SSARX 0.3156 2.549
4.5 PARSIM 0.3147 4.763

7 BLADED 0.3115 5.556
6.3 Direct 0.3148 5.883
6.3 SSARX 0.3143 2.17
6.3 PARSIM 0.3153 3.861

Table 18 Frequency and logarithmic decrement of the tower first sidewards mode computed
from linearized BLADED model and identified models with methods Direct, SSARX
and PARSIM

16.5 First drive-train mode identification

The first drive-train frequency and damping are estimated fromthe identified transfer function
from the generator torque demandTg to the generator speedΩ. For this purpose, the methods
Direct, SSARX and PARSIM are applied to the data{Ω, θ, Tg}. Notice that although the channel
θ → Ω is not necessary for estimation of the first drive-train mode,it is also identified together
with the transfer function fromTg to Ω since the inputθ also affects the generator speedΩ and
is also excited. For identification, the test setsTest1 andTest3 are used, where the data is
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Figure 132 Bode plot of the identified tower sidewards models from 4.5 m/snacelle wind speed,
compared to BLADED model at 5 m/s undisturbed mean wind speed
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Figure 133 Bode plot of the identified tower sidewards models from 6.3 m/snacelle wind speed,
compared to BLADED model at 7 m/s undisturbed mean wind speed

resampled to 5 Hz. The validation results are given in Table 19. Again, the validation results
indicate very high model accuracy. However, from Table 20 itbecomes clear that a significant
difference of about 10% is present between the identified drive-train frequency and the one ob-
tained from the BLADED model. The excellent time-domain validation results in combination
with reduced frequency domain accuracy implies that the drive-train frequency is not well present
in the input-output data, as can happen due to the presense ofa drive-train damping mechanism
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in the controller.

wind [m/s] Method Rix
ǫ Rix

ǫu VAF PEC
4.5 Direct 0.0707 0.7321 99.98 6.797× 10−3

4.5 SSARX 0.0508 0.6704 99.98 6.731× 10−3

4.5 PARSIM 0.8471 0.856 99.96 1.004× 10−2

6.3 Direct 0.24 0.0996 100 5.97× 10−3

6.3 SSARX 0.181 0.2558 100 5.962× 10−3

6.3 PARSIM 0.13 0.4208 100 6.908× 10−3

Table 19 Validation results for identified models of the first drive-train mode

wind [m/s] Method Normalized freq. [Hz] Log. decr. [%]
5 BLADED 0.7777 1.304

4.5 Direct 0.8773 14.12
4.5 SSARX 0.878 16.61
4.5 PARSIM 0.8261 6.877

7 BLADED 0.778 1.642
6.3 Direct 0.8496 1.499
6.3 SSARX 0.8534 1.822
6.3 PARSIM 0.8305 2.857

Table 20 Frequency and logarithmic decrement of the first drive-train mode computed from
linearized BLADED model and identified models with methods Direct, SSARX and
PARSIM

Figures 132-133 give Bode plots of the transfer functionsTΩTg, identified with methods Direct,
SSARX and PARSIM, as compared to the one obtained from BLADED. As already mentioned, in
both cases the identified drive-train frequency is about 10% higher than the one from BLADED.
Comparing to BLADED, the PARSIM method should be labelled as best here, espessially for the
test case at 4.5 m/s (Figure 132 and Table 20), where the other two methods have clearly more
difficulty with proper estimation of the mode.

16.6 Conclusions and recommendations

Closed-loop system identification methods are applied to measurement data from a ALSTOM
Wind Eco100 wind turbine. The measurement data is collected atbelow-rated wind speeds
varying between 3 and 8 m/s, measured at nacelle. Filtered pseudo-random binary excitations
are applied to both the pitch angle demand and the generator torque demand in order to make
the identification of the transfer functions from these inputs to the outputs generator speed and
tower top fore-aft and sidewards velocities possible. For evaluating the identified models, differ-
ent time-domain validation criteria are used. The time-domain validation indexes indicate in all
cases excellent model quality. Due to the lack of information about the excitation signals (only
the excited inputs are given), no frequency-domain validation is possible by using closed-loop
spectral analysis. However, frequency domain comparison is performed using BLADED models
linearized at undisturbed mean wind speeds of 5 and 7 m/s. Thiscomparison shows very good
overlap around the first tower fore-aft and sidewards frequencies, but there is some discrepancy
between the identified and the BLADED drive-train frequencies.This reduced frequency domain
accuracy around the drive-train frequency, in combinationwith the excellent time-domain vali-
dation results, is a typical example of the effect of an active vibration damping loop on system
identification. The drive-train damping loop in the torque controller suppresses vibrations around
the first drive-train frequency, making it difficult for systemidentification to accurately identify
the mode.

In order to improve the modeling around the drive-train frequency it is recommended to either
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Figure 134 Bode plot of the identified drive-train models from 4.5 m/s nacelle wind speed, com-
pared to BLADED model at 5 m/s undisturbed mean wind speed
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Figure 135 Bode plot of the identified drive-train models from 6.3 m/s nacelle wind speed, com-
pared to BLADED model at 7 m/s undisturbed mean wind speed

increase the excitation around this frequency or to temporarily switch off the active damping
loop during the identification experiment. It might also be beneficial to develop a “gray-box”
identification algorithm that directly aims at estimating the parameters of a low order physical
model of the relevant dynamics from input-output data collected under closed-loop.
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Part VII

Integration of methods: Sustainable Control

concept

Summary

Extreme environmental conditions, as well as system failure, are real-life phenomena. Especially
offshore, extreme environmental conditions and system faults are to be dealt with in an effective
way. Sustainable control (SusCon) is a concept for an integrated control platform. This platform
accomplishes fault tolerant control in regular and extremeconditions during production operation
and shutdown. It is built up of methods for the detection of extreme conditions and faults and from
methods for operation and shut-down. These methods have beendiscussed in Parts II-V. In this
section, the integration of the separate methods into the complete SusCon concept is considered.
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17 Introduction

The Sustainable control concept includes the development andintegration of the following cor-
nerstones that relate to wind turbine control in four different types of operating conditions:

• Optimized Feedback Control (OFC), for load reduction by advanced control methods dur-
ing normal operating conditions (Part II),

• Fault Tolerant Control (FTC), for avoiding unnecessary standstill in cases of minor system
failures by fault detection and controller reconfiguration (Part III),

• Extreme Event Control (EEC), for avoiding excessive loads and unnecessary shut-down
under extreme conditions (Part IV),

• Optimal Shutdown Control (OSC), for avoiding excessive loads and serial damage after
serious system failure or hyper-extreme conditions (Part V).

Figure 136 shows a functional layout of the SusCon concept. It includes platforms for production
control, shutdown control and fault diagnosis. The dashed lines represent signals that govern the
operation. The production and shutdown control platforms include monitoring and control meth-
ods; the fault diagnosis platform only monitoring methods.SusCon is achieved by synchronized
alternate operation of the methods: a combination of activemethods on the platform relates to
one of the listed cornerstones.

It is clear that this approach basically differs from current isolated production and supervisory
control.

The subsequent sections of this paper describe the differenttypes of methods and the switching
mechanisms, give a survey of conceived monitoring and control methods, address typicalities that
relate to implementation, and show experimental and simulation results.
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18 Sustainable control

Figure 137 gives a more detailed view on the functional layout, in which a symbiosis of fault
diagnosis, production control and shutdown control is pursued.

Assume that currently no severe failure has occurred and that no extreme condition applies that
requires immediate shut-down (hyper extreme condition). The wind turbine will then run in
production operation. The main arbiter, that is to say theoperation governor, will retransmit the
control signals from the production platform to the actuators. Further, the shutdown platform
receives the current control signal values in order to tune its internal condition for smooth “take-
over” when required.

All the time, the shutdown platform’s unit for detection of hyper extreme conditions will be active.
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Their detection is signaled to the operation governor. It will react by retransmitting the control
signals from the shutdown platform instead of the production platform.

The subsequent subsections describe the internal working mechanism of the platforms for fault
diagnosis and control. This includes the functionality of the methods that are part of the platforms.
The working of the methods itself is explained in the next section.

18.1 Fault diagnosis platform

Sensor and actuator faults are identified with model-based fault detection and isolation (FDI)
methods. The detection is based on the residues from Kalman filters. These filters are arranged
such that the behavior of the residues in regular conditionscan be distinguished from that in faulty
conditions. The sensor/actuator governor translates a fault into the status of the sensor/actuator
topology. This status is read out by the operation governor and the control platforms through
the S/A-status flag. In case of a non-severe failure, the operation governor will take no action.
However, the production assembly governor may reconfigure the active extreme detection method
and or control methods as well as the retransmission of measurement signals.

A non-severe failure can be the drop-out of a redundant bladeroot moment sensor, or even the
drop-out of a non-redundant blade root moment sensor. In thefirst case, only the retransmission
of measurement signals is adapted; in the second case, the detection of extreme production con-
ditions will no more be based on all blade root moments, and individual pitch control will be
excluded from production control or based on other measurement signals.

Severe failures concern strongly deteriorated functioningof pitch and yaw actuators, grid drop-out
and combinations of sensor faults. In that case, the operation governor will signal to the shutdown
platform to take over the control. The shutdown assembly manager in turn will reconfigure the
shutdown control methods for appropriate use of control signals.

18.2 Production control platform

The production assembly governor combines methods for detection of extreme events and pro-
duction control as allowed by the current status of the sensor/actuator topology. Extreme events
are detected from the outputs of Kalman filters that are arranged for this purpose.

Optimal production control includes collective pitch angle adjustment and generator torque set-
ting. The control actions result from a trade-off between objectives for rotor speed regulation,
optimal energy yield and damping of drive-train torsion andtower bending. Further, optimal
production is pursued through cyclo-stochastic individual pitch control (IPC). This IPC is cen-
tered around one and two times the rotational frequency (1p,2p). It reduces the loads on the
blades around these frequencies as well as the loads on the nacelle and tower around3p and in
very low frequencies. In addition, very low-frequent IPC is added for the sake of aerodynamic
rotor balancing. A prioritization algorithm divides available actuator capacity over collective and
individual pitch control.

As long as the optimal production control unit applies, its internal condition is messaged to the
unit for extreme production. The latter unit becomes active after the detection of an extreme event
that still allows continuation of production operation. Asfrom now, a completely different trade-
off between control objectives will apply: extreme production control will focus on rotor speed
limitation and reduction of extreme loads; energy yield andfatigue related damping are of minor
importance. Further, the unit for extreme production control now messages its internal condition
to the unit for optimal production control. This enables a smooth switch-back after the extreme
conditions have ceased.
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18.3 Shutdown control platform

The shutdown assembly governor combines methods for detection of hyper extreme events and
shut down control as allowed by the current status of the sensor/actuator topology. Events that
require shut down control are detected from gross values of direct measurement signals, the cur-
rent status of sensors and actuators, and the residues of Kalman filters arranged for the detection
of extreme (external) conditions.

Assume for instance that one actuator stucks while no other failure or extreme external conditions
occurs. This is a severe failure that requires immediate turbine shut-down. Because of the remain-
ing ‘mild’ conditions, the shutdown can be optimized despite of asymmetric rotor loading. The
latter follows from the unbalanced aerodynamic pitch setting. The two valid pitch actuators and
generator torque can be used such that smooth rotor deceleration is achieved while the effect on
the tower by the asymmetric rotor loading is minimized. Even if also generator drop-out applies,
this is still possible. For instance, non-linear model predictive control facilitates this.

Another severe failure could be ‘free yawing’ caused by freerunning yaw motor rotors. Un-
der remaining mild conditions, this can also be processed through optimized turbine shut-down.
Cyclic pitch angle adjusment allows for the generation of anaerodynamic yawing moment. An
aerodynamic yaw servo system can be established on that principle. This allows for good yaw
alignment in the first phase of turbine shutdown and steadily yawing out of the wind in the second
phase.

During optimized tubine shutdown, the unit for survival shut-down will receive the belonging
internal status. If for instance an extreme wind gust coincides with one stucking pitch actuator, it
will be usually desired to shut-down the wind turbine as fastas possible. As from now, survival
shut-down control will take-over optimal shut-down control. Again, the ceasing of the extreme
condition could allow for optimized turbine shutdown. For this reason, the survival shutdown unit
messages its condition to the optimal shutdown unit. Be aware that a ‘moderate gust’ from say
10 to 15 m/s may induce survival shutdown in case of large asymmetric rotor loading by actuator
stuck.
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Part VIII

Conclusions

To realize the ambitious goals, defined by the Dutch government, for the installation of 6000MW
offshore wind energy by the year of 2020, it is inevitable that the price offshore of energy be
significantly reduced. To this end, upscaling of the wind turbines to 10MW and more is required
due to the high foundation and installation costs offshore.In addition, due to the bad accessibility
offshore, the reliability should be strongly improved to achieve high enough availability. This
means the the offshore wind energy generation should be ableto keep on operating under most
environmental conditions, and in spite of small defects. This project contributes significantly to
achieving this goal by developing an innovative wind turbine control concept that integrates con-
trol, condition monitoring and supervisory control to enable, (a), significant extreme and fatigue
loads reduction, and (b), adaptation of the operation to thechanging conditions. This is realized
by the development of an integrated approach for operating offshore wind turbines, referred to
as “Sustainable Control”. In this approach, the following four components can be distinguished,
which will are made available in the form of methods:

1 Optimized Feedback Control (OFC), for reduction of the wind turbine costs and the limi-
tations for upscaling by means of decreased wind turbine loads under normal operational
conditions,

2 Fault Tolerant Control (FTC), for prevention of unnecessarystandstill by means of an inte-
gration of self-adaptive controls and detection methods for component degradations.

3 Extreme Event Control (EEC), for reduction of turbine costs andincrease of the certainty
of electricity production by means of reduced turbine loadsduring extreme operating con-
ditions,

4 Optimal Shutdown Control (OSC), for avoidance of accumulation of damage during shut-
downs resulting from a serious defects by means of condition-specific shutdown control.

The core of this project consists of the technical development of above-mentioned four corner-
stones of the control concept, and their validation based onPoP experiments. The results from
the PoP experiments demonstrate that a reduction of fatigue loads on the blades of up to 17% can
be realized with OFC, while the extreme loads in certain casesdrop by as much as 50% with EEC
and OSC.

The methods developed in this project, and the overall integrated control approach, “Sustainable
Control”, will be further developed after the termination of the project with the aim of creating
a commercial product to be used to transfer knowledge to the industry. The focus lies on fine-
tuning of the algorithms, software development and detailed prototype testing of a much larger
duration than in this project. To this end, already before the actual termination of this project, two
continuation projects have been defined within the “Far and Large Offshore Wind Innovation”
programme (FLOW):

• “Control Design Tool Upgrade” (CDTup), number P201101-014-ECN: This project repre-
sents the first phase of a large-scale upgrade of the Control Design Tool (CDT) of ECN,
a tool for the design of industrial wind turbine controllers. During this first phase, the al-
gorithms OSC and EEC, as developed in the SusCon project, will be further improved and
implemented into the CDT.

• “Improvement of advanced design tools”, number P201203-006-ECN: In this continuation
project, representing the second phase, the remaining SusCon algorithms (namely, OSC
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and FTC) will be improved and added to the new tool, and the complete controller (incl.
the whole SusCon concept) will be extensively tested on a 2-bladed prototype wind turbine
of the Dutch wind turbine manufacturer 2-B Energy.

Furthermore, at the moment of writing of this report, it is being worked on a third related FLOW
project with the wind turbine manufacturer XEMC-Darwind as partner. This project will aim at
improvement of the new tool by means of verifying it on a 3-bladed wind turbine . The market
introduction of the new control tool is expected in the year of 2013.

After that, the advantaged of “Sustainable Control” will be taken into consideration in the design
of the new generation wind turbines, so that these are calculated for lower loads. This will firstly
concern turbines of the current format, and after that much larger ones of up to the optimal for
offshore wind energy generation size of 10 MW or larger.
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