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Abstract

This report describes the verification of a second ordengyreonserving'’ finite volume method,
for the solution of the incompressible Navier-Stokes eigmaton staggered, cartesian grids. Four
different test cases are examined, being channel flow/licd cavity flow, backward-facing step
flow and flow through an actuator disk. The accuracy of theiabdiscretization is investigated
by looking at laminar, steady flow. Second order accurachp@sv for velocity and pressure on
uniform and non-uniform meshes, in 2D and 3D, and for difiétgoundary conditions. In the
case of flow through an actuator disk a discontinuity in thespure is present, which is correctly
captured by the method. The method is suitable to be extetodeoimpute unsteady turbulent
flows, such as the flow of air in wind turbine wakes.
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1 Introduction

1.1 Background

At the Energy research Center of the Netherlands (ECN) a atetipnal fluid dynamics (CFD)
code is developed for the computation of wind turbine wakefarge wind farms: Energy-
Conserving Navier-Stokes Solver (ECNS). This report dbssra number of benchmark cases to
verify the spatial discretizatiorVerificationmeans that we investigate if vé®lve the equations
right, i.e. we are not concerned here if we solve the right equatikmown as validation). We are
focusing onsteady, laminar, incompressikiew, i.e. we solve the following set of equations:

V-u =0, (1)
1
(w-V)u=—Vp+ R—ev2u + F, (2)

wherew is the velocity,p the pressure anfi’ a body force, all non-dimensionalized with a refer-
ence length, densityp., and velocityu..; the Reynolds number is Re u.,L/v.

ECNS solves equations] (1) arhd (2) with a second order aecfinite volume method on a stag-
gered cartesian grid, based on the original method of Hadod Welch [[12]. Both the con-

vective and diffusive terms are approximated by centrdediinces; this results in a ‘'symmetry-
preserving’ discretization [20] that conserves discketke kinetic energy of the flow in the ab-
sence of boundaries, viscosity and body forces. The systerarslinear equations that results
from the spatial discretization is solved with a direct solfrom Matlab (if not indicated oth-

erwise). Although this system is a singular saddle-poisteay, we have not found any major
difficulties in obtaining accurate and converged result§.cQurse, a direct solver is not of in-

terest for many practical problems, but here the focus isestirtg the accuracy of the spatial
discretization and not on the most efficient way of solving $lgstem of equations.

1.2 Investigating the spatial accuracy
The error associated with the numerical solutior[of [1)e@) be written as follows:
€= ||u—uhH7 (3)

where||(.)|| indicates a suitable normy the exact (discrete) solution, and the approximate
(discrete) solutione can be divided into several components:

e=c¢eq+e+ep, (4)

where
* ¢4 (spatial) discretization error,
* ¢;. iterative error, resulting from the solution of the nondar system of equations,
 ¢,. round-off error.

There is no temporal discretization error and no turbulenodeling error, because we solve the
steady laminar equations. We iterate umiil< ey, SO with the assumption that < e; we
effectively investigate the spatial discretization erfine expected second order spatial accuracy
of the scheme can then be expressed as

e~ eq=O(h%). (5)
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1.3 Post-processing results

When showing results in this report, variables are plottetti@ position where they are naturally
defined on a staggered grid, see figure 1. The total vel®tity v/u? + v? is defined at the center
of a pressure finite volume, andv at its faces. The vorticity follows from the velocity as

w=V Xu, (6)

which reads in two dimensions, = % — 3—5’ so itis naturally defined at the corners of a pressure

finite volume. The streamfunctiog is mainly used in two dimensions and in that case defined
byu =V x (1.€,). It can be found by solving a Poisson equation,
V), = —w,, ()

and is, like the vorticity, defined at the corners of a presgimite volume.

v
b
I S
e [ ] —_—
P,V u
Y, éy *
L, |
T, €,

Figure 1: Staggered grid layout wighcentered control volume.

1.4 Outline of report

Four different ‘types’ of flow are considered in this repoRirstly, sectior 2 discusses channel
flows with analytical solutions: Couette and Poiseuille fl@&condly, in sectidd 3 we investigate
the regularized and classical lid driven-cavity flow, in @D and 3D. Thirdly we examine
the flow over a backward-facing step in sectidn 4, which imgslan investigation of outflow
boundary conditions. Lastly, we consider an actuator digkwb and three dimensions in section
[, being an important test case for wind turbine wake apiiina.
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2 Channel flows

In this section we discuss Couette and Poiseuille flow, tyaesyof flow for which an analytical
solution is available.

2.1 Couette flow
2.1.1 Introduction

Couette flow concerns the shear-driven flow between two bota plates, see figufd 2. The
z-momentum equation simplifies %Zy% = 0, so that the velocity profile is linear imnand inde-
pendent of::

exac y
U= 8
uT*Hy) = U, ®)
with H the distance between the plates antheir velocity difference; here we set the velocity of
the lower plate t@ and the upper plate 6. The solution is independent of the Reynolds number.

They-momentum equation reduces%) = 0, meaning that the pressure is only a function:pf
but since there is no driving pressure gradient the pressuwenstant everywhere.

U

periodic periodic

L

Figure 2: Couette flow.

2.1.2 Settings

The parameter values for this test are shown in teble 1. Wepeasedic boundary conditions

in the streamwise direction and Dirichlet condition on thpper and lower side. Other possible
boundary conditions, such as inflow and outflow, will be cdesgd in sectiofil4 when dealing
with the backward-facing step problem.

parameter value

H 1
L 1
U 1

Table 1: Settings for Couette flow.

2.1.3 Results

Since the exact solution is a linear velocity profile, it igpegted that a discretization that has at
least a first ordelocal truncation error can represent this profile without any d@iszation error.
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Indeed it was found that the numerical solution is within hiae accuracy of the exact solution,
for uniform and non-uniform grids, arbitrasl and.Z, number of cells, and boundary conditions.
An example forN, = N,, = 10 is shown in figur€]3. The total velocity = v'u? + v? is shown
here; it is defined at pressure locations so that the contwes Ho not extend up to the boundaries.

However, the fact that this linear velocity profile can betcagd exactly does not prove that the
local error is indeed at least first order. This will be expéd in section 2]2.

09r b
0.8

0.8 4
— 0.7
0.7F T

r 106
0.6 b

—_—, e s = —= —= —= —= —= —
=05 4 F 405

e ——

0.4} B
10.4

0.3 T

0.2 b

0.2
0.1F b

Figure 3: Velocity vectors and contour lines of total vetgdor Couette flow.

2.2 Poiseuille flow
2.2.1 Introduction

The Poiseuille flow is the flow between two stationary platesgeth by a pressure gradient. The
x-momentum equation simplifies to:

1 v dp

Redy?  dr const. 9)
After integrating and applying no-slip boundary condisaty = 0 andy = H we obtain the
exact solution:

u®®Ny) = %ay(y — H), (10)

with a = Rej—ﬁ. A negative pressure gradient is necessary for a positieeitg The maximum
velocity occurs ay = H/2 and is denoted by = —%HQa. Here we will takel/ such that the
average velocity is 1, i.e% [udy = 1, which givesU = 2 anda = —12/H?.

2.2.2 Settings

The parameters for this test are shown in téable 2. The pregpadient is applied as a constant
body force in case of periodic boundary conditions. In cdgeftow/outflow conditions no body

8 ECN-E-11-042



periodic/inflow periodic/outflow

L

Figure 4: Poiseuille flow.

force has to be applied. The Reynolds number is not impoftarihe results since it shows up
both in the forcing term and in the diffusive terms (conveetierms are zero). Two grids it
direction will be investigated: uniform and cosine.afdirection the number of grid points is not
important, because the solution is independent fafr periodic boundary conditions. The cosine
grid is given as a transformation of a uniform grid:

ycosine 1 T yuniform
=-(1- = )). 11
i 5 cos i (12)

This type of grid has refinement near the boundaries andatétlalso be applied in the lid-driven
cavity testcase in sectign 3.

parameter value
H 1
L 2
U 312
Re 100
& —12/(ReH?)

Table 2: Settings for Poiseuille flow.

2.2.3 Results

Figures[ b andl6 show the solution in terms of velocity field apdtors at pressure locations
on a uniform10 x 20 grid with periodic boundary conditions. For these boundzopditions
the solution is completely independent of this is not the case when prescribing an inflow
condition according to the exact solution, because theelization scheme is not able to capture
the quadratic solution exactly (on a uniform grid). Thislw# explained below.

In figure[ we show the following errors:

N[

N,
€2 = | 7+ ‘6‘ ) (12)
€oo = Max ||, (13)

wheree; = ul — u®@4y;) andu” is the discrete numerical solution in poinon the mesh with

i

grid sizeh. The global error is clearly second-order accurate on blo¢huniform and cosine
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Figure 5: Velocity vectors and contour lines of total vetgdor Poiseuille flow.

1 S T T T

—6—exact solution

e N, =20

0.8

0.7

0.4

0.2+

0.1

Figure 6: Numerical and exact solution for Poiseulille flow.

grid. However, the local error is not second-order accyizeause if that would be the case the
solution would be represented exactly, as in the case of theetie flow. The issue lies in the
treatment of the boundary conditions. When performing dagkpansions, it can be shown that
the discretization scheme has a zeroth order (inconsistiectl truncation error near boundaries:

3
Uyy = 1 vy + O(Ay). (14)

The inconsistency at the boundary error does not restrectjlibbal error; it is ‘allowed’ to lose
two orders of accuracy at the boundary without affectingdlodal error (see e.g[ 21, 13]). In
the Couette testcase this inconsistency did not show upubeca that particular casg,, = 0.
The Couette testcase is therefore not suitable to draw gsiocls on the local order of accuracy
of the diffusive discretization.

Figure[d shows that for uniform grids, ande., are equal, indicating that the error between
numerical and exact solution is the same for all mesh poihités can be explained as follows.
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The approximate solutioa” is the solution to

a
h a
Du* =1 .1, (15)
a
whereas the exact discrete solution satisfies
a
a
Duexact: . . (16)
a

Here D is the (symmetric) diffusion operator, aads first order approximation ta, due to the
fact that the discretization is first order at the boundarid® global erroe is then given by

e = uh _ g Bxact (17)
a—a
0
=D . (18)
a—a
=D 'r, (19)

wherer is the local error.D~! smears out the (inconsistent) local error at the boundarviesthe
entire domain, leading to a second order global error. Sbute D andD~! are bi-symmetric
(symmetric around both diagonals), and the first and lastronlof D~! can be described by a
linear function, one can find that

h

U;

— u$®' = constant (20)

in accordance with the results.

For the cosine grid the clustering of points near the wabsl$eto locally smaller errors, but the
coarse and non-uniform spacing in the center lead to langgsein that region, so that overall
the cosine mesh is less accurate than the uniform mesh. tasdls we observe second order
convergence upon mesh refinement. This is important, bedausany practical flow problems
non-uniform grids are used (e.g. boundary layer flows), amglthen good to still have second-
order convergence. However, since many terms in the N&tigkes equations are zero for this
test case (the vertical velocity componerdnd all derivatives in:-direction), it is too early to
conclude that the discretization is second order accufede this we move to a more complex
flow situation.
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Figure 7: Convergence of errors in different norms and féfedent grids for Poiseuille flow.
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3 Lid-driven cavity

The lid-driven cavity flow is a widely used benchmark probleanthe incompressible Navier-
Stokes equations. It combines a simple Cartesian geomadrp@:slip boundary conditions with
complicated flow patterns, such as separating boundarydayed recirculation regions, which
become increasingly difficult to compute as the Reynoldslyenis increased. The classical lid-
driven cavity has a lid moving with constant velocity, hayisingularities in the upper left and
upper right corners, where one can question the validityisdrdtization error studies because
Taylor expansions might not be well-defined. In order towinwent this problem we first test a
regularized cavity before moving to the original problem.

U =16(x* — 223 + 2?) U=1

P C

(a) regularized (b) original

Figure 8: Lid-driven cavity.

3.1 Regularized lid-driven cavity
3.1.1 Introduction

The regularized lid-driven cavity, defined on a dom@int| x [0, 1] has a lid whose horizontal
velocity isU = 16(x* — 223 + 2?), resulting in a zero velocity in the upper-left and uppehti
corners. Furthermore, it is possible to obtain an exacttwsidor the velocity and pressure field
by choosinga solution that satisfies the boundary conditions and thieadocing a body force,
F = F,e,, such that the Navier-Stokes equations are satisfied;gkisown as the method of
manufactured solutions. Shih et al. [17] choose the folmnielocity and pressure field:

u(z,y) = 8(z* — 227 + %) (49> — 2y), (21)
v(w,y) = —8(42” — 62° + 22)(y* — ), (22)
8

p(z,y) = go(Hi(2)g" (y) + h(z)g'(y)) + 64H3(x)(9(y)g" (y) - W) (23

Substitution into the Navier-Stokes equations leads tddt@wing body force:

Fy,= %(24H1 (z) 4 21/ (x)g" (y) + 1" (x)g(y)) + 64(H3(x)G1(y) — 9(y)g' (y)Ha(z)), (24)

ECN-E-11-042 13



where

h(z) = z* — 223 + 22, (25)
Hy(x) = %x5 — %ﬂc‘l + %303, (26)
Hy(x) = —42° 4+ 122° — 142* + 82% — 227, (27)
Hs(z) = %(ac4 — 223 + 22)% (28)

9(y) =y* — v, (29)
G1(y) = —24y° + 8y> — 4y. (30)

Primes’ denote differentiation with respect to the independeniaide. As implementation
check Shih et al. provide the value 6§, at the center of the cavity at Re 1: F},(0.5,0.5) =
—3.356250. Note that Shih et al. use F, in the Navier-Stokes equations and as a re§ult (24)
also has an additional minus sign. The velocity compomeatsymmetric around: = 0.5, the
v-component is anti-symmetric around= 0.5; both are independent of Re. The sequence of
vortices that appear in the lower right and lower left corimethe classical lid-driven cavity are
not present here.

3.1.2 Settings

The domain is a cavity defined df, 1] x [0,1]. The initial condition is a zero velocity and
pressure field. The Reynolds number is Re100. For the convergence of the solution we
require that the maximum residual has dropped below ?; it might be better to put a condition
on thedrop in the initial residual, but on the other hand the initialidesl depends on the initial
guess. The first 3 steps are performed with Picard iteratitich provides a good starting value
for subsequent Newton iterations. The mesh is uniform fissiaiulations.

parameter value
U 16(x* — 223 + 22)
Re 100

N;,N,  10,20,...,160

Table 3: Settings for regularized lid-driven cavity flow.

3.1.3 Results

Figure[9 shows the body force fielfl, and the streamfunctiogr from a computation with a
uniform grid with N, = N, = 160. Errors are calculated for different uniform grids in the
same way as equatiorls {12) afdl(13) wi replaced byN = N,N,. For calculating the
error in the pressure we add a constant to the calculatedymesuch that it is equal to the
exact solution in the lower left grid poinl'oi1 = p™@Yz1,y1)). This is valid, because the
pressure in the incompressible Navier-Stokes equatiodstisrmined up to a constant in case
of Dirichlet boundary conditions for the velocity on the ieatboundary. Figuré 10 shows that
both velocity and pressure are second order inftheand L..-norms. The convergence of the
maximum residual is shown to be basically independent ohtiraber of grid points, see figure
[@1. The initial residual, corresponding to the initial gsieis not shown in this figure. After a
slow initial decrease in residual, corresponding to Pidtaetion, quadratic convergence follows,
corresponding to Newton’s method.
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(b) Streamfunction, contour lines0.12. .. 0 with steps0.005

Figure 9: Force and streamfunction on uniform g, = N,, = 160, for regularized lid-driven
cavity flow.
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3.2 Original lid-driven cavity
3.2.1 Introduction

The original lid-driven cavity is shown in figufe 8{b). Depmng on the Reynolds number, a
sequence of vortices is formed in the lower left and lowehtrigorners. The classic benchmark
paper on this subject is from Ghia et al. [10], but since tliggr more accurate results have been
published, in particular the spectral data from Botella &fee[3].

3.2.2 Settings

The Reynolds number is Re 1000 for all order studies. At higher Reynolds numbers only
quantitative flow field pictures are given. The mesh is eitiveform or cosine, given by equation
(11). An example of such a mesh witti, = N, = 16 is shown in figuré_T2. The non-linear
system of equations is started with a zero velocity field adesl with Picard (first 3 steps) and
Newton (subsequent steps) iteration, like in the reguarim-driven cavity case. The stopping
criterion is10~'° based on the reduction of the maximum residual of the sederation step.
This approach worked fine for the cosine meshes, but for eaamgorm grids, where the mesh
Péclet number is much larger than 2 (this is especially itgmrnear solid boundaries), the
residual would not converge. We then added a small constant) to the diagonal of the
saddle-point matrix fotV, = 16 and N,, = 32 which would lead to converged solutions. Since
the equations are solved in ‘update’ or ‘delta’ form such damation is allowed, because the
iteration matrix does not influence the converged resully tire convergence rate. Furthermore
we increased the number of Picard iterations to 6, and wegdththe initial guess ta = 1,

v =0.

parameter value

U 1
Re 1000, 5000,10000
N, N,  16,32,...,256

Table 4: Settings for original lid-driven cavity flow.

1

0.9

0.8

0.7

06
05

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

xT

Figure 12: Nonuniform cosine meshj x 16.

3.2.3 Results

Qualitatively the flow field is shown in figur¢s T3)(a)-I3(chtained on &56 x 256 cosine grid.
These figures are indistinguishable from the benchmarkteesti[3], shown in figure§ T3(¢l)-
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13(1)
)

The order of accuracy will be demonstrated in two ways: thezeayence of the velocity profiles
along the centerline and the convergence of the total kirgtergy in the cavity.

Firstly, we look at the velocity and the pressure profilemglthe centerlines, see figufes T#(a)
{I4(d). The pressure has been shifted suchhat 0 in the center of the cavity. Where nec-
essary the velocity profiles of Botella & Peyrét [3] have bedrrored because they use a lid
with velocity U = —1. The grids withN, = N, = 64 and larger match the benchmark data
very well. In order to measure the order of accuracy we complag minimum value of. and
maximum and minimum values ofalong these centerlines with the benchmark data. Since the
grid is relatively coarse in the center of the cavity (muclarser than the average grid spacing
1/N,), we approximate the centerline velocity profiles by fittegpline through the data points,
which is subsequently used to determine the minimum andmaxi values and their locations.
Especially the prediction of the location of minimum and mmaxm was improved in this way;
the values itself are hardly affected. Second order beha¥ithe error between the values pre-
dicted by [3] @min = 0.3886, vmin = —0.5270, vmax = 0.3769) and our results is shown in figure

Secondly, we look at the total energy of the flow in the cavity:

k=) 3V, (31)
1,7

where(); ; is the area of a pressure finite volume, ang = (5 (ui; + ui—1;))* + (5(vij +
vij-1))? é We compare this value with the value reported in Bruneau &dSd], which is
0.044503 for Re = 1000. Figure[15(0) shows second order convergence for both tiiermmand
cosine mesh, but the cosine mesh has a lower error consteetisis better able to capture the
boundary layers and corner vortices.

The convergence of the maximum residual is shown in figurdtli6.seen that the convergence
behavior is basically independent of the grid size. Thedase in initial residual with finer
meshes is due to the fact that the initial velocity field is sroboth at the boundaries, leading to
large gradients near boundaries and consequently a lasigkieg. These gradients become larger
for finer meshes. In all cases the uniform grids take moreafijdterations, a more careful initial
guess and tuning to obtain convergence, compared to theecgsd. A heuristic explanation for
this behavior is that if the mesh Péclet number is smaller hahe upper-left block of the saddle-
point matrix becomes & -matrix, which improves the convergence behavior (see\Wggseling

[21D).

At higher Reynolds numbers more eddies are formed in theecsriThe results for Re=5000 and
Re=10000, presented in figurel 17, compare very well to thossepted in Erturk et al_J7]. In
these cases we used 25 Picard iterations after which Newe@tion converged in a few steps.
As a side note, it is interesting to see that Bruneau & Saadifélgree with the results of Erturk
and mention that at a Reynolds numbei 6800 the flow is not steady anymore. We will not go
deeper into this discussion but just mention that we were &bbbtain steady results as long as
the grid was fine enough£8 x 128 in this case); these findings are also supported in Erfurk [6]

1An alternative definition, which agrees up to second-ordeueacy, isk = v Q%u + vTQv.
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Figure 13: Contour plots for the lid-driven cavity flow at RE390. Upper row: current (non-uniform cosine me35; x 256); lower row: Botella & Peyret
[3]. For contour line values segl[3].
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Figure 14: Velocity and pressure profiles across the cenésrbf the cavity for non-uniform cosine meshes.
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3.3 3D lid-driven cavity

3.3.1 Introduction

In three dimensions the lid-driven cavity flow exhibits cdiogted three-dimensional flow pat-
terns and, when the Reynolds number is high enough, turbeleAs benchmark data we use
the results of Albensoeder and Kuhlmahn [1], who report eateuvalues of velocity profiles

at Re = 1000 for rectangular cavities with different aspect ratios bypéoging a Chebyshev

collocation method. Here we will consider only a cubicalibav

L

Figure 18: Three dimensional lid-driven cavity. The lid nresviny-direction. Velocity profiles
are extracted along the red lines.

3.3.2 Settings

The same configuration as In [1] is used. The cavity haslsizé x 1, and is defined on a domain
[—3.3] x [=3,4] x [-3, 3]. A cosine mesh (equatiof{[11)) is used in all directions, r&hes
times more volumes im- andy-direction are used than inndirection. The initial velocity field is
u=1,v =0, w = 0; it was found by trial and error that this choice gave coneaie with only
5 Picard iterations, while for other choices suchias 0,v = 1,w =00ru =v = w = 0 itwas
considerably more difficult to obtain convergence. For ¢h&B computations it might be better
to switch to a time-marching technique, as will be done intisads.8, requiring significantly

lower memaory resources.

parameter value
Re 1000
L 1
H 1
D 1
Ny X Ny x N, 24 x24x16
36 x 36 x 24
48 X 48 x 32

Table 5: Settings for 3D lid-driven cavity flow.

3.3.3 Results

Quallitative pictures of the flow field are shown in figliré 19e%a figures are rotated compared to
the sketch in figure_18. Figufe 19(c) shows that the veloaithe center plane is very similar to
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the two-dimensional case, §ee 1B(a)[and 13(a). Howeveortamt three-dimensional effects now
occur, as can be seen from the streamlines that spiral intwalee center of the cavity. Outward
going streamlines originate from the corner vortices, baxehnot been shown here for clarity
reasons. More three-dimensional effects can be observigures 19(d) anfd 19(b); especially
on the center planes= 0 andy = 0 one observes the so-called Taylor-Gortler vortices.

A quantitative comparison is made in figufes 2D(a) and 20¢bgre the velocity component
along thex-axis and the velocity componeatalong they-axis of the cavity are plotted (see the
red lines in figurd_18). The error between our results andehafq1] is calculated by spline
interpolation of our results to the position of the data p®iof [1], and then employing ahs-

norm:
N 1/2
1 — AK |2
€:<NZ\W—U¢ \) ; (32)

wheret indicates the interpolated dat&f indicates the data from][1].

p

Velocity Magnitude

(b) y-planes—0.4...0...0.4

c) z-plane 0.4 and streamlines spiraling towards = 0
plane

Figure 19: Qualitative pictures of velocity field, includinectors tangential to the slices, for the
3D lid-driven cavity.
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4 Flow over a backward-facing step

4.1 Introduction

The flow over a backward-facing step is performed to havetgpreblem with separating, reat-
taching and recirculating flow and to investigate the eftdautflow boundary conditions. The
layout of the problem is shown in figute]22. Directly after ttep a recirculation area forms
along the lower bottom of the channel, which lengfh increases with Reynolds number. Due
to the downward deflection of the flow a second recirculategion appears on the upper side
of the channel if the Reynolds number is large enough, chexiaed by X, and X3. The step is
modeled by the prescription of a parabolic velocity profil¢he inlet. The average value of this
profile isa = 1, its maximum is 1.5. The Reynolds number is based on the hefghe channel
and onu: Re= uH/v. An important issue is the treatment of outflow boundary dtbors [9];
we will test here the outflow conditions:

1 Ou

p— R_e% = Poos (33)
ov

% =0. (34)

The results of Gartling [9] (at Re= 800) are believed to be accurate benchmark results for this
problem and are therefore used as source of comparisorntkEBjualso provides results on this
test case, but in his work an inlet is added before the stejhwiesults in a flow that is not
perfectly parabolic at the step. An interesting article loa $tability of the flow at Re= 800 is

given in [11].

X3
X9
y=13
_.> u=24y(§ —y)
1 Ju

P~ Redzr — P

y = O 81)
52 =0

y=—%

=0 X1 r=1L
Figure 22: Layout for backward-facing step.
4.2 Settings

The value of the streamfunction at the lower wall is setyat 0, the value at the upper wall
follows from integratingu(x = 0, y) (given in figurd 2R):

Sl

y=H/2
w@c,y:%):/ = (35)
-

This gives the (Dirichlet) boundary condition fgrused for solving equatiof](7). The reattach-
ment pointsX; are found at the point whet%% = 0, which can be found by tracking the = 0
andiy = H/2 contour lines to the boundary or looking for a change in tlya sif » in the first
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cell adjacent to the boundary.

At the end of the channel we sef, = 0, but in order to compare with the results of Gartlihg [9],
a constant was added to the pressure, as a post-procesgngasthap = 0 at the step corner

(z = 0, y = 0); this constant is determined by interpolating the pressatues surrounding the
corner. The non-linear system of equations is solved witRit&rd iterations after which Newton
iteration is applied.

For L = 7.5 and L = 15 uniform grids are used in- andy-direction. ForL = 30 the grid is
stretched inc-direction, starting fromx = 15 with a stretch factor 01.005, resulting in a total of
1590 x 80 finite volumes.

parameter value
H 1
L 7.5, 15, 30
N, x N, 600 x 80, 1200 x 80, 1590 x 80
Re 800
Poo 0

Table 6: Settings for backward-facing step flow.

4.3 Results

First we show qualitative pictures of the flow field by plogtistreamfunction, pressure, vorticity
and velocity contours, see figuries 28(a)-2B(d). The length@domain used here & = 15,
but since physically interesting phenomena occur primdoit = < 10, the plots show the results
until z = 10. Qualitatively these pictures match the results of [9] (f&®d) perfectly.

To test the outflow boundary condition we perform simulasioam domains of different size and
compare the velocity profiles at different streamwise s@éstiwith those of Gartlind [9]. In figure
[25(a) the velocity profiles at = 7 are shown fol. = 7.5, L = 15 andL = 30. It can be seen
that even forl. = 7.5, wherethe domain cuts through the upper recirculation aréee prediction
of the velocity profile is still very good. The profiles obtathwith L = 15 and L = 30 are
visually indistinguishable from the results of Gartlingh&'same conclusions hold:at= 15. At

x = 30 the flow has almost reached the form of the fully developed®aile profile, see figure

25(C).

We continue with a study of the effect of the mesh sizeXgn X, and X5. We compute the
error in X; by comparing with the values provided by Gartling [9}; = 6.10, Xy = 4.85,
X3 = 10.48. In figure[2T it can be seen that in all cases the error decsesise second order
upon mesh refinement.
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5 Actuator disk model

5.1 Introduction

In order to perform CFD simulations of wind turbine wakessitbommon to employ simplified
models to represent the turbine [16]. One of these simplifiedels is the actuator disk, which
models the action of the turbine on the flow as a sink of monmmary introducing a forcing
term in the Navier-Stokes equations. This force appearssasface integral in the finite volume
formulation of the equations:
fds. (36)

ons
Here f is the non-dimensional surface force per aahe (finite) volume over which is inte-
grated, andS the surface on which the force acts. Assuming the forcing ig-direction, i.e.
f = [zé., the total force term can be expressed in terms of the thaefficient:

1
fzdS = —=CrAy,. (37)
ons 2

The factor of% appears due the definition 6 and the non-dimensionalization of the force term,
which scales with.,u2_. The minus sign appears because the forcthe flonis minus the thrust
force on the turbine A, is the area of the disk with radiug. In a discrete sense equatinl(37)
changes into a summation over finite volumes, so we obtaia force inz-direction:

> fo, Ayj = —3Cr A, (2D: Aq = 2R), (38)
i
> fo, AyjAz, = —5CrAg, (3D: 4, = 7R?). (39)
7,k
For a uniformly loaded actuator disk these simplifyftg = —3Cr andf,,, = —3Cr.

We repeat a number of test cases performed by Rétharé [1&dtour discretization. Comparison
will be made with analytical solutions, which are availabde 1D, 2D and 3D inviscid flows
through actuator disks.

5.2 1D

We start with an actuator disk in 1D. In our staggered arraregd the forcef,, acts at the center of
au-centered finite volume. There are no pressure-velocitpliog issues (in contrast to earlier
work, e.g. [18], [14], [15]). With symmetry boundary coridits at top and bottom%{j =0,

v = 0), outflow boundary condition% = 0, v = 0) andf, independent of;, the flow remains
one-dimensional (figure_28, left). From the continuity etiprawe then see th% = 0, so
u = constant u.,. The momentum equation reduces to

/ pngdy = [z dy, (40)
r ons
so for uniformf, this leads to

Ap = —1C7. (41)

It follows that the pressure is constant in the entire domeeept at the point wherg, is non-
zero, where the pressure jumps. This judp is equal to—%CT, indicating that the pressure
drops. The Reynolds number does not play a role here.
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In figure[29 the pressure as function:ofs shown for two different meshes wittd x 10 and
20 x 20 (the number of volumes ig-direction is not important). The domain isx 1 and
Cr = % so thatAp = —%. It can be seen that the analytic solution is exactly cagtoreboth
meshes. On non-uniform grids the same results have beemettaNote that the solution is
obtained after only one iteration because the problem isrdisdly linear.

symmetry outflow
o o
= c 2 c
9 ~+F = e +F =
< ) < Q
= s = s

symmetry outflow

Figure 28: 1D (left) and 2D (right) layout for actuator disknsilations.
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Figure 29: Pressure as function:ofor 1D actuator disk.

5.3 2D lightly loaded, ‘inviscid’

5.3.1 Introduction

We will now consider the more physical situation of an aatuaisk that spans only part of the
domain, see the right graph in figure 28. A uniformly loadetliator disk presents a challenging
test case due to the presence of a singularity at the disk edgae high gradients appear and

vorticity is created. The actuator disk is positioned at 0 and defined fofy| < R. For a lightly
loaded actuator disk({y < 1) an analytical solution is available,

p=52 (tant (2) ot (B22)) ap <o (42)
27 x x
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U= Upp — —— + —— . (43)

Ploo Plco
~—~—

in the wake

‘In the wake’ meang: > 0 and|y| < R. In contrast to previous test cases, where analytical or
benchmark results could be used to investigate the ordéeddpatial discretization, this is more
difficult here because:

» The analytical solution requires boundary conditionsiidily far from the actuator disk.
» The analytical solution is valid for the linearized Navi&tokes equations.

» The analytical solution is valid for inviscid flow.

The analytical solution is therefore not used for order ’sidbut for qualitative comparison only.

5.3.2 Settings

In order to make a fair comparison with this analytical réthe inflow velocity at the left side of

the domain is calculated from this equation. WeGget= 0.001 and with a domain of—10, 10] x
[—10,10] this leads tou(—10,0) ~ 0.999992. The pressure is determined up to a constant,
which is chosen such that= 0 at the center of the actuator disk, corresponding to theyéinal
solution. The restriction o@'; makes sure that the flow remains almost one-dimensional, but
since the width of the domain is now larger than the size ofdis&, the flow can decelerate.
For such a lowCr the wake velocityu,, (i.e. whenz — oo) according to expression (43) is
Uy [Uso = 1 + Ap. Comparing with quasi 1D momentum theory:

1
uw/uce =1-Cr~1-50r  (Cr<1), (44)

it is observed that the analytical solution satisfies ~ —%CT, as in the pure 1D case. As
boundary conditions we prescribe inflow on the left side antlev conditions on all other
sides, i.e.

1 Ou ov
p— Redr = Po o 0 (r = 10), (45)
1 ov ou
—_— = %) _— = :—1 5 :1 5 46
P~ Redy ? 2y 0 (y 0, y = 10) (46)

so that the wake can expand and fluid can flow through the upyEoaver sides of the domain.

The grid that is used is shown in figurel 30.ardirection the grid is mildly stretched away from
the rotor with a stretching factor of 1.01. {adirection a uniform grid is employed fady| < 1,
and outside this region the grid is stretched with a factat.606. We takeAz = Ay = 1/30 at
the disk, resulting in a total &f78 x 168 finite volumes.

The system of equations is solved by starting with 1 stepr®ittaration after which Newton
iteration converged in 1 or 2 steps to a residual smaller i’ in all cases.

5.3.3 Results

Since the analytic solution is valid for inviscid flow, it igristly not correct to perform viscous
simulations. However, since there are no solid boundaniéke flow, there is no presence of a
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parameter value

Re 102, 102, 10*
Cr 1073

-10 -8 -6 -4 -2

Figure 30: Mesh used for simulations. Every third grid liseshown.

boundary layer which changes significantly with Reynoldsibar. The flow through the center-
line of the disk is smoothly varying, makir% very small. Only at the edges of the disk, where
vorticity is created, diffusion acts to smear out the veipaind vorticity. As long as the Reynolds
number attains a minimum value, the velocity at the cemtenwill hardly be affected [19]. In
this case this minimum Reynolds number will be even smdilentreported in [19], because we
are working with aC'r of 0.001, at which very little vorticity is produced.

Figured 3]l an32 show the pressure and velocity throughethedine of the actuator disk. In
all cases we plot the deviation of the freestream velodity, normalized by the pressure jump
Ap. The pressure is also normalized Ay. This gives values betweenl and0 for the velocity
and between-0.5 and0.5 for the pressure. We note the following:

36

» The pressure is almost completely independent of the Rdgmumber. The agreement

with the exact (analytical) expression is very good and tresgure jump over the disk
is captured perfectly. Only in the wake a small differenceiiassure is observed. This
is attributed to the fact that at the outflow boundary the suessis prescribed, and at the
inflow the velocity. This leads to a small asymmetry, whicm@ present in the exact
solution.

The velocity shows a greater sensitivity to the Reynoldsiber. For Re= 100 we see
that forz > 1 the results deviate from the exact solution. In this caselifiesive term
Riegiy?; at the edge of the wake is so large that the core of the wakee'shixith the outer
flow. For a higher Reynolds number this term is small enoughd&e it negligible over the
distances we consider. However, when looking at the vel@stfunction ofy atx ~ 1D
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we see more clearly the dependence on Reynolds number imricagpthe sharp interface.

 Careful inspection of the velocity and vorticity upstreaithe disk reveals the presence
of small oscillations (wiggles) in the solution (see figyB&$b) and 35(B)). With central
discretizations asufficientcondition to avoid wiggles is to have a mesh Péclet number
smaller than 2, i.eh < 2/Re. This criterion is met near the disk for Re 100, but not
for Re = 1000 and 10000, so that the presence of wiggles is not surprising. The@aff
remains small and restricted to the flow region where higltigrats appear, indicating
that the mesh Péclet condition is not alwayeexessargondition, especially when the
gradients are not in the direction of the flow.
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Figure 31:u-velocity through centerline of actuator disk for diffetdReynolds numbers.
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Figure 32: Pressure through centerline of actuator disklifiterent Reynolds numbers.
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5.4 2D heavily loaded, ‘inviscid’

A physically more interesting example is obtained whenngh’> = 0.8. The gradients in
the flow are stronger and it is more important to satisfy thestmi@éclet condition. To save on
the mesh requirements the stretching factors have beeeased tol.03 and1.1, in z- andy-
direction respectively. The Reynolds number is-R&000, which was shown to be high enough
for viscous effects to be small. Figures 37(a) and 37(b) stimworticity field for a ‘coarse’
mesh withAz = 1/100, Ay = 1/100 (total 232 x 294), and a ‘fine’ one withAz = 1/600 and

Ay = 1/100 (total 350 x 294). The wiggles inz-direction disappear on the fine mesh because
the mesh Péclet condition is satisfied at the actuator diskveder, the uniform actuator force
that is used here leads to a singular vorticity at the edgéiseoflisk and does not converge to a
finite value upon mesh refinement.

The streamlines obtained with this mesh are shown in figurel@arly displaying the expansion
of the flow. The convergence of the residual now takes appratély 6 iterations.

0.8 B 08}

0.6 T 0.6

04r q 0.4r

02f 1 0.2t

0.2} b -0.2

-0.4r q 0.4

-06f B -0.6

-0.8[ T 0.8

x T

(@) Az = 1/100 (b) Az = 1/600

Figure 37: Vorticity contours af'; = 0.8 and Re= 1000.

5.5 2D heavily loaded, viscous

The previous test is not very suitable for investigatingahger of accuracy, because a fine mesh
is already required to obtain an oscillation-free resule Wherefore take a lower Reynolds hum-
ber, Re= 10, so that the mesh Péclet condition is already satisfiedl far2/10. Furthermore we
use a smaller domain with symmetry boundary conditions erldiver and upper side; the cor-
responding Dirichlet conditions far lead to a faster convergence of the residual. The maximum
residual converges in four steps (1 Picard and 3 Newton) tweMower thari0—19.

parameter value
Re 10
Cr 0.8
L 4
H 4
R 1/2

Az, Ay 1/4,1/8...1/128

Table 8: Settings for heavily loaded viscous 2D actuatdkt.dis
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Figure 38: Streamlines through actuator diskdgr = 0.8, Re= 1000.

Figures39(3)-39(k) show the evolution of velocity and pues profiles across different cross
sections upon mesh refinement, either algng 0 or x = 1. It is observed that the pressure
and vertical velocity need a relatively fine mesh to obtairesm independent’ results. This is
probably due to the fact that the pressure is discontinuousa the disk and the vertical velocity
has two distinct sharp peaks at the edges of the disk. Thedrdal velocity is, on the contrary,
smooth in the entire field (at this Reynolds number).

The error in these velocity profiles as function of mesh widtshown in figureg 40(p) and 40|(b).
This error is calculated with respect to a simulation on affiresh with512 x 512 finite volumes:

1 N 1/p
e= <N2|ﬂz—uﬁ|p> , 47)

wherep = 2 orp = oo, ul the solution in pointi corresponding to a mesh with spacihg
andu; the solution on thé12 x 512 meshlinearly interpolated (this is important because of the
discontinuity) to the mesh locations corresponding withapgh. The second order accuracy

of the spatial discretization, shown in all previous testes is not so clear here. Both velocity
and pressure show convergence rates between 1 and 2, ¢easyahd 1.6. In all cases the,. -

norm shows larger errors than tlig-norm, as expected, but the rate of convergence is the same
for both. The error in total energy changes from second tal thider aroundh = 10~2; we do

not have an explanation for this yet.
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5.6 3D lightly loaded
5.6.1 Introduction

In the three-dimensional case again an analytic soluti@vaslable for lightly loaded actuator
disks Cr < 1):

R p2m r o
=20 [ e @
T Jo Jo (7:2 + 72 4 22 — 27r cos(0 — 9))

Along the centerline of the disk (= 0) this equation can be exactly integrated:

Ap /R e [—Ap x yR
N R L VR 49
@) =5, @+ a2 2 Va4, “

The velocity follows as in 2D froni{43), and satisfies againu., = 1+Ap, with Ap = —3Cr.
The 2D and 3D solutions are qualitatively different, seedwample the centerline pressure and
velocity profiles in figuré4l1. In 3D the wake expands in a mucbrter distance, has a larger
velocity deficit at a given downstream position and obtahmes asymptotic wake value much
faster.

0.6 T

0.2

o

I
o
N

]
I
~

Au/Ap, p/Ap

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 41: Pressure and velocity in 2D and 3D along centditording to analytical solutions.

To model the circular actuator disk in our Cartesian mesh avthd following. For each volume
(i, 4, k) we calculate the ared, ; ; that is covered by the actuator disk. For a uniformly loaded
disk the forcing on each cell is then simp%ﬁTAiM. Figure[42 shows how the forcing is
distributed in they — z plane atz = 0. This approach introduces an additional error (see the list
in sectior 5.8) in approximating the analytic solution.
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Figure 42: Fraction of volumes covered by actuator disk.

5.6.2 Settings

Because the velocity and pressure recover faster to the @sjimupstream and downstream
values in 3D than in 2D, we use a smaller domain for the 3D sitrars, beind 2 x 8 x 8, and
prescribex = 1 on the inflow boundary. The grid stretchingli$2 in xz-direction andl.1 in y-
andz-directions (for|y|, |z| > 1), resulting in a total ofl02 x 64 x 64 finite volumes. Based on
the 2D study we use a Reynolds numbet @i0 and aC; of 0.001.

In contrast to all previous test cases, the steady statéicolior this test is obtained by march-
ing in time with a classical explicit four-stage Runge-kuthethod with (only) one pressure
correction per time step. One pressure correction stepcexdthe temporal accuracy of the ve-
locity (to second order), but the linear stability regiomist affected, which is more important
when marching to steady solutions. The Poisson equatiotihépressure is solved with a pre-
conditioned conjugate gradient method. The time step isrdéhed by estimating the possible
eigenvalues of the convection and diffusion matrices widrdgorin’s theorem, and requiring
that the largest possible eigenvalue lies within the stgldiomain of the Runge-Kutta method.
The stopping criterion i$0~8 based on the maximum residual.

parameter value

Re 103
Cr 1073
L 12
H 8
D 8
R 1/2
Az, Ay 1/15

Table 9: Settings for lightly loaded 3D actuator disk.

5.6.3 Results

Figured 48-46 show the velocity and pressure profiles-imnd y-direction alongy = 0 and
x =~ 1, respectively. Like in 2D we see excellent agreement witheékact analytical solution.
Close inspection af nearr = —5 reveals the presence of small wiggles, but they hardly iniee
the overall velocity and pressure profiles.
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5.7 3D heavily loaded, viscous
5.7.1 Introduction

Similar to sectiof 5J5 we do a simulation with a realistiatrcoefficientCr = 0.8, and a low
Reynolds number, Re 10, in order to do a mesh convergence study.

5.7.2 Settings

We use symmetry boundary conditions at the upper, lowentfamd back side to increase the
convergence speed, as before. The grids range &btm 642 on a domain oft x 4 x 4.

parameter value
Re 10
Cr 0.8
L 4
H 4
D 4
R 1/2

Az, Ay 1/2,...,1/16

Table 10: Settings for heavily loaded viscous 3D actuatsk.di

5.7.3 Results

Figure§ 47(8)-47(¢) show the velocity and pressure prdblethe sequence of meshes mentioned
above. Note that the pressure is shifted and scaled\py In all cases we observe a clear
convergence towards a mesh independent result. The weleiicit directly behind the disk
is larger than in 2D, but due to a faster recovery of the wakedficit atz = 2 is smaller than in
2D.

The error in the velocity profiles is calculated in the samg amequatior{47), where the refer-
ence results are now on tisé> mesh. The order of accuracy is second order in all casespfbr b
Lo- andL .- norms. However, we should keep in mind that the range ofgjziéls is quite limited
here, and in 2D order reduction was observed for finer gridspisingly the kinetic energy of
the flow shows a much larger error constant than in the 2Dtteistmight be due to the additional
error introduced by representing the circular actuatok dis a Cartesian mesh.
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6 Conclusions

This report verifies a staggered incompressible Naviek&t@ode in solving a number of steady
laminar flow problems. The second order spatial accurachisfdode has been shown by per-
forming thorough grid refinement studies for various flowlgemms in two and three dimensions:
Couette and Poiseuille flow, flow in a lid-driven cavity, flowss a backward-facing step and flow
through an actuator disk. We conclude the following:

» The velocity and pressure are second order accurate ire$prall flow problems, except
for the actuator disk problem, where the accuracy lies betwist and second order. This
is attributed to the non-smoothness of the pressure anditefeeld.

» Second order accuracy has been shown on both uniform andméorm grids, where the
latter were taken as smooth transformations of a uniform. gfor non-smooth grids, e.g.
of Shishkin type, mesh convergence studies were not pegftbybrut second order accuracy
is still expected (see e.d. [21, 8]).

» Second order accuracy holds for all boundary conditiomsstigated, being no-slip, sym-
metry, outflow (pressure) and periodic. The outflow boundamydition has been shown
to work very effectively for the backward-facing step pretn, where it was possible to
capture a recirculation bubble at the outflow boundary.

» The staggered grid approach correctly captures the disemus pressure behavior across
the actuator disk, without having pressure-velocity dedtiog issues.

* Since central differences are used for approximation efabnvective terms, wiggles can
appear when the mesh Péclet number is greater than 2. Saditlie mesh Péclet condition
is a sufficient condition to prevent wiggles, but not alwagsessary. It is important to
satisfy it when large gradients in the direction of the Idtalv are present. In many cases,
such as the lid-driven cavity flow (where the largest gradiexppear normal to the flow
(boundary layers)), very good results are obtained withstrittly satisfying the Péclet
condition. This is important, because in many practicalbftient) flows the viscosity is
often very small, so that satisfying the Péclet conditiorthie entire flow would lead to
enormous mesh requirements.

» The solution of the non-linear saddle-point system of ¢iqua is efficiently solved with
Picard and Newton iterations. Picard iterations are dffedd provide a good initial guess
for the Newton iteration. Faster convergence is obtainednithe Péclet condition is sat-
isfied. The number of Picard iterations necessary for a seiffity accurate guess has been
obtained by trial and error; this could possibly be autormdig prescribing a certain drop
in residual before switching to Newton. The total numberexjuired iterations for con-
vergence is insensitive to the number of finite volumes. medhdimensions the solution
of the entire saddle-point system becomes too expensideyarhave switched to a time-
marching method to obtain steady-state solutions. Othproaghes are possibly more
efficient [2].

Some benefits of the current staggered, energy-consergipmgach became already clear in the
steady actuator disk test case. However, the real advantdigleis approach will manifest them-
selves in the simulation afnsteady, turbulent flowsuch as the flow of air through wind turbines
in wind farms. The verification and validation of such unstg#ows will be addressed in future
work.
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