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Summary 
 
Within the We@Sea project ‘Flight Leader Concept for Wind Farm Load Counting and Per-
formance Assessment’ a cost-effective methodology has been developed for assessing the load 
accumulation of all turbines in an offshore wind farm.  
 
Instead of equipping all turbines with mechanical load measurements only a few reference 
(Flight Leader) turbines are extensively instrumented. Using data from these turbines relations 
between standard SCADA parameters and load indicators, which are representative for the age-
ing or degradation of a certain wind turbine component, are established. Once such relationships 
are determined these can be combined with SCADA data from the other turbines in the wind 
farm. This enables the determination of the accumulated loading on all turbines in the farm. 
 
A demo version of a software model has been developed in MATLAB®. The software includes 
all aspects of the Flight Leader concept and is intended to be used by operators of offshore wind 
farms and can be applied to process the SCADA data and mechanical load measurements from 
an (offshore) wind farm. The main output of the model is a comparison of the accumulated me-
chanical loading of all turbines in the offshore wind farm. This information can subsequently be 
used to optimise O&M strategies, for example by prioritising the inspection or replacement of 
certain components on the heavier loaded turbines.  
 
The developed software model has been implemented at the ECN Wind turbine Test location 
Wieringermeer (EWTW). Several analyses have been performed where the main goal of the re-
search was to assess if the Flight Leader principle can be accurately applied in practice. In addi-
tion to this the research had the goal to determine what method is best used for characterising 
the relation between SCADA parameters and load indicator, which is essentially the core of the 
Flight Leader principle. Furthermore it has been tried to identify the contributors to insecurities 
in the predictions of the flight leader software. 
 
Finally a second analysis has been performed with the goal of evaluating whether the proposed 
Flight Leader principle can also be applied to make accurate estimations of the load accumula-
tion for all turbines in a large offshore wind farm, where wave-induced loading and wake effects 
play an important role. For this purpose use has been made of data from the Offshore Wind farm 
Egmond aan Zee (OWEZ). 
 
In this report the background regarding the project is explained. Furthermore details regarding 
the developed software model are presented. Next, the most important results from the onshore 
and offshore evaluation of the Flight Leader concept are discussed. Finally, the most important 
conclusions are summarised and an outlook for future research is given. 



4  ECN-E--09-068 

Contents 
 

1. Introduction 7 
1.1 Background 7 
1.2 Objectives 8 
1.3 Approach 8 
1.4 Structure of the report 9 

2. Flight Leader software 11 
2.1 Data input 11 
2.2 Data categorisation 12 
2.3 Empirical database 12 
2.4 Simulation database 13 
2.5 Estimating load indicators 13 
2.6 Output 14 

3. Flight Leader concept evaluation (onshore) 17 
3.1 Wind farm description 17 

3.1.1 Location 17 
3.1.2 Layout 18 
3.1.3 Measurement campaign 18 

3.2 Artificial neural networks 18 
3.2.1 General description 18 
3.2.2 Application 19 

3.3 Results 19 
3.3.1 Selection of load indicator and SCADA parameters 19 
3.3.2 Data categorisation 20 
3.3.3 Relation SCADA parameters and load indicator 21 
3.3.4 Load indicator estimation 22 
3.3.5 Output 22 
3.3.6 Validation 25 

3.4 Conclusions 26 
4. Flight Leader concept evaluation (offshore) 29 

4.1 Wind farm description 29 
4.2 Dataset 29 
4.3 Results 30 

4.3.1 Selection of load indicator and SCADA parameters 30 
4.3.2 Data categorisation 30 
4.3.3 Relation SCADA parameters and load indicator 30 
4.3.4 Load indicator estimation 32 
4.3.5 Output 33 
4.3.6 Validation 35 

4.4 Conclusions 36 
5. Status and future research 37 

5.1 Online implementation 37 
5.2 Automated SCADA parameter selection 37 
5.3 Selecting relevant load indicators 38 
5.4 Impact assumptions 38 

6. References 39 
6.1 Public reports and conference papers 39 
6.2 Confidential reports 39 
6.3 Literature 40 

Appendix A Justification work packages 41 



 

ECN-E--09-068  5 

6.4 WP1: Development of initial model at the EWTW 41 
6.5 WP2: Structural dynamic analyses for N80 turbine 41 
6.6 WP3: Wake analyses for five Nordex N80 turbines 41 
6.7 WP4: Specification of equivalent loads model 41 
6.8 WP5: Programming of equivalent loads computer code 41 
6.9 WP6: Verification of equivalent loads computer code 42 

Appendix B Neural network training procedure 43 
B.1 Initial neural network configuration 43 
B.2 Updating network weights 43 
B.3 Evaluate network performance (early stopping) 44 
B.4 Display network performance 44 

 
 
 



6  ECN-E--09-068 



 

ECN-E--09-068  7 

1. Introduction 

In this chapter first the background of the project is explained. Next, the objectives are listed af-
ter which the followed approach for completing the listed objectives is presented. 
  

1.1 Background 
Previous research has shown that the power output of a turbine, and more importantly, the load 
fluctuations in a wind turbine blade, strongly depend on whether a wind turbine located in a 
farm is operating in the wake of other turbines or not. These observations imply that the loading 
of the turbines located in a large (offshore) wind farm is location specific; the turbines located in 
the middle of the farm operate more often in the wake of other turbines compared to the turbines 
located at the edge of the wind farm. Therefore, it is expected, that during the course of the life-
time of the wind farm certain components will degrade faster on the turbines experiencing 
higher loading, compared to the turbines subject to lower loading.  
 
This kind of information could be a reason to adjust maintenance and inspection schemes ac-
cording to the loading of turbines, instead of assuming similar degradation behaviour for all tur-
bines in the farm. When a major overhaul of a certain component is planned the turbines on 
which the specific component has experienced higher load can be replaced first, whereas the re-
placement of the component on the turbines which have experienced lower loading can be post-
poned for a certain time. This approach can result in important O&M cost savings. 
 
The most obvious way to get insight in the loading of all turbines in an (offshore) wind farm is 
to instrument all turbines with load measurements on the critical components. However, in prac-
tice, after a wind farm is built, the actual loads on components are measured in only very few 
occasions. Such measurements are relevant for model verification or for the detection of (unex-
pected) high loads. The main reason for not measuring these effects is that an adequate meas-
urement campaign is costly and time consuming, especially if all turbines need to be measured.  
 
In this project the so-called ‘Flight Leader concept’ has been developed in order to make esti-
mates of the accumulated loading on the critical components of all turbines in an offshore wind 
farm at acceptable costs. The basic idea behind the flight leader concept is that only a few tur-
bines in an offshore wind farm are equipped with mechanical load measurements. These are la-
belled the ‘Flight Leaders’. Using the measurements on these Flight Leader turbines relations 
should be established between load indicators and standard SCADA parameters (e.g. wind 
speed, yaw direction, pitch angle, etc.), which are measured at all turbines. Once such relation-
ships are determined for the reference turbines in a wind farm (the flight leaders) these can be 
combined with SCADA data from the other turbines in the wind farm. This enables the determi-
nation of the accumulated loading on all turbines in the farm. This is illustrated in Figure 1.1. 
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Figure 1.1 Illustration of the flight leader concept; the load measurements performed on 

the flight leader turbines (indicated by the red circles) are used to establish 
relations between load indicators and standard SCADA parameters; these 
relations are combined with the SCADA data from all other turbines in the 
wind farm in order to estimate the accumulated loading of all turbines in the 
farm. 

 

1.2 Objectives 
The main goal of this project aims at developing a cost effective method for the determining the 
mechanical loads on the different turbines in a wind farm. Sub goals of the project include: 
• Development of a demo version of a software model should be developed which can be used 

process the data (both SCADA and mechanical loads) from an offshore wind farm and pre-
dict the total load accumulation of all turbines in the wind farm. 

• Evaluation of the feasibility and accuracy of the Flight Leader concept using measured data 
from an onshore wind farm. 

• Investigate the added benefit of including the results of aero-elastic simulations in the em-
pirical Flight Leader model.  

 

1.3 Approach 
During the first months of the project firstly functional specifications for the Flight Leader soft-
ware have been drafted [8]. In this document it has been described what functionality should be 
included in the software model and based on this information the actual development of the 
software could be started. Based on the functional specifications technical specifications have 
been written [9]. These describe the different processes in the software in detail and serve as a 
detailed guideline for the actual programming of the software. 
 
Parallel to the drafting of the specifications for the Flight Leader software also the measurement 
infrastructure at the ECN Wind turbine Test site Wieringermeer (EWTW) has been greatly ex-
tended. Firstly, a measurement plan has been drafted [6] where a detailed description of all 
planned instrumentation work has been described. Based on this information the instrumentation 
work at two Nordex N80 turbines has been carried out. After instrumentation of the turbines 
was completed a comprehensive instrumentation report has been written, which describes the 
implemented measurement infrastructure in great detail. The report also includes information of 
the implementation of measured data in ECN’s LTVM database (which contains all measured 
data on the five Nordex N80 turbines), including the formulae for calculating pseudo-signals 
[7]. 
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In addition to this also a detailed wind turbine model has been programmed in ECN’s aero-
elastic code PHATAS [5]. Using measurements of the EWTW farm the model has been evalu-
ated and tuned. Using ECN’s wake analysis program FluxFarm and wind field generation soft-
ware SWIFT various (both free-stream and wake conditions) 3-D wind fields have been gener-
ated, which cover the whole range of operation of a wind turbine. These wind fields then served 
as input for the aero-elastic simulation program. Using the output of the simulations relations 
between SCADA parameters and load indicator are derived and these have been compared with 
the corresponding relations derived from measurements. It is also investigated whether the 
simulations can be applied to accurately predict the load accumulation of a wind turbine. 
 
Based on the detailed technical specifications a demo version of the Flight Leader software has 
been programmed in MATLAB®. After finishing the first version of the demo a start was made 
with evaluating the Flight Leader concept using data from ECN’s EWTW wind farm [11]. 
Based on the experiences gathered while evaluating the Flight Leader concept some changes to 
the software were made [10]. Using the updated software an additional evaluation of the Flight 
Leader concept applied at the Dutch OWEZ offshore wind farm was made1 [12]. 
 
During the course of the project the results of the performed research have been presented at 
various workshops and conferences [1, 2, 3, 4]. 
 

1.4 Structure of the report 
In the following chapters an overview of the results achieved during the course of the project 
‘Flight Leader Concept for Wind Farm Load Counting and Performance Assessment’ is given. 
In chapter 2 the Flight Leader software model is presented. Finally, in chapter 3 and 4 the re-
sults of, respectively, the onshore and offshore evaluation of the Flight Leader concept are dis-
cussed. 

                                                 
1 It should be noted that the evaluation of the Flight Leader concept using data from an offshore wind farm was origi-
nally not foreseen within this project. However, due to good progress (with respect to both time and finance) and the 
possibility to use data from the OWEZ wind farm it was decided to also evaluate the Flight Leader software imple-
mented at an offshore wind farm. 
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2. Flight Leader software 

Developing an empirical software model has been one of the main goals of the Flight Leader 
project. A demo version of the software has been programmed in MATLAB [4, 5, 6]. The soft-
ware includes all aspects of the Flight Leader concept and is intended to be used by operators of 
offshore wind farms and can be applied to process the SCADA data and mechanical load meas-
urements from an (offshore) wind farm. The main output of the model is a comparison of the 
accumulated mechanical loading of all turbines in the offshore wind farm. This information can 
subsequently be used to optimise O&M strategies, for example by prioritising the inspection or 
replacement of certain components on the heavier loaded turbines.  
 
The general structure for the flight leader computer model is shown in the flowchart in Figure 
2.1.  

Categorisation 
module

Characteristic load 
module

Accumulated load 
& output module

Empirical DB
module

SCADA data

Mechanical 
load 

measurements
Pre-processing

Data input

Generation of output

Simulated DB

 
Figure 2.1 General structure for the flight leader computer model. 

 

2.1 Data input 
The most important input for the empirical flight leader model are the data collected from the 
offshore wind farm. Two types of data can be distinguished; (1) SCADA data, which is being 
collected from all turbines, and, (2) mechanical load measurements, which are being collected 
from the flight leader turbines.  
 
Usually the SCADA data is delivered to the (offshore) wind farm owner/operator by the manu-
facturer of the wind turbines in the form of 10-minute statistics. The mechanical load measure-
ments should be collected as time series. These time series need to be processed in order to cal-
culate load indicators (10-minute statistics), which are representative for the degradation or age-
ing of a certain wind turbine component. Since the mechanical load measurement campaign is 
usually performed independently from the wind turbine manufacturer, the processing (including 
quality control/post-validation) of the mechanical load measurements should be done by either 
the wind farm owner/operator or the party performing the mechanical load measurement cam-
paign. The resulting processed 10-minute statistics of the load signals, together with the 10-
minute statistics of the different SCADA parameters subsequently serve as input for the Flight 
Leader model. This is indicated in Figure 2.2. 
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Figure 2.2  Flowchart indicating the different steps for generating the (measured) input 

 (SCADA and mechanical load measurements) data for the flight leader 
 computer model. 

 

2.2 Data categorisation 
Unfortunately a wind turbine does not always operate in normal power production mode. Fur-
thermore, when located in an (offshore) wind farm, wind turbines do not always experience 
free-stream wind conditions. Both mentioned conditions are expected to have an effect on the 
mechanical loading. In order to take this into account the first step of the flight leader model is 
to categorise each timestamp in the dataset in one of the possible combinations of the five pre-
defined turbine states j and three pre-defined wake conditions k. The possible combinations are 
indicated in Table 2.1.  
 
Table 2.1  Possible combinations of turbine states & transitional modes and wake  
  conditions. 

ID Turbine state or transitional mode j Wake condition k 
1.1 

Normal power production 
Free-stream 

1.2 Partial wake 
1.3 Full wake 
2.1 Parked/Idling 

Not Applicable 3.1 Start-up 
4.1 Normal shutdown 
5.1 Emergency shutdown 

 

2.3 Empirical database 
After all available data have been categorised the measurements from the flight leader turbines 
can be used to establish relations between (standard) SCADA parameters and load indicators, 
which are representative for the damage, aging or degradation of a certain component. As men-
tioned in the previous section, these relations are expected to differ for the identified turbine 
states & transitional modes and wake conditions. Therefore the relations between SCADA pa-
rameters and load indicators have to be determined for each of the possible combinations shown 
in Table 2.1. The software model offers the possibility to characterise the relations using more 
traditional methods such as interpolation or multivariate regression but also using artificial neu-
ral network techniques. An example of the software’s empirical database module is shown in 
Figure 2.3. 
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Figure 2.3  The Flight Leader’s empirical database module for establishing relations 

 between SCADA parameters and load indicators. 
 

2.4 Simulation database 
The Flight Leader concept is mainly an empirical concept. However, the software also offers the 
possibility to include results from aero-elastic simulations. This can be useful in case not (yet) 
enough data are available for establishing a solid relation between SCADA parameters and the 
load indicator. This is most likely to occur in the period directly after the commissioning of the 
offshore wind farm when little measured data are available. Furthermore, also for those situa-
tions with a low probability of occurrence, such as emergency shutdowns or extremely high 
wind speeds, including results from simulations might be beneficial. 
 

2.5 Estimating load indicators 
Next step is estimating the load indicators at all turbines in the offshore wind farm. This is 
achieved by combining the SCADA data, collected at all turbines, with the relations between 
SCADA parameters and load indicators as stored in the empirical database. Optionally, for this 
process also results from aero-elastic simulations can be incorporated. 
 
The situation might occur that for a certain turbine for a certain amount of time no SCADA data 
are available. For these periods the load indicators cannot be estimated neither with the empiri-
cal nor the simulation database. In order to ensure a fair comparison of the total accumulated 
loading the software also contains a procedure for handling missing data. 
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2.6 Output 
Finally, the last part of the model is the process of generating and displaying the desired output 
of the flight leader model. The main output consists of a comparison of the accumulated me-
chanical loading of all turbines in the offshore wind farm. This output needs to be shown for the 
several load indicators (e.g. blade root bending, tower bottom bending or main shaft torque). 
 

 
Figure 2.4  Example of the output generation model of the Flight Leader software, where 

 the relative (to turbine 3) load accumulation of all turbines is displayed. 
 
Besides the main output the software model can calculate and display various breakdowns of the 
accumulated loading. For instance the contribution of each turbine state or transitional mode or 
wake condition to the total accumulated loading can be displayed. Furthermore the load accu-
mulation per time period can be studied. These outputs can be used to get more insight in the 
performance of the offshore wind farm and what operating conditions have the largest impact on 
the loading of the turbines in the offshore wind farm. An example of such output is depicted in 
Figure 2.5. 
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Figure 2.5  Example of the output generation model of the Flight Leader software, where 

 the contribution of each load case to the total load accumulation is shown. 
 
Besides calculating and comparing load accumulation the Flight Leader software also offers the 
opportunity to validate the accuracy of its predictions, by comparing the measured load accumu-
lation with the predicted load accumulation for the Flight Leader turbines. This can be done for 
each individual load indicator and load case. 
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3. Flight Leader concept evaluation (onshore) 

In this chapter the approach and results of the first (onshore) evaluation of the Flight Leader 
concept are discussed. The main goal of the research was to assess if the Flight Leader principle 
can be accurately applied in practice. In addition to this the research had the goal to determine 
what method is best used for characterising the relation between SCADA parameters and load 
indicator, which is essentially the core of the Flight Leader principle. Furthermore it has been 
tried to identify the contributors to insecurities in the predictions of the flight leader software. 
 
In the following subsections first some information regarding the measurement infrastructure on 
ECN’s EWTW wind farm is provided. In section 3.2 some brief information on artificial neural 
networks is given. Next, in section 3.3 the most important results of the analysis are presented. 
Finally, in section 3.4 the conclusions are summarised. 
 

3.1 Wind farm description 
During the course of the project a lot of use is made of the data collected from the five Nordex 
N80 turbines at ECN’s EWTW wind farm. In this chapter some background information of the 
location and layout of the wind farm is given. Furthermore, the measurement infrastructure, 
which has been greatly expanded during this project, is presented [13, 14, 15]. 
 

 
Figure 3.1:  Overview of the ECN Wind turbine Test location Wieringermeer (EWTW). 
 

3.1.1 Location 
The ECN Wind turbine Test location Wieringermeer (EWTW) is located in the Wieringermeer, 
a polder in the northeast of the province Noord-Holland, 3 km north of the village of 
Medemblik and 35 km east of ECN Petten. The test location and its surroundings are character-
ised by flat terrain, consisting of mainly agricultural area, with single farmhouses and rows of 
trees. The lake IJsselmeer is located at a distance of 2 km east of EWTW. 
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3.1.2 Layout 
The EWTW contains two rows of wind turbines; a row of five research Nordex N80 turbines 
and a row of four prototype turbines. For wind speed measurements three meteorological masts 
are located at the EWTW; meteorological mast 3 just south of the row of research turbines and 
meteorological masts 1 and 2 just south of the row of prototype turbines. The layout of the 
EWTW farm is shown in Figure 3.1. 
 

3.1.3 Measurement campaign 
Since October 2004 various measurement campaigns have been carried out at the EWTW wind 
farm. The data collected from the five research Nordex N80 turbines include: 
• Maintenance sheets; 
• SCADA data (134 signals, 10-minute statistics) for all five Nordex N80 turbines. The data 

are obtained from Nordex on a daily basis; 
• Measured SCADA data (25 Hz) from all five Nordex N80 turbines; 

o Turbine operational mode; 
o Wind speed; 
o Wind direction; 
o Electrical power output; 
o Generator speed; 
o Yaw direction; 
o Pitch angle. 

• Mechanical load measurements at 2 Nordex N80 turbines (N6 & N8):2 
o Blade root bending moments; 
o Tower bottom bending moments; 
o Tower top torsion; 
o Main shaft torque and bending moments; 
o High speed shaft torque. 

 
The measurements at the Nordex N80 turbines have been used for various types of research. 
Examples are wake analyses, characterising failure behaviour, evaluating condition monitoring 
techniques and developing and evaluating new (wind farm) control strategies. 
 

3.2 Artificial neural networks 
Characterising the relationships between load indicators and SCADA parameters is an essential 
part of the Flight Leader concept. Within this project it has been investigated what characterisa-
tion technique is most accurate and reliable. 
 

3.2.1 General description 
Besides the more ‘classical’ techniques of regression and interpolation so-called ‘artificial neu-
ral networks’ can also be applied to model the relationship between two or more variables. A 
neural network in fact represents a mathematical model, where a number of (transfer) functions 
are connected in parallel and, possibly, also in series. Based on the weighted sum of multiple 
input signals each transfer function calculates a value, which subsequently serves as input for 
the next transfer function. The transfer function, including the weighted summation of multiple 
input signals, is labelled as neuron. A neural network with a sufficient number of neurons is, in 
theory, able to approximate every possible function [16, 17] 
 
                                                 
2 During the course of this project turbine 8 has been full equipped with mechanical load measurements, whereas the 
measurements on turbine 6 have been extended with tower top torsion, main shaft bending and torque and high speed 
shaft torque mechanical load measurements. 
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A schematic representation of a neuron and a neural network (consisting of two ‘hidden’ layers 
of neurons) is shown in Figure 3.2. 
 

 
Figure 3.2  Schematic representation of a neuron and a neural network. 
 
The main advantage of a neural network is the fact that the network can be trained, using suit-
able algorithms, to approximate the relation between input and output variables. As mentioned 
earlier, if the neural network is of sufficient size complex non-linear relations can be approxi-
mated. An obvious disadvantage of using neural networks is the fact that additional software is 
required for designing and training the network. It might be difficult to incorporate this software 
in the actual flight leader software. 
 

3.2.2 Application 
For all analysis performed during the course of this project the MATLAB® Neural Network 
ToolboxTM has been used. The neural networks are trained using the Levenberg-Marquardt 
backprogagation algorithm. In order to prevent over-fitting the early stopping technique is used. 
 

3.3 Results 
In the following subsections the results from the first (onshore) evaluation are presented. In or-
der to keep this report at an acceptable size only a small selection of the full results will be 
shown3. In section 3.4 the most important conclusions of the full analysis are listed. 
 

3.3.1 Selection of load indicator and SCADA parameters 
The evaluation of the Flight Leader software has been performed for four load indicators; the 1 
Hz damage equivalent load range ∆FEQ of:4 
• Blade root flapwise bending;  
• Tower bottom for-aft bending; 
• Main shaft bending; 
• High speed shaft torque. 
 
The damage equivalent load range ∆FEQ is the load range that for some arbitrarily chosen num-
ber of cycles N would, in theory, produce the same damage as all actual load ranges (which fol-
low from rain flow counting) combined: 
 

                                                 
3 Note that all results shown in the following subsections have been derived using artificial neural networks as char-
acterisation method (hence also the description of neural networks in section 3.2. An important part of the first 
evaluation of the Flight Leader concept was to determine the differences between different characterisation methods. 
The results of this comparison are listed in the conclusions in section 3.4. 
4 For the sake of compactness only the results for blade root flapwise bending are discussed in detail in this chapter. 
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where m is the Wohler coefficient, ni the actual number of cycles and ∆Fi the actual load range 
for each occurring case i. 
 
The measured SCADA data parameters, as described in section 3.1.3, are possible input candi-
dates for the artificial neural network. A trial-and-error approach has been adopted in order to 
assess which signals should be in- and excluded in the artificial network. The selected SCADA 
parameters are listed in Table 3.1 for each load case. 
 
Table 3.1 SCADA signals used to estimate the load indicator for blade flapwise bending 
  for each load case. 
Load case Rotor speed Pitch angle Power 

ID avg std skew kurt avg std skew kurt avg std skew kurt 
1.1 o o o o o o   o o o o 
1.2 o o o o o o   o o o o 
1.3 o o o o o o   o o o o 
2.1 o o   o o       
3.1 o o   o o   o o   
4.1 o o   o o   o o   
5.1 o    o    o    

 

3.3.2 Data categorisation 
As discussed in chapter 2 the first step of the analysis is to categorise the data for each turbine i 
and 10-minute timestamp t in one of the pre-defined load cases (see Table 2.1). The results of 
the data categorisation step are displayed in Figure 3.3.  

 
Figure 3.3: Results of the data categorisation step. 
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The figure illustrates that most of the time the turbines operate in normal power production and 
in free-stream conditions. As expected turbines 2, 3 and 4 operate more often in wake condi-
tions compared to turbines 1 and 5 as these turbines are located in the middle of the row con-
figuration (see Figure 3.1). Furthermore, all five turbines are in parked/idling condition for a 
significant part of time. This occurs in case of too low wind speeds or when the turbine is 
stopped for maintenance. Finally, also around 5% of the data could not be categorised in one of 
the defined load cases. This can be caused by (1) the unavailability of the SCADA signals 
which are used to categorise the data or (2) by the fact the data does not meet any the categori-
sation criteria for each of the seven defined load cases. 

3.3.3 Relation SCADA parameters and load indicator 
Next step in the analysis is to establish the relation between the selected SCADA parameters 
and load indicator. A separate relation has to be determined for each of the seven defined load 
cases (see Table 2.1). As an example in Figure 3.4 the characterisation result is shown for blade 
root flapwise bending for the load case power production under free-stream conditions. The 
scatter plot shows the predicted values of the load indicator (output) versus the measured values 
of the load indicator (target).  

 
Figure 3.4  Performance of the neural network trained for estimating the blade root  
  flapwise bending load indicator for a turbine in power production under free-
  stream conditions. Data from turbine 2 (blue) are used to train the neural 
  network, whereas data from turbine 4 (red) are used to validate the network’s 
  performance. 
 
The results presented in the figure indicate that when applying neural networks as characterisa-
tion method the relation between the selected SCADA parameters and load indicator can be de-
termined (turbine 2, see blue data) in a fairly accurate manner. When applying the trained net-
work to data from turbine 4 (see red data) it can be seen that the established relation is also ac-
curate for the same turbine type placed at a different location. 
 
The results (number of data points and coefficient of determination) for all five load cases are 
summarised in Table 3.2. 
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Table 3.2  Number of data points and coefficient of determination for the established 
  relations between SCADA signals and the load indicator for blade flapwise 
  bending. 

Load case Data points R2 
1.1 71139 0.9162 
1.2 5766 0.8922 
1.3 1141 0.8599 
2.1 12355 0.8805 
3.1 2475 0.9563 
4.1 958 0.9411 
5.1 16 0.9222 

 

3.3.4 Load indicator estimation 
In the previous section it has been described that for each of the seven load cases a relation be-
tween the selected SCADA signals and load indicator has been determined and stored in the 
empirical database of the Flight Leader software. Next step is to combine these relations with 
the SCADA collected from all five Nordex N80 turbines in the EWTW wind farm in order to 
make an estimate of the values of the load indicators for each turbine i and timestamp t. 
 
After the load estimation has been executed two post-processing procedures are performed. 
Firstly, outliers are identified using the criteria that the calculated value of a load indicator can 
never be smaller or larger than a certain factor β multiplied with, respectively, the minimum and 
maximum measured value of the load indicator. Timestamps t which do not meet this criteria 
have been classified as NaN in the dataset.  
 
( ) ( ) ( ) ( )

FLiEQiEQFLiEQ FFF ,,, max1min1 Δ⋅+≤Δ≤Δ⋅− ββ     (3.2) 

 
The initial analysis has been performed for different values of β. However, it was found that this 
did not have a significant influence on the number of corrected outliers. The analyses described 
in this report have been performed using β = 0 (no extrapolation possible). 
 
Next step is to ensure that for all turbines an equal amount of data is available. If for a certain 
turbine i at a certain timestamp t the value of the load indicator is unknown the value will be es-
timated by taking the average value of load indicator c at all turbines in the farm for which at 
timestamp t the value of load indicator c is known. 
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where ΔFEQ,c,t is the value for characteristic load c at timestamp t, iavailable and iunavailable represent 
turbine i for which SCADA data are, respectively, available and unavailable, and n is the num-
ber of turbines for which the value of load indicator c is known. 
 

3.3.5 Output 
Now the values of the load indicators have been estimated for each turbines i for each 10-minute 
time period t it is possible to calculate the total load accumulation for each turbine i. Total load 
accumulation ∆Stotal,i for each turbine i is calculated as follows: 
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where ΔSi,t is the value of the load indicator for turbine i and 10-minute timestamp t. 
 
Subsequently, the relative difference in load accumulation is calculated according:  
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where ∆Stotal,i and ∆Stotal,iref are the total load accumulation for turbine i and reference turbine iref 
respectively. 
 
In Figure 3.5 a comparison of the load accumulation for the blade root flapwise bending mo-
ment is shown. The load accumulation of each turbine i is shown relative to the load accumula-
tion of turbine 2. 

 
Figure 3.5 Load accumulation of all five turbines relative to load accumulation of turbine 
  2 for the load indicator for blade root flapwsie bending. 
 
According to the flight leader software the blades of turbine 4 have accumulated most loading 
(8% more than turbine 2), whereas the load accumulation for turbine 1 and 2 is about equal. 
Turbines 3 and 5 have accumulated slightly more load compared to turbine 2 (about 1% and 3% 
respectively). 
 
In order to be able to explain the results shown in Figure 3.5 several breakdowns of the output 
have been generated. This is shown in Figure 3.6, for the results presented in this figure data 
from all five turbines have been used.  
 
In the top graph the accumulated loading for each defined turbine state and transitional mode is 
displayed. It can be seen that, according to the flight leader software, normal power production 
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accounts for about 60% of the total load accumulation. During the parked/idling turbine very 
little load accumulation occurs. For start-up, normal shutdown and, especially, emergency shut-
down the load accumulation is larger compared to the time the turbine operates in these tran-
sient events. 
 
The middle graph indicates that load accumulation for all three wake conditions (free-stream, 
partial- and full wake) the load accumulation is proportional to the time the turbine operates in 
the respective wake condition.  

 
Figure 3.6 Different breakdowns of the load accumulation: (1) per turbine state and 
  transitional mode, (2) per wake condition and (3) per month. The red bars 
  indicate the amount (relative to total) of data available for each category.  
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Finally, the bottom graph indicates that, according to the flight leader software, in January al-
most 30% of all load has been accumulated. Furthermore, in February, March, November and 
December load accumulation is also higher than average. 
 

3.3.6 Validation 
The output shown in the previous graphs is purely based on the calculated output by the flight 
leader software. In order to be able to ensure that the calculated results are reliable it is impor-
tant that the output of the flight leader software is validated. The relationships between SCADA 
parameters and load indicator (see section 3.3.3) have all been derived using data from turbine 2 
only5. By comparing the predicted load accumulation with the measured load accumulation at 
turbine 2 and 4 it is possible to evaluate the accuracy and reliability of the flight leader predic-
tions (see equation 3.6). This comparison is shown in Figure 3.7 for all four load indicators. 
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where Etotal,pred and Etotal,pred are the predicted and measured total electricity production subse-
quently. 
 

 
Figure 3.7 Prediction errors of the Flight Leader software for four different load cases. An 

artificial neural network has been used for characterising the relation, where data 
from turbine 2 have been used to ‘train’ the network and data from turbine 4 for 
validating its performance. 

 
When studying the top left graph it can be seen that for tower bottom for-aft bending for all load 
cases except for parked/idling and, to lesser extent, emergency shutdowns, the predicted and 
measured load accumulation match extremely well (difference < 5%). In Figure 3.6 it was 
shown that close to zero load accumulation takes place during a parked/idling turbine state and 
                                                 
5 Note that for artificial neural networks data from turbine 4 have been used to prevent ‘over-fitting’ of the data.  
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therefore the large prediction error for this load case can be accepted. However, load accumula-
tion during emergency shutdowns is significant and therefore it is necessary to increase the pre-
diction accuracy of the Flight Leader software for this load case. 
 
The second graph shows that for blade root flapwise bending for most load cases the difference 
between predicted and measured load accumulation is relatively small (< 5%). The only larger 
difference between prediction and measurements is for power production in wake conditions for 
turbine 4. At this moment the exact reason for these larger prediction errors is unknown. One 
possible explanation could be the fact that turbine predominantly operates in the wake of one 
turbine, whereas turbine 4 faces the wakes of three turbines most of the time. Not being able to 
measure the amount of wind shear in the rotor plane (which is significant when a turbine oper-
ates in partial wake conditions) could be another factor contributing to the lower accuracy of the 
Flight Leader prediction. In addition to this, similar as was found for tower for-aft bending, the 
prediction error for emergency shutdowns is also slightly larger compared to the other load 
cases. 
 
The results for main shaft bending, as presented in the third graph, indicate that for almost all 
load cases a very good prediction accuracy is found (difference < 5%). The large difference be-
tween predicted and measured load accumulation for emergency shutdowns can be explained by 
the fact that very little data points were available, which causes the determined relation to have 
a lower accuracy. 
 
Finally, in the bottom right graph, which depicts the results for the high speed shaft torque load 
indicator, it can be seen that with a few exceptions the prediction errors by the Flight Leader 
software are relatively small. The largest difference is again found for the parked/idling case but 
since this load case hardly contributes to the total load accumulation the prediction error is ex-
pected to have a negligible influence on the results presented in Figure 3.5. 
 

3.4 Conclusions 
For the first (onshore) analysis the feasibility and accuracy of the flight leader software has been 
evaluated using data from ECN’s wind farm EWTW. The main goal of the research was to as-
sess if the flight leader principle can be accurately applied in practice. In addition to this the re-
search had the goal to determine what method is best used for characterising the relation be-
tween SCADA parameters and load indicator, which is essentially the core of the flight leader 
principle. Furthermore it has been tried to identify the contributors to insecurities in the predic-
tions of the flight leader software. 
 
The evaluation of the flight leader software has first been performed for the load indicator elec-
trical power production. Power production is not a true load indicator in the sense that it is not 
meant as a measure for the degradation of a certain component. However, since power produc-
tion is measured at all five Nordex N80 turbines it is an excellent measure for evaluating the 
feasibility and accuracy of the flight leader principle. The results have shown that for one par-
ticular turbine a large prediction error of the flight leader software occurred. After performing a 
detailed investigation into the causes for this error it has been found that the nacelle anemometer 
is the most likely source of the error. This illustrates that calibrated nacelle anemometers are an 
absolute prerequisite for the reliable application of the flight leader principle. Therefore, for the 
analysis of the four other load indicators the nacelle wind speed has not been used. 
 
The original plan was to investigate three different characterisation methods (second order 
polynomial, partial least squares relationship and an artificial neural network). However, the 
prediction errors, when using the partial least squares relationship, were found to be much larger 
compared to when the other two methods were applied. In order to keep this document at an ac-
ceptable size the results for the partial least squares relationship are not displayed. 
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For the four other load indicators (blade flapwise bending, tower for-aft bending, main shaft 
bending and high speed shaft torque) in general the results have been encouraging. When com-
paring the two characterisation methods the artificial neural network gives the best results. Usu-
ally the second order polynomial relationship gives accurate results for turbine 2 (whose data is 
used to derive the polynomial). However the prediction errors for turbine 4 are generally larger. 
When a neural network is used (which is trained on data from turbine 2) the prediction accuracy 
for turbine 4 is much better. This can be partly attributed to the fact that during the training of 
the neural network data from turbine 4 is used to determine the point where the training should 
be halted (in order to ensure the generalisability of the relation). 
 
When evaluating the accuracy of the flight leader predictions it was found that for the load cases 
parked/idling and emergency shutdowns often large prediction errors occur. For the former this 
can be contributed to the fact that during the parked or idling the mechanical loads are often 
very low and show little variation and as a result cannot be correlated with the selected SCADA 
parameters. For the latter these large prediction errors are a consequence of the fact that only 
very few emergency shutdowns have occurred. Therefore not enough data are available to estab-
lish a solid relation between SCADA parameters and load indicator. A solution here would be to 
use the results of aero-elastic simulations in order to estimate the values of the load indicator for 
a 10-minute time series where an emergency shutdown occurs. 
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4. Flight Leader concept evaluation (offshore) 

The first evaluation of the Flight Leader software showed that in principle the Flight Leader 
concept can be used to estimate the load accumulation of all turbines in a wind farm based on 
load measurements of only a few reference turbines (see chapter3).  
 
The Flight Leader concept is mainly intended to be used for offshore wind farms since here 
O&M costs are high and the benefits of tailor-made maintenance are expected to be larger com-
pared to onshore. Therefore it also has to be shown that the Flight Leader concept is also feasi-
ble to be applied to turbines placed offshore, where wake effects play a more significant role. In 
addition to this offshore turbines also face additional wave-induced loading. 
 
In addition to this main goal some additional analyses have been performed during the second 
evaluation of the Flight Leader concept. The first evaluation showed that artificial neural net-
works are most suited for characterising the relation between load indicator and SCADA pa-
rameters (see section 3.4). During this second evaluation it has been investigated how the per-
formance of a neural network can be further improved by comparing different methods for train-
ing the neural network. 
 
Another conclusion that was drawn from the first evaluation was the fact that for the emergency 
shutdown load case the Flight Leader predictions were less accurate. It was stipulated that this 
was caused by the fact that very little data points were available for this load case and that in-
cluding results from aero-elastic simulations could possibly improve the performance of the 
Flight Leader software for seldom occurring load cases. This has also been investigated during 
the second evaluation discussed in this chapter. 
 
In this chapter the approach and results of the evaluation of the Flight Leader software at the 
Offshore Wind farm Egmond aan Zee (OWEZ) are presented. In the first two subsections some 
information of the wind farm and the dataset is given. In the following subsections the results 
from all steps in the evaluation process are discussed. The last section of this chapter summa-
rises the most important conclusions from the performed evaluation. 
 

4.1 Wind farm description 
OWEZ is the first Dutch offshore wind farm, located 10-18 km from the village Egmond aan 
Zee. The farm consists of 36 Vestas V90 turbines, which are pitch-controlled variable-speed 
machines with a rated power output of 3 MW. Two turbines in the farm are equipped with me-
chanical load measurements on blades and tower and will therefore act as Flight Leader tur-
bines. 
 

4.2 Dataset 
The evaluation has been performed using 9 months of measured data from all 36 turbines. 
Available SCADA signals include nacelle wind speed, rotor rotational speed, pitch angle, elec-
trical power output and nacelle yaw direction. Mechanical load measurements are performed on 
blade (flapwise and edgewise) and tower (north-south and east-west). Additionally, data from 
the meteorological mast and nearby wave buoy are available. 
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4.3 Results 
In the following subsections the results of the offshore evaluation of the Flight Leader concept 
are presented in a similar fashion as has been done in chapter 3. It should be noted that again 
only a small selection of the total results is presented were the focus lies on the main goal of 
proving the feasibility of the Flight Leader concept for a large offshore wind farm. The most 
important conclusions from the additional research are summarised in section 4.4. 
 

4.3.1 Selection of load indicator and SCADA parameters 
The evaluation of the Flight Leader software has been performed for two load indicators6; the 1 
Hz damage equivalent load range ∆FEQ of (see equation 1): 
• Blade root flapwise bending;  
• Tower bottom for-aft bending; 
 
Similar as for the onshore analysis (see section 3.3.1) a trial-and-error approach has been 
adopted in order to assess which signals should be in- and excluded in the artificial network. It 
has also been chosen to, at first, not to include any signals from the meteorological mast or 
wave buoy. The selected SCADA parameters are listed in Table 4.1 for each load case (for both 
load indicators the same set of SCADA parameters has been used). 
 
Table 4.1:  SCADA signals used to estimate the load indicator for tower for-aft bending for 
  each load case. 

Load case Wind speed Rotor speed Pitch angle Power 
ID avg std avg std avg std avg std 
1.1   o o o o o o 
1.2   o o o o o o 
1.3   o o o o o o 
2.1 o  o  o    
3.1 o o o o o o o o 

 

4.3.2 Data categorisation 
As discussed in chapter 2 the first step of the analysis is to categorise the data for each turbine i 
and 10-minute timestamp t in one of the pre-defined load cases (see Table 2.1). It should be 
noted that instead of the original seven load cases for the OWEZ wind farm only five load cases 
have been used since it has not been possible to distinguish between the different transient 
events. Therefore all transient events are categorised as load case 3.1. 
 

4.3.3 Relation SCADA parameters and load indicator 
After identifying the load indicators and relevant SCADA parameters the next step is to estab-
lish the relation between the selected SCADA signals and the load indicator. A separate relation 
has to be devised for each of the five identified load cases. The relations are characterised by an 
artificial neural network, which is trained using data from both Flight Leader turbines. 
 
Half of the total amount of data is used for training the network. Another 25% is used to vali-
date the network’s performance for every iteration step and to halt training at the point where 
generalisation starts decreasing. The final 25% is used as an independent measure (has no influ-
ence on the network’s training process) of the network’s performance when fed with new data. 
 

                                                 
6 For the sake of compactness only the results for blade root flapwise bending are presented in the following pages. 
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The performance of the trained artificial neural network for the load case power production & 
free-stream conditions is shown in Figure 3.4. 
 

 
Figure 4.1 Performance of the neural network trained for estimating the blade root  
  flapwise bending load indicator for a turbine in power production under free-
  stream conditions. 
 
The results presented in the figure indicate that a good relation exists between the selected 
SCADA parameters (see Table 4.1) and the load indicator for the tower bottom for-aft bending 
moment (see equation 1). This is confirmed by the value of the coefficient of determination (R2 
= 0.95). When studying the green data points, which represent the ‘test’ dataset (which has had 
no influence on the network’s training), it can be seen that here also a good performance is 
achieved. This is an important indicator for the generalisability of the neural network (its ability 
to make accurate predictions when fed with new data). Therefore it can be expected that the 
trained neural network will also make accurate predictions for the other turbines in the same 
wind farm for this load indicator. 
 
The results (number of data points and coefficient of determination) for all five load cases are 
summarised in Table 4.2. 
   
Table 4.2  Number of data points and coefficient of determination for the established 
  relations between SCADA signals and the load indicator for tower for-aft 
  bending. 

Load case Data points R2 
1.1 16174 0.9507 
1.2 3266 0.9439 
1.3 1669 0.9593 
2.1 12987 0.6812 
3.1 1193 0.9530 
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The table indicates that for all load cases but parked/idling a good accuracy (of around R2 = 
0.95) is achieved. This might be unexpected, since no wave-describing parameters are included 
as independent variables in the artificial neural network (see Table 4.1). However, wave height 
and direction are, in general, strongly correlated with wind speed and direction. As a result the 
fluctuations in the tower bottom for-aft bending for an offshore turbine can be accurately esti-
mated without information on the wave conditions.  
 
The main reason why for parked/idling more scatter is observed is the fact that no wave-
describing SCADA signals are included as independent variables in the relation. When the tur-
bine is not in operation it also generates no thrust force, which means that the fluctuations in the 
tower bottom for-aft bending are solely caused by wave-induced loading. In case the 10-minute 
significant wave height, direction and period are included as independent parameters a signifi-
cantly improved accuracy is achieved (R2 ≈ 0.80-0.85). However, since the data from the wave 
buoy is missing for large chunks of time, only about 3000 data points are available. Including 
these parameters in the relation also has the consequence that the Flight Leader software cannot 
make any predictions of the value of the load indicator for the periods where no wave data are 
available. This would lead to a significant error when estimating the total load accumulation and 
therefore it is decided to establish the relations without including wave-describing parameters. 
 

4.3.4 Load indicator estimation 
In the previous section it has been described that for each of the five load cases a relation be-
tween the selected SCADA signals and load indicator has been determined and stored in the 
empirical database of the Flight Leader software. Next step is to combine these relations with 
the SCADA collected from all 36 turbines in the offshore wind farm in order to make an esti-
mate of the value of the load indicator the tower for-aft bottom bending moment for each tur-
bine i and timestamp t. 
 

 
Figure 4.2 Results of the post-processing steps for estimating the values of the load 
  indicator for tower for-aft bending. 
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The results of the post-processing are shown in Figure 4.2. The top graph indicates the number 
of data points classified as outliers, the middle graph shows the amount of corrected data for 
each turbine and the bottom graph indicates the percentage of missing data after all post-
processing steps have been performed. 
 
It can be seen that for most turbines the number of outliers is quite low (less than 0.4%) for all 
turbines. However, for some turbines about up to 4% of the estimated values of the load indica-
tor have been classified as outlier. It can also be observed that for these turbines most outliers 
occur for the load case parked/idling. As can be seen in Table 4.2 this is also the load case 
where a less accurate relationship between the selected SCADA parameters and load indicator 
has been established. 
 
Furthermore, the results of post-processing indicate that the amount of corrected data varies 
greatly over the different turbines. For a number of turbines only about 2% of all load estima-
tions had to be done using data from other turbines. Subsequently also a number of turbines has 
had around 10% of their load estimations corrected. Finally, for four turbines more than 20% of 
the estimated values of the load indicator have been derived from other turbines. This should be 
considered when comparing the load accumulation of these turbines with the other turbines as 
will be described further on in this report. 
 
The bottom graph indicates that after both post-processing steps have been completed the 
amount of missing data is identical for all 36 turbines and is equal to less than 0.5% of the total 
amount of data. 
 

4.3.5 Output 
Now the values of the load indicator for tower bottom for-aft bending have been estimated for 
each turbines i for each 10-minutetime period t it is possible to calculate the total load accumu-
lation for each turbine i using equations 3.4 and 3.5. The results are for the tower bottom for-aft 
bending are presented in Figure 3.5 where the load accumulation of each turbine i is shown rela-
tive to the load accumulation of turbine 18. 

 
Figure 4.3 Load accumulation of all five turbines relative to load accumulation of turbine 
  18. 
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The figure indicates that most turbines have suffered a load accumulation which is roughly 
within about 10% of the load accumulation of turbine 18. However, also about 10 turbines have 
accumulated significantly less load. When interpreting these results the outcome of the load es-
timation post-processing steps should be kept in mind (see Figure 4.2). It was shown that for 
turbines 1, 11, 13 and 31 more than 20% of all estimated values of the load indicator have been 
derived by averaging the data from the other turbines. This procedure is necessary to ensure that 
for all turbines an identical amount of data is available for calculating load accumulation but 
also leads to an inaccurate calculation of load accumulation for the mentioned turbines. 
 
In order to get more insight in the presented results a breakdown of the total load accumulation 
has been calculated (see Figure 3.6). The graph shows the contribution of three of the five load 
cases to the total load accumulation (blue bars). In order to interpret the results in both graphs 
the amount of data is also illustrated (red bars). Data from all 36 turbines have been used.  

 
Figure 4.4 Breakdowns of the load accumulation per load case. Note that the results of 
  only three of the five load cases are displayed.  
 
The graph shows that on average the 36 turbines operate in power production and under free-
stream conditions for most of the time. However, the total load accumulation for this load case 
is a much smaller part of the total. The opposite is found in case the turbine operates in wake 
conditions. Especially if the turbines are facing full wake conditions the load accumulation is 
more than two times as large compared to the amount of time the turbines operate in these con-
ditions. Although, not shown in the figure it has been found that when the turbines are in parked 
or idling condition still a significant amount of load accumulation occurs. For onshore turbines 
this was not the case (see Figure 3.6), which indicates that for this load case the wave-induced 
loading is dominant. Finally, relatively the largest load accumulation occurs during transient 
events. This load case accounts for a very small part of the total data but still the load accumula-
tion during this load case is similar to the one for power production under free-stream condi-
tions for which a staggering 10 times as many data are available.  
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4.3.6 Validation 
Last step in the analysis is the validation of the accuracy of the Flight Leader predictions. In or-
der to do this the predicted and measured load accumulation for each load case are calculated 
for both Flight Leader turbines. The prediction errors are subsequently calculated using equation 
3.6. The resulting prediction errors are shown in Figure 4.5. 
 

 
Figure 4.5  Prediction errors of the Flight Leader software for the load indicators for tower 

 bottom for-aft bending and blade root flapwise bending. 
 
The results in left graph show that the Flight Leader predictions of load accumulation are very 
accurate for the load indicator for tower for-aft bending. For the power production and transient 
event load cases the prediction errors are smaller than 2%. For the parked/idling load case the 
errors are slightly larger, which can be contributed to the fact that for this load case the relation 
between SCADA parameters and load indicator showed significantly more scatter compared to 
the relation for the other load cases. 
 
The results in the right graph show that for blade root flapwise bending the Flight Leader gives 
larger prediction errors compared to the errors found for tower bottom for-aft bending. Almost 
all errors are smaller than 5%. For normal power production under free-stream conditions the 
Flight Leader software underestimates the load accumulation of turbine 8 by more than 7%, 
whereas for the parked/idling load case the load accumulation for turbine is underestimated by 
almost 10%. The most likely explanation for the observed higher prediction errors is the fact 
that the load accumulation is calculated using a Wöhler coefficient of m = 10. This has the result 
that outliers have a very dominant effect of the load accumulation calculation. 
 
In order to prove this the total load accumulation has been calculated again but now using a 
Wöhler coefficient of m = 4 (similar as for tower bottom for-aft bending). When evaluating the 
prediction accuracy of the Flight Leader software with these settings it is found that for the 
power production load cases all prediction errors are smaller than 2%. For the transient events 
the error for both turbines is less than 3%, whereas for parked/idling the error is smaller than 5% 
for both turbines. These accuracies are at the same level as was found for tower bottom for-aft 
bending (see left graph), which indicates that the high value of the Wöhler coefficient causes the 
lower accuracy of the Flight Leader software when predicting the load accumulation for blade 
root flapwise bending. 
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4.4 Conclusions 
A full Flight Leader analysis has been performed using data from the OWEZ offshore wind 
farm. The analysis has been performed for mechanical loading on both tower bottom for-aft 
bending and blade root flapwise bending. For both loads the damage equivalent load range is 
used as load indicator. The analysis has shown that the results for both load indicators are very 
similar. This can be explained by considering that during power production the load fluctuations 
in both blade flapwise and tower for-aft bending are mainly caused by fluctuations in rotor 
thrust. As a result the most important findings and conclusions will not be listed separately for 
each load indicator.  
 
A trial-and-error approach has been adopted in order to determine what SCADA parameters are 
relevant for estimating the values of the load indicator. It was found that for both load indicators 
the same SCADA parameters should be included as independent variables in the artificial neural 
network. For each load indicator a relation between the selected SCADA signals and the values 
of the load has been determined. This has been done separately for each of the five identified 
load cases. For almost all load cases an accurate relation is established. Only for tower for-aft 
bending the relation for the parked/idling load case is surrounded by more scatter, which is 
caused by the fact that no wave-describing parameters are included in the relation. 
 
After establishing all required relations the values of the load indicators are estimated for all 36 
turbines in the offshore wind farm. Subsequently, the 10-minute load indicator values have been 
summed in order to calculate total load accumulation of each turbine in the farm. After compar-
ing the total load accumulation of all turbines it has been found that the difference in total load 
accumulation is smaller than 20% for most of turbines. A few exceptions exist, mainly for the 
turbines that have been in parked of idling state for large periods of time.  
 
It has also been analysed what load cases contribute most to total load accumulation. The most 
striking observation is the very high contribution of transient events to the total load accumula-
tion. Despite its low frequency of occurrence for both tower for-aft and blade flapwise bending 
the load accumulation during this load case is about equal to the load accumulation during 
power production in free-stream conditions. Furthermore, also load accumulation during wake 
operation is relatively high. In contradiction to what has been observed onshore, during the 
parked/idling load case still significant load accumulation occurs. For tower for-aft bending this 
is caused by the wave-induced loading, whereas for blade flapwise bending the most likely 
cause is the fluctuating gravitational force acting on the blades during idling. 
 
Finally, also the output of the Flight Leader software has been validated by comparing the pre-
dicted and measured total load accumulation for both Flight Leader turbines. For tower for-aft 
bending very small prediction errors are found for all load cases but parked/idling. The lower 
accuracy of the Flight Leader software here can be explained by the lower accuracy of the rela-
tion between SCADA parameters and load indicator for this load case. The prediction errors for 
blade flapwise bending are found to be larger. After some additional research it was found that 
this is caused by the high value of the Wöhler coefficient (m = 10) for calculating the total load 
accumulation. This has the consequence that outliers have a huge impact on the load accumula-
tion.  
 



 

ECN-E--09-068  37 

5. Status and future research 

Within this project the Flight Leader software has been developed, tested and evaluated using 
data from both an onshore and offshore wind farm. Based on the results of this research it is ad-
vised that in the future the following aspects should be investigated or developed further. 
 

5.1 Online implementation 
The evaluation of the Flight Leader using data both an onshore and offshore wind farm have 
been performed in an ‘offline’ way; where a dataset is retrieved from an already existing wind 
farm, where the measurement infrastructure is not optimised for the application of the Flight 
Leader. In the future the Flight Leader concept should be evaluated using ‘online’ implementa-
tion. During the construction of the wind farm the location of the Flight Leader turbines should 
be carefully selected. Furthermore, all turbines should be equipped with calibrated sensors in 
order to ensure accurate Flight Leader predictions.  
 
After commissioning of the wind farm at regular intervals (every week or month) data should be 
retrieved and fed to the Flight Leader software. The software should be applied in order to up-
date the prediction of load accumulation for all turbines in the farm. This information should be 
combined with results from inspections or condition monitoring systems in order to assess the 
health of the components and adjust the maintenance schemes accordingly. 
 
The offline analysis has shown the Flight Leader concept is a cost-effective method for assess-
ing the load accumulation at all turbines in a wind farm. By using the online implementation the 
practical application of the Flight Leader can be assessed. 
 

5.2 Automated SCADA parameter selection 
Key to the application of the Flight Leader concept are the relations between standard (SCADA) 
signals and load indicators. The more accurate these relations, the more reliable are the calcula-
tions of accumulated loading. Before the relations can be established it has to be decided which 
standard signals should be used to estimate the load indicators. Until now this has been done us-
ing a trial-and-error approach. This however is not ideal, especially since a wind farm operator 
might not have detailed knowledge about the behaviour of the wind turbine. Therefore an auto-
mated procedure should be implemented in the software which uses some statistical method in 
order to select the set of SCADA parameters that should be used to estimate the values of a cer-
tain load indicator. If it turns out that no automatic procedure can be developed at least a library 
should be constructed which contains for a number of load indicators a preferred set of SCADA 
input signals. 
 
In addition to this it will also be worthwhile to use aero-elastic simulations for assessing the im-
portance of the different SCADA parameters for estimating the values of a certain load indica-
tor. The benefit of using simulations is the fact that a large number of input signals are available 
in the simulations, which are not currently measured at the turbines at the EWTW site. Using 
the simulations it can be identified if certain parameters (which are not currently measured) can 
be used to estimate the values of a load indicator with greater accuracy. If this is found to be the 
case the next step would be to investigate if and how it is possible to measure these parameters 
on a modern multi-MW wind turbine. 
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5.3 Selecting relevant load indicators 
For the research done so far relatively simple fatigue-based load indicators have been used. It is 
commonly accepted that for a wind turbine blade and tower fatigue is the most important degra-
dation mechanism. However, the degradation of drive train components is much less well un-
derstood. This is a topic subject to further research. 
 

5.4 Impact assumptions 
During the development of the Flight Leader software several assumptions have been made. It 
needs to be verified whether these assumptions are correct or not. Furthermore, their influence 
on the output of the Flight Leader software should be assessed. 
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Appendix A Justification work packages 

In this appendix the work performed during the course of the project is split up for each of the 
defined work packages in the original project proposal. This makes it easy to understand how 
the originally planned work is performed and where the different results are documented. 
 

6.4 WP1: Development of initial model at the EWTW 
Using the developed Flight Leader software relations between SCADA parameters and load in-
dicators for several wind turbine components have been determined. Separate relations have 
been established for each of the seven defined load cases (which are a combination of turbine 
state and wake condition). Three different characterisation methods have been evaluated where 
it was found that artificial neural networks are the best method for establishing the mentioned 
relations. 
 

6.5 WP2: Structural dynamic analyses for N80 turbine 
A detailed aero-elastic wind turbine model of the Nordex N80 has been developed in ECN’s 
aero-elastic software simulation tool PHATAS. The model has been tuned and validated using 
measured data from turbine 2 at the EWTW wind farm [5]. 
 

6.6 WP3: Wake analyses for five Nordex N80 turbines 
Using ECN’s wind farm wake analysis program FarmFlow has been applied to calculate the ef-
fects of wakes on the five Nordex N80 turbines at the EWTW site. For both a partial and full 
wake situation the added turbulence intensity and wind speed reduction (wake deficit) have 
been calculated for the whole operational range of the turbine. These data have subsequently 
been fed to ECN’s WakeSWIFT code in order to generate 3-D wake wind fields which can be 
used as input for the aero-elastic simulations. 
 

6.7 WP4: Specification of equivalent loads model 
During the first months of the project firstly functional specifications for the Flight Leader soft-
ware have been drafted [8]. In this document it has been described what functionality should be 
included in the software model and based on this information the actual development of the 
software could be started. Based on the functional specifications technical specifications have 
been written [9]. These describe the different processes in the software in detail and serve as a 
detailed guideline for the actual programming of the software. 
 

6.8 WP5: Programming of equivalent loads computer code 
Based on the detailed technical specifications a demo version of the Flight Leader software has 
been programmed in MATLAB® [10]. The software includes all aspects of the Flight Leader 
concept and is intended to be used by operators of offshore wind farms and can be applied to 
process the SCADA data and mechanical load measurements from an (offshore) wind farm. The 
main output of the model is a comparison of the accumulated mechanical loading of all turbines 
in the offshore wind farm. This information can subsequently be used to optimise O&M strate-
gies, for example by prioritising the inspection or replacement of certain components on the 
heavier loaded turbines.  
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6.9 WP6: Verification of equivalent loads computer code 
Extensive analyses have been performed using data form ECN’s wind farm EWTW [11]. The 
performance and accuracy of the Flight Leader software has been evaluated for different load 
indicators. In general the results have been encouraging, where most of the larger errors could 
be explained by the fact that the (SCADA) sensors used at the Nordex N80 turbines are not 
calibrated. Based on the experiences gathered while evaluating the Flight Leader concept some 
changes to the software were made [10].  
 
Although not originally foreseen in the project plan additional analyses have been performed 
using data from an offshore wind farm. The goal of this research was to assess whether the en-
couraging results found for the onshore analysis could also achieved when the Flight Leader 
concept is applied to an offshore wind farm where wave-induced loading and large-scale wake 
effects play an important role. Using data from the OWEZ offshore wind farm it has been con-
firmed that the Flight Leader concept is also valid for large offshore wind farms [12]. 
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Appendix B Neural network training procedure 

In this appendix the training procedure for a neural network is described in more detail. The 
complete procedure is indicated by the flowchart in Figure B.1. In the following subsections a 
description of the different parts are provided. 
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Update network 
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Figure B.1  Flowchart indicating the procedure of neural network training and output 

 visualisation. 

B.1 Initial neural network configuration 
As mentioned already in section 3.2 a neural network in fact represents a mathematical model, 
where a number of (transfer) functions are connected in parallel and, possibly, also in series. 
Based on the weighted sum of multiple input signals each transfer function calculates a value, 
which subsequently serves as input for the next transfer function. The transfer function, includ-
ing the weighted summation of multiple input signals, is labelled as neuron. A neural network 
with a sufficient number of neurons is, in theory, able to approximate every possible function. 
 
To start with the network architecture has to be specified. It has to be decided how many neu-
rons are included in the network. In general it can be said that the more input signals are used 
the more neurons the network should contain. After the architecture is defined the network is 
initialised by randomly choosing a value for each connection weight in the network.  
 

B.2 Updating network weights 
After the initialisation is completed the ‘training’ process of the neural network is started. The 
goal of the training process is to adjust the network weights in such a way that it is able to esti-
mate the values of the output variable as accurately as possible. During the training process the 
following steps are repeated: 

1. Present the training dataset to the neural network. The dataset contains multiple samples 
(10-minute values) of both inputs (SCADA parameters) and output (load indicator). 

2. Compare the network’s output to the desired output from the ‘training’ dataset. 
Calculate the error in each output neuron. 

3. For each neuron, calculate what the output should have been, and a scaling factor, how 
much lower or higher the output must be adjusted to match the desired output. This is 
the local error. 

4. Adjust the weights of each neuron to lower the local error. 
5. Assign ‘blame’ for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights. 
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6. Repeat from step 3 on the neurons at the previous level, using each one’s ‘blame’ as its 
error. 

 

B.3 Evaluate network performance (early stopping) 
Common practice in neural network analysis is the fact that ‘over-fitting’ of the trained network 
should be prevented at all times. Over-fitting is the phenomenon where the network is more ac-
curate in fitting known data (hindsight) but less accurate in predicting new data (foresight). 
Over-fitting mainly occurs when too little training data are available or when the network is 
trained for a too long time. In order to prevent an over-fitting network the early-stopping tech-
nique is usually applied.  
 
The neural network is trained using a ‘training’ dataset. Subsequently, for each iteration, the 
network’s performance is evaluated using a ‘validation’ dataset. Naturally the networks’ predic-
tion error for the training dataset decreases with every iteration. Usually, for the first number of 
iterations, this is also the case for the validation dataset. At the point where the neural network’s 
performance starts decreasing the training is halted. The early-stopping technique is shown 
graphically in Figure B.2 .  
 

 
Figure B.2  Early-stopping technique for preventing over-fitting of a neural network. The 

 prediction error (y-axis) for both the training (blue line) and validation (red 
 line) data sets are plotted as function of the number of performed iterations
 (x-axis). At the point (number of iterations) where the prediction error for the 
 validation dataset starts increasing training should be halted. 

B.4 Display network performance 
After the training of the neural network is completed the performance of the trained network can 
be visualised. Usually this is done by drawing a scatter plot which shows the desired output (in 
this case the measured values of a certain load indicator) on the x-axis versus the predicted out-
put (values of a certain load indicator) on the y-axis. The amount of scatter in this graph is a 
good measure for the accuracy of the neural network: The more accurate the network the less 
scatter will be observed in this graph. 
 
 


