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1. Introduction 

1.1 Research project Electrical Infrastructure of the future (EIT) 
This report describes the results of the ECN contribution to the topic Information and communication 
(infra)structure (theme C) of the project Energy Infrastructure of the Future (EIT- 
Elektriciteitsinfrastructuur van de Toekomst). The EIT-project is a joint effort of TU/e, ECN and 
KEMA, coordinated by TU/e. The project aims at researching the following themes:  
A. Functional specifications and design of efficient and flexible transport systems 
B. Design and performance of a distribution grid fully controlled by power electronics 
C. Specification and layout of information and communication (infra)structure needed for a reliable 

and sustainable energy system. 
D. Opportunities for the application, assessment of economical aspects and offering market 

perspectives. 
 

Research at the TU/e on theme C is still continuing and will be reported later in a separate report. The 
results of theme A, B, and D have been or will be reported in separate reports as well (by TU/e, TU/e 
and KEMA respectively). 

 
The rationale for the EIT-project is that requirements for the electrical infrastructure of the future will 
be fundamentally different from the current requirements. The current infrastructure can’t satisfy 
those requirements. It is too passive, not intelligent enough and not capable to control the changing 
conditions – which makes it vulnerable. The following trends are emerging: 
• The generation of electrical energy will change structurally: much local generation, stochastic 

output and need for storage. 
• Growing energy needs, need for energy management and system integration within the boundary 

conditions of the primary process of the end user, the desire for energy savings and demand 
response. 

• Changing demands of customers and needs of the society as for quality and reliability, increasing 
sensitivity of equipment and industrial processes for tolerances in the voltage supplied. 

• Individualisation of services to the customer, premium power for privileged applications, market 
oriented solutions for control of bottlenecks in the system and combination of services. 

 
The resulting problems for the grids will need to be solved by a strategy aiming at: 
• Efficient and flexible transport systems, with implementations that are acceptable to society, have 

low losses, high capacity and a high availability through in-built security and recovery, 
combination of services  

• Application of new technologies on the basis of power electronics, such as DC interfaces, power 
flow controller and short circuit current limiters; new concepts for operation, coordination and 
management 

• Use of the opportunities offered by Information and Communication Technologies, such as 
enhanced automation, intelligent data collection and processing, local coordination and control 

• Offering of market perspectives for new technologies and concepts; transition management. 
The authors wish to thank Agentschap NL for partial funding of this research under the EOS-LT 
program for long term energy research of the Dutch ministry of Economic Affairs and Innovation. 
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1.2  Sustainable Electricity Sources 
In electricity generation two inter-related movements can be seen, both of paramount importance for 
the way the electricity system will be managed in the future: 
 
1. The increase of electricity generated from sustainable energy sources. 
 
2. Decentralization of electricity generation: electricity generating units are growing in numbers and 

moving closer to the load centers. 
 
In this section and the next one we will describe these changes in more detail, and in the last section 
of this chapter we will describe the impact on management of the electricity system. Worldwide, two 
thirds of the electricity is still produced from fossil fuels (natural gas, oil and coal) while 
approximately 15% originates from nuclear sources [9]. Of the sustainable options for electricity 
generation, hydro energy is currently most significant in the worldwide  power production (17%). 
Other sustainable energy sources (wind, solar, biomass, and geothermal) contribute for only about 2% 
to the worldwide  electricity generation1. 
However, there are important drivers to reduce the fossil fuel dependency and to substitute fossil fuels 
for sustainable energy sources. Two important drivers behind this are: 
 

• Environmental concerns: pollution and climate change. Most fossil fuels are used as input for a 
combustion process which emit pollutants such as aerosols (e.g., soot), sulfur oxides and nitrogen 
oxides. Further, fossil fuel usage is one of the greatest contributors to global warming due to 
greenhouse gas emissions. 

 

• Diversification of energy sources: the energy need of most western economies is largely 
imported from outside those economies. As energy demand continues to grow, this external 
dependence could grow steeply in the next decades. Moreover, a substantial portion of fossil fuels 
are imported from politically unstable regions. A higher portion of sustainable energy in the 
energy mix reduces this dependency. 

 
As said, hydro energy is the only sustainable energy source with a substantial share in today’s 
electricity supply. Worldwide, approximately 17% of electricity is generated by hydro power 
generators. However, the growth potential for hydro power is limited. In many countries, the capacity 
increase is due to new small hydro power facilities, instead of large hydro power plants. These 
generators are connected to the medium voltage distribution grid. 
With an annual growth of 25 to 30%, wind energy is becoming the second largest sustainable energy 
source for power generation. In 2008, the capacity installed worldwide was 121 GW [24] (3.2% of 
total power generation capacity). With an annual growth of 25%, the wind generation capacity in 2020 
will be 1750 GW, i.e., a share of at least 25% of the worldwide  power generation capacity. In 2008, 
Germany had 24 GW wind generation capacity installed with a production share of 7.5%. Among the 
countries with the largest wind generation capacity in 2008 are the USA (25 GW), Spain (17 GW) and 
China (17 GW). Initially, wind turbines with a capacity up to 1000 kW (solitaire or in a wind park) 
were connected to the distribution grid. Today, however, very large wind turbines with a generation up 
to 5 MW each are installed offshore in large wind parks. Since the total generation capacity of these 
wind parks is often more than 100 MW, they are connected to the transmission grid. At the same time 

                                                      
 
1 Sustainable Electricity Sources are also refered to as Renewable Energy Sources (RES). In the remainder of 
this text we will use these terms interchangeably. 
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there is a trend towards smaller wind turbines, i.e., turbines with a capacity of less than 50 kW. These 
turbines are situated near dwellings and connected to the low voltage distribution grid. 
 
The most abounded sustainable energy source worldwide is solar energy. Solar energy can be 
converted to electricity through a thermal route using a steam cycle, as in conventional power plants, 
and through photovoltaic (PV) cells. The thermal technique is used in large plants (some hundreds of 
MW), so called concentrated solar power. Panels with PV cells are used in urban areas, mounted to the 
roofs of buildings and dwellings, and connected to the low voltage distribution grid. The total installed 
capacity of PV worldwide  in 2007 was 9100 MWpeak of which 40% in Germany [33] . If the average 
annual growth factor of about 30% continues, the installed total worldwide  generation capacity in 
2020 may become 275 GWpeak. Although this will be only a few percent of the total installed 
generation capacity worldwide, locally the share of electricity production from PV may be much 
larger. 
 
Biomass (wood, organic waste, etc.) has been used for power generation on a limited scale for 
decades. There is a large growth potential for this sustainable energy source. Different kinds of 
biomass can be cofired in coal fired power plants (10 to 30%). Biomass can also be converted into 
electricity in dedicated biomass plants. The size of these plants is smaller than conventional power 
plants, i.e., up to a few hundred MW. Another form of bioenergy is biogas. Biogas, from waste water 
treatment or anaerobic digestion of manure, can be used as a fuel for gas engines producing electrical 
power. These units have a capacity of some MWs and are connected to the medium voltage 
distribution grid. 
 
Other sustainable energy sources are geothermal, wave and tidal energy. These energy sources are 
only available in specific regions, where they may be of significant importance. Geothermal electricity 
generation in Iceland is an example of this. 

1.3  Distributed Generation 
Another ongoing change in the electricity sector is a decentralization of generation. A growing share 
of the generation capacity is located in the distribution part of the physical infrastructure. This trend 
breaks with the traditional central plant model for electricity generation and delivery. For this type of 
generation the term distributed generation (DG) is used: the production of electricity by units 
connected to the distribution network or to a customer site. 
Thus, DG units supply their generated power to the distribution network either directly or indirectly 
via a customer’s private network (i.e., the network on the end-customer’s premises, behind the 
electricity meter). Consequently, the generation capacities of individual DG units are small as 
compared to central generation units which are directly connected to the trans mission network. On the 
other hand, their numbers are much higher than central generation and their growth is expected to 
continue [15]. 
 
Sustainable or renewable energy sources (RES) connected to the distribution grid fall under the 
definition of DG. However not all RES are DG, as large-scale renewables, e.g., off-shore wind 
electricity generation, are connected to the transmission network. The same holds for Combined Heat 
and Power production (CHP – or Cogeneration). A CHP unit is an installation for generating both 
electricity and useable heat simultaneously. Dependent of their size, CHP units are either connected to 
the distribution grid (and, thus, fall under the definition of DG) or to the transmission grid. Table 1.1 
categorizes different forms of CHP and RES into either large-scale generation or distributed 
generation. 
 



 

8 

Table 1.1: Characterization of Distributed Generation (adapted from [8]) 
 
 Combined Heat and Power Renewable Energy Sources 
Large-scale Generation - Large district heating∗ 

- Large industrial CHP 
- Large hydro∗∗ 

- Off-shore wind 
- Co-firing biomass in coal power plants 
- Geothermal energy 
- Concentrated solar power 

 
Distributed Generation 

 
- Medium district heating 
- Medium industrial CHP 
- Utility building CHP 
- Micro CHP 

 
- Medium and small hydro 
- On-shore wind 
- Tidal energy 
- Biomass and waste incineration 
- Biomass and waste gasification 
- PV solar energy 

 
∗ Typically > 50MWe ; ∗∗ Typically > 10 MWe 

 
There are a number of drivers behind the growing penetration of DG (adapted and augmented from 
[10]): 
 
• Environmental concerns; Depletion of Oil Reserves; Diversification of energy sources. All 

three as described in Section 1.1. 
 

• Deregulation of the electricity market. As a result of the deregulation, the long-term prospects 
for large-scale investments in power ge neration have become less apparent. Therefore, a shift of 
interest of investors from large-scale power generation plants to medium and small-sized 
generation can be seen. Investments in DG are lower and typically have shorter payback periods 
than those of the more traditional central power plants. Capital exposure and risk is reduced and 
unnecessary capital expenditure can be avoided by matching capacity increase with local demand 
growth. 

 
• Energy autonomy. A sufficient amount of producing capacity situated in a local electricity 

network opens the possibility of intentional islanding. Intentional islanding is the transition of a 
sub-network to stand-alone operation during abnormal conditions on the externally connected 
network, such as outages or instabilities, e.g., during a technical emergency. In this manner, 
autonomy can be achieved on different scales, from single buildings to wide-area subsystems. 

 

• Energy Efficiency (i). In general, distributed generation reduces energy transmission losses. 
Estimates of power lost in long-range transmission and distribution systems of western economies 
are of the order of 7%. By producing electricity in the vicinity of a consumption area, transport 
losses are avoided. There is, however, a concern that in cases where the local production outgrows 
the local consumption the transmission losses start rising again. But in the greater part of the 
world’s distribution network we are far from reaching that point. 

 

• Energy Efficiency (ii). Heat production out of natural gas can reach higher efficiency rates by 
using combined heat-power generation (CHP) instead of traditional furnace burners. CHP is a 
growing category of distributed generation, especially in regions where natural gas is used for 
heating. In Northern Europe, for instance, CHP is already commonly used in heating of large 
buildings, green houses and residential areas. The use of micro-CHP for domestic heating in single 
dwellings is also expected to breakthrough in the coming few years. 
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1.4  Demand Response 
Because of the introduction of new types of power demand with high simultaneous demand peaks, 
such as Plug in (Hybrid) Electric Vehicles there is a growing need for flexible electricity generation. 
At the same time the flexibility of generation is decreasing, because many forms of sustainable energy 
generation (such as wind or solar energy) depend upon the momentary weather flexibility in 
generation new suppliers of flexibility will be needed in the near future. Demand response is an 
important candidate to supply this additional flexibility. 
Demand response is the ability of electricity consuming installations and appliances to alter their 
operations in response to signals from the energy markets or electricity network operators in (near-
)real time. Demand response can be achieved through avoidance of electricity use and/or by shifting 
load to another time period. At present, price elasticity of electricity demand is very low in the 
electricity markets. This means that the quantity in demand stays constant with a changing price. 
Higher elasticity in electricity demand would lead to: 
 

1. A lower electricity price (see Figure 1.1). During the California energy crisis, a demand reduction 
of 5% during the periods of the highest price peaks would have reduced these prices by 50% [16]. 

 
2. Direct reduction of energy usage in the case demand response is achieved by avoidance of 

electricity use. 
 
3. Lower usage of conventional peak power plants, which are generally inefficient and environmental 

unfriendly. For a number of European countries, a concentrated demand response effort of 20 to 
75 hours per year leads to a 5% peak load reduction [12]. 

 
4. Lower market power of producers. The number of market parties competing during peak load 

periods is generally low. This gives peak power producers high market power leading to price 
inflation. Price elasticity at the demand side will counteract this by increasing competitiveness. 

 

 

 
 

Figure 1.1: Impacts of Demand Elasticity on Wholesale Price [16]. 
 
Typical large flexible loads include different types of industrial processes, e.g., ground wood plants 
and mechanical pulping plants, electrolysis, arc furnaces, rolling mills, grinding plants, extruders, gas 
compressors, etc. In the commercial and residential sectors, the largest electrical loads can be made 
responsive: space heating, space cooling, tap water heating, refrigeration, freezing, washing or drying. 
Figure 1.2 gives average appliance load profiles for a generic European home. For all listed 
appliances, operation can be shifted in time except for the water heater (when it is a water kettle rather 
than a hot tap water vessel) and the oven/stove. 
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Figure 1.2: Appliance load profile of a generic European household averaged over a 
large number of households and over the period of one year. [29]. 

 
Household appliances can be involved in demand response in two ways: smart timing of appliance 
cycles and/or interruptions of appliance cycles. In smart cycle timing, the start of an appliance cycle is 
chosen such that the complete cycle lies in a preferable time period. For appliances such as washing 
machines and tumble dryers, this may involve a user action to indicate the preferred maximal ending 
time of the cycle. For a refrigerator or a freezer this means that the cycle starts before the maximum 
allowable temperature (or higher control temperature) is reached. In cycle interruption, the appliance 
cycle is interrupted for a certain period in time. For a washing machine or a tumble dryer, this means 
that during a running batch the heating process is interrupted for a certain time. For a refrigerator or a 
freezer this means that the cycle ends before the lower control temperature is reached. 
 

Table 1.2: Demand response by household appliances: flexibility boundaries (adapted 
from [29]) 

 
Smart Timing of Appliance cycles 
Washing machine / dryer  Typical < 3 hrs; Maximum 9 hrs 
Dishwasher  Typical < 6 hrs; Maximum > 12 hrs 
Refrigerator / Freezer Typical < 30 mins 
Other appliances  Typical < 15 mins, . . . 1 hr 

 
Interruptions of the Appliance cycle 
Washing machine  Typical < 10 mins 
Dryer  Typical < 30 mins 
Dishwasher Typical < 10 mins 
Refrigerator / Freezer Typical < 15 mins 
Other appliances  Typical < 15 mins 

 
From the viewpoint of controllability, DG and DR are equivalent: increasing production has the same 
effect on the supply and demand balance as decreasing consumption, and vice versa. Due to this, 
demand response is sometimes treated as being a resource. As a result of the common nature of DG 
and DR (and distribution network connected electricity storage), the overarching term Distributed 
Energy Resources (DER) is used to refer to this threesome: DG, DR and storage. 

1.5  Implications for Infrastructure Management 
The decentralization of electricity generation is changing the characteristics of power generation in 
three aspects: 
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• Intermittency: The power production of most types of DG is intermittent in nature. Additionally, 
CHP units operated to follow heat demand are intermittent in nature as well. As stated before, with 
the growing share of these intermittent energy sources it becomes more difficult to follow the 
fluctuating electricity demand. 

 

• Cardinality: As a result of generation decentralization, the number of electricity production units 
is growing rapidly while individual capacities are decreasing. 

 

• Location: The location of power generation relative to the load centers is changing. Due to 
decentralization, the distance between generation units in the grid relative to the location of 
electricity consumption is becoming smaller. On the other hand, central renewable generation is 
moving further away from the load centers as large-scale wind farms are being built off-shore and 
large-scale solar power plants in desert areas. 

 
Distributed generation does not fit into the standard paradigm of centralized control of a relatively 
small number big cental power plants. As distributed generation gradually levels with central 
generation, the centralized control paradigm will no longer suffice. The number of system components 
actively involved in the coordination task will be huge. Centralized control of such a complex system 
will reach the limits of scalability, computational complexity and communication overhead. The need 
to involve demand response in the coordination task only adds to this problem. 

1.5.1  The Traditional Reaction: “Fit and Forget” 
The traditional reaction to DG is accommodation in the existing electricity system, i.e., network and 
markets. This is the “fit and forget” approach. Distributed units are running free, beyond the control of 
the grid operator or the market-party to which the generated energy is delivered. The individual 
capacity of each separate DG unit is too small to be active on the wholesale market for electricity. 
Therefore, electricity supply companies treat DG as being negative demand: it is non-controllable and 
to a certain extend forecastable. As with renewable energy sources, a growth in DG decreases 
controllability and predictability in the electricity system. Again, the traditional reaction is to increase 
the capacity of regulating plants, while the total generation share of central generators goes down. 

1.5.2  The Smart Reaction: Distributed Coordination 
In the smart reaction, distributed generation, demand response, and future options for electricity 
storage, are integrated in the coordination mechanisms of the electricity system. As argued above, this 
can’t be done by following the traditional paradigm of centralized control. Thus, a new paradigm for 
coordination tasks in electrical power systems. The new coordination mechanism is likely based on the 
state of the art in information and communication technology (ICT). 
Before we look into the requirements of the needed ICT system, we take a closer look into the systems 
that need to play a role in the coordination task at hand. From the viewpoint of controllability, DG and 
DR are equivalent: increasing production has the same effect on the supply and demand balance as 
decreasing consumption, and vice versa. Due to this, demand response can be treated as a resource. 
The same holds for distribution network connected electricity storage. Due to this common nature, the 
overarching term Distributed Energy Resources (DER) is used to refer to this threesome: DG, DR and 
storage. 
The high-level requirements of the coordination system that integrates DER in power systems 
operations and markets include: 
 

• Scalability: A huge number of systems spread-out over a vast area will have to be involved in the 
coordination task. Especially on the level of the distribution grids, huge growth in the number of 
components actively involved in the coordination is expected. The coordination mechanism must 
be able to accommodate this growth. 
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• Openness: The information system architecture must be open: individual DER units can connect 
and disconnect at will and future types of DER —with own and specific operational 
characteristics— need to be able to connect without changing the implementation of the system as 
a whole. Therefore, communication between system parts must be uniform and stripped from all 
information specific to the local situation. 

 

• Multi-level Stakes: The information system must facilitate a multi-actor interaction and balance 
the stakes on the global level (i.e., the aggregated behavior: reaction to energy market situation 
and/or network operator needs) and on the local level (i.e. DER operational goals). 

 

• Autonomy and Privacy: In most cases, different system parts are owned or operated by different 
legal persons, so the coordination mechanism must be suitable to work over boundaries of 
ownership. Accordingly, the power to make decisions on local issues must stay with each 
individual local actor. 

 

These requirements ask for a distributed system, also referred to as a multi-agent system (MAS) for a 
number of reasons: 
• In multi-agent systems a large number of actors are able to interact, in competition or in 

cooperation. Local software agents focus on the interests of local sub-systems and influence the 
whole system via negotiations with other software agents. While the complexity of an individual 
agent can be low, the intelligence level of the global system is high. 

 

• Multi-agent systems implement distributed decision-making systems in an open, flexible and 
extensible way. Communications between actors can be minimized to a generic and uniform 
information exchange. 

 

• By combining multi-agent systems with micro-economic principles, coordination using economic 
parameters becomes possible. This opens the possibility for the distributed coordination process to 
exceed boundaries of ownership. The local agent can be adjusted by the local stakeholder, and 
does not fall under the rules and conditions of a central authority. Further, a Pareto efficient 
system emerges, i.e. a system that optimizes on a global level, while at the local level the interests 
of all individual actors are optimally balanced against each other. 
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2. Earlier Work: Market-based Balancing 

2.1  Multi-agent Systems 
The technology of multi-agent systems (MAS) provides a well-researched way of implementing 
complex distributed, scalable, and open ICT systems. A multi-agent system is a system of multiple 
interacting software agents. A software agent is a self-contained software program that acts as a 
representative of something or someone (e.g., a device or a user). A software agent is goal-oriented: it 
carries out a task, and embodies knowledge for this purpose. For this task, it uses information from and 
performs actions in its local environment or context. Further, it is able to communicate with other 
entities (agents, systems, humans) for its tasks. 
In multi-agent systems, a large number of actors are able to interact. Local agents focus on the 
interests of local sub-systems and influence the whole system via negotiations with other software 
agents. While the complexity of individual agents remains low, the intelligence level of the global 
system is high. In this way, multi-agent systems implement distributed decision making systems in an 
open, flexible, and extensible way. Communication between actors can be minimized to a generic and 
uniform information exchange. 

2.1.1  Electronic Markets 
The interactions of individual agents in multi-agent systems can be made more efficient by using 
electronic markets, which provide a framework for distributed decision making based on 
microeconomics. Microeconomics is a branch of economics that studies how economic agents (i.e., 
individuals, households, and firms) make decisions to allocate limited resources, typically in markets 
where goods or services are being bought and sold. One of the goals of microeconomics is to analyze 
market mechanisms that establish relative prices amongst goods and services and allocation of limited 
resources amongst many alternative uses [21]. Whereas, economists use microeconomic theory to 
model phenomena observed in the real world, computer scientists use the same theory to let distributed 
software systems behave in a desired way. Market-based computing is becoming a central paradigm in 
the design of distributed systems that need to act in complex environments. Market mechanisms 
provide a way to incentivize parties (in this case software agents), that are not under direct control of a 
central authority, to behave in a certain way [7, 27]. A microeconomic theory commonly used in MAS 
is that of general equilibrium. In general equilibrium markets, or exchange markets, all agents respond 
to the same price, that is determined by searching for the price that balances all demand and supply in 
the system. From a computational point of view, electronic equilibrium markets are distributed search 
algorithms aimed at finding the best trade-offs in a multidimensional search space defined by the 
preferences of all agents participating in the market. The market outcome is Pareto optimal, a social 
optimal outcome for which no other outcome exists that makes one agent better-off while making 
other agents worse-off. 

2.1.2  Market-based Control 
In Market-based Control, agents in a MAS are competing for resources on an equilibrium market 
whilst performing a local control task (e.g., classical feedback control of a physical process) that needs 
the resource as an input. For this type of MAS, it has been shown by formal proof that the market-
based solution is identical to that of a centralized omniscient optimizer [2]. From the viewpoint of 
scalability and openness of the information architecture, this is an important feature. In the centralized 
optimization all relevant information (i.e., local state histories, local control characteristics, and 
objectives) needs to be known at the central level in order to optimize over all local and global control 
goals. While in the market-based optimization the same optimal solution is found by communicating 
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uniform market information (i.e., market bids stating volume-price relations), running an electronic 
equilibrium market and communicating the resulting market price back to the local control agents. In 
this way, price is used as the control signal. It is important to note that, whether — in a specific 
application — the price has a monetary value or is virtual and solely used as a control signal depends 
on the particular implementation and on the business case behind the application. 
In a typical application of market-based coordination, there are several entities producing and/or 
consuming a certain commodity or good2. Each of these entities is represented by a local control agent 
that communicates with a market agent (auctioneer). Each market round, the control agents create their 
market bids, dependent on their state history, and send these to the market agent. These bids are 
ordinary, or Walrasian, demand functions d(p), stating the amount of the commodity the agent wishes 
to consume (or produce) at a price of p. The demand function is negative in the case of production. 
After collecting all bids, the market agent searches for the equilibrium price p∗, i.e., the price that 
clears the market : 

 
(2.1) 

 
where N is the number of participating agents and da (p), the demand function of agent a. The price 
is broadcast to all agents. Individual agents can determine their allocated production or consumption 
from this price and their own bid. 
 

Figure 2.1: Example general equilibrium market outcome. (A) Demand functions of the 
four agents participating in the market. (B) Aggregate demand function and general 
equilibrium price p∗. 

                                                      
 
2 Or a series of commodities. Here we treat the single-commodity case for simplicity 
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Figure 2.1 shows a typical small-scale example of price forming in a (single-commodity) general 
equilibrium market with four agents. The demand functions of the individual agents are depicted in 
graph (A). There are two consuming agents whose demand decreases gradually to zero above a certain 
market price. Further, there are two producers whose supply, above a certain price, increases gradually 
to an individual maximum. Note that supply is treated as negative demand. The solid line in (B) shows 
the aggregate demand function. The equilibrium price p∗ is determined by searching for the root of this 
function, i.e., the point where total demand equals total supply. 

2.1.3  Price-Based MBC: A Typical Example 
In a typical price-based market-based control problem, there are several producing and/or 
consuming agents and an auctioneer agent. Each market round the producers and consumers 
create their market bids and send these to the market agent. These bids are ordinary, or Walrasian, 
demand functions d(p), stating the agent’s demand d at a price of p. The demand function is 
negative in the case of production. After collecting all bids, the market agent searches for the 
equilibrium price, i.e. the price at which the market clears. This price is broadcast to all agents, 
who can determine their allocated production or consumption from this price and their own bid. 
Finally, all producing agents feed their allocated production into the flow network while all 
consuming agents extract their consumption from it. 
Figure 2.2 shows an example of price forming in a (single-commodity) general equilibrium market 
with four agents. The demand functions of the individual agents are depicted in graph (A). There are 
two consuming agents, whose demand decreases gradually to zero above a certain market price. 
Further, there are two producers whose supply, above a certain price, increases gradually to an 
individual maximum. Note that supply is treated as negative demand. In a control setting, the position 
of the inflexion point is typically determined by the current process state. The solid line in (B) shows 
the aggregate demand function. The equilibrium price p∗ is determined by searching for the root of this 
function, i.e. the point where total demand equals total supply. The value of each agent’s demand 
function at this prices is given in Table 2.1, Situation 1. 
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Figure 2.2: Example general equilibrium market outcome. (A) Demand functions of 
the four agents participating in the market. (B) The aggregate demand function. At 
price p∗, the market is in equilibrium: the sum of all supply and demand equals to 
zero. 

 
Suppose the commodity traded in this example is electrical power. Suppose further, the first agent is 
associated with a unit for combined heat and power generation (CHP), e.g. used to heat a swimming 
pool. While serving the local heat demand, the unit produces electricity at the same time. Its local 
control goal is to keep a large water-filled heat buffer between two temperature limits. This buffer 
serves heat demand coming from subsystems such as space heating and heating of pool water. In the 
situation depicted by Figure 2.2, the CHP unit runs at full capacity. Its produced electricity is 
consumed by the two consuming agents and its produced heat is heating up the buffer. 
 

Table 2.1: Agent demand levels for the two situations described in the text. 
Situation 1 corresponds to Figure 2.2, situation 2 to Figure 2.3. 

 
 p* d1(p*)  d2(p*)  d3(p*)  d4(p*)  ∑ dα (p*) 
Situation 1  92.7 -99.99 15.15 −5.56 90.41 0.00 
Situation 2  109.8 0.00 0.02 −50.63 50.61 0.00 
 
Suppose that sometime later, the heat buffer temperature is approaching the upper temperature limit. 
Then, the agent’s need to produce heat — and, thus, its willingness to deliver electricity to the other 
agents — will be much lower. Now, the agent wants to produce electricity only if it gets a really good 
price for it and updates its bid accordingly. Figure 2.3 and Table 2.1, Situation 2, show the new 
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situation. Due to the change in demand function of the first agent, the equilibrium price rises to 109.8. 
This causes the consuming agents to lower their intake, for agent 2 virtually to zero. The resulting 
demand is met entirely by the production of agent 4. 

 

 
Figure 2.3: New market equilibrium after a change in the demand function of agent 1. 

 

2.2  A Decentralized Control Systems Design 
In earlier work, we designed a novel control concept for automatic matching of demand and supply in 
electricity networks with a high share of distributed generation. In this concept, DG, demand response, 
and electricity storage are integrated using the advanced ICT technology of market-based distributed 
control. This concept has been coined PowerMatcher. 
Since its incarnation in 2004, the PowerMatcher has been implemented in three major software 
versions. In a spiral approach, each software version was implemented from scratch with the first two 
versions being tested in simulations and field experiments [18, 17, 26, 31]. The third version is 
planned to be deployed in a number of field experiments [25] and real-life demonstrations with a 
positive business case. 
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Figure 2.4: Example PowerMatcher agent cluster. See the text for a detailed 
description. 

 

2.2.1  Logical Structure and Basic Agent Roles 
Within a PowerMatcher cluster, the agents are organized into a logical tree. The leaves of this tree 
are a number of local device agents and, optionally, a unique objective agent. The root of the tree 
is formed by the auctioneer agent; a unique agent that handles the price forming by searching for 
the equilibrium price. In order to obtain scalability, concentrator agents can be added to the 
structure as tree nodes. More detailed descriptions of the agent roles are as follows: 
 

• Local device agent: Representative of a DER device. A control agent which tries to operate the 
process associated with the device in an economical optimal way. This agent coordinates its 
actions with all other agents in the cluster by buying or selling the electricity consumed or 
produced by the device on an electronic market. In order to do so, the agent communicates its 
latest bid (i.e., a demand function) to the auctioneer and receives price updates from the 
auctioneer. It uses this received price, together with its latest bid, to determine the amount of 
power the agent is obliged to produce or consume. 

 

• Auctioneer agent: Performer of the price-forming process. The auctioneer concentrates the 
bids of all agents directly connected to it into one single bid, searches for the equilibrium 
price and communicates a price update back whenever there is a significant price change. 

 

• Concentrator agent: Representative of a sub-cluster of local device agents. It concentrates 
the market bids of the agents it represents into one bid and communicates this to the 
auctioneer. In the opposite direction, it passes price updates to the agents in its sub-cluster. 
This agent uses ‘role playing’. On the auctioneer’s side it mimics a device agent: sending bid 
updates to the auctioneer whenever necessary and receiving price updates from the 
auctioneer. Towards the sub-cluster agents directly connected to it, it mimics the auctioneer: 
receiving bid updates and providing price updates. 
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• Objective agent: Agent that gives a cluster its purpose. In absence of an objective agent, the 
goal of the cluster is to balance itself, i.e., it strives for an equal supply and demand within the 
cluster itself. Depending on the specific application, the goal of the cluster may be different. If 
the cluster has to operate as a virtual power plant, for example, it needs to follow a certain 
externally provided setpoint schedule. Such an externally imposed objective can be realized by 
implementing an objective agent. The objective agent interfaces the agent cluster to the 
business logic behind the specific application. 

 
The logical agent structure follows the CO TR E E algorithm [34]. By aggregating the demand 
functions of the individual agents in a binary tree, the computational complexity of the market 
algorithm becomes O(lg a), where a is the number of device agents. In other words, when the 
number of device agents doubles it takes only one extra concentrator processing step to find the 
equilibrium price. Furthermore, this structure opens the possibility for running the optimization 
algorithm distributed over a series of computers in a network complimentary to power systems 
architectures. We discuss the issue of scalability further in section . 

2.2.2  Basic Device Agent Functionality 
For a DER unit to be able to participate in a PowerMatcher cluster, its associated agent must 
communicate its momentary bid curve or demand function to the Auctioneer. As described before, 
this function defines the DER’s electricity demand d(p) for a given price p. An offer to produce a 
certain amount of electricity against a certain price is expressed by negative d(p) values. As a 
convention, throughout this text we refer to these functions as a bid, even when (part of) the 
function expresses a production offer. 
Lets’s focus on an agent for an electricity-consuming device, say a freezer. A simple block model 
of the thermal process of a freezer cell and it’s external influences is depicted in Figure 2.5. Input 
to the process model is the boolean control variable αon/of f , switching the freezing element on or 
off. Further, the temperature in the freezing cell is influenced by two environment variables: the 
ambient temperature (Tamb ) and a usage pattern (ρusage ). The latter represents usage events like 
door opening & closing and goods being placed in or removed from the cell. 
 
 

Figure 2.5: Freezer block model 
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Figure 2.6: Three basic demand functions of a freezer. 

 
The control goal is to keep the inner cell temperature within the temperature band given by: 
Tmax and Tmin , the maximum inner cell temperature and the minimum inner cell temperature, 
respectively. In a conventional freezer, this is achieved by a standard on/off-controller with 
hysteresis. When participating in a PowerMatcher cluster, this conventional controller is 
replaced by a device agent. The goal of the agent is, again, to keep the cell temperature between 
the given limits, with an additional goal to consume in low-priced periods as much as possible. 
Figure 2.6 gives the three basic bid shapes for the freezer. When the cell temperature is below 
its minimum (left), the freezing element must be switched off. Accordingly, the device agent sends 
a Must Off bid. Similarly, when the cell temperature is above its maximum (right), the agent sends 
a Must On bid. The agent is forced to accept any price in order to get the cell temperature back 
within its limits. When the cell temperature is within limits (middle), the agent has the flexibility 
to switch on or off the element dependent on the electronic market price. Since the freezer element 
can either be switched on or off the agent’s bid is a step function: bidding either for the freezer’s 
nominal power or for a power of zero. The position of the step flank reflects the agent’s 
willingness to pay. When the cell temperature is still in the lower part of the temperature band, 
the agent is only willing to consume when the price is really low. However, when the temperature 
rises, the agent’s willingness to pay increases with it. So, available flexibility is directly dependent 
on the device state (here the cell temperature), and the position of the step flank in the agent’s 
bid directly reflects that. In order to optimize its strategy, the agent needs to have market-
knowledge, as the notion of what defines a “high price” or a “low price” is crucial in the agent’s 
bidding strategy. We will come back to this aspect in the chapter about agent strategies. 

2.2.3  Auctioneer and Concentrator Functionality 
The core functionality of the auctioneer and the concentrators is to run the electronic market 
allocating the electrical power resource to the local device agents. The electronic market solves this 
allocation problem by finding the general equilibrium price p∗ such that: 

 
(2.2) 

 
 

where Na is the number of local device agents and da(p) the demand function of agent a, stating 
the agent’s demand or supply at a given price p. 
The task of summoning all device agent’s demand functions is divided over all concentrator 
agents and the auctioneer agent, here jointly referred to as market agents. Each market agent k 
summons the demand functions received from their attached agents. These functions originate 
from two different sources: (1) the device agents directly attached to k, and (2) the 
concentrator agents directly attached to k. The concentrated bid of k is calculated as: 
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(2.3) 

 
where Xk is the set of local device agents directly connected to k and Yk is the set of concentrator 
agents directly connected to k. 
If k is a concentrator agent, it passes ak (p) on to the higher-level market agent it is attached to. If 
k is the auctioneer, it uses ak (p) to find the equilibrium price p∗ such that the market is in 
equilibrium: 

 
(2.4) 

 
Note that, in the latter case, ak is the concentrated demand functions over all device agents: 

 
(2.5) 

 
 

and that substitution of (2.5) in (2.4) yields the general market equation (2.2). 

2.2.4  Classification of DER Controllability 
From the viewpoint of supply and demand matching, DER devices can be classified in six classes 
according to their controllability characteristics. Below we describe each class and the basic 
agent strategy associated with it: 
• Stochastic operation devices: devices such as solar and wind energy systems of which the 

power exchanged with the grid behaves stochastically. In general, the output power of these 
devices can’t be controlled, the device agent must accept any market price. 

• Shiftable operation devices: batch-type devices whose operation is shiftable within certain 
limits, for example (domestic or industrial) washing and drying processes. Processes that 
need to run for a certain amount of time regardless of the exact moment, such as 
assimilation lights in greenhouses, ventilation systems in utility buildings and circulation 
pumps in swimming pools. The total demand or supply is fixed over time. This class consists 
virtually only of electricity consuming devices. The agent strategy is to shift electricity 
consumption to time periods of low(er) prices. 

• External resource buffering devices: devices that produce a resource, other than electricity, 
that are subject to some kind of buffering. Examples of these devices are heating or cooling 
processes, whose operation objective is to keep a certain temperature within two limits. By 
changing the standard on/off-type control into price-driven control allows for shifting 
operation to economically attractive moments, while operating limits can still be obeyed 
(see Figure 2.7). Devices in this category can both be electricity consumers (electrical heating, 
heat pump devices) and producers (combined generation of heat and power). 

• Electricity storage devices: conventional batteries or technologies such as flywheels and 
super-capacitors coupled to the grid via a bi-directional connection. Grid-coupled electricity 
storage is widely regarded as a future enabling technology allowing the penetration of 
distributed generation technologies to increase at reasonable economic and environmental 
cost. Grid-coupled storage devices can only be economically viable if their operation is 
reactive to a time-variable electricity tariff, as is present in the PowerMatcher concept. The 
agent bidding strategy is buying energy at low prices and selling it later at high prices. 

• Freely-controllable devices: devices that are controllable within certain limits (e.g., a diesel 
generator). The agent bidding strategy is closely related to the marginal costs of the electricity 
production. 
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• User-action devices: devices whose operation is a direct result of a user action. Domestic 
examples are: audio, video, lighting, and computers. These devices are comparable to the 
stochastic operation devices: their operation is to a great extent unpredictable and has no 
inherent flexibility. Thus, the agent must accept any market price to let them operate. 

 
In all described device categories, agent bidding strategies are aimed at carrying out the specific 
process of the device in an economically optimal way, but within the constraints given by the 
specific process. 

 
 

Figure 2.7: Operation shifting in a cooling process whilst obeying process state limits. 
 

2.3  Design Choices 

2.3.1  Communication Timing 
The agents communicate in an event-based manner. Device agents update their bids whenever 
there is a change in the system state significant enough to justify a bid update. Typically, device 
agents update their bid once every few minutes or longer. Concentrators, in turn will not update 
their bid unless subsequent updated bids from lower agents result in a significant change in their 
concentrated bid. Likewise, the auctioneer will only communicate a new price after a 
considerable price change. In this way, coordination on a timescale of minutes is realized with 
low volumes of communicated data. For the two main application cases of the PowerMatcher, 
commercial portfolio balancing and congestion management , this type of near real-time 
coordination suffices, as these processes take place on a similar timescale. 

2.3.2  Design for Scalability 
In the design of the PowerMatcher a number of choices have been made to meet the important 
requirement of scalability. The three main scalability choices are: the use of a pool market, one-shot 
communications and distributed aggregation of demand functions. 

Pool Market vs Peer-To-Peer Trading 
Imagine a market where people come together to buy and sell apples. People that go there to buy 
apples want to buy their apples for a good and fair price. So, before they buy their apples, they 
ask around among sellers what their price for an apple is. Further, they exchange with other 
buyers information on the bargains. The sellers, on the other hand, try to sell as much apples as 
possible for a price highest as possible. However, sellers that ask too high a price won’t sell too 
much apples and do not earn much money. Sellers that ask to low a price sell a lot of apples, but 
could earn more money when they would ask a bit more. To find the right selling price, sellers 
look around to find out what price the competitors are asking and talk to or negotiate with 
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buyers to get an idea about their willingness to pay. The price on such a market evolves to an 
equilibrium price (p∗), the ’going’ price for an apple. As this price 
is a general price for the market as a whole, the market is said to be in general equilibrium. 
This general equilibrium can be reached in the peer-to-peer manner as described above. Then, 
the exact equilibrium price would be reached when all buyers negotiate with all sellers and, 
thus, everyone has complete information. On the other hand, an auctioneer could act as a market 
operator. Then, all buyers and sellers communicate with the auctioneer only. The auctioning 
process starts with the auctioneer calling off a price. Then, all buyers and sellers state to the 
auctioneer the number of apples they are willing to sell or buy for that price. The auctioneer 
sums up all amounts to see if the market clears. The auctioneer calls off a higher price in case of 
excess demand, and a lower price if there is excess supply. The auctioneer iterates through this 
process until the market-clearing price p∗ is found. Note that the market outcome is equal to the 
case in which all participants hold complete information, however, without the necessity for 
each participant to communicate with each of the others. 

Trusted Auctioneer: One-shot Communications 
Note that, in the case described above, each buyer or seller a needs to have his own demand 
function da (p) in mind. When the auctioneer calls off price px, each buyer and seller states his 
preferred amount of apples for that price, given by da(px ). Note further, the auctioneer has to be 
trusted by all actors participating in the pool market in order to let him play the role as a 
middleman. When the auctioneer is trusted indeed, the number of communication steps between 
auctioneer and all participants can be reduced drastically if the full demand functions are 
communicated at once. Then, the iterative process of finding the clearing price by the auctioneer 
does not include any communication with participants any more. The whole process reduces to a 
one-shot communication of da(p) of all a to the auctioneer, followed by a communication-free 
clearing price search by the auctioneer and again a one-shot communication of the resulting price 
p∗ to all participants. 

Distributed Concentration of Demand Functions 
Introducing one-shot communications drastically limits the number of communication steps in 
the process. However, now, the auctioneer is the hub in the electronic market wheel. All demand 
functions need to be communicated to one single point in order to run the market. When the 
number of agents participating in the market grows further, this system again runs into a 
communication complexity problem when the auctioneer can’t handle all communications fast 
enough. The solution to this problem lies in the electronic market algorithm. The price search 
involves the summation of all da(p) into a concentrated demand function ∑ da (p) and finding the 
equilibrium price p∗ for which this concentrated function equals to zero: ∑ da(p∗) = 0. The 
calculation of the concentrated bid and the subsequent communications can be distributed over 
a number of concentrator agents. Then, a number of concentrator agents collect the demand 
functions of a mutually exclusive subset of market participants and calculates the concentrated 
bid for this subset. The result is communicated further toward the auctioneer. At the top of the 
structure, the auctioneer does the last concentration step and searches for the equilibrium price. 
Imagine a market with 1 million market participants and a market structure having an auctioneer 
and two layers of concentrators of 100 and 10,000 pieces respectively. The auctioneer and each of 
the concentrator agents communicate with 100 agents in the layer directly below it, which is a 
low complexity communications task. Further, concentration of bids happens in parallel within 
each concentrator layer. When the number of market participants doubles, the whole structure 
below the auctioneer is duplicated and one extra concentrator is added. This hardly adds to the 
overall computation and communication complexity. 
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3. Individual Agent Strategies 

A key activity of a PowerMatcher cluster of agents is the delivery of near real-time balancing services, 
e.g. delivering reserve regulating power to the TSO, delivering active network management services to 
the DSO or minimizing the imbalance costs of a commercial party. In order to operate such a near real-
time coordination activity optimally, the agent society maintains a dynamic merit-order list of the 
(typically large number of) DER units participating. To make optimal decisions based on this list, the 
merit order needs to be based on the true marginal cost (or marginal benefit in the case of demand 
response) of the individual DER units. The marginal electricity costs of most types of DER are highly 
dependent on local context and, hence, change over time. For example, the marginal electricity 
production cost for a CHP is highly dependent on the amount of heat demanded from the unit at a 
particular time. Thus, when the heat demand is high, the marginal cost for the electricity production is 
low and vice versa. The dynamic marginal cost levels of the units in the cluster result in the dynamic 
nature of the merit order list. As we will show later, there exists a class of DER units for which, under 
circumstances, the marginal cost level can’t be determined unambiguously. 
From a micro-economic viewpoint, the DER units are assumed to participate in a competitive 
market. This assumption holds when the number of DER units in the agent society is relatively 
high and their traded volumes are of the same order of magnitude. A competitive market leaves 
no room for speculation or gaming, and the best (i.e. the dominant) strategy for each participant 
is to optimize its own utility by truly bidding its marginal cost [21]. These locally-optimal 
strategies lead to a merit order list that results in an optimal allocation on the global level as well, 
as those DER which are best fit to respond to a certain event are the first to be selected to do so. 
 
In this chapter, we investigate the mechanisms that determine the momentary marginal costs of 
distributed generators and the momentary marginal benefits of demand response resources. The 
existence of a bid strategy spectrum is shown. At the end we discuss an example of a small island 
grid. 

3.1  Agent strategies based on short-term economics 
As described in the chapter introduction, the optimal strategy of an agent active on a competitive 
market is to bid according to its momentary marginal cost. For a PowerMatcher device agent, the 
bidding strategy is a mapping from its context history to a market bid. This context includes: 
 
• The process controlled by the agent, including the current state of the process and economical 

parameters such as marginal operating cost. 
 

• The market environment in which this agent is situated, including the market mechanism and 
market prices. 

 
In the extremes, there are two agent types that are forced to base their bid on either of the two 
context elements described above: 
 

1. Those agents operating a DER unit that has clear and unambiguous levels of marginal 
costs. In a competitive market, the dominant strategy of these agents is to bid entirely 
according to their marginal operating costs. 
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2. Those agents operating a DER unit that does not have unambiguous marginal costs at all. 
In these cases, the bidding strategy can only be based on market parameters, i.e. the 
market price (history). 

 

As said, these cases are the extremes of a spectrum and hence, there is a group of agents whose 
bidding strategy is somewhere in between these extreme cases. In the next subsections, we will 
give examples of these extreme and median cases. 

3.1.1  A Strategy Fully Based on Marginal Cost 
An example of a bidding strategy entirely based on the marginal cost level is that of a fuelled 
electricity generator set, for instance a gas generator set. The marginal cost for a given period of 
operation depends on the fuel price, the efficiency of the generator and the running history 
dependent maintenance costs. Furthermore, each startup of such a generator causes additional 
costs for maintenance and fuel. The dominant strategy in this case is bidding a price equal to 
the marginal operation cost. 
The bidding strategy is a function of the following parameters: 
 

pf [ct/m3] Fuel price 

rg [Wh/m3] Generator fuel rate 
Pg [W] Generator electrical power 
mr [ct/h] Maintenance cost rate 
cs [ct] Additional start-up maintenance costs 

fs [m3] Additional start-up fuel use 

The marginal cost for operating the generator for a time period of ∆t is: 
 

(3.1) 
(3.2) 

 
where cm,r is the marginal cost when the generator is already running at the start of the ∆t 
time period, and cm,s when it has to be started up. Therefore, the optimal bidding function is given 

by: 
 
 

(3.3) 
 

where cm equals either cm,r or cm,s depending on the running state of the generator. Note that, by 
definition, d(p) is negative in case of supply, hence the minus sign before the Pg term. It is clear 
that this bidding strategy depends entirely on the cost parameters of the generator. The market 
price history does not play a role in this strategy. 

3.1.2  A Strategy Fully Based on Price History 
At the other extreme is the bidding strategy of an electricity storage facility. Systems such as batteries, 
flywheels and pumped storage, charging from the electricity grid at one time and discharging to it at 
another. The aim of the agent is to buy electricity in periods of low prices, store it and resell in periods 
of high prices. Hence, the notion of what defines a “high price” or a “low price” is crucial in the 
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agent’s bidding strategy. Maximizing the agent’s utility comes down to determining the 
charge/discharge price that yields the best profit. This optimal price set is entirely dependent on the 
dynamic price characteristics of the market environment plus the time needed for a full charge or 
discharge. 
Charging and discharging a storage device is subject to round-trip energy losses. Note that, for the 
operation of a storage system to be profitable in the long run, the margin between the buy price and the 
resell price must exceed the costs for these losses. However, these costs do not influence the optimal 
price levels themselves. 
Therefore, the agent requires some sort of function E that yields estimates of the optimal charge and 
discharge prices given the current price history and the charging/discharging time: 

 
(3.4) 
(3.5) 

 
where: 
 

Ps  [W] Storage charging/discharging power 
Cs  [Wh] Storage capacity 
Ts  [h] Storage charging/discharging time 
Hp  [ct] Price history vector 

 
Based on these estimated price levels the bidding function can be defined by:  

 
(3.6) 

 
 

The long-run profit is highly dependent on the quality of the estimator 𝐸�, which must operate in 
dynamic market environments whose characteristics, in most cases, will be unknown at design time. 

3.1.3  A Median Strategy 
This case is based on configurations found in installations supplying heat to residential areas: a 
CHP/Gas heater combination. A typical configuration combines a CHP, a more traditional gas heater 
and a heat storage buffer. An installation of this type was part of one of the earlier field trials with the 
PowerMatcher. 
The marginal cost levels depend on the following parameters: 

 
𝜂𝑐ℎ𝑝

𝑡  [] Thermal efficiency of the CHP 
𝜂𝑐ℎ𝑝

𝑒  [] Electrical efficiency of the CHP 
𝜂ℎ𝑡𝑟

𝑡   [] Thermal efficiency of the heater 
Pg [ct/m3] Gas price 
Hc [kJ/m3] Gas combustion heat 
Tmax [oC] Upper limit inner temperature heat buffer 
Tmin [oC] Lower limit inner temperature heat buffer 
   

 
 

Typically, the thermal efficiency of the heater will be higher than that of the CHP: 𝜂ℎ𝑡𝑟
𝑡  > 𝜂𝑐ℎ𝑝

𝑡 . 
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The heat demanded by the residential area is subtracted directly from the heat buffer. The local control 
goal of the CHP/heater combination is to keep the inner temperature of the buffer, T , between thermal 
limits Tmax and Tmin . Hence, the buffer level is defined as: 

 
(3.7) 

 
To prevent the buffer from over or under heating, three levels are defined at which special control 
actions are to be taken: 
• LH : High buffer level: just below the fill level of 100%. Above this level both the CHP and the 

heater must be switched off to prevent overheating. CHP operation is only possible in combination 
with heat dump, if that is technically possible (and ethically acceptable). 

• LL: Low buffer level: the level under which either the heater or the CHP must be switched on to 
prevent under heating. 

• LLE : Low emergency level: just above 0%. Below this level both heater and CHP must be switched 
on. 

 

 
Figure 3.1: Bid strategy of a Heater/CHP combination as found in heat network systems delivering 
heat to residential areas. The strategy is well-defined below c1 , the marginal cost for CHP-produced 
electricity when heat demand is high, and above c2, the CHP’s marginal electricity cost when there is 
no heat demand at all. 

 
These levels define four different operational modes (see figure 3.1): 
 
1. Below LLE , the high heat demand is the dominant factor in the operation of the installation. This 

is a must-run situation for both CHP and heater, regardless of the electricity price. 
 

2. Between LLE and LL, there is a heat demand that could be met by either the heater or the CHP. 
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Hence, there is a choice of producing this heat using the heater or the CHP. In the latter case, the 
operating costs will be higher (as ηchp

t <  ηhtr) with additional electricity production in return. 
While the heat demand is covered by the CHP, the marginal cost of the additional electricity 
production is equal to: 

 
(3.8) 

 
where 𝑐𝑐ℎ𝑝

𝑡  is the marginal cost for heat produced by the CHP regardless the value of the co-
produced electricity and 𝑐𝑐ℎ𝑝

𝑡  is the marginal cost for the heater-produced heat.  
With: 

 
(3.9) 

 
(3.10) 

 
equation (3.8) can be expanded to: 

 
(3.11) 

 

Accordingly, the CHP is operated when the market price for electricity is higher than c1, otherwise 
the heater is operated. 

 
3. Above buffer level LH, there is no heat demand. Hence, there is a choice to run the CHP and dump 

the produced heat. Even if the installation is not technically capable to discard CHP-produced heat, 
the marginal cost level of this option is of interest as it provides one of the strategy boundaries of 
the forth operation mode, described below. 
During CHP operation just for electricity production, the marginal cost for the electricity equals: 
 

(3.12) 
 
If the market price is above c2, it is profitable to run the CHP, even when the produced heat is 
discarded. 

 
4. In the region between LL and LH, there is a high level of freedom to let the CHP run dependent 

on the electricity price. At both boundaries of this region, the bidding strategy is well defined: at 
level LL it is profitable to produce whenever p > c1 , while at level LH it is profitable to produce 
whenever p > c2. The ‘naive’ or ‘ignorant’ strategy would be to connect these two points 
linearly. However, dependent on both the dynamic price characteristics of the market and the risk 
profile used, different trajectories are possible. In figure 3.1, two alternative strategies are shown. 
The risk-averse strategy tries to avoid must-run situations for both CHP and heater by taking the 
chance to fill the buffer whenever it is profitable to run the CHP. The other alternative strategy 
waits for higher prices to operate the CHP, with a higher risk of missing profit opportunities and 
ending in the must-run regions for heater and CHP. 

3.2  Bid Strategy Spectrum 
As becomes apparent, there exists a spectrum of DER bidding strategies. On one end of the spectrum, 
bidding strategies are based directly on true marginal cost or benefit. Along the spectrum, optimal 
bidding strategies become less dependent on marginal cost levels and more on the price dynamics in 
the (VPP) market context. As may be clear from the description of the CHP/Gas Heater combination, 
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price-dynamics based strategies are not unambiguously defined but are dependent on a desired risk 
level. 
In figure 3.2, the relative positions of a number of DER units are shown. Below, we discuss briefly the 
spectrum position of units not described previously. 
 
• Generators of renewable power, such as wind turbines and photo-voltaic solar systems, typically 

have low marginal costs associated with them, as these consist mainly of maintenance costs. Fuel 
costs, the main marginal cost component for most other generation types, are essentially absent 
here. Therefore, the dominant strategy of renewables is to generate at any going electricity price. 
This positions them at the marginal-cost based extreme of the spectrum. 

 

 
 

Figure 3.2: Bid Strategy Spectrum for Distributed Energy Resources based on 
momentary marginal cost levels. 

 
• CHP with heat buffer: In high-price situations, the bidding strategy of a solitaire CHP is 

similar to that of the CHP/Heater combination. The marginal cost for CHP produced electricity in 
the (theoretical) heat-dump case (c2 in figure 3.1) is applicable here as well. However, the low-
price behavior is dependent on the value attached (by the user) to a reliable heat supply and the 
risk level one allows for occasionally not being able to cover the heat demand entirely. 
Minimizing this risk is highly dependent on the prevailing price-dynamic characteristics. Hence, 
the position of CHPs on the right-hand side of the spectrum. 

 
• Direct Electrical Space Heating or Cooling: Modern building constructions show relatively 

high degrees of thermal inertness. This can give some degree of freedom in the operation of 
systems for space heating and cooling, but is dependent on the current temperature and the 
temperature desired by the user. As learnt in field experiences, it is possible to shift cooling or 
heating periods forward or backward in time without infringing user comfort [26, 31]. Here, the 
agent strategy goal is to provide the desired comfort level against minimal electricity costs, 
shifting cooling/heating actions towards low-priced periods as much as possible. Comparable to 
the strategy for storage units, the notion of what ’low prices’ actually are is crucial for a successful 
strategy. This locates this DER type directly in the price-history based end of the spectrum. 
However, as learnt from experiences with demand response programs aiming at influencing user 
behavior, most users are willing to offer some comfort in order to avoid periods of high tariffs. 
Due to this, we position Direct Electrical Space Heating or Cooling just left of the spectrum end. 

 
• Freezer: The case of a freezer is similar to that of that of space heating/cooling described above, 

hence the position near the price-history based end of the spectrum. As a minor difference, for this 
instance, the cost of ’lost service’ is known as this equals the total value of the stored food items. 
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A bid strategy spectrum exists for DER units being part of a market-based control cluster delivering 
(near-) real-time balancing services. On one end of the spectrum, bidding strategies are based 
straightforwardly on true marginal cost or benefit. On the other spectrum end, optimal bidding 
strategies are dependent on the price dynamics in the electronic market context and the desired 
maximum risk level. These results are relevant both from business economic and technical 
perspectives: 
 

• Business economic relevance: our results contribute to the understanding of the business 
economics of Virtual Power Plants and active distribution networks. A good understanding of 
marginal cost mechanisms of DER units participating in a VPP or active network gives insight in 
the profitability of these measures. 

 

• Technical relevance: the technical challenge is to design agent societies that find an optimal 
division of work in a given cluster of distributed generators and demand response resources under 
all circumstances. As we have shown, the merit order in such a society is highly dependent on the 
local context of the DER units in the cluster. Insight in these dependencies is necessary to design 
optimal VPPs and active networks. 

3.3  Example: a local island grid 
Imagine a small, isolated island with a local electricity network with no connection to an outside 
electricity network. The village of this island has 10 houses. Half of the houses are heated by 
heatpumps, the other half by micro-CHPs. Apart from the heatpumps, the energy consumption within 
the houses is inflexible and following standard household load profiles. Further, on the island there is a 
wind-diesel combination delivering that part of the momentary electricity demand not supplied by the 
CHPs. This combined unit is operated to balance the island system. When the local demand is higher 
than the CHPs and wind turbine are producing, the diesel generator is regulated to maintain the 
momentary system balance. On the other hand, when local demand is lower than the CHP and wind 
generated power, the wind turbine is curtailed and regulated to balance the network. 
In a small-scale simulation, the impact of the PowerMatcher was analyzed for the hypothetical island 
system described above. The simulation has been carried out for two distinct cases: 
 
1. Reference Case. This is the business as usual scenario. The heating systems are controlled by a 

standard thermostat on/off controller. The system is balanced entirely by the wind-diesel system. 
 
2. Coordinated Case. In this case the micro-CHPs and the heat pumps (HPs) are coordinated by the 

PowerMatcher. The multi-agent system tries to match CHP production and HP consumption with 
the inflexible demand and supply of the households and wind turbine respectively. Any net surplus 
or shortage is still balanced by the wind-diesel combination. 

 
Table 3.1 gives the characteristics of the units used. The wind turbine output followed the measured 
production profile of a real-world turbine (Figure 3.3). The heating systems, i.e. the micro-CHPs and 
the heat pumps, were used for space heating alone. At this stage, hot tap water demand was left out of 
the scope of the simulation. The heat demand was generated using a basic thermal model of a house. 
The main external variable of this model is the outside temperature, which was set to follow a standard 
reference pattern. The household electricity consumption followed a standard residential load profile. 
Goal of the simulation is to give a proof of principle of the coordination mechanism, illustrating the 
cluster-level behavior. 
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Table 3.1: Electricity producing (P) and consuming (C) units in the island simulation. 
The flexible units can be coordinated by the PowerMatcher. 

 
Type Pmax Number P/C Flex? 
Diesel generator 15 kW 1 P yes 
Wind Turbine 30 kW 1 P no 
Micro CHP 1 kW 5 P yes 
Heat pump 0.7 kW 5 C yes 
Household Load 1.1 kW 10 C no 

 
The simulation spans a period of two days. Figure 3.4 gives output power of the diesel generator in the 
two cases. Two important effects can be seen from the figure: 
• The total production of the diesel generator is approx. 40% lower in the coordinated case. 
• The peak load served by the diesel generator is approx. 45% lower in the coordinated case. 
 
The first effect is an important result as the environmental footprint of the island’s electricity system is 
improved. Apparently, the wind generated power is utilized better in the coordinated case. More wind 
power is consumed and the turbine has been curtailed less. The second effect is important from an 
investment point of view. If the peak load on the diesel system is lower, the unit’s design capacity can 
be lower which leads to a lower investment. 
 
Figures 3.5 and 3.6, show the temperatures in the rooms heated by the heat pumps. The local 
PowerMatcher device agents make use of the inherent energy buffer in the inner space of the houses to 
shift the heating operation. Note that at all times the comfort level is maintained. Figure 3.7 gives the 
price on the electronic market for the simulation period. Note that the device agents in figure 3.6 try to 
heat the homes in the low-priced periods. The resulting price is influenced by a number of factors: (1) 
the momentary wind power availability, (2) the momentary household electricity demand, (3) the 
available operational flexibility of the micro-CHPs and the HPs. Note further that the diesel generator 
is only operated in the high-priced periods. Then, the cluster can’t provide the needed generation 
capacity, resulting in high prices and, in turn, utilization of the generator. 
To summarize: the self-interested behavior of local agents causes electricity consumption to shift 
towards moments of low electricity prices and production towards moments of high prices. As a result, 
the emergence of supply and demand matching can be seen on the global system level. The 
aggregated, or concentrated, bid of all local control agents in the cluster —as held by the auctioneer 
agent— can be regarded as a dynamic merit-order list of all DER participating in the cluster. Based on 
this list, the units that are able to respond to a certain event most efficiently are selected to do so. In 
this way, the (near-)real-time coordination mechanism of the PowerMatcher lets the cluster as a whole 
operate optimally. 
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Figure 3.3: Power Output of the 30 kW wind turbine over the two-day simulation period. 
 

 
Figure 3.4: Diesel generator output power for the reference case (solid line) and the coordinated 
case (dashed line) over the two-day simulation period. 

 
Figure 3.5: Room temperatures of the 5 heat pumps in the reference case. The basic On/Off 
controller behavior can clearly be seen. 
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Figure 3.6: Room temperatures of the 5 heat pumps in the coordinated case. PowerMatcher 
control. 
 

 
Figure 3.7: Price development of the PowerMatcher electronic market. 
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4. Transport Network Feasible Solutions 

In multi agent resource allocation, major advances have been made towards algorithms with high 
scalability regarding both the number of participating agents and the number of commodities. 
However, the current market-based resource allocation algorithms for flow commodities do not take 
characteristics of the underlying transport network into account. For instance, capacity constraints in 
the transport network often have impact on the feasibility of a particular allocation outcome. By not 
considering these constraints in the market algorithm used, it is implicitly assumed that the network 
has virtually infinite capacity. Other network characteristics relevant to certain application cases are 
transport losses and changes in the amount of commodity stored in the transport network itself. The 
interaction between passive flow networks and allocation algorithms is not yet described from the 
viewpoint of market-based flow commodity allocation in multi agent systems. 
On the other hand, power systems economics does provide a framework for market-based coordination 
in passive flow networks under network capacity constraints. This framework is known as locational 
marginal pricing. 
In the work presented in this chapter we: 
 
1. translate the framework of locational marginal pricing [28] from the field of power systems 

economics into computer science. In this reformulation, we: 
 

(a) omit modelling details oriented towards bulk transmission and wholesale trade of electricity; 

(b) bring the framework into multi-agent systems theory where agents communicate their 
preferences in the form of demand functions; and 

(c) generalize the framework to be applicable for all flow commodities, such as gasses, liquids and 
electricity. 

 
2. show that, under the common condition of demand and supply elasticity, the constrained 

optimization problem posed by the framework has a unique solution and a search in the parameter 
space will converge to that solution; and 

 
3. provide a distributed market algorithm that solves the constrained optimization problem. 
 
The market algorithm can be regarded as a generalization of electronic equilibrium markets. Under 
network capacity constraints, it finds solutions that are feasible for the underlying passive flow 
network. In non-constrained networks, its solution is equal to the general equilibrium. 
 
In generalizing the framework for all flow commodity types, price components have been included for 
transport losses and storage of the commodity inherently in the network itself. For material flows in 
the gas or liquid phase, transport losses are pressure-driven (e.g. filtration or permeation of pipes and 
connections). For electrical energy these are Ohmic losses: dissipation of electrical energy into heat in 
network components such as cables and transformers. Inherent storage applies mainly to gas flows:, 
the amount of material stored in the network is influenced by the average system pressure. 
Section 4.1 gives an example of locational pricing in micro-economic control and gives a brief 
overview of related work. Further, the important conceptual difference between passive flow networks 
and actively switched networks is described here. Concepts of network flow modeling (Sec. 4.2.5) are 
important for the theoretical framework (Sec. 4.3) as well as the distributed market algorithm 
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described in Section 4.5. The latter section also demonstrates the algorithm for a medium-sized 
network. Section 4.4 analyzes search space and convergence properties. 

4.1  The Concept of Locational Pricing 

4.1.1  “A Typical Example” Revisited 
In section 2.1.3, we described an example of price forming in a single-commodity general equilibrium 
market with four agents. Here, we will revisit that example reproducing Figure 2.2 in the left part of 
Figure 4.1. In that figure, we showed the demand functions of the individual agents (graph A) and 
resulting equilibrium price (graph B). 

 
Figure 4.1: Left: Reproduction of Figure 2.2: Example general equilibrium market 
outcome. (A) Demand functions of four agents. (B) The aggregate demand function and 
resulting equilibrium price. Right: Resulting network flows through an H-shaped network 
when these agents are located in the endnodes. Note that supply is indicated by negative 
demand. 

 
Now, suppose these agents are located the H-shaped flow network shown in the right part of the 
figure. Each of the four end nodes accommodates one of the agents. The individual agent demands 
(dk) at price p∗, that  are subtracted from the network, are indicated at the corresponding nodes. The 
two intermediate nodes are just connection points and accommodate no additional demand or supply. 
Then, the resulting commodity flows through the network connections are as indicated in the figure. 
The subnetwork on the left-hand side is a net producer of the commodity which results in a strong flow 
to the net-consuming right part of the network.  
 

Table 4.1: The network feasible line flows of the described example (with all flow 
directions equal to those in Figure 4.2). 

 
z1  z2  z3  z4  z5 

85.00  60.00  25.00  38.07  63.07 
 
 
Now, focus on line 3, connecting the left and right parts of the network. The price reaction of the left 
and right subnetwork are respectively given by: 
 

dlef t (p) = d1 (p) + d2(p)  (4.1) 

dright (p) = d3 (p) + d4(p)  (4.2) 
 
In Figure 4.2 (Graph B), these two aggregate demand functions are added to the original figure . Note 
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that, per definition, dright (p∗) = −dleft (p∗), and |z3| = |dlef t (p∗)|. This is indicated in the figure by the 
vertical black line at p = p∗. In w ords,  at the equilibrium price, the excess supply in the left 
subnetwork equals the excess demand in the right subnetwork, and is equal to the flow through the 
interconnection. 
Now, suppose line 3 has a maximum capacity: z3,MAX = 25, in which case the general equilibrium 
solution overloads this line more than threefold. Any market-based method to solve this constraint 
violation has to follow the general modus operandi of market-based systems (as described in section 
2.1), i.e. to incentivize actors — that are not necessarily under direct control — to participate in a 
particular way. The way to do that, in this case, is to create a price difference over this line in such a 
way that the agents on both sides respond to relieve the line. The two price levels must be chosen such 
that (1) total demand equals total supply, and (2) the line flow is equal to its maximum. For this 
specific example, the prices pRIGHT and pLEFT indicated in Figure 4.2 (B) accomplish this. The resulting 
line flows are shown in Table 4.1. Note that the two conditions are met: dright (pright ) = −dlef t (plef t ), 
as can be seen in the figure, and |z3| = |dlef t (plef t )| = |z3,M A X |, as is indicated in the table. 

4.1.2  Related Work on Locational Pricing 
Two early introductions of the concept of locational pricing for networked services were published in 
the beginning of the 1970s. Then, William Vickrey introduced the concept in an essay on responsive 
pricing of utility services, such as telephone services, road usage and energy delivery [30]. Few years 
later, Carson Agnew described a model for varying congestion tolls in highway and communications 
networks [1]. 
Both in computer science and in power systems economics the notion of locational pricing is used to 
solve a number of network-related problems. Without the aim to provide a complete overview, we will 
briefly discuss the usage of the concept in both fields. 
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Figure 4.2: Locational prices to solve line overloading (see text). 

 

Locational Pricing in Computer Science 
Locational pricing plays an important role in different solutions to problems related to data network 
(e.g. internet) topologies, routing and pricing. An example of this is is work by Mullen and Wellman 
that describes a computational market model for information services distributed over a data network 
[22]. Their focus is “on the economic problem of when and where to establish mirror sites for the more 
popular information services. Competitive agents choose to set up mirrors based on going prices for 
network bandwidth, computational resources and the information service.”. Another example is work 
done by MacKie-Mason and Varian, who describe a basic economic theory of pricing congestible 
network resource such as an ftp server, a router, a Web site, etc. [20]. They examined the implications 
of “congestion pricing” as a way to encourage efficient use of network resources. An overview of the 
development of costs and pricing schemes for data infrastructure usage, against the history of that for 
other infrastructures, can be found in [23]. 
 
Further, the concept has been used in auction algorithms for solving the classical linear network flow 
problem and its various special cases such as shortest path and max-flow problems [4, 3]. 

Locational Pricing in Power Systems Economics 
Important work on locational pricing was done within the field of electrical power systems economics. 
During the 1980s, Bohn et al. developed a comprehensive theory for spot pricing of electricity [5, 6]. 
The book Spot Pricing of Electricity that resulted from this research became a standard work in this 
field [28]. Their approach became known as locational marginal pricing (LMP). 
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Currently, LMP is increasingly applied in management of electrical power infrastructures at the level 
of bulk generation and transmission of electricity. For instance, in the USA states of Pennsylvania, 
New Jersey and Maryland (PJM), congestion problems in the high-voltage transmission network are 
being solved using LMP from 1998 on. In doing this, the wholesale electricity markets and 
transmission system power flow analysis are coupled in order to use pricing to allocate scarce 
transmission capacity. At times of sufficient transmission capacity, the system works as a coordinated 
and transparent spot market. When the transmission system is constrained, the spot prices can differ 
substantial across the three states [14]. Further, LMP has been implemented in a similar manner in 
Chile and New Zealand. 
Comparable pricing mechanisms are used to optimize the utilization of transmission system 
interconnectors between countries in Europe. In the Nordic countries, this is known as market splitting 
as the common Nordpool wholesale market is split into two or more loosely coupled markets when 
interconnection capacity is constrained [19]. In the rest of Europe, individual countries are having 
national electricity wholesale markets since the end of the last millennium. The European transmission 
system operators (TSOs) and market operators are currently adopting a LMP-based market model, 
similar to that of the Nordic countries [11]. As, in contrast to the Nordic situation, this model aims at 
coupling previously separated markets, the mechanism has been coined market splitting. 
In [13], it is shown for the UK electricity system, that moving from uniform prices to optimal 
locational prices could raise social welfare, lower vulnerability to market power and would also send 
better investment signals. On the other hand it would create politically sensitive regional gains and 
losses. 

4.1.3  How are passive flow networks different? 
As stated in the introduction of this chapter, current electronic market algorithms for flow 
commodities, do not take the characteristics of an underlying flow network into account. However the 
concept of locational pricing is used in multi-agent systems as shown in section 4.1.2. Aren’t these 
results directly applicable to flow commodity networks? The answer lies in the type of network 
addressed. Real-world industrial applications of flow resource allocation use passive transport 
networks. There is no way of directing the flow to follow a particular path. Instead, the commodity 
flows via the path(s) of least resistance, possibly via a number of parallel trajectories, from the point of 
injection to the point of subtraction. In a network of a given topology, and with given resistance 
characteristics, the actual flows through the network depend entirely on commodity injections and 
subtractions at the network nodes. The flow characteristics in these networks are fundamentally 
distinct from those in actively switched networks, such as packet-switched data networks and road 
transportation networks. 

4.2  Network and agent models 

4.2.1  Network Model 
We model a flow network by a directed graph G = ⟨V, E⟩, with V = {v1, v2 , . . . , vNn } a set of 
network nodes and E = {e1 , e2 , . . . , eNl } a set of directed lines with associated flow characteristics. 
The lines are directed in order to define the positive flow direction. So, a negative flow value for a 
particular line indicates a flow against defined line direction. Note that this is in contradiction to 
directed graphs in mathematics or computer science, where it is not possible to follow a pathway 
against defined line directions. Each line i is defined by a tuple ei = (hi , ti , ri , zi,max ), where: 
• hi , ti ∈ V, hi = ti are the head and tail vertices joined by the line. The positive flow direction is 

defined to be from head hi to tail ti . A negative flow value indicates a flow from tail to head. 
• ri is the resistance of ei . 
• zi,max is the flow capacity of the line, the maximal allowable flow through ei . 
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There is a flow model F mapping graph G to a network transfer matrix H: H = F (G). This matrix 
holds the relation between the subtractions dk (local demand minus local supply)3 

at nodes {vk | k = [1, Nn − 1]} and line flows zi at all lines ei :
 

 z = Hd  (4.3) 
 
The individual matrix elements Hik represent the influence of the subtraction at node vk on the flow 
along line ei : Hik = ∂zi /∂dk . In other words, it gives the flow through ei as caused by the total net 
demand at vk . Accordingly, the flow along a line ei is given by: 

 
(4.4) 

 
Note that, in (4.3), vector d holds the power demand at all nodes except node vn. Likewise, this 
particular node, referred to as the swing node, has no corresponding column in H. This is a common 
property for network matrices describing a closed conservation-of-matter system in physics, as the full 
matrix is singular by definition. The swing node is generally indicated with a star (*). So: 
 

dNn = d∗  (4.5) 
 

For a given set of nodal subtractions {dk | k = [1, Nn − 1]}, d∗
 follows from the conservation-of-matter 

property: 
 
 (4.6) 
 
here L equals the total network losses and ∆S denotes the change in the amount of commodity stored in 
the network itself. The magnitude of L and ∆S, if they exist at all, depend on the underlying physics of 
the commodity in question. We will discuss both L and ∆S in greater detail later on. 

4.2.2  Acyclic Networks 
In the context of this text, we define an acyclic network a network without any cycles regardless the 
direction of the lines. In an acyclic network, there is no pathway starting at some node vk and following 
a sequence of lines for each line either in the positive or negative direction that eventually leads back 
to vk again. This type of network is also referred to as a tree or a radial network. We assume the swing 
node is the root of the tree structure, with all lines directed away from the root, i.e. for each line the 
head is closer to the root than the tail. Accordingly, the positive flow direction is from root towards the 
leaves. Further, we assume there is only power demand or supply in the leaves. This is without loss of 
generality as demand or supply in any non-leaf node can be modeled by a line from that node to a leaf 
accommodating the demand and/or supply of the tree node. 
Note that, in these acyclic networks, all Hij elements are either 1 or 0. This means that subtractions or 
injections at a certain node only influence the flow through the lines between the root of the tree and 
that node. 

                                                      
 
3 Throughout this report ‘demand‘ and ‘subtractions‘ are defined positively. Supply can be seen as negative demand and 
injection as negative subtraction. 
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4.2.3  Agent model 
There is a set of agents X = {x1, x2, . . . , xNn }, each agent xk representing the demand and/or supply at 
node vk . The agent holds a demand function d(p) stating the agent’s demand against resource price p. 
Each agent must act as a rational trader, i.e. its demand function dk (p) is continuous and monotonically 
decreasing. 

4.2.4  Network-agnostic market clearance 
The set of agent demand functions define an allocation problem. As the set of agents represents a 
closed system, the problem is finding an allocation of electrical power for each agent that balances 
demand and supply. When ignoring the network, the allocation problem is solved by finding the 
general equilibrium price p* such that: 
 
 (4.7) 
 
Under these conditions market clearance is established, i.e. total demand equals total supply in the 
agent set. According to general equilibrium theory in microeconomics, the general equilibrium 
solution is Pareto optimal, a social optimal outcome for which no other outcome exists that makes one 
agent better-off without making other agents worse-off [21]. From a computational point of view, 
electronic equilibrium markets are distributed search algorithms aimed at finding the best trade-offs in 
a multidimensional search space defined by the preferences of all agents participating in the market 
[32]. 
When using this network-agnostic solution to the allocation problem, one implicitly assumes the 
network has virtually infinite capacity and that network losses are negligible. 

4.2.5  Flow Model 
A complete discussion of network flow analysis methodologies is beyond the scope of this document. 
Hence, we briefly discuss a general steady-state flow model here. Congestion management in flow 
infrastructures is a process that takes place on a time scale of minutes, so, a steady-state model is 
sufficient for this purpose. The model described here is used later on to indicate the role of the flow 
model in the market algorithms described. 
The flow model F maps the graph G to a network transfer matrix: H = F (G). Here, the two important 
properties of G are its topology and the resistance values ri of the graph’s edges ei ∈ E. Incidence 
matrix A with size (Nn − 1) × Nl , represents the graph topology and is defined as: 
 
 (4.8) 
 
 
Resistance matrix R with size Nl × Nl , is defined as: 
 
 (4.9) 
 
From these two matrices the transfer matrix can be calculated as follows: 
 

B = (AT R−1A)−1  (4.10) 
H = R−1AB (4.11) 

 
Each column k of H describes the flow path of the commodity subtracted at node vk from the swing 
node. The flow values resulting from equation (4.3) can be regarded as a superposition of all nodal 
demands being transported from the swing node. Figures 4.3 and 4.4 illustrate this for a triangular 
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network, composed of three nodes and three lines. The former figure shows the corresponding network 
transfer matrix. The latter visualizes the superposition of flows caused by individual nodal 
subtractions. The left side of the figure shows the resulting flows for subtractions d = (−1, 1)T, in a 
network model without losses and inherent storage. The resulting flows can be regarded as a 
superposition of two effects, as shown in the right side of the figure. Firstly, injecting commodity at 
node 1 and the resulting flow to the swing node, and secondly, a subtraction at node 2, resulting in a 
flow from the swing node. 
 

 
 

Figure 4.3: A triangular network with corresponding transfer matrix H . The positive 
line directions are shown by the arrows in the line labels. Node 3 is chosen to be the 
swing node and the resistances of the individual lines are chosen to be equal. 

 
 
Figure 4.4: Network flows as a result of demands d1 = −1 and d2 = 1 (right). 
Superpositional decomposition of these flows into d=(−1, 0)T (top left), and d=(0, 1)T 
(bottom left). 
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4.3  Locational Marginal Pricing Framework 
Equation 4.7 in section 4.2.4 gave the general equilibrium equation for an network-agnostic market 
clearing process. Now, the challenge is to generalize this market into one that does take the 
characteristics of the underlying network into account. These network characteristics may have three 
aspects relevant to this process. Firstly, the commodity flow zi through each line i will have a 
maximum allowable flow zi,M A X . Secondly, the total network flow may — depending on the physics of 
the commodity type— induce network losses L, and, thirdly, the amount of commodity stored in the 
network itself may —again, commodity type dependent— change at a certain time. Changes in 
inherent storage are denoted by ∆S. 
When these network characteristics are accounted for, the market-based optimization in (4.7) 
generalizes to finding a set of locational prices (p1, p2, . . . pNn), one for each network node k, such 
that: 

 
 (4.12) 
 (4.13) 

 
The first equation ensures market clearing: the total demand and supply in the network, plus the total 
network losses L, plus the change in inherent network storage ∆S must equal to zero. The set of 
inequalities (4.13) gives a line capacity constraint for each individual line in the network. Note that 
these equations reduce to the general equilibrium equation (4.7) when transport losses and inherent 
storage are absent and all line capacities are sufficient. In that case, all nodal prices pk become equal to 
the general equilibrium price p∗. 
A decomposition of the locational prices pk into specific components completes the framework. Each 
component enforces the market outcome to obey one aspect in the equations (4.12) and (4.13). The 
price decomposition is defined by: 
 

pk(t) =  λ(t)  [Market Clearing Component] 
 
 + ηC,k(t)  [Line Capacity Component]  (4.14) 
 
 + ηL,k (t)  [Network Losses Component] 
 
 + ηS (t)  [Network Storage Component] 

 
Note that, in general, the demand functions of individual agents are changing over time. Hence, the 
time-dependency of the market price and its components in (4.14). However, we omit the time 
dependency from here on for reasons of readability. 
Using this pricing scheme, the locational prices in a flow network at a certain time depend on: 
• Demand & Supply: The total demand and supply in the network, subject to the preferences of all 

individual agents. 
• Network: The availability of flow capacity, plus, depending on the physical characteristics of the 

flow commodity, network losses and/or changes in the amount of commodity stored in the 
network itself. 

• Spatial demand/supply distribution: The specific locations of production and consumption in 
the network. 

In the next subsections we will discuss the four price components in detail. 
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4.3.1  Market Clearing Component 
The Market Clearing Component λ is the commodity price component used to balance the total 
demand and supply in the system. This component is equal for all agents attached to the network; there 
is no locational aspect in this component. In the absence of line capacity constraints, losses and 
inherent storage, λ is equivalent to the general equilibrium price. 

4.3.2  Line Capacity Component 
The Line Capacity Component ηC,k is a price mechanism to allocate the use of scarce network capacity 
[28]. The component becomes large in magnitude when the maximum capacity of network lines is 
being approached. This is one of the price components that brings locationality into the pricing 
scheme: the magnitude of ηC,k is dependent on the location in the network and can be different for each 
network node k. Each ηC,k is chosen in such a way that all network flow magnitudes are less than or 
equal to the maximum capacity of the individual network connections, obeying (4.13). 
Assume in a network one line, line i with flow zi , is overloading. We treat that line’s transport 
capacity as a scarce resource and let a price mechanism allocate its use among the agents. In this case 
of the single overloaded line i, ηC,k is given by: 
 
 (4.15) 
 
Thus, the price component at network node k resulting from this overloaded line i is equal to some 
term θi multiplied by the incremental flow through i as caused at node k. A market clearing mechanism 
is used to find an appropriate value for θi . So, during price forming, θi is adjusted until 
consuming and producing agents respond by changing their usage or production so that the line 
overload does not occur. 
Equation (4.15) gives ηC,k for the situation where only line i overloads. The full equation 
becomes:  
 
 (4.16) 
 
where Nl is the number of lines in the network. Naturally, θi needs to be nonzero, only if line 
i would be overloaded otherwise. Hence the condition: 
 
 |zi | ≤ zi,MAX ↔ θi = 0, ∀i  (4.17) 
 
Dependent on the sign of the partial derivative term, ηC,k can be positive or negative. 
Those locations k, where an increase in demand dk leads to a decrease in flow zi , have a negative ηC,k . 
Since both producers and consumers at k are having the same locational price pk , and increasing 
demand at k will have an equal effect as decreasing supply at k, both producers and consumers have 
equal incentive to respond to prevent the line overload. Further, note that actors having a higher 
‘network distance’ from an overloaded line will have a lower influence on the flow over that line. 
Hence, their ∂zi /∂dk is lower and, accordingly, their incentive to respond is lower. 

4.3.3  Transport Network Losses 
One of the special phenomena occurring when flow commodities are transported is the loss of 
commodity. A resource allocation method must take these losses into account. If not, the theoretical 
commodity balance found by the method will yield commodity imbalance in practice. Naturally, the 
losses add to the total demand in the network. For physical flows in the gas or liquid phase these losses 
are pressure-driven (e.g. filtration or permeation of pipes and connections). For electrical energy these 
losses are Ohmic. 
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Losses can be incorporated in the market search by considering the associated costs, which are equal 
to the loss magnitude L times the commodity price λ. As different network locations will face different 
losses, different network nodes k may have different magnitudes for ηL,k . The marginal cost for 
network losses at location k is given by [28]: 
 
 (4.18) 
 
where L equals the total network losses at time t. Thus, the network losses price component at node k 
is equal to the commodity price multiplied by the incremental system losses as caused at k. When the 
losses of an individual line depend on the actual line flow, then L = ∑i Li [zi ], and (4.18) can be 
expanded into: 
 
 (4.19) 
 

4.3.4  Network Inherent Storage 
For specific flow commodities there is a certain amount of the commodity contained in the flow 
network. The stored amount may change over time, when the total feed-in to the network is unequal to 
the total feed-out. Generally, inherent storage is possible in case of gas flows, where it is influenced by 
the average system pressure. The magnitude of ∆S is the result of the spatial distribution of demand 
and supply in the network. 
Price component ηS is defined as: 
 

ηS = λ ∆S  (4.20) 
 
Since ∆S can’t be accounted to specific nodes, as is the case with network losses, the cost (or benefit) 
of the storage changes are accounted for regardless of locationality. 

4.3.5  The Locational Price 
Substituting the above results in (4.14) yields : 
 
 
 
 (4.21) 
 
 

4.4  Analysis 

4.4.1  Search Space and Convergence 
In market-based resource allocation, each agent’s demand function da(p) is generally required to be 
continuous and monotonically decreasing. A general equilibrium search (4.7) tries to find a root of the 
aggregate demand function ∑a da(p), which is also a continuous, monotonically decreasing function. 
Thus, if a solution exists (i.e. there is sufficient elasticity in supply and demand), this is a unique 
equilibrium point and the search is guaranteed to converge to it. 
In our case, price forming is a search in a space of (Nl + 1) dimensions. This search space is defined by 
(λ, θ1, θ2, , θNl ). Any set of values for these parameters yields a set of locational prices (p1 , p2 , . . . pNn) 
according to equation (4.21). These prices must be chosen such that the market clears (4.12) and the 
line capacity constraints (4.13) are met. 
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The λ price component determines the supply/demand balance in the network. By substituting the 
locational price equation (4.21) in the commodity balance constraint (4.12) while omitting L and ∆S, 
the search space along the λ-dimension is obtained: 
 

(4.22) 
 
Since all dk are continuous and monotonically decreasing, the left-hand side of this equation shares 
these properties. Consequently, if for a given set of θi values there exists a λ such that total demand 
equals total supply, this solution is unique and a search in λ will converge to it. 
Each individual θi ensures the line capacity constraint of one line is met. To assess its convergence 
properties, suppose we vary θi while λ and all other θ-values remain stationary. Then, for all nodes k 
with Hi,k = ∂zi /∂dk = 0, an increase in θi will result in a change in nodal demand in a direction opposite 

to the sign of Hi,k . In short: 
where ↑θi denotes “continuously and monotonically increasing in θi ”. The first step follows from the 
nodal price definition (4.21), the second from the requirement of demand functions to be defined as 
continuously and monotonically decreasing. 
Both Hi,k and dk (pk ) influence flow zi , according to (4.4), such that: 

 
Thus, for every node with a nonzero influence on zi , an increase in θi will result in a decrease in zi . 
Consequently, if any line i is overloaded, there is a unique value for θi where zi = zi,max. As zi is 
continuously and monotonically decreasing in θi, a search will converge to this solution, provided 
there is enough elasticity in those demands dk(pk) for which Hi,k = 0. 

4.4.2  Combining Locational Pricing and Flow Analysis 
Due to the swing node’s absence in the network transfer matrix H , some special features arise that are 
important when solving the optimization problem: 

Market Clearing 
The demand of the swing node can be computed in two distinct ways, denoted here as d∗1 and d∗2, 
respectively. The first one follows from the flow analysis. Taking (4.6), and assuming the swing node 
has the highest node number, yields: 
 

(4.23) 
 
Secondly, the swing node demand follows from the local demand function and the local price: 

d∗2 = dk (pk ), with k = Nn (4.24) 
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It may be clear that d∗1 = d∗2 must hold in a sound solution to the optimization problem. Moreover, 
any set of prices pk , k = 1 . . . Nn that results in equal values for d∗1 and d∗2 complies with the 
commodity balance constraint (4.12). 

Swing Nodal Price 
Being the balancing item in the flow calculation, demand or supply at the swing node has no modelled 
influence on any flow in the network. In other words, the flow model assumes that: 
 

(4.25) 
 
Substituting above equation in (4.21) and using the expanded loss component (4.19) yields the swing 
node price: 
 

p∗ = λ (1 + ∆S)  (4.26) 
 
So, while the demand or supply at the swing node has no effect on the network flows, its local price 
has no effect on line congestions and line losses. The price at the swing node only depends on those 
price components that have no associated locational aspects. 
In case the network exhibits no or negligible inherent storage, as is the case with electricity, the swing 
node price becomes: 
 

p∗  = λ  (4.27) 

Losses and Line Capacity Components 
As described in section 4.2.5, the result of a load flow calculation is a superposition of all nodal 
demands being transported from the swing node. The H -matrix describes the flow paths from the 
swing node to every individual node. As a result, for a node k, all Hi,k = ∂zi /∂dk values for lines i 
that are not part of a possible flow path between node k and the swing node are equal to zero. As a 
consequence, the losses component ηL,k for any node k is the price for the losses of transporting the 
demand at k from the swing node. Similarly, the line capacity price component ηC,k is only influenced 
by the lines that are in a possible flow path between k and the swing node. 

4.5  Example 
Consider the PowerMatcher coordinated island network in Figure 4.5, which contains a swing 
generator S, an industrial load RI and two identical districts A and B, represented by the buses B5 and 
B6 respectively. Each district contains a load (RA and RB ) and a generator (GA and GB ). The districts 
are connected to a common bus B2 by lines e4 and e5. Bus B2 is connected to bus B1 by a long line e1 . 
It is assumed that all loads and generators in the network have flexibility to some extent. In this 
example, only active power is being considered, thus no voltage levels and reactive power are taken 
into account. Each load and generator is represented by a device agent that buys or sells electricity 
against the marginal costs of the load or generator. The auctioneer of this network resides at bus B1 and 
there are concentrators at buses B2, B5 and B6. There is no objective agent, because the network is 
operated as an island. Four cases have been considered and the results are shown in table 4.34. 
Additionally, the demand functions of the individual agents the transformed and non-transformed 
aggregated demand functions of the concentrators in the four cases have been plotted in Figure 4.6. To 

                                                      
 
4 In this example the units of power and price have been left out on purpose to increase the readability 
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provide a reference, the example network was first calculated without any constraints and thus, the 
market clearing price of 4.75 was the same for the global and local markets. 
 

 
Figure 4.5: One-line representation of the example network. 
 

 
The second case considered a capacity flow limit of the line e4, which was implemented by using the 
propagation operator as defined in (4.28). The maximum capacity for this line was set to z5,max = 15. 
As a result, the global market price has decreased with respect to the reference case, while the local 
market price in district A has increased. In the reference case the load on line e4 was 24.06, which 
violates the maximum capacity that exists for that line in this case. With the price increase, the 
production has increased and the demand decreased, such that the load on the line is exactly 15. 
Consequently, district A demands less electricity on the global market, making the price in the 
unconstrained districts to go down. 
 

Table 4.3: Demand allocation and price at given nodes and buses for four cases. 
 

  Case 1 Case 2 Case 3 Case 4 

D
em

an
d 

RA 
GA 

RB 
GB 
RI 
S 

29.85 
−5.78 
29.85 

−5.78 
1.71 

−49.84 

28.86 
−13.86 

30.00 
−0.39 

3.61 
−48.21 

28.26 
−16.21 

28.26 
−16.21 

1.44 
−49.95 

28.86 
−13.86 

29.59 
−8.62 

2.63 
−49.19 

Pr
ic

e 

B1 
B2 
B5 

5.76 
5.76 
5.76 

5.20 
5.20 
6.22 

5.86 
6.38 
6.38 

5.46 
5.93 
6.22 
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Figure 4.6: Demand curves of the individual loads and generators and the aggregated demand 
curves for different network nodes in the four cases that were considered. 
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The third case considered a significant energy losses on line e1 with respect towards the reference case, 
i.e. there were no other constraints in the network, using the operator in (4.29), with l1c = 2 · 10-3. The 
losses in line e1 were 24.41, which were mainly compensated by an increase of production of 
generators GA and GB. A positive side effect of this, is that the net demand and load on line e1 and thus, 
the losses in this line are lower of what they could have been if no locational pricing would have been 
applied. 
 
In the last case, the capacity limit on line e4 and the losses in line e1 were introduced simultaneously in 
the example network. Consequently , the concentrator at B2 propagates an already propagated demand 
function, thus including the optimization of the capacity limit within the optimization of the line 
losses. The results are not surprising. In district A, the capacity limit is dominant and also affected the 
amount of line losses in e1, which were 10.59. 

4.6  Conclusion 
Current methods for market-based allocation of flow resources ignore transport network characteristics 
and constraints. This limits their applicability in larger-scale industrial applications, which often are 
distributed over a large regional area and use congested transport networks. In this chapter we have 
presented a theoretical framework, based on a framework in power systems economics, and an 
algorithmic method for finding transport network feasible solutions in market-based flow resource 
allocation. The framework describes a pricing scheme that enforces the electronic equilibrium market 
to find solutions that are feasible for the underlying transport network, i.e. obeying network constraints 
and accounting non-constraining network characteristics such as network losses and network-inherent 
storage. This pricing scheme is generally applicable to all types of flow resources. The constrained 
optimization problem that follows from the theoretical framework is solved by the distributed 
algorithm described in the second part of the paper. We have shown that, under the common condition 
of demand and supply elasticity, this algorithm converges to a unique solution. Further, we have 
demonstrated the algorithm for a medium-sized example network. 
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5. Discussion 

In the previous sections, we argued about the necessity of introducing distributed control in the 
electricity infrastructure in order to cope with the interrelated trends of increasing sustainable 
electricity sources and distributed generation. We have shown how a specific implementation of 
distributed control can be used for commercial portfolio balancing as well as for DSO congestion 
management. An important remaining question is: how to combine the two? 
Such a dual-objective coordination mechanism needs to be designed for a future electricity system 
characterized by: 
• Distributed Generation and Demand Response are a substantial factor in the electricity markets. 
• A substantial portion of central generation is off-shore wind. 
• Market parties and network operators optimize their stakes using the DER in their portfolio, or in 

their network area, respectively. Dependent on the situation, these stakes may be conflicting at one 
time and non-conflicting at another time. 

• Incentives to market parties (generators, suppliers, and end users alike) reflect the true costs of 
both generation and infrastructure. On the one hand, this will increase efficient usage of the 
infrastructure (network load factor optimization) and on the other hand it gives the right market 
signals for investment decisions (Generation against Demand Response against Infrastructural 
investments). 

 
Figure 5.1 shows an architecture that supports the market situation described above. It is a setting with 
multiple Market Parties (Balancing Responsible Parties, BRPs), each running a commercial virtual 
power plant (CVPP), and multiple Distribution System Operators (DSOs), each running a technical 
virtual Power Plant (TVPP). In the Figure the CVPPs are represented by the blocks labeled 
”Commercial Aggregation” and the TVPPs by those labeled ”Network Service Aggregation”. 
A BRP has special interests: 
• Desire to aggregate a high number of DER units, as this smoothens-out the stochastic behavior of 

the individual DER. 
• Aspiration to spread its DER portfolio over a big (national) area to increase spatial smoothing of 

weather influences on DG and on responsive loads. 
• Has no locational aspects attached to the desired portfolio behavior for most of its operational 

parameters. 
• Avoids balancing costs when their portfolio as a whole is in balance. 

 
As a result the commercial portfolio of a BRP is most likely located in the grid area of more than one 
DSO. 
 
A DSO has special interests as well: 
• Preference to address only the DER units in its grid area, sometimes even dependent on individual 

grid cells or segments. 
• Desire to incentivise DER to deliver system management services. 
• Has a locational aspect in the desired behavior or the DER in its network. 
• Avoids investments in infrastructural components by active management of the DER in their 

network. 
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Figure 5.1: Orthogonal dual market-based architecture for commercial and technical VPPs in future 
electricity systems. 

 
In the orthogonal dual architecture, one CVPP has to deal with several TVPPs and one TVPP with 
several CVPPs. The individual DER units at the premises of one customer, in the Figure represented 
by a house, communicate with CVPP components only. The Commercial Aggregating Agent (CAA) 
aggregates all DERs in the portfolio of the corresponding BRP located in a common grid area. Each 
CAA provides commercial services directly to its CVPP, but it also provides local grid services to the 
DSO. Thus, each CAA responds to incentives of both the CVPP it is part of and the TVPP that covers 
its grid area. The stakes of BRP and DSO come together at this point. When these stakes are non-
counteracting, the CAA can deliver the services requested by the DSO for a lower price compared to 
the situation in which the stakes do counteract. Accordingly, those CAAs without an internal conflict 
will respond to both the CVPP and TVPP request first. In this way, flexibility services from DER will 
be used based on merit order and the stakes of the different parties will be balanced automatically 
against each other. 
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6. Conclusions and recommendations 

6.1 Conclusions 
The increase in distributed generation requires the gradual introduction of a new control philosophy in 
the power market and infrastructure. A shift needs to be made from the  control of a few large 
centralized generators towards the  control of a large number of small Distributed Energy Resources. 
These distributed energy resources include distributed generators, demand response and distributed 
energy storage. Their operation is very dependent upon momentary local circumstances, such as the 
availability of renewable energy supply, the customer demand and the buffer levels of energy buffers. 
Centralised control of Centralized Generation needs to change towards decentralized control of 
Distributed Energy Resources. 
Multi Agent Systems (MAS), such as PowerMatcher, can provide for this decentralized control. They 
are scalable, flexible and open for extensions. They can at the same time support market functions 
such as balancing islanded system and grid functions such as avoiding network constraints (using 
locational marginal pricing). 
A decision / coordination system for PowerMatcher has been modeled in algorithms and implemented 
in a simulation tool. The simulations show the feasibility of the algorithms. In the case simulated 
PowerMatcher coordination resulted in a 40% lower total production (energy) by the the diesel 
generator, resulting in 40% less energy use and emissions. The peak load served by the diesel 
generator was even reduced by 45%, resulting in substantially lower investments for the diesel 
generator and the supporting distribution grid. 
To achieve the goals of all actors involved, it is proposed to introduce a dual objective architecture in 
for the PowerMatcher. This can reconcile the objectives of the participants in the energy market with 
those of active network management. 

6.2 Recommendations 

6.2.1 Recommendations for the EIT project 
This report describes the results of the ECN contribution to theme C of the EIT project. TU/e is still 
completing its contribution. The following recommendations for that work follow from the work 
described above: 
 
• In the literature study (WP12) attention should be paid to the failure times allowed by the network 

and by the market. How can the coordination system stay within these limits? What are the 
resulting requirements for the ICT architecture and the network devices? 

 
• The review of the existing situation (WP13) should focus on the existing systems, requirements 

and actors. How can the coordination system be intregrated in this situation? What are the 
additional requirements that must be met? 

 
• The development of the information model (WP15) should focus on priority issues. Which 

processes should be prioritized? 
 
• The verification task (WP17) should include a simulation to verify the information model. 
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• In the dissemination task (WP19) as well as project theme D on Market Perspectives issues such 
as integration with existing systems and business processes should be checked as well as timing 
issues. 

6.2.2 General recommendations 
Several other recommendations for further research - outside the scope of the EIT project - can be 
made. 
 
• Develop a symbiosis of ICT architecture and network devices. In such a layout the network 

devices can work semi-autonomously (without communication) to support the power system in 
case the ICT network fails.  

 
• Develop a dual objective architecture in which network and market objectives can be reconciled. 

 
• Develop protection mechanisms for smart grid, supporting islanding, reverse energy flows etc. 

This is an extensive work field, which is essential if a smart grid is to meet the requirements for 
safety and availability of the traditional power grid. 

 
• Check the applicability of the proposed coordination mechanism at the level of transmission grids. 

Many of the tools and architectures developed for the control of distribution grids with distributed 
generation may also be valuable at the level of transmission grids, especially now that 
transmission grids and power markets of various European member states are increasingly linked.  



 

54 

Bibliography 

[1] Carson E. Agnew. The theory of congestion tolls. Journal of Regional Science, 17(3):381–393, 
1973. 

 
[2] Hans Akkermans, Jos Schreinemakers, and Koen Kok. Microeconomic distributed control: 

Theory and application of multi-agent electronic markets. In Proceedings of CRIS 2004 - 2nd 
International Conference on Critical Infrastructures, 2004. 

 
[3] D. Bertsekas. An auction algorithm for the max-flow problem. Journal of Optimization Theory 

and Applications, 87(1):69–101, October 1995. 
 

[4] Dimitri P. Bertsekas. Auction algorithms for network flow problems: A tutorial introduction. 
Computational Optimization and Applications, 1:7–66, 1992. 

 
[5] Roger E. Bohn. Spot Pricing of Public Utility Services. PhD thesis, MIT, 1982. Also available 

as MIT Energy Lab Technical Report MIT-EL 82-031. 
 

[6] Roger E. Bohn, Michael C. Caramanis, and Fred C. Schweppe. Optimal pricing in electrical 
networks over space and time. Rand Journal of Economics, 15(3):360–376, Autumn 1984. 

 
[7] Rajdeep K. Dash, David C. Parkes, and Nicholas R. Jennings. Computational mechanism 

design: A call to arms. IEEE Intelligent Systems, 18(6):40–47, November/December 2003. 
 

[8] Michael ten Donkelaar and Martin J.J. Scheepers. A socio-economic analysis of technical 
solutions and practices for the integration of distributed generation. Technical Report ECN-C–
04-011, ECN, 2004. 

 
[9] Energy Information Administration. www.eia.doe.gov/emeu/international/ 

RecentElectricityGenerationByType.xls, December 2008. 
 
[10] ENIRDGnet. Concepts and opportunities of distributed generation: The driving European 

forces and trends. Project Deliverable D3, ENIRDGnet, 2003. 
 
[11] ETSO and EuroPEX. Flow-based market coupling; a joint ETSO–EuroPEX proposal for 

cross-border congestion management and integration of electricity markets in Europe. Interim 
report, September 2004. 

 
[12] Nicolai Feilberg et al. Basis for demand response. Efflocom Project Deliverable 1, Sintef 

Energy Research, november 2003. 
 
[13] Richard J. Green. Electricity transmission pricing: How much does it cost to get it wrong? 

Cambridge Working Papers in Economics 0466, Faculty of Economics, University of 
Cambridge, November 2004 

 
[14] W. Hogan. Getting the prices right in Pennsylvania–New Jersey–Maryland (PJM). Electricity 

Journal, 11:61–67, August/September 1998. 
 
[15] International Energy Agency. Distributed Generation in Liberalised Electricity Markets. 

International Energy Agency, Paris, France, 2002. 
 
[16] International Energy Agency. The Power to Choose – Demand Response in Liberalized 

Electricity Markets. International Energy Agency, Paris, France, 2003. 
 
[17] Koen Kok, Zsofia Derzsi, Jaap Gordijn, Maarten Hommelberg, Cor Warmer, Rene Kamphuis, 

http://www.eia.doe.gov/emeu/international/


 

55 

and Hans Akkermans. Agent-based electricity balancing with distributed energy resources, a 
multi-perspective case study. In Ralph H. Sprague, editor, Proceedings of the 41st Annual 
Hawaii International Conference on System Sciences, page 173, Los Alamitos, CA, USA, 
2008. IEEE Computer Society. 

 
[18] Koen Kok, Cor Warmer, and René Kamphuis. PowerMatcher: multi-agent control in the 

electricity infrastructure. In AAMAS ’05: Proceedings of the 4th int. joint conf. on Autonomous 
Agents and Multi-agent Systems, volume industry track, pages 75–82, New York, NY, USA, 
2005. ACM Press. 

 
[19] Tarjei Kristiansen. Congestion management, transmission pricing and area price hedging in the 

nordic region. International Journal of Electrical Power & Energy Systems, 26(9):685–695, 
November 2004. 

 
[20] Jeffrey K. MacKie-Mason and Hal R. Varian. Pricing congestible network resources. IEEE 

Journal on Selected Areas of Communications, 13(7):1141–1149, 1995. 
 
[21] A. Mas-Colell, M. Whinston, and J. R. Green. Microeconomic Theory. Oxford University Press, 

1995. 
 
[22] Tracy Mullen and Michael P. Wellman. A simple computational market for network 

information services. In Proceedings of the First International Conference on Mutiagent 
Systems ICMAS-95, 1995. 

 
[23] Andrew M. Odlyzko. The evolution of price discrimination in transportation and its 

implications for the internet. Review of Network Economics, 3(3):323–346, September 2004. 
 
[24] Angelika Pullen, Liming Qiao, and Steve Sawyer (eds). Global wind 2008 report. Market 

report, Global Wind Energy Council, March 2009. 
 
[25] Bart Roossien. Field-test upscaling of multi-agent coordination in the electricity grid. In 

Proceedings of the 20th International Conference on Electricity Distribution CIRED. IET-
CIRED, 2009. 

 
[26] Bart Roossien, Maarten Hommelberg, Cor Warmer, Koen Kok, and Jan Willem Turkstra. 

Virtual power plant field experiment using 10 micro-CHP units at consumer premises. In 
SmartGrids for Distribution, CIRED Seminar, number 86. IET-CIRED, 2008. 

 
[27] Tuomas W. Sandholm. Distributed rational decision making. In Gerhard Weiss, editor, 

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pages 201–258. 
The MIT Press, Cambridge, MA, USA, 1999. 

 
[28] Fred C. Schweppe, Michael C. Caramanis, Richard D. Tabors, and Roger E. Bohn. Spot 

Pricing of Electicity. Kluwer Academic Publishers, 1988. 
 
[29] Christof Timpe. Smart-a project. Presentation, Oko Institut, August 2009. 

 
[30] William Vickrey. Responsive pricing of public utility services. Bell Journal of Economics and 

Management Science, 2(1):337–346, Spring 1971. 
 
 [31] Cor Warmer, Maarten Hommelberg, Bart Roossien, Koen Kok, and Jan Willem Turkstra. A 

field test using agents for coordination of residential micro-chp. In Proceedings of the 14th Int. 
Conf. on Intelligent System Applications to Power Systems (ISAP). IEEE, 2007. 

 
[32] Michael P. Wellman. A market-oriented programming environment and its application to 

distributed multicommodity flow problems. Journal of Artificial Intelligence Research, 1:1–23, 



 

56 

1993. 
 
[33] Christoph Wolfsegger, Marie Latour, and Michael Annett. Global market outlook for 

photovoltaics until 2012 – facing a sunny future. Market report, European Photovoltaic 
Industry Association, February 2008. 

 
[34] Fredrik Ygge. Market-Oriented Programming and its Application to Power Load 

Management. PhD thesis, Department of Computer Science, Lund University, Sweden, 1998. 
ISBN 91-628-3055-4. 

 
[35] Fredrik Ygge and Hans Akkermans. Resource-oriented multicommodity market algorithms. 

Autonomous Agents and Multi-Agent Systems, 3(1):53–71, 2000. Special Issue Best Papers of 
ICMAS–98. 



 

57 

Appendix A.  Market Algorithm for locational marginal pricing 

In this appendix we describe an agent-based market algorithm for locational marginal pricing LMP). 
The algorithm solves the constrained optimization problem described in chapter 4. In chapter 4 we 
derived a framework for market based coordination in passive flow networks under network capacity 
constraints. The algorithm described here is an implementation of this framework. For reasons of 
clarity - but without loss of generality - we omit the price components for losses and inherent storage 
in the descriptions. Both characteristics can be added easily by implementing models for L and ∆S 
and incorporating these in the code lines where the nodal prices are calculated. 

A.1  Algorithm Description 
The algorithm is distributed over three types of agents: an Auctioneer Agent, a Node Agent for 
every node and a Line Agent for every line. The Auctioneer is responsible for concerting the 
optimization process of each market round and for searching for the λ value that clears the 
market, i.e. minimizes the difference between equations (4.23) and (4.24). The individual Line 
Agents determine their own θi value in order to solve capacity constraint violations, if any. The 
Node Agents communicate their preferences for consumption or production of the commodity 
at the start of each market run. Afterwards, they receive their nodal price and implement their 
allocation. We assume the presence of only one consuming and/or producing agent per node. 
When more agents are present at one node the Node Agent becomes an aggregator of all 
connected agent’s preferences. Below we give pseudocode for all three agent types. 
 

The pseudocode of the AU C T I O N E E R AG E N T is given by:  
 
AU C T I O N E E R AG E N T(H, NodeAgentList , LineAgentList ) 

1 ϵ ← 0.0001 
2 while TR U E 
3  do 
4  WA I T NE X T MA R K E T RO U N D() 
5  SE N D(BI D RE Q, NodeAgentList ) 
6  D ← RE C E I V E(BI D S, NodeAgentList ) 
7  λ ← EQ U I L I B -PR I C E(D)  > First guess. 
8  > Θ: row vector of θi values. 
9  Θ[i] ← 0, i = 1 . . . Nl  > First guess. 

10  repeat 
11  > λ: search for commodity balance. 
12  λold ← λ 
13  λ ← FI N D ZE R O(F-L A M B DA(λ, Θ, H, D), λ) 
14  δλ ← A B S(λold − λ) 
15  > Request new θ from line agents. 
16  SE N D(TH E TA RE Q, LineAgentList , λ, Θ) 
17  Θold ← Θ 
18  Θ ← RE C E I V E(TH E TA S, LineAgentList ) 
19  δΘ ← M A X(A B S(Θold − Θ)) 
20  until M A X(δλ , δΘ ) < ϵ 
21  P = λ + Θ ∗ H  > array of nodal prices 
22  > Communicate prices to the node agents. 
23  for k ← 1 to Nn 
24  do 
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4 d∗1 ← 
∑Nn −1

 

25  SE N D(PR I C E, NodeAgentList [k], P [k]) 
26  > Signal market round end to line agents. 
27  SE N D(MA R K E T RE A DY, LineAgentLst ) 

 
We start the description of the code by making some general remarks important for all given 
code: 
 
• Agent Communications: The agents communicate using the message passing procedures 

SEND and RECEIVE. The first takes a message ID as a first parameter (e.g. BI D RE Q), a (list 
of) Agent ID(s) as a second followed by an optional list of parameters to be send along 
with the message. RE C E I V E blocks operation until the specified message is (or messages are) 
received. It has two possible forms, receiving either a message of one single agent or 
receiving messages from a list of agents. The latter form returns the received parameters in 
an array. 

 
• Demand Function: The demand function data structure is not specified in detail. A possible 

form is an array of tuples (p, d). For computational reasons, the chosen structure must allow 
for fast aggregation of demand functions by adding price-wise. Evaluation of a demand 
function d for a given price is denoted in the pseudocode as d(p). For the tuple-based data 
structure, this would involve interpolation between two tuple values. For reasons of 
simplicity this is not included in the pseudocode. 

 
• Root Finding: The procedure FI N D ZE R O implements a univariate root finding algorithm. The 

call: 
x ← FI N D ZE R O(F(x, y, z), x0) 
searches for a root of the function F with x as free parameter. The search starts at x0 and parameters 
y and z are considered to be constant during the search. 

 
The AU C T I O N E E R AG E N T requests for the demand function of all NO D E AG E N T instances at the 
beginning of each market round. Using these functions and the network transfer matrix H , which is 
given to as a parameter to the Auctioneer, a search for λ and θi , ∀i is started. As a first guess λ is set to 
the general equilibrium price and all θ values are set to zero. In the repeat loop the agent 
consecutively searches for the λ value that gives commodity balance for current θ values and requests 
the Line Agents for θ updates. When this optimization ends, the nodal prices are sent to the individual 
Node Agents. 
The objective function for the λ optimization is: 
 

F-L A M B DA(λ, Θ, H, 
D) 
1 > Calculate nodal price vector P 
2 P = λ + Θ ∗ H 
3 > Swing-nodal demand from load flow. 

k=1 D[k](P [k]) 
5 > Swing-nodal demand from demand function. 
6 d∗2 ← D[Nn ](λ) 
7 > Goal: d∗1 equal to d∗2 
8 return d∗1 − d∗2 

 
 
The Node Agents are assumed to operate some process that produces or consumes the commodity. 
Their demand function will be influenced by the state of that process. Upon request by the 
Auctioneer, the agents compose their bid and send it to both the Auctioneer and all Line Agents. 
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The Line Agents use the bids for calculating their expected line flow. 
 

NO D E AG E N T(AuctioneerAgent , LineAgentList ) 

1 while TR U E 

2  do 
3  RE C E I V E(BI D RE Q) 
4  d = CO M P O S E BI D(ProcessState ) 
5  SE N D(BI D, AuctioneerAgent , d) 
6  SE N D(BI D, LineAgentList , d) 
7  p ← RE C E I V E(PR I C E) 
8  CO N S U M E AL L O CAT I O N(d(p)) 

 
 
The pseudo code for the LI N E AG E N T is: 
 
 

LI N E AG E N T(i, H, zi,M A X , AuctioneerAgent , NodeAgentList ) 
1 > Select the ’own’, i-th, row from H 
2 Hi ← H [∗, i] 
3 while TR U E 

4  do 
5  D ← RE C E I V E(BI D S, NodeAgentList ) 
6  repeat 
7  [λ, Θ] ← RE C E I V E(TH E TA RE Q) 
8  > Calculate nodal price vector P 
9  P = λ + Θ ∗ H 

10  > Calculate the line flow z 
11  zi = Hi ∗ D(P ) 
12  if |zi | < zi,M A X 

13  then θi ← 0 
14  else > find θ to solve overload 
15  θ ← FI N D ZE R O(F-T H E TA(θi , i, λ, Θ, Hi , D, zi,M A X ), Θ[i]) 
16  SE N D(TH E TA, AuctioneerAgent , θ) 
17  until PE E K NE X T MS G() = MA R K E T RE A DY 

18  > Consume peeked MA R K E T RE A DY message 
19  Dummy ← RE C E I V E(MA R K E T RE A DY) 

 
The objective function for the θ optimization is given by: 
 

F-T H E TA(θi , i, λ, Θ, Hi , D, zi,M A X ) 
1 > Calculate line flow zi for this θi 

2 Θ[i] ← θi 

3 P = λ + Θ ∗ H 
4 zi = Hi ∗ D(P ) 
5 > Goal: |zi | equal to zi,M A X 

6 if zi > 0 
7  then return zi − zi,M A X 

8  else return zi + zi,M A X 

A.2  Example 
Figure A.1 gives an example algorithm outcome. Each of the lines has a capacity constraint of 1. All 
demand is located in the four nodes to the far left, while all supply is at the four nodes far right. All 
demand functions are S-shaped (i.e. sigmoidal) with the inflexion point at varying price levels between 
5 and 14. The maximum demand per node is 2 for consuming nodes and −2 for producing nodes. It 
can be seen from the figure that in the network feasible (NF) solution the nodal prices are such that 
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neither of the line flows exceeds the limit of 1. In the general equilibrium (GE) solution, six of the 14 
lines are overloaded as shown in table A.1. 

 
Table A.1: Line flows for the General Equilibrium and Network Feasible solutions. 

 
 

 
GE 

z1 

1.4 
z2 

0.4 
z3 

0.6 
z4 

0.8 
z5 

0.4 
z6 

1.8 
z7 

0.2 
NF 1.0 0.4 0.6 0.4 0.2 1.0 0.4 

 z8 z9 z10 z11 z12 z13 z14 
GE 2.4 0.8 0.5 2.1 1.2 0.3 1.2 
NF 1.0 1.0 0.7 1.0 1.0 1.0 1.0 

 

 
 

Figure A.1: Example network feasible market result. The maximum line capacity is set to 1 for 
each line. 

 

A.3  Fast LMP in acyclic networks 
Most distribution networks are operated radially. This means they are tree-shaped,. Their topology 
shows no cycles. In this section, we present a fast algorithm for calculating LMP solutions in such 
acyclic networks. 
 
The algorithm is based on propagating demand functions from the leaves of the tree to the root 
(swing node) in the first phase and back-propagating the nodal price to the leaves in the 
network characteristics: line capacities and transport losses. 
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Four different algorithmic operators can be distinguished, one concentrating incoming demand 
functions at the network nodes, one for propagating demand functions along network lines 
towards the swing node, one for determining the nodal price at the swing node, and one 
propagating price information back to the leaves determining the nodal prices on the way. 
The agents communicate using message passing procedures SE N D and RE C E I V E. The first takes a 
message ID as a first parameter (e.g. BI D RE Q), an Agent ID (List) as a second followed by one or 
more optional parameters to be send along with the message. RE C E I V E blocks operation until the 
specified message is (or messages are) received. It has two possible forms, receiving either a 
message of one single agent or receiving messages from a list of agents. The latter form returns 
the received parameters in an array. 

LeafAgent 
The pseudocode of the LE A FAG E N T is quite straightforward. After reception of a bid request, it 
composes its bid according to its current preferences. The bid is sent off to the Line Agent 
associated with the line connected to the agent’s node. After reception of the resource price the 
agent consumes its allocated power given by d(p). 
 

LE A FAG E N T(Line ) 

1 while TR U E 

2  do 
3  ✄ First Phase: 
4  RE C E I V E(BI D RE Q, Line ) 
5  d = CO M P O S E BI D(Preference ) 
6  SE N D(BI D, Line , d) 
7  ✄ Second Phase: 
8  p ← RE C E I V E(PR I C E, Line ) 
9  CO N S U M E AL L O CAT I O N(d(p)) 

The Line Agent 
The line agent implements the propagation. In the first phase the demand functions are 
transformed according to the local network characteristics: line capacities and transport losses. 
 

LI N E AG E N T(HeadNode , TailNode ) 

1 while TR U E 

2  do 
3  ✄ First Phase: 
4  a ← RE C E I V E(BI D, TailNode ) 
5  a ← PR O PA G AT E(a) 
6  SE N D(BI D, HeadNode , a) 
7  ✄ Second Phase: 
8  pj ← RE C E I V E(PR I C E, HeadNode ) 
9  pk ← PR I C E BA C K PR O P(pj ) 

10  SE N D(PR I C E, TailNode , pk ) 
 

The propagate operator propagates a concentrated demand function at a given node vk over 
the first line, denoted ei , in the path between vk and the root, i.e. vk is the tail of ei . The operator 
accounts for the line capacity and network losses. The propagated demand function ak (p) for a 
line capacity constraint is calculated as: 
 

 
 (A.1) 
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while the propagated demand function for line losses can be calculated as 
 

 (A.2) 
 
where li is the loss factor, which is a function of the line resistance ri . Naturally, the propagation 
in (A.1) and (A.2) can also be combined in one operator. 
 
 

NO D E AG E N T(ChildNodeList , ParentNode ) 

1 while TR U E 

2  do 
3  ✄ First Phase: 
4  A ← RE C E I V E(BI D, ChildNodeList ) 
5  ak ← CO N C E N T R AT E(A) 
6  SE N D(BI D, ParentNode , ak ) 
7  ✄ Second Phase: 
8  pk ← RE C E I V E(PR I C E, ParentNode ) 
9  SE N D(PR I C E, ChildNodeList , pk ) 

 
 
Pseudocode for RO O TAG E N T: 
 

RO O TAG E N T(ChildNodeList , LeafAgentList ) 

1 while TR U E 

2  do 
3  ✄ First Phase: 
4  WA I T NE X T MA R K E T RO U N D() 
5  SE N D(BI D RE Q, LeafAgentList ) 
6  A ← RE C E I V E(BI D, ChildNodeList ) 
7  ✄ Second Phase: 
8  an ← CO N C E N T R AT E(A) 
9  λ ← FI N D RO O T(an ) 

10  SE N D(PR I C E, ChildNodeList , λ) 
 

 

Concentrate 
The concentration operator concentrates for a given node vk the local demand function dk (p) and the 
demand functions ai (p) propagated into the node. The node receives incoming demand functions 
from all connected lines directed away from it. The concentrated bid at node vk is calculated as:  

 
(A.3) 

 
where ai (p) is the demand function propagated to vk over line ei ∈ Yk . Yk is defined as: 
 

(A.4) 
 

the set of directly connected lines directing away from the root of G. 

Swing Nodal Price 
The price at the swing node (v1) is chosen such that the market at the swing node is in equilibrium: 
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(A.5) 

 
 

where a1 (p) is the concentrated demand function for the swing node. 

Price Back Propagation 
The price at the swing node is then propagated back along each line in the tree network using the 
price-back-propagation operator. This operator determines the nodal price for each node vk . 
Consider a node vk directly connected by line ei to node vj , with vj the head and vk the tail of the 
line. Then, vk gets its nodal price back-propagated from node vj . When vj has a back-propagated 
price pj , then for the propagation in (A.1), pk is calculated as: 

 
 

(A.6) 
 
 

and for the losses in (A.2): 
 

(A.7) 
 

Propagation of non-network constraints 
Many other constraints can also be introduced. For example, grid operators want to minimize 
the aging behavior of a transformer, because it degrades faster for higher loads, which decreases 
its lifetime. The investment costs for such a replacement can be postponed if peak loading of the 
station can be avoided. A transformation on the demand function can be used to charge 
degradation costs to the end-customer. Hence, the end-customer gets a financial incentive to 
shift its demand from times of peak load to times of off-peak load. Another example, a 
household must pay taxes over the imported and exported electricity. If the supply and demand 
within the household is matched more frequently, the net import and export is reduced, 
decreasing the amount of taxes to be paid. This is especially financially beneficial if market 
clearing prices show relative small fluctuation compared to the tax rate. 
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Appendix B. PowerMatcher Simulation Tool Manual 
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PowerMatcher Simulation Tool 
 
 

Copyright 2010, ECN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

http://www.powermatcher.net/ 
 
 
 
 
 
 
 
 
 
 
 
 
Version Author Comments 
0.1 G.M. Venekamp Initial version 
0.2 G.M. Venekamp Revised version based on user input 
0.3 G.M. Venekamp Updated documentation to the latest version of the simulation tool 
0.4 G.M. Venekamp Small updates to reflect most of the latest changes 
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1 Introduction 

 
The PowerMatcher Simulation Tool is made for simple demonstrations of the PowerMatcher 
technology made by ECN. Although it can show graphs, it is not meant as an analysing tool. For 
doing large scale analysing, the tool is able to retrieve data from the Agents that they make 
public and write these data to disk. The PowerMatcher and the PowerMatcher Simulation Tool 
are developed at ECN. 
 
2 PowerMatcher Simulation Tool 

 
2.1    prerequisites 

 
There are a few prerequisites before you can successfully start the Simulation tool: 
 

• Administrator rights. The user that will invoke the PowerMatcher Simulation Tool needs 
to have administrator rights as the PowerMatcher framework needs to start a few 
services; 

 
• A fully initialized network card. This means an IP address needs to be assigned to it; 

 
• Microsoft .NET Framework 3.5 SP1 needs to be installed; 

 
2.2     Installation 

 
Start the executable and follow the instructions given by the wizard. 
 
3 Starting the simulation tool 

 
The PowerMatcher simulation tool can be started by accessing the start menu. After starting the 
tool, you will be presented with a window as shown in Figure 1. This window is divided in three 
sections. On the far left, you will be able to create your scenario. It views you scenario in a list 
like manner. The “middle” part displays information about nodes in your cluster and their 
properties. Nodes can be agents, concentrator, auctioneers, global timers and price basis. Here 
you can adjust, or configure if you wish, the properties a node exposes, as well as selecting what 
information to view in a graph, i.e. what data an agent publishes to be viewable in a graph. These 
graphs are displayed on the far right of the window. 

The first thing you will need to do is either create a scenario, or load an existing one. This 
scenario will be used by the tool to start the PowerMatcher cluster, i.e. auctioneer, network 
officers, concentrators and agents. 
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Figure 1: Opening screen of the PowerMatcher Simulation Tool. 
 
 
3.1  Saving and opening scenario files 

 
At any time you are able to quit the PowerMatcher Simulation Tool. When you quit the tool and 
you have made changes to the current scenario, you will be prompted to save your changes. You 
can also use one of the save buttons located at the top of the screen. 
When you want to load an existing scenario, use the open button. The simulation tool uses a 

default location for scenario files. Refer to Appendix A on page 14 for the location. 
 
3.2  Creating a new scenario 
A new scenario is created by clicking the new icon on the top the screen. You will see an 
update of your window as shown in figure 2 on the next page. The name of the scenario is 
changeable and is called “New scenario” by default. To change the name, refer to Figure 3 
on the following page. First click within the red circle and then edit the name within the 
green one after clicking there. Changing the scenario name to something logical is highly 
recommended. The simulation tool writes the data to files so you can use the data for 
further analyses. It does this in a directory with the same name as your scenario. The full 
name can be found in Appendix A. 
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Figure 2: Part of the window after starting a new scenario. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Changing the name of a scenario. 
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3.3  Global Timer 
Clicking on the Global Timer on the left side of the window, will display the properties of 
the global timer. It has two intervals, a real and a virtual interval as well as a start date. The 
start date is only of importance to the agents. It is possible that agents use a data file in which 
real data is present, e.g. a date-time stamp is used. If the date in the data file start at 2010-01-
01 and the simulation date is set to 2000-01-01, it will take quite some time before that 
particular date is reached. As long as the simulation date has not caught up with the date as 
found in the data file, the agent will happily wait for the simulation date to catch up and do 
nothing in the meantime. To avoid such problems, make sure the dates match. 

The two other items you can change are the time intervals. The Real Interval specifies 
the time in HH:MM:SS format between updates in the network, i.e. the amount of time between 
two successive commands to simulate a time step. Typical values are in the range of 500–1000 
milliseconds for non-complex Agents. If the Real Interval is 500 ms, then two 
simulations steps are taken for each passed second on your clock. However, do take into 
account the processor speed and the load on your CPU. This is what determines the minimal 
interval at which your simulation can run. 

One can also use a zero time interval for the Real Interval. Doing so makes the 
simulation run as fast as possible. This is usually the preferred mode as it save you from 
tweaking the optimal value for the interval. 

The Virtual Interval specifies in milliseconds the amount of time that progresses 
between successive real intervals, i.e. the date/time is advanced with this amount for each 
simulation step. Typical values could be one, five, ten or fifteen minutes. 

Let’s take 1 s as an example for the Real Interval and ten minutes for the Virtual 
Interval. This means that at each second of your time, the simulated time inside the 
simulator is advanced by ten minutes. So, it would take 24×60

10
 = 144 seconds to simulate a 

whole day. 
 
 
3.3.1 Simulation speed and the Global Timer 

 
The settings of the global timer determine the speed at which your simulation runs. To speed 

up the simuation you have three options: 
 

1. increase the Virtual Interval, thus doing more processing per second; 
 

2. decrease the Real Interval, i.e. decreasing successive time steps the simulation 
takes (time seems to pass by a lot quicker to an Agent, where it does not when the 
Virtual Interval is increased); 

 
3. The third and best option is to set the Real Interval to zero and have the 

simulation run at its maximum speed and choose the appropriate Virtual 
Interval according to your needed time resolution. 
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The Global Timer has also the ability to run in real-time. When set in real-time, the 
Virtual interval is ignored and the real date and time is used instead. See Section 3.4.1 
for more information on the use of this property. 

 
 
3.4  Auctioneer 

The Auctioneer has a few properties as well. One of them is Price update delay. It 
specifies in milliseconds the amount of time the auctioneer has to wait for it to publish the new 
price. Agents will not send their bids at exactly the same time and in order to avoid many price 
updates, the auctioneer can be told to wait a bit. In the meantime the auctioneer will collect all 
bids and hopefully has collected all bids by the end of the waiting period. This should result in 
sending out one price signal. 

One important note to make here is that the time specified here is always in real time! This 
means that if you specify a value of 100ms, the Auctioneer will wait 100 real milliseconds. If 
you have a fast running simulation it might by the case that the simulation time has progress 
quite a bit during those 100ms. From the perspective of your simulation it might look like that 
no price updates are send for hours and thus your simulation could be influenced by selecting 
large waiting periods. It is advised to use the default value of 1ms as this usually gives too 
little time for all necessary processing and thus is acts as though the prices are sent after a bid 
curve is received, i.e. after each received bid curve, a new price is sent immediately. 

 

 
3.4.1 Connecting external Agents or Concentrators 

 
It is possible to have an external Agent or Concentrator connect to a simulation. The Port 

property specifies a port at which external elements can connect to. The network service is 
created at the configured port, and the matcher itself at port+1. You can let the external agent 
connect to the network service’s two endpoints: 

 
1. http://localhost:PORT/IAgentManagementService 
 
2. http://localhost:PORT/IDirectoryFacilitatorService 
 
However, when using an external element, the Real-time property must be ticked. 

 

 
3.5  Price basis 

 
It is best to leave the price basis at its default settings for now. The price basis specifies the 

initial minimum and maximum prices as well as the granularity of the interval in terms of price 
steps. The Significance specifies to which degree changes in price signals are considered 
significant. The number tell how many digits after the floating point are take into account. 

 
 
 

 
 
 
 

 

http://localhost:PORT/IAgentManagementService
http://localhost:PORT/IDirectoryFacilitatorService
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Figure 4: An example of a simple PowerMatcher cluster. 
 
 
4  Creating a scenario 

 
You can add any number of agents or concentrators to the auctioneer. Agents are end points 

and thus nothing can be added to them. Concentrators however, can have any number of 
agents and concentrators. 

Let us assume that you want the following cluster. A wind park and diesel generator, two 
households, one with a heat pump, the other with a micro-CHP. Both households have a 
demand. Figure 4 shows the cluster in a graphical manner. 

 
4.1  Adding top level agents 

 
We will start by adding agents for the wind park and diesel generator. They should be added 

directly to the auctioneer. Right click on the auctioneer label and then a context menu appears 
which lets you add an agent or concentrator. Refer to Figure 5 for the context menu. Adding 
elements to concentrators works exactly the same as adding elements to an auctioneer. 

What you could change is the default name of the agent in the name field. In our case the 
WindTurbineAgent and Dieselgenerator. Add them both to the auctioneer. The 
names used are ‘Wind Park’ for the wind turbine and ‘Generator’ for the diesel generator. 
When done you should have something like figure 6 on the following page. 

 
4.2  Adding the clusters 

 
What needs to be done next is adding two clusters. As can be seen in Figure 4 we need to 

have a concentrator for each household. Add two concentrators at the auctioneer level, just like 
you have added the agents. If you wish you could rename the concentrators to a more logical 
name like ‘Household A’ and ‘Household B’. This is done by editing the text box as shown in 
Figure 7 on page 8. You have to select the concentrator of which you want the name to be 
changed first on the left part of the window. Also change the PriceUpdateDelay for both 
concentrators to a value of ‘1’. Do not use ‘0’, as this value is illegal. 
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Figure 5: Adding agents and concentrators. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6: View of the PowerMatcher Simulation Tool after adding a Wind Park and a diesel 
generator. 
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Figure 7: Changing a name of a concentrator in the tool. 
 

 
We are not finished yet, the newly created concentrators need to a have two agents below 

them. Adding agents to a concentrator is the same as adding agents to the auctioneer. Right 
click on the concentrator you want to add an element to. 

Some agents support different controllers and you can’t add such agents without selecting a 
controller. You will see an expansion marker to indicate that you have a choice in controllers. 
See Figure 8 on the next page for an example. Default controllers are the ones that will try 
to make intelligent bids. 

For each concentrator add an HouseholdAgent and give it a local name like Demand A, 
or Demand B. To have a different demand profile for each household, change the name of the 
Data file property for ‘Household A’ to .\HouseholdSampleData-1.txt and to 
.\HouseholdSampleData-2.txt for ‘Household B’. Now you need to add a 
MicroCHPAgent for ‘Household A’ and a HeatPumpAgent for ‘Household B’. 

As a final step to finish creating this example scenario, you should change the Random 
seed in both the heat pump and micro-CHP agents. You can find this setting under the 
‘SpaceHeatingBuffer’ of either agent. This ensures that the building model parameters differ, 
e.g. initial room temperature. Make sure the two seeds are not the same. 

Now that you have created your first scenario, it is time that it is saved to disk. For this, use 
the Save as button on top of the window. The Default location presented to you should be 
fine. 

 

 
4.3  Removing a node 

 
If you wish to remove either an agent or a concentrator, you can do so by using the right 

mouse button to bring up the context menu. Be sure to select the agent or concentrator you 
want to be removed first. Or you can select the element you want to remove and use the 
delete button to remove it. 
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Figure 8: Adding a micro CHP agent with the default controller. 
 
 
4.4  Configuring the agents 

 
The agents you have added to your scenario might need some additional configuration. For 

example you might want to give certain agents a data file. In our case the two household could 
have different data files for no household will have exactly the same demand profile. Also, the 
wind park might be too large or too small to our taste and this too can be adjusted. This is done 
in the middle part of the window, i.e. right beside our scenario layout and where we already 
have changed the names of the household concentrators. However, explaining what the agents 
can do and what properties can be configures is outside the scope of this document and one 
should refer to the documentation of the individual agents. 

 
 
5  Starting a simulation 

 
It is time to start a simulation with our scenario. This is accomplished by pressing the start 

button, Figure 9 on the following page shows the location of the start button. It is on the top 
of the window. After having started the simulation, the start button becomes inactive and the 
pause and stop buttons located to the right of the start button become active. They can be 
used to pause and stop the simulation. 

In the scenario description you will see the label changing colours. When agents are being 
started, they become bluish first and only when they have been successfully started, green. 
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Figure 9: Location of the start button. 
 
 

Should they turn red instead, something has gone wrong and the agent was not started. The 
middle section on the bottom of the simulation tool windows a small hint is presented in such 
cases about what might have gone wrong. You should fix the errors first before you can 
successfully start the simulation. 

 
 

6  Displaying graphs 
 

The PowerMatcher Simulation Tool does not know what data is being published by the 
agents when it is started. It will have to wait until the simulation is started and the agents have 
made known what they publish. Only then can the simulation tool start to display the published 
data. In order to know what data is being published, click on the agent you are interested in in 
the cluster overview on the left side of your window. The simulation tool shows the available 
information from an agent in the middle part of the window, towards the bottom. You can tick 
the data you wish to be displayed1 and the tool will show the graph. It will only show data that 
is published after the moment you selected it. This means that it could take a little while before 
data is being shown in a graph. It depends on the frequency at which the Agent publishes its 
data. Also, all previous data that has been published will not be shown in the graph. 

When you restart the same the simulation, the tool remembers what data is published and it 
also remembers the graphs it plotted last time. Thus, the plotting start immediately upon 
starting the simulation. 

 
6.1  Multiple graphs 

 
The simulation tool is able to show more than one graph as the time. Just tick the data from 

an agent or auctioneer you wish to view. Figure 10 on the next page gives you an example of 
how the graphs might look like. 

 
6.2  Full screen graphs and graph synchronisation 

 
On the graph area you will find two buttons. On is located at the top to right, see the red circle 
in figure 10 on the following page. Clicking it, makes the graph appear full screen. The other 
button is at the bottom of the graphs and can be used to force a synchronisation of the time 
axis across all visible graphs. 

 
_________________________________________________ 

1 The PowerMatcher Simulation Tool will only be aware of what an Agent publishes after the Agent has 
published its first data. This means that at the very start of the simulation tool, no data has been published yet 
and therefore you can’t select any graph to plot. Wait until the Agent has published its first data to select the 
graphs you are interested in. 
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Figure 11: Preference settings. 
 
 
6.3  Combining and removing graphs 

 
Graphs can be combined in one plot. To accomplish this, drag one graph into another by 

grabbing the label of the graph you wish to move and drop it on the graph area of the graph 
you wish it to move to. 

In order to remove a graph you have to grab the label of the graph you wish to remove. When 
grabbing, a drop area pops up in the lower right corner of the screen. Drag the label to there 
and drop it to have it removed. 

 
 
7  Preference settings 

 
The PowerMatcher Simulation Tool lets you select a few preferences. This can be accessed 

by pressing the preferences button on the tool bar. Figure 11 show the windows 
that should pop up. The location where the InfoPublished stores its data is configurable and 

here you set the root directory. 
 
 
8  Logging 

 
Although normally not necessary, the PowerMatcher Simulation Tool logs what it is doing in 

one single log file. The framework that is used for logging is log4net2 . The configuration 
file for log4net is found in the same directory as the tool and is called: logconfig.xml, 
see also Appendix A. By default the logging level is set to WARN, setting it to DEBUG will 
make it show more information. Note that your simulation will likely require more time to 
execute. 

 

 
2 http://logging.apache.org/log4net/index.html  

 

 

http://logging.apache.org/log4net/index.html
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Appendices 
 
A  File locations 

 
Data files necessary for agents are resolved against the location where the scenario file is 

located and not from configurable InfoPublisher path. 
By default the following directory location is used: 

 
C:\Documents and Settings 
  <your account> 
    My Documents 
      PowerMatcher3 Simulation Tool 

 
It can be changed through the preference settings. Under this directory the following structure 

exists: 
 
Data 
  InfoPublisher 
    <scenario 1> 
    <scenario 2> 
    <scenario 3> 
...  
Logs 

 
Each time you run a scenario its data will be stored in a new directory under your scenario 

map. The name of this new directory will have a date.time format. Thus: 
 
InfoPublisher 
  Sample scenario 
    20100721.094332 
      Agent1.csv 
      Agent2.csv 
      Agent3.csv 
 
    20100721.102705 
    20100721.130524 

 
 
 
 


	Contents
	1. Introduction
	1.1 Research project Electrical Infrastructure of the future (EIT)
	1.2  Sustainable Electricity Sources
	1.3  Distributed Generation
	1.4  Demand Response
	1.5  Implications for Infrastructure Management
	1.5.1  The Traditional Reaction: “Fit and Forget”
	1.5.2  The Smart Reaction: Distributed Coordination


	2. Earlier Work: Market-based Balancing
	2.1  Multi-agent Systems
	2.1.1  Electronic Markets
	2.1.2  Market-based Control
	2.1.3  Price-Based MBC: A Typical Example

	2.2  A Decentralized Control Systems Design
	2.2.1  Logical Structure and Basic Agent Roles
	2.2.2  Basic Device Agent Functionality
	2.2.3  Auctioneer and Concentrator Functionality
	2.2.4  Classification of DER Controllability

	2.3  Design Choices
	2.3.1  Communication Timing
	2.3.2  Design for Scalability
	Pool Market vs Peer-To-Peer Trading
	Trusted Auctioneer: One-shot Communications
	Distributed Concentration of Demand Functions



	3. Individual Agent Strategies
	3.1  Agent strategies based on short-term economics
	3.1.1  A Strategy Fully Based on Marginal Cost
	3.1.2  A Strategy Fully Based on Price History
	3.1.3  A Median Strategy

	3.2  Bid Strategy Spectrum
	3.3  Example: a local island grid

	4. Transport Network Feasible Solutions
	4.1  The Concept of Locational Pricing
	4.1.1  “A Typical Example” Revisited
	4.1.2  Related Work on Locational Pricing
	Locational Pricing in Computer Science
	Locational Pricing in Power Systems Economics

	4.1.3  How are passive flow networks different?

	4.2  Network and agent models
	4.2.1  Network Model
	4.2.2  Acyclic Networks
	4.2.3  Agent model
	4.2.4  Network-agnostic market clearance
	4.2.5  Flow Model

	4.3  Locational Marginal Pricing Framework
	4.3.1  Market Clearing Component
	4.3.2  Line Capacity Component
	4.3.3  Transport Network Losses
	4.3.4  Network Inherent Storage
	4.3.5  The Locational Price

	4.4  Analysis
	4.4.1  Search Space and Convergence
	4.4.2  Combining Locational Pricing and Flow Analysis
	Market Clearing
	Swing Nodal Price

	Losses and Line Capacity Components

	4.5  Example
	4.6  Conclusion

	5. Discussion
	6. Conclusions and recommendations
	6.1 Conclusions
	6.2 Recommendations
	6.2.1 Recommendations for the EIT project
	6.2.2 General recommendations


	Bibliography
	Appendix A.  Market Algorithm for locational marginal pricing
	A.1  Algorithm Description
	A.2  Example
	A.3  Fast LMP in acyclic networks
	LeafAgent
	The Line Agent
	Concentrate
	Swing Nodal Price
	Price Back Propagation
	Propagation of non-network constraints


	Appendix B. PowerMatcher Simulation Tool Manual

