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Abstract
This report describes the verification of a second order ‘energy-conserving’ finite volume method,
for the solution of the incompressible Navier-Stokes equations on staggered, cartesian grids. Four
different test cases are examined, being channel flow, lid-driven cavity flow, backward-facing step
flow and flow through an actuator disk. The accuracy of the spatial discretization is investigated
by looking at laminar, steady flow. Second order accuracy is shown for velocity and pressure on
uniform and non-uniform meshes, in 2D and 3D, and for different boundary conditions. In the
case of flow through an actuator disk a discontinuity in the pressure is present, which is correctly
captured by the method. The method is suitable to be extendedto compute unsteady turbulent
flows, such as the flow of air in wind turbine wakes.
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1 Introduction

1.1 Background

At the Energy research Center of the Netherlands (ECN) a computational fluid dynamics (CFD)
code is developed for the computation of wind turbine wakes in large wind farms: Energy-
Conserving Navier-Stokes Solver (ECNS). This report describes a number of benchmark cases to
verify the spatial discretization.Verificationmeans that we investigate if wesolve the equations
right, i.e. we are not concerned here if we solve the right equations (known as validation). We are
focusing onsteady, laminar, incompressibleflow, i.e. we solve the following set of equations:

∇ · u = 0, (1)

(u · ∇)u = −∇p+ 1

Re
∇2u+ F , (2)

whereu is the velocity,p the pressure andF a body force, all non-dimensionalized with a refer-
ence lengthL, densityρ∞ and velocityu∞; the Reynolds number is Re= u∞L/ν.

ECNS solves equations (1) and (2) with a second order accurate finite volume method on a stag-
gered cartesian grid, based on the original method of Harlowand Welch [12]. Both the con-
vective and diffusive terms are approximated by central differences; this results in a ‘symmetry-
preserving’ discretization [20] that conserves discretely the kinetic energy of the flow in the ab-
sence of boundaries, viscosity and body forces. The system of non-linear equations that results
from the spatial discretization is solved with a direct solver from Matlab (if not indicated oth-
erwise). Although this system is a singular saddle-point system, we have not found any major
difficulties in obtaining accurate and converged results. Of course, a direct solver is not of in-
terest for many practical problems, but here the focus is on testing the accuracy of the spatial
discretization and not on the most efficient way of solving the system of equations.

1.2 Investigating the spatial accuracy

The error associated with the numerical solution of (1)-(2)can be written as follows:

e = ‖u− uh‖, (3)

where‖(.)‖ indicates a suitable norm,u the exact (discrete) solution, anduh the approximate
(discrete) solution.e can be divided into several components:

e = ed + ei + er, (4)

where

• ed: (spatial) discretization error,

• ei: iterative error, resulting from the solution of the non-linear system of equations,

• er: round-off error.

There is no temporal discretization error and no turbulencemodeling error, because we solve the
steady laminar equations. We iterate untilei ≪ ed, so with the assumption thater ≪ ed we
effectively investigate the spatial discretization error. The expected second order spatial accuracy
of the scheme can then be expressed as

e ≈ ed = O(h2). (5)
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1.3 Post-processing results

When showing results in this report, variables are plotted at the position where they are naturally
defined on a staggered grid, see figure 1. The total velocityV =

√
u2 + v2 is defined at the center

of a pressure finite volume,u andv at its faces. The vorticity follows from the velocity as

ω = ∇× u, (6)

which reads in two dimensionsωz =
∂v
∂x− ∂u

∂y , so it is naturally defined at the corners of a pressure
finite volume. The streamfunctionψ is mainly used in two dimensions and in that case defined
byu = ∇× (ψzêz). It can be found by solving a Poisson equation,

∇2ψz = −ωz, (7)

and is, like the vorticity, defined at the corners of a pressure finite volume.

p, V u

vv

ωz, ψz

x, êx

y, êy

Figure 1: Staggered grid layout withp-centered control volume.

1.4 Outline of report

Four different ‘types’ of flow are considered in this report.Firstly, section 2 discusses channel
flows with analytical solutions: Couette and Poiseuille flow. Secondly, in section 3 we investigate
the regularized and classical lid driven-cavity flow, in both 2D and 3D. Thirdly we examine
the flow over a backward-facing step in section 4, which involves an investigation of outflow
boundary conditions. Lastly, we consider an actuator disk in two and three dimensions in section
5, being an important test case for wind turbine wake applications.
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2 Channel flows

In this section we discuss Couette and Poiseuille flow, two types of flow for which an analytical
solution is available.

2.1 Couette flow

2.1.1 Introduction

Couette flow concerns the shear-driven flow between two horizontal plates, see figure 2. The
x-momentum equation simplifies tod

2u
dy2 = 0, so that the velocity profile is linear iny and inde-

pendent ofx:

uexact(y) = U
y

H
, (8)

with H the distance between the plates andU their velocity difference; here we set the velocity of
the lower plate to0 and the upper plate toU . The solution is independent of the Reynolds number.
They-momentum equation reduces todpdy = 0, meaning that the pressure is only a function ofx,
but since there is no driving pressure gradient the pressureis constant everywhere.

H

L

U

periodic periodic

Figure 2: Couette flow.

2.1.2 Settings

The parameter values for this test are shown in table 1. We useperiodic boundary conditions
in the streamwise direction and Dirichlet condition on the upper and lower side. Other possible
boundary conditions, such as inflow and outflow, will be considered in section 4 when dealing
with the backward-facing step problem.

parameter value

H 1
L 1
U 1

Table 1: Settings for Couette flow.

2.1.3 Results

Since the exact solution is a linear velocity profile, it is expected that a discretization that has at
least a first orderlocal truncation error can represent this profile without any discretization error.

ECN-E–11-042 7



Indeed it was found that the numerical solution is within machine accuracy of the exact solution,
for uniform and non-uniform grids, arbitraryH andL, number of cells, and boundary conditions.
An example forNx = Ny = 10 is shown in figure 3. The total velocityV =

√
u2 + v2 is shown

here; it is defined at pressure locations so that the contour lines do not extend up to the boundaries.

However, the fact that this linear velocity profile can be captured exactly does not prove that the
local error is indeed at least first order. This will be explained in section 2.2.

x

y
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Figure 3: Velocity vectors and contour lines of total velocity for Couette flow.

2.2 Poiseuille flow

2.2.1 Introduction

The Poiseuille flow is the flow between two stationary plates driven by a pressure gradient. The
x-momentum equation simplifies to:

1

Re
d2u

dy2
=
dp

dx
= const. (9)

After integrating and applying no-slip boundary conditions aty = 0 andy = H we obtain the
exact solution:

uexact(y) =
1

2
ay(y −H), (10)

with a = Redpdx . A negative pressure gradient is necessary for a positive velocity. The maximum
velocity occurs aty = H/2 and is denoted byU = −1

8
H2a. Here we will takeU such that the

average velocity is 1, i.e.1H
∫
u dy = 1, which givesU = 3

2
anda = −12/H2.

2.2.2 Settings

The parameters for this test are shown in table 2. The pressure gradient is applied as a constant
body force in case of periodic boundary conditions. In case of inflow/outflow conditions no body
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H

L

U
periodic/inflow periodic/outflow

Figure 4: Poiseuille flow.

force has to be applied. The Reynolds number is not importantfor the results since it shows up
both in the forcing term and in the diffusive terms (convective terms are zero). Two grids iny-
direction will be investigated: uniform and cosine. Inx-direction the number of grid points is not
important, because the solution is independent ofx for periodic boundary conditions. The cosine
grid is given as a transformation of a uniform grid:

ycosine

H
=

1

2

(

1− cos

(
π yuniform

H

))

. (11)

This type of grid has refinement near the boundaries and will later also be applied in the lid-driven
cavity testcase in section 3.

parameter value

H 1
L 2
U 3/2
Re 100
dp
dx −12/(ReH2)

Table 2: Settings for Poiseuille flow.

2.2.3 Results

Figures 5 and 6 show the solution in terms of velocity field andvectors at pressure locations
on a uniform10 × 20 grid with periodic boundary conditions. For these boundaryconditions
the solution is completely independent ofx; this is not the case when prescribing an inflow
condition according to the exact solution, because the discretization scheme is not able to capture
the quadratic solution exactly (on a uniform grid). This will be explained below.

In figure 7 we show the following errors:

e2 =




1

Ny

Ny∑

i=1

|ǫi|2




1

2

, (12)

e∞ = max |ǫi|, (13)

whereǫi = uhi − uexact(yi) anduhi is the discrete numerical solution in pointi on the mesh with
grid sizeh. The global error is clearly second-order accurate on both the uniform and cosine
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Figure 5: Velocity vectors and contour lines of total velocity for Poiseuille flow.
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Figure 6: Numerical and exact solution for Poiseuille flow.

grid. However, the local error is not second-order accurate, because if that would be the case the
solution would be represented exactly, as in the case of the Couette flow. The issue lies in the
treatment of the boundary conditions. When performing Taylor expansions, it can be shown that
the discretization scheme has a zeroth order (inconsistent!) local truncation error near boundaries:

uyy ≈ 3

4
uyy +O(∆y). (14)

The inconsistency at the boundary error does not restrict the global error; it is ‘allowed’ to lose
two orders of accuracy at the boundary without affecting theglobal error (see e.g. [21, 13]). In
the Couette testcase this inconsistency did not show up because in that particular caseuyy = 0.
The Couette testcase is therefore not suitable to draw conclusions on the local order of accuracy
of the diffusive discretization.

Figure 7 shows that for uniform gridse2 ande∞ are equal, indicating that the error between
numerical and exact solution is the same for all mesh points.This can be explained as follows.
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The approximate solutionuh is the solution to

Duh =








a
a
...
a







, (15)

whereas the exact discrete solution satisfies

Duexact=








ã
a
...
ã







. (16)

HereD is the (symmetric) diffusion operator, andã is first order approximation toa, due to the
fact that the discretization is first order at the boundaries. The global errore is then given by

e = uh − uexact (17)

= D−1








a− ã
0
...

a− ã








(18)

= D−1τ, (19)

whereτ is the local error.D−1 smears out the (inconsistent) local error at the boundariesover the
entire domain, leading to a second order global error. SincebothD andD−1 are bi-symmetric
(symmetric around both diagonals), and the first and last column ofD−1 can be described by a
linear function, one can find that

uhi − uexact
i = constant, (20)

in accordance with the results.

For the cosine grid the clustering of points near the walls leads to locally smaller errors, but the
coarse and non-uniform spacing in the center lead to large errors in that region, so that overall
the cosine mesh is less accurate than the uniform mesh. In allcases we observe second order
convergence upon mesh refinement. This is important, because in many practical flow problems
non-uniform grids are used (e.g. boundary layer flows), and it is then good to still have second-
order convergence. However, since many terms in the Navier-Stokes equations are zero for this
test case (the vertical velocity componentv and all derivatives inx-direction), it is too early to
conclude that the discretization is second order accurate.For this we move to a more complex
flow situation.

ECN-E–11-042 11



10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

1/Ny

e

 

 

e2 - uniform

e∞ - uniform

e2 - cosine

e∞ - cosine

2

Figure 7: Convergence of errors in different norms and for different grids for Poiseuille flow.
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3 Lid-driven cavity

The lid-driven cavity flow is a widely used benchmark problemfor the incompressible Navier-
Stokes equations. It combines a simple Cartesian geometry and no-slip boundary conditions with
complicated flow patterns, such as separating boundary layers and recirculation regions, which
become increasingly difficult to compute as the Reynolds number is increased. The classical lid-
driven cavity has a lid moving with constant velocity, having singularities in the upper left and
upper right corners, where one can question the validity of discretization error studies because
Taylor expansions might not be well-defined. In order to circumvent this problem we first test a
regularized cavity before moving to the original problem.

U = 16(x4 − 2x3 + x2)

Fy

(a) regularized

U = 1

(b) original

Figure 8: Lid-driven cavity.

3.1 Regularized lid-driven cavity

3.1.1 Introduction

The regularized lid-driven cavity, defined on a domain[0, 1] × [0, 1] has a lid whose horizontal
velocity isU = 16(x4 − 2x3 + x2), resulting in a zero velocity in the upper-left and upper-right
corners. Furthermore, it is possible to obtain an exact solution for the velocity and pressure field
by choosinga solution that satisfies the boundary conditions and then introducing a body force,
F = Fyêy, such that the Navier-Stokes equations are satisfied; this is known as the method of
manufactured solutions. Shih et al. [17] choose the following velocity and pressure field:

u(x, y) = 8(x4 − 2x3 + x2)(4y3 − 2y), (21)

v(x, y) = −8(4x3 − 6x2 + 2x)(y4 − y2), (22)

p(x, y) =
8

Re
(H1(x)g

′′′(y) + h(x)g′(y)) + 64H3(x)(g(y)g
′′(y)− (g′(y))2). (23)

Substitution into the Navier-Stokes equations leads to thefollowing body force:

Fy =
8

Re
(24H1(x) + 2h′(x)g′′(y) + h′′′(x)g(y)) + 64(H3(x)G1(y)− g(y)g′(y)H2(x)), (24)

ECN-E–11-042 13



where

h(x) = x4 − 2x3 + x2, (25)

H1(x) =
1

5
x5 − 1

2
x4 + 1

3
x3, (26)

H2(x) = −4x6 + 12x5 − 14x4 + 8x3 − 2x2, (27)

H3(x) =
1

2
(x4 − 2x3 + x2)2, (28)

g(y) = y4 − y2, (29)

G1(y) = −24y5 + 8y3 − 4y. (30)

Primes ′ denote differentiation with respect to the independent variable. As implementation
check Shih et al. provide the value ofFy at the center of the cavity at Re= 1: Fy(0.5, 0.5) =
−3.356250. Note that Shih et al. use−Fy in the Navier-Stokes equations and as a result (24)
also has an additional minus sign. The velocity componentu is symmetric aroundx = 0.5, the
v-component is anti-symmetric aroundx = 0.5; both are independent of Re. The sequence of
vortices that appear in the lower right and lower left cornerin the classical lid-driven cavity are
not present here.

3.1.2 Settings

The domain is a cavity defined on[0, 1] × [0, 1]. The initial condition is a zero velocity and
pressure field. The Reynolds number is Re= 100. For the convergence of the solution we
require that the maximum residual has dropped below10−12; it might be better to put a condition
on thedrop in the initial residual, but on the other hand the initial residual depends on the initial
guess. The first 3 steps are performed with Picard iteration,which provides a good starting value
for subsequent Newton iterations. The mesh is uniform for all simulations.

parameter value

U 16(x4 − 2x3 + x2)
Re 100

Nx, Ny 10, 20, . . . , 160

Table 3: Settings for regularized lid-driven cavity flow.

3.1.3 Results

Figure 9 shows the body force fieldFy and the streamfunctionψ from a computation with a
uniform grid withNx = Ny = 160. Errors are calculated for different uniform grids in the
same way as equations (12) and (13) withNy replaced byN = NxNy. For calculating the
error in the pressure we add a constant to the calculated pressure such that it is equal to the
exact solution in the lower left grid point (ph1,1 = pexact(x1, y1)). This is valid, because the
pressure in the incompressible Navier-Stokes equations isdetermined up to a constant in case
of Dirichlet boundary conditions for the velocity on the entire boundary. Figure 10 shows that
both velocity and pressure are second order in theL2- andL∞-norms. The convergence of the
maximum residual is shown to be basically independent of thenumber of grid points, see figure
11. The initial residual, corresponding to the initial guess, is not shown in this figure. After a
slow initial decrease in residual, corresponding to Picarditeration, quadratic convergence follows,
corresponding to Newton’s method.
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Figure 9: Force and streamfunction on uniform grid,Nx = Ny = 160, for regularized lid-driven
cavity flow.
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Figure 10: Convergence of errors in different norms for velocity and pressure for regularized
lid-driven cavity flow.
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Figure 11: Convergence of residual for different grid sizesfor regularized lid-driven cavity.
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3.2 Original lid-driven cavity

3.2.1 Introduction

The original lid-driven cavity is shown in figure 8(b). Depending on the Reynolds number, a
sequence of vortices is formed in the lower left and lower right corners. The classic benchmark
paper on this subject is from Ghia et al. [10], but since this paper more accurate results have been
published, in particular the spectral data from Botella & Peyret [3].

3.2.2 Settings

The Reynolds number is Re= 1000 for all order studies. At higher Reynolds numbers only
quantitative flow field pictures are given. The mesh is eitheruniform or cosine, given by equation
(11). An example of such a mesh withNx = Ny = 16 is shown in figure 12. The non-linear
system of equations is started with a zero velocity field and solved with Picard (first 3 steps) and
Newton (subsequent steps) iteration, like in the regularized lid-driven cavity case. The stopping
criterion is10−10 based on the reduction of the maximum residual of the second iteration step.
This approach worked fine for the cosine meshes, but for coarse uniform grids, where the mesh
Péclet number is much larger than 2 (this is especially important near solid boundaries), the
residual would not converge. We then added a small constant (10−8) to the diagonal of the
saddle-point matrix forNx = 16 andNx = 32 which would lead to converged solutions. Since
the equations are solved in ‘update’ or ‘delta’ form such an adaptation is allowed, because the
iteration matrix does not influence the converged result, only the convergence rate. Furthermore
we increased the number of Picard iterations to 6, and we changed the initial guess tou = 1,
v = 0.

parameter value

U 1
Re 1000, 5000, 10000

Nx, Ny 16, 32, . . . , 256

Table 4: Settings for original lid-driven cavity flow.
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Figure 12: Nonuniform cosine mesh,16× 16.

3.2.3 Results

Qualitatively the flow field is shown in figures 13(a)-13(c), obtained on a256 × 256 cosine grid.
These figures are indistinguishable from the benchmark results of [3], shown in figures 13(d)-
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13(f).

The order of accuracy will be demonstrated in two ways: the convergence of the velocity profiles
along the centerline and the convergence of the total kinetic energy in the cavity.

Firstly, we look at the velocity and the pressure profiles along the centerlines, see figures 14(a)
-14(d). The pressure has been shifted such thatp = 0 in the center of the cavity. Where nec-
essary the velocity profiles of Botella & Peyret [3] have beenmirrored because they use a lid
with velocity U = −1. The grids withNx = Ny = 64 and larger match the benchmark data
very well. In order to measure the order of accuracy we compare the minimum value ofu and
maximum and minimum values ofv along these centerlines with the benchmark data. Since the
grid is relatively coarse in the center of the cavity (much coarser than the average grid spacing
1/Nx), we approximate the centerline velocity profiles by fittinga spline through the data points,
which is subsequently used to determine the minimum and maximum values and their locations.
Especially the prediction of the location of minimum and maximum was improved in this way;
the values itself are hardly affected. Second order behavior of the error between the values pre-
dicted by [3] (umin = 0.3886, vmin = −0.5270, vmax = 0.3769) and our results is shown in figure
15(a).

Secondly, we look at the total energy of the flow in the cavity:

k =
∑

i,j

1

2
V 2
i,jΩi,j, (31)

whereΩi,j is the area of a pressure finite volume, andV 2
i,j = (1

2
(ui,j + ui−1,j))

2 + (1
2
(vi,j +

vi,j−1))
2 1. We compare this value with the value reported in Bruneau & Saad [4], which is

0.044503 for Re= 1000. Figure 15(b) shows second order convergence for both the uniform and
cosine mesh, but the cosine mesh has a lower error constant since it is better able to capture the
boundary layers and corner vortices.

The convergence of the maximum residual is shown in figure 16.It is seen that the convergence
behavior is basically independent of the grid size. The increase in initial residual with finer
meshes is due to the fact that the initial velocity field is notsmooth at the boundaries, leading to
large gradients near boundaries and consequently a large residual. These gradients become larger
for finer meshes. In all cases the uniform grids take more (Picard) iterations, a more careful initial
guess and tuning to obtain convergence, compared to the cosine grid. A heuristic explanation for
this behavior is that if the mesh Péclet number is smaller than 2, the upper-left block of the saddle-
point matrix becomes aK-matrix, which improves the convergence behavior (see e.g.Wesseling
[21]).

At higher Reynolds numbers more eddies are formed in the corners. The results for Re=5000 and
Re=10000, presented in figure 17, compare very well to those presented in Erturk et al. [7]. In
these cases we used 25 Picard iterations after which Newton iteration converged in a few steps.
As a side note, it is interesting to see that Bruneau & Saad [4]disagree with the results of Erturk
and mention that at a Reynolds number of10000 the flow is not steady anymore. We will not go
deeper into this discussion but just mention that we were able to obtain steady results as long as
the grid was fine enough (128× 128 in this case); these findings are also supported in Erturk [6].

1An alternative definition, which agrees up to second-order accuracy, isk = uT
Ω

uu+ vTΩvv.
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Figure 13: Contour plots for the lid-driven cavity flow at Re=1000. Upper row: current (non-uniform cosine mesh,256 × 256); lower row: Botella & Peyret
[3]. For contour line values see [3].
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Figure 14: Velocity and pressure profiles across the centerlines of the cavity for non-uniform cosine meshes.
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Figure 15: Spatial convergence for uniform and cosine meshes.
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Figure 16: Convergence of maximum residual for different grids.
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(a) Present results, Re= 5000.

x

y

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.1

−0.08

−0.06

−0.04

−0.02

0

(b) Present results, Re= 10, 000.

(c) Erturk [7], Re= 5000. (d) Erturk [7], Re= 10, 000.

Figure 17: Streamfunction for higher Reynolds numbers,128× 128 cosine mesh. For contour line values see [7].
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3.3 3D lid-driven cavity

3.3.1 Introduction

In three dimensions the lid-driven cavity flow exhibits complicated three-dimensional flow pat-
terns and, when the Reynolds number is high enough, turbulence. As benchmark data we use
the results of Albensoeder and Kuhlmann [1], who report accurate values of velocity profiles
at Re= 1000 for rectangular cavities with different aspect ratios by employing a Chebyshev
collocation method. Here we will consider only a cubical cavity.

V = 1

x

y

z
L

H

D

Figure 18: Three dimensional lid-driven cavity. The lid moves iny-direction. Velocity profiles
are extracted along the red lines.

3.3.2 Settings

The same configuration as in [1] is used. The cavity has size1×1×1, and is defined on a domain
[−1

2
, 1
2
] × [−1

2
, 1
2
] × [−1

2
, 1
2
]. A cosine mesh (equation (11)) is used in all directions, where 1.5

times more volumes inx- andy-direction are used than inz-direction. The initial velocity field is
u = 1, v = 0, w = 0; it was found by trial and error that this choice gave convergence with only
5 Picard iterations, while for other choices such asu = 0, v = 1, w = 0 oru = v = w = 0 it was
considerably more difficult to obtain convergence. For these 3D computations it might be better
to switch to a time-marching technique, as will be done in section 5.6, requiring significantly
lower memory resources.

parameter value

Re 1000
L 1
H 1
D 1

Nx ×Ny ×Nz 24× 24× 16
36× 36× 24
48× 48× 32

Table 5: Settings for 3D lid-driven cavity flow.

3.3.3 Results

Qualitative pictures of the flow field are shown in figure 19. These figures are rotated compared to
the sketch in figure 18. Figure 19(c) shows that the velocity in the center plane is very similar to
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the two-dimensional case, see 13(a) and 13(a). However, important three-dimensional effects now
occur, as can be seen from the streamlines that spiral inwardto the center of the cavity. Outward
going streamlines originate from the corner vortices, but have not been shown here for clarity
reasons. More three-dimensional effects can be observed infigures 19(a) and 19(b); especially
on the center planesx = 0 andy = 0 one observes the so-called Taylor-Görtler vortices.

A quantitative comparison is made in figures 20(a) and 20(b),where the velocity componentv
along thex-axis and the velocity componentu along they-axis of the cavity are plotted (see the
red lines in figure 18). The error between our results and those of [1] is calculated by spline
interpolation of our results to the position of the data points of [1], and then employing anL2-
norm:

e =

(

1

N

N∑

i

|ūi − uAK
i |2

)1/2

, (32)

whereū indicates the interpolated data,uAK indicates the data from [1].

(a) x-planes−0.4 . . . 0 . . . 0.4 (b) y-planes−0.4 . . . 0 . . . 0.4

(c) z-plane0.4 and streamlines spiraling towardsz = 0

plane

Figure 19: Qualitative pictures of velocity field, including vectors tangential to the slices, for the
3D lid-driven cavity.
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Figure 20: Velocity profiles in 3D lid-driven cavity.
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Figure 21: Error in velocity profiles as function of mesh sizefor 3D lid-driven cavity.
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4 Flow over a backward-facing step

4.1 Introduction

The flow over a backward-facing step is performed to have a test problem with separating, reat-
taching and recirculating flow and to investigate the effectof outflow boundary conditions. The
layout of the problem is shown in figure 22. Directly after thestep a recirculation area forms
along the lower bottom of the channel, which lengthX1 increases with Reynolds number. Due
to the downward deflection of the flow a second recirculation region appears on the upper side
of the channel if the Reynolds number is large enough, characterized byX2 andX3. The step is
modeled by the prescription of a parabolic velocity profile at the inlet. The average value of this
profile is ū = 1, its maximum is 1.5. The Reynolds number is based on the height of the channel
and onū: Re= ūH/ν. An important issue is the treatment of outflow boundary conditions [9];
we will test here the outflow conditions:

p− 1

Re
∂u

∂x
= p∞, (33)

∂v

∂x
= 0. (34)

The results of Gartling [9] (at Re= 800) are believed to be accurate benchmark results for this
problem and are therefore used as source of comparison. Erturk [5] also provides results on this
test case, but in his work an inlet is added before the step, which results in a flow that is not
perfectly parabolic at the step. An interesting article on the stability of the flow at Re= 800 is
given in [11].

y = −H
2

y = 0

y = H
2

x = 0 x = L

u = 24y(H
2
− y)

X1

X2

X3

p− 1

Re
∂u
∂x = p∞

∂v
∂x = 0

Figure 22: Layout for backward-facing step.

4.2 Settings

The value of the streamfunction at the lower wall is set atψ = 0, the value at the upper wall
follows from integratingu(x = 0, y) (given in figure 22):

ψ(x, y = H
2
) =

∫ y=H/2

y=−H/2
u dy = ūH

2
. (35)

This gives the (Dirichlet) boundary condition forψ used for solving equation (7). The reattach-
ment pointsXi are found at the point where∂u∂y = 0, which can be found by tracking theψ = 0

andψ = H/2 contour lines to the boundary or looking for a change in the sign ofu in the first

ECN-E–11-042 27



cell adjacent to the boundary.

At the end of the channel we setp∞ = 0, but in order to compare with the results of Gartling [9],
a constant was added to the pressure, as a post-processing step, so thatp = 0 at the step corner
(x = 0, y = 0); this constant is determined by interpolating the pressure values surrounding the
corner. The non-linear system of equations is solved with 15Picard iterations after which Newton
iteration is applied.

ForL = 7.5 andL = 15 uniform grids are used inx- andy-direction. ForL = 30 the grid is
stretched inx-direction, starting fromx = 15 with a stretch factor of1.005, resulting in a total of
1590 × 80 finite volumes.

parameter value

H 1
L 7.5, 15, 30

Nx ×Ny 600× 80, 1200 × 80, 1590 × 80
Re 800
p∞ 0

Table 6: Settings for backward-facing step flow.

4.3 Results

First we show qualitative pictures of the flow field by plotting streamfunction, pressure, vorticity
and velocity contours, see figures 23(a)-23(d). The length of the domain used here isL = 15,
but since physically interesting phenomena occur primarily for x < 10, the plots show the results
until x = 10. Qualitatively these pictures match the results of [9] (figure 24) perfectly.

To test the outflow boundary condition we perform simulations on domains of different size and
compare the velocity profiles at different streamwise sections with those of Gartling [9]. In figure
25(a) the velocity profiles atx = 7 are shown forL = 7.5, L = 15 andL = 30. It can be seen
that even forL = 7.5, wherethe domain cuts through the upper recirculation area, the prediction
of the velocity profile is still very good. The profiles obtained withL = 15 andL = 30 are
visually indistinguishable from the results of Gartling. The same conclusions hold atx = 15. At
x = 30 the flow has almost reached the form of the fully developed Poiseuille profile, see figure
25(c).

We continue with a study of the effect of the mesh size onX1, X2 andX3. We compute the
error inXi by comparing with the values provided by Gartling [9]:X1 = 6.10, X2 = 4.85,
X3 = 10.48. In figure 27 it can be seen that in all cases the error decreases with second order
upon mesh refinement.
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Figure 23: Flow over a backward-facing step,L = 15, plots untilx = 10. For contour line values see [9].
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(a) Streamfunction

(b) Vorticity

(c) Pressure

(d) Velocity

Figure 24: Flow over a backward-facing step, reproduced from [9].
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Figure 25:u-velocity profiles for backward-facing step flow.
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Figure 26: Convergence of residual for different domain sizes for backward-facing step flow.
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Figure 27: Convergence of error in prediction of recirculation length for backward-facing step
flow.
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5 Actuator disk model

5.1 Introduction

In order to perform CFD simulations of wind turbine wakes it is common to employ simplified
models to represent the turbine [16]. One of these simplifiedmodels is the actuator disk, which
models the action of the turbine on the flow as a sink of momentum by introducing a forcing
term in the Navier-Stokes equations. This force appears as asurface integral in the finite volume
formulation of the equations: ∫

Ω∩S
f dS. (36)

Heref is the non-dimensional surface force per area,Ω the (finite) volume over which is inte-
grated, andS the surface on which the force acts. Assuming the forcing is in x-direction, i.e.
f = fxêx, the total force term can be expressed in terms of the thrust coefficient:

∫

Ω∩S
fx dS = −1

2
CTAd. (37)

The factor of1
2

appears due the definition ofCT and the non-dimensionalization of the force term,
which scales withρ∞u2∞. The minus sign appears because the forceon the flowis minus the thrust
force on the turbine.Ad is the area of the disk with radiusR. In a discrete sense equation (37)
changes into a summation over finite volumes, so we obtain fora force inx-direction:

∑

j

fxj
∆yj = −1

2
CTAd, (2D:Ad = 2R), (38)

∑

j,k

fxj,k
∆yj∆zk = −1

2
CTAd, (3D:Ad = πR2). (39)

For a uniformly loaded actuator disk these simplify tofxj
= −1

2
CT andfxj,k

= −1

2
CT .

We repeat a number of test cases performed by Réthoré [15] to test our discretization. Comparison
will be made with analytical solutions, which are availablefor 1D, 2D and 3D inviscid flows
through actuator disks.

5.2 1D

We start with an actuator disk in 1D. In our staggered arrangement the forcefx acts at the center of
au-centered finite volume. There are no pressure-velocity coupling issues (in contrast to earlier
work, e.g. [18], [14], [15]). With symmetry boundary conditions at top and bottom (∂u∂y = 0,

v = 0), outflow boundary conditions (∂u∂x = 0, v = 0) andfx independent ofy, the flow remains
one-dimensional (figure 28, left). From the continuity equation we then see that∂u∂x = 0, so
u = constant= u∞. The momentum equation reduces to

∫

Γ

p nx dy =

∫

Ω∩S
fx dy, (40)

so for uniformfx this leads to
∆p = −1

2
CT . (41)

It follows that the pressure is constant in the entire domain, except at the point wherefx is non-
zero, where the pressure jumps. This jump∆p is equal to−1

2
CT , indicating that the pressure

drops. The Reynolds number does not play a role here.
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In figure 29 the pressure as function ofx is shown for two different meshes with10 × 10 and
20 × 20 (the number of volumes iny-direction is not important). The domain is1 × 1 and
CT = 1

2
, so that∆p = −1

4
. It can be seen that the analytic solution is exactly captured on both

meshes. On non-uniform grids the same results have been obtained. Note that the solution is
obtained after only one iteration because the problem is essentially linear.
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Figure 28: 1D (left) and 2D (right) layout for actuator disk simulations.
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Figure 29: Pressure as function ofx for 1D actuator disk.

5.3 2D lightly loaded, ‘inviscid’

5.3.1 Introduction

We will now consider the more physical situation of an actuator disk that spans only part of the
domain, see the right graph in figure 28. A uniformly loaded actuator disk presents a challenging
test case due to the presence of a singularity at the disk edge, where high gradients appear and
vorticity is created. The actuator disk is positioned atx = 0 and defined for|y| < R. For a lightly
loaded actuator disk (CT ≪ 1) an analytical solution is available,

p =
∆p

2π

(

tan−1

(
R− y

x

)

+ tan−1

(
R+ y

x

))

(∆p < 0), (42)
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u = u∞ − p

ρu∞
+

∆p

ρu∞
︸ ︷︷ ︸

in the wake

. (43)

‘In the wake’ meansx > 0 and|y| < R. In contrast to previous test cases, where analytical or
benchmark results could be used to investigate the order of the spatial discretization, this is more
difficult here because:

• The analytical solution requires boundary conditions infinitely far from the actuator disk.

• The analytical solution is valid for the linearized Navier-Stokes equations.

• The analytical solution is valid for inviscid flow.

The analytical solution is therefore not used for order studies, but for qualitative comparison only.

5.3.2 Settings

In order to make a fair comparison with this analytical result the inflow velocity at the left side of
the domain is calculated from this equation. We setCT = 0.001 and with a domain of[−10, 10]×
[−10, 10] this leads tou(−10, 0) ≈ 0.999992. The pressure is determined up to a constant,
which is chosen such thatp = 0 at the center of the actuator disk, corresponding to the analytical
solution. The restriction onCT makes sure that the flow remains almost one-dimensional, but
since the width of the domain is now larger than the size of thedisk, the flow can decelerate.
For such a lowCT the wake velocityuw (i.e. whenx → ∞) according to expression (43) is
uw/u∞ = 1 +∆p. Comparing with quasi 1D momentum theory:

uw/u∞ =
√

1− CT ≈ 1− 1

2
CT (CT ≪ 1), (44)

it is observed that the analytical solution satisfies∆p ≈ −1

2
CT , as in the pure 1D case. As

boundary conditions we prescribe inflow on the left side and outflow conditions on all other
sides, i.e.

p− 1

Re
∂u

∂x
= p∞

∂v

∂x
= 0 (x = 10), (45)

p− 1

Re
∂v

∂y
= p∞

∂u

∂y
= 0 (y = −10, y = 10), (46)

so that the wake can expand and fluid can flow through the upper and lower sides of the domain.

The grid that is used is shown in figure 30. Inx-direction the grid is mildly stretched away from
the rotor with a stretching factor of 1.01. Iny-direction a uniform grid is employed for|y| < 1,
and outside this region the grid is stretched with a factor of1.05. We take∆x = ∆y = 1/30 at
the disk, resulting in a total of278 × 168 finite volumes.

The system of equations is solved by starting with 1 step Picard iteration after which Newton
iteration converged in 1 or 2 steps to a residual smaller than10−10 in all cases.

5.3.3 Results

Since the analytic solution is valid for inviscid flow, it is strictly not correct to perform viscous
simulations. However, since there are no solid boundaries in the flow, there is no presence of a
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parameter value

Re 102, 103, 104

CT 10−3

L 20
H 20
R 1/2

∆x, ∆y 1/30

Table 7: Settings for lightly loaded 2D actuator disk.
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Figure 30: Mesh used for simulations. Every third grid line is shown.

boundary layer which changes significantly with Reynolds number. The flow through the center-
line of the disk is smoothly varying, making∂

2u
∂x2 very small. Only at the edges of the disk, where

vorticity is created, diffusion acts to smear out the velocity and vorticity. As long as the Reynolds
number attains a minimum value, the velocity at the centerline will hardly be affected [19]. In
this case this minimum Reynolds number will be even smaller than reported in [19], because we
are working with aCT of 0.001, at which very little vorticity is produced.

Figures 31 and 32 show the pressure and velocity through the centerline of the actuator disk. In
all cases we plot the deviation of the freestream velocity,∆u, normalized by the pressure jump
∆p. The pressure is also normalized by∆p. This gives values between−1 and0 for the velocity
and between−0.5 and0.5 for the pressure. We note the following:

• The pressure is almost completely independent of the Reynolds number. The agreement
with the exact (analytical) expression is very good and the pressure jump over the disk
is captured perfectly. Only in the wake a small difference inpressure is observed. This
is attributed to the fact that at the outflow boundary the pressure is prescribed, and at the
inflow the velocity. This leads to a small asymmetry, which isnot present in the exact
solution.

• The velocity shows a greater sensitivity to the Reynolds number. For Re= 100 we see
that forx > 1 the results deviate from the exact solution. In this case thediffusive term
1

Re
∂2u
∂y2 at the edge of the wake is so large that the core of the wake ‘mixes’ with the outer

flow. For a higher Reynolds number this term is small enough tomake it negligible over the
distances we consider. However, when looking at the velocity as function ofy atx ≈ 1D
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we see more clearly the dependence on Reynolds number in capturing the sharp interface.

• Careful inspection of the velocity and vorticity upstreamof the disk reveals the presence
of small oscillations (wiggles) in the solution (see figures33(b) and 35(b)). With central
discretizations asufficientcondition to avoid wiggles is to have a mesh Péclet number
smaller than 2, i.e.h ≤ 2/Re. This criterion is met near the disk for Re= 100, but not
for Re = 1000 and10000, so that the presence of wiggles is not surprising. Their effect
remains small and restricted to the flow region where high gradients appear, indicating
that the mesh Péclet condition is not always anecessarycondition, especially when the
gradients are not in the direction of the flow.
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Figure 31:u-velocity through centerline of actuator disk for different Reynolds numbers.
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Figure 32: Pressure through centerline of actuator disk fordifferent Reynolds numbers.
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Figure 33:u-velocity as function ofy atx ≈ 1D for different Reynolds numbers.
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Figure 34:p as function ofy atx ≈ 1D for different Reynolds numbers.
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Figure 35: Velocity contours (∆u/∆p) at Re= 1000.
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Figure 36: Pressure contours (p/∆p) at Re= 1000.
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5.4 2D heavily loaded, ‘inviscid’

A physically more interesting example is obtained when taking CT = 0.8. The gradients in
the flow are stronger and it is more important to satisfy the mesh Péclet condition. To save on
the mesh requirements the stretching factors have been increased to1.03 and1.1, in x- andy-
direction respectively. The Reynolds number is Re= 1000, which was shown to be high enough
for viscous effects to be small. Figures 37(a) and 37(b) showthe vorticity field for a ‘coarse’
mesh with∆x = 1/100, ∆y = 1/100 (total232 × 294), and a ‘fine’ one with∆x = 1/600 and
∆y = 1/100 (total 350 × 294). The wiggles inx-direction disappear on the fine mesh because
the mesh Péclet condition is satisfied at the actuator disk. However, the uniform actuator force
that is used here leads to a singular vorticity at the edges ofthe disk and does not converge to a
finite value upon mesh refinement.

The streamlines obtained with this mesh are shown in figure 38, clearly displaying the expansion
of the flow. The convergence of the residual now takes approximately 6 iterations.
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Figure 37: Vorticity contours atCT = 0.8 and Re= 1000.

5.5 2D heavily loaded, viscous

The previous test is not very suitable for investigating theorder of accuracy, because a fine mesh
is already required to obtain an oscillation-free result. We therefore take a lower Reynolds num-
ber, Re= 10, so that the mesh Péclet condition is already satisfied forh < 2/10. Furthermore we
use a smaller domain with symmetry boundary conditions on the lower and upper side; the cor-
responding Dirichlet conditions forv lead to a faster convergence of the residual. The maximum
residual converges in four steps (1 Picard and 3 Newton) to a value lower than10−10.

parameter value

Re 10
CT 0.8
L 4
H 4
R 1/2

∆x, ∆y 1/4, 1/8 . . . 1/128

Table 8: Settings for heavily loaded viscous 2D actuator disk.
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Figure 38: Streamlines through actuator disk forCT = 0.8, Re= 1000.

Figures 39(a)-39(e) show the evolution of velocity and pressure profiles across different cross
sections upon mesh refinement, either alongy = 0 or x = 1. It is observed that the pressure
and vertical velocity need a relatively fine mesh to obtain ‘mesh independent’ results. This is
probably due to the fact that the pressure is discontinuous across the disk and the vertical velocity
has two distinct sharp peaks at the edges of the disk. The horizontal velocity is, on the contrary,
smooth in the entire field (at this Reynolds number).

The error in these velocity profiles as function of mesh widthis shown in figures 40(a) and 40(b).
This error is calculated with respect to a simulation on a finemesh with512×512 finite volumes:

e =

(

1

N

N∑

i

|ūi − uhi |p
)1/p

, (47)

wherep = 2 or p = ∞, uhi the solution in pointi corresponding to a mesh with spacingh,
andūi the solution on the512 × 512 meshlinearly interpolated (this is important because of the
discontinuity) to the mesh locations corresponding with spacingh. The second order accuracy
of the spatial discretization, shown in all previous test cases, is not so clear here. Both velocity
and pressure show convergence rates between 1 and 2, generally around 1.6. In all cases theL∞-
norm shows larger errors than theL2-norm, as expected, but the rate of convergence is the same
for both. The error in total energy changes from second to third order aroundh = 10−2; we do
not have an explanation for this yet.
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Figure 39: Velocity and pressure profiles for different meshes for 2D actuator disk.CT = 0.8, Re= 10.
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Figure 40: Mesh convergence study for 2D actuator disk.CT = 0.8, Re= 10.

44 ECN-E–11-042



5.6 3D lightly loaded

5.6.1 Introduction

In the three-dimensional case again an analytic solution isavailable for lightly loaded actuator
disks (CT ≪ 1):

p(x, r, θ) =
∆p

4π

∫ R

0

∫
2π

0

r̃x
(

r̃2 + r2 + x2 − 2r̃r cos(θ̃ − θ)
)3/2

dr̃ dθ̃. (48)

Along the centerline of the disk (r = 0) this equation can be exactly integrated:

p(x) =
∆p

2

∫ R

0

r̃x

(r̃2 + x2)3/2
dr̃ =

[−∆p

2

x√
x2 + r2

]r=R

r=0

. (49)

The velocity follows as in 2D from (43), and satisfies againuw/u∞ = 1+∆p, with∆p = −1

2
CT .

The 2D and 3D solutions are qualitatively different, see forexample the centerline pressure and
velocity profiles in figure 41. In 3D the wake expands in a much shorter distance, has a larger
velocity deficit at a given downstream position and obtains the asymptotic wake value much
faster.
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Figure 41: Pressure and velocity in 2D and 3D along centerline according to analytical solutions.

To model the circular actuator disk in our Cartesian mesh we do the following. For each volume
(i, j, k) we calculate the areaAi,j,k that is covered by the actuator disk. For a uniformly loaded
disk the forcing on each cell is then simply1

2
CTAi,j,k. Figure 42 shows how the forcing is

distributed in they − z plane atx = 0. This approach introduces an additional error (see the list
in section 5.3) in approximating the analytic solution.
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5.6.2 Settings

Because the velocity and pressure recover faster to the asymptotic upstream and downstream
values in 3D than in 2D, we use a smaller domain for the 3D simulations, being12 × 8× 8, and
prescribeu = 1 on the inflow boundary. The grid stretching is1.02 in x-direction and1.1 in y-
andz-directions (for|y|, |z| > 1), resulting in a total of102 × 64 × 64 finite volumes. Based on
the 2D study we use a Reynolds number of1000 and aCT of 0.001.

In contrast to all previous test cases, the steady state solution for this test is obtained by march-
ing in time with a classical explicit four-stage Runge-Kutta method with (only) one pressure
correction per time step. One pressure correction step reduces the temporal accuracy of the ve-
locity (to second order), but the linear stability region isnot affected, which is more important
when marching to steady solutions. The Poisson equation forthe pressure is solved with a pre-
conditioned conjugate gradient method. The time step is determined by estimating the possible
eigenvalues of the convection and diffusion matrices with Gershgorin’s theorem, and requiring
that the largest possible eigenvalue lies within the stability domain of the Runge-Kutta method.
The stopping criterion is10−8 based on the maximum residual.

parameter value

Re 103

CT 10−3

L 12
H 8
D 8
R 1/2

∆x, ∆y 1/15

Table 9: Settings for lightly loaded 3D actuator disk.

5.6.3 Results

Figures 43-46 show the velocity and pressure profiles inx- andy-direction alongy = 0 and
x ≈ 1, respectively. Like in 2D we see excellent agreement with the exact analytical solution.
Close inspection ofu nearx = −5 reveals the presence of small wiggles, but they hardly influence
the overall velocity and pressure profiles.
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Figure 43:u-velocity through centerline of actuator disk.
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Figure 44: Pressure through centerline of actuator disk.
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Figure 45:u-velocity as function ofy atx ≈ 1D.
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Figure 46:p as function ofy atx ≈ 1D.
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5.7 3D heavily loaded, viscous

5.7.1 Introduction

Similar to section 5.5 we do a simulation with a realistic thrust coefficient,CT = 0.8, and a low
Reynolds number, Re= 10, in order to do a mesh convergence study.

5.7.2 Settings

We use symmetry boundary conditions at the upper, lower, front and back side to increase the
convergence speed, as before. The grids range from83 to 643 on a domain of4× 4× 4.

parameter value

Re 10
CT 0.8
L 4
H 4
D 4
R 1/2

∆x, ∆y 1/2, . . . , 1/16

Table 10: Settings for heavily loaded viscous 3D actuator disk.

5.7.3 Results

Figures 47(a)-47(e) show the velocity and pressure profilesfor the sequence of meshes mentioned
above. Note that the pressure is shifted and scaled by∆p. In all cases we observe a clear
convergence towards a mesh independent result. The velocity deficit directly behind the disk
is larger than in 2D, but due to a faster recovery of the wake the deficit atx = 2 is smaller than in
2D.

The error in the velocity profiles is calculated in the same way as equation (47), where the refer-
ence results are now on the643 mesh. The order of accuracy is second order in all cases, for both
L2- andL∞- norms. However, we should keep in mind that the range of gridsizes is quite limited
here, and in 2D order reduction was observed for finer grids. Surprisingly the kinetic energy of
the flow shows a much larger error constant than in the 2D test;this might be due to the additional
error introduced by representing the circular actuator disk on a Cartesian mesh.
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Figure 47: Velocity and pressure profiles for different meshes for 3D actuator disk.CT = 0.8, Re= 10.
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Figure 48: Mesh convergence study for 3D actuator disk.CT = 0.8, Re= 10.
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6 Conclusions

This report verifies a staggered incompressible Navier-Stokes code in solving a number of steady
laminar flow problems. The second order spatial accuracy of this code has been shown by per-
forming thorough grid refinement studies for various flow problems in two and three dimensions:
Couette and Poiseuille flow, flow in a lid-driven cavity, flow over a backward-facing step and flow
through an actuator disk. We conclude the following:

• The velocity and pressure are second order accurate in space for all flow problems, except
for the actuator disk problem, where the accuracy lies between first and second order. This
is attributed to the non-smoothness of the pressure and velocity field.

• Second order accuracy has been shown on both uniform and non-uniform grids, where the
latter were taken as smooth transformations of a uniform grid. For non-smooth grids, e.g.
of Shishkin type, mesh convergence studies were not performed, but second order accuracy
is still expected (see e.g. [21, 8]).

• Second order accuracy holds for all boundary conditions investigated, being no-slip, sym-
metry, outflow (pressure) and periodic. The outflow boundarycondition has been shown
to work very effectively for the backward-facing step problem, where it was possible to
capture a recirculation bubble at the outflow boundary.

• The staggered grid approach correctly captures the discontinuous pressure behavior across
the actuator disk, without having pressure-velocity decoupling issues.

• Since central differences are used for approximation of the convective terms, wiggles can
appear when the mesh Péclet number is greater than 2. Satisfying the mesh Péclet condition
is a sufficient condition to prevent wiggles, but not always necessary. It is important to
satisfy it when large gradients in the direction of the localflow are present. In many cases,
such as the lid-driven cavity flow (where the largest gradients appear normal to the flow
(boundary layers)), very good results are obtained withoutstrictly satisfying the Péclet
condition. This is important, because in many practical (turbulent) flows the viscosity is
often very small, so that satisfying the Péclet condition inthe entire flow would lead to
enormous mesh requirements.

• The solution of the non-linear saddle-point system of equations is efficiently solved with
Picard and Newton iterations. Picard iterations are effective to provide a good initial guess
for the Newton iteration. Faster convergence is obtained when the Péclet condition is sat-
isfied. The number of Picard iterations necessary for a sufficiently accurate guess has been
obtained by trial and error; this could possibly be automated by prescribing a certain drop
in residual before switching to Newton. The total number of required iterations for con-
vergence is insensitive to the number of finite volumes. In three dimensions the solution
of the entire saddle-point system becomes too expensive, and we have switched to a time-
marching method to obtain steady-state solutions. Other approaches are possibly more
efficient [2].

Some benefits of the current staggered, energy-conserving approach became already clear in the
steady actuator disk test case. However, the real advantages of this approach will manifest them-
selves in the simulation ofunsteady, turbulent flows, such as the flow of air through wind turbines
in wind farms. The verification and validation of such unsteady flows will be addressed in future
work.
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