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Summary

Within the We@Sea project ‘Flight Leader Concept for Wind Farm Load Counting and Per-
formance Assessment’ a cost-effective methodology has been developed for assessing the load
accumulation of all turbines in an offshore wind farm.

Instead of equipping all turbines with mechanical load measurements only a few reference
(Flight Leader) turbines are extensively instrumented. Using data from these turbines relations
between standard SCADA parameters and load indicators, which are representative for the age-
ing or degradation of a certain wind turbine component, are established. Once such relationships
are determined these can be combined with SCADA data from the other turbines in the wind
farm. This enables the determination of the accumulated loading on all turbines in the farm.

A demo version of a software model has been developed in MATLAB®. The software includes
all aspects of the Flight Leader concept and is intended to be used by operators of offshore wind
farms and can be applied to process the SCADA data and mechanical load measurements from
an (offshore) wind farm. The main output of the model is a comparison of the accumulated me-
chanical loading of all turbines in the offshore wind farm. This information can subsequently be
used to optimise O&M strategies, for example by prioritising the inspection or replacement of
certain components on the heavier loaded turbines.

The developed software model has been implemented at the ECN Wind turbine Test location
Wieringermeer (EWTW). Several analyses have been performed where the main goal of the re-
search was to assess if the Flight Leader principle can be accurately applied in practice. In addi-
tion to this the research had the goal to determine what method is best used for characterising
the relation between SCADA parameters and load indicator, which is essentially the core of the
Flight Leader principle. Furthermore it has been tried to identify the contributors to insecurities
in the predictions of the flight leader software.

Finally a second analysis has been performed with the goal of evaluating whether the proposed
Flight Leader principle can also be applied to make accurate estimations of the load accumula-
tion for all turbines in a large offshore wind farm, where wave-induced loading and wake effects
play an important role. For this purpose use has been made of data from the Offshore Wind farm
Egmond aan Zee (OWEZ).

In this report the background regarding the project is explained. Furthermore details regarding
the developed software model are presented. Next, the most important results from the onshore
and offshore evaluation of the Flight Leader concept are discussed. Finally, the most important
conclusions are summarised and an outlook for future research is given.
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1. Introduction

In this chapter first the background of the project is explained. Next, the objectives are listed af-
ter which the followed approach for completing the listed objectives is presented.

1.1 Background

Previous research has shown that the power output of a turbine, and more importantly, the load
fluctuations in a wind turbine blade, strongly depend on whether a wind turbine located in a
farm is operating in the wake of other turbines or not. These observations imply that the loading
of the turbines located in a large (offshore) wind farm is location specific; the turbines located in
the middle of the farm operate more often in the wake of other turbines compared to the turbines
located at the edge of the wind farm. Therefore, it is expected, that during the course of the life-
time of the wind farm certain components will degrade faster on the turbines experiencing
higher loading, compared to the turbines subject to lower loading.

This kind of information could be a reason to adjust maintenance and inspection schemes ac-
cording to the loading of turbines, instead of assuming similar degradation behaviour for all tur-
bines in the farm. When a major overhaul of a certain component is planned the turbines on
which the specific component has experienced higher load can be replaced first, whereas the re-
placement of the component on the turbines which have experienced lower loading can be post-
poned for a certain time. This approach can result in important O&M cost savings.

The most obvious way to get insight in the loading of all turbines in an (offshore) wind farm is
to instrument all turbines with load measurements on the critical components. However, in prac-
tice, after a wind farm is built, the actual loads on components are measured in only very few
occasions. Such measurements are relevant for model verification or for the detection of (unex-
pected) high loads. The main reason for not measuring these effects is that an adequate meas-
urement campaign is costly and time consuming, especially if all turbines need to be measured.

In this project the so-called ‘Flight Leader concept’ has been developed in order to make esti-
mates of the accumulated loading on the critical components of all turbines in an offshore wind
farm at acceptable costs. The basic idea behind the flight leader concept is that only a few tur-
bines in an offshore wind farm are equipped with mechanical load measurements. These are la-
belled the ‘Flight Leaders’. Using the measurements on these Flight Leader turbines relations
should be established between load indicators and standard SCADA parameters (e.g. wind
speed, yaw direction, pitch angle, etc.), which are measured at all turbines. Once such relation-
ships are determined for the reference turbines in a wind farm (the flight leaders) these can be
combined with SCADA data from the other turbines in the wind farm. This enables the determi-
nation of the accumulated loading on all turbines in the farm. This is illustrated in Figure 1.1.
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Figure 1.1 Hllustration of the flight leader concept; the load measurements performed on
the flight leader turbines (indicated by the red circles) are used to establish
relations between load indicators and standard SCADA parameters; these
relations are combined with the SCADA data from all other turbines in the
wind farm in order to estimate the accumulated loading of all turbines in the
farm.

1.2 Objectives

The main goal of this project aims at developing a cost effective method for the determining the

mechanical loads on the different turbines in a wind farm. Sub goals of the project include:

e Development of a demo version of a software model should be developed which can be used
process the data (both SCADA and mechanical loads) from an offshore wind farm and pre-
dict the total load accumulation of all turbines in the wind farm.

e Evaluation of the feasibility and accuracy of the Flight Leader concept using measured data
from an onshore wind farm.

e Investigate the added benefit of including the results of aero-elastic simulations in the em-
pirical Flight Leader model.

1.3 Approach

During the first months of the project firstly functional specifications for the Flight Leader soft-
ware have been drafted [8]. In this document it has been described what functionality should be
included in the software model and based on this information the actual development of the
software could be started. Based on the functional specifications technical specifications have
been written [9]. These describe the different processes in the software in detail and serve as a
detailed guideline for the actual programming of the software.

Parallel to the drafting of the specifications for the Flight Leader software also the measurement
infrastructure at the ECN Wind turbine Test site Wieringermeer (EWTW) has been greatly ex-
tended. Firstly, a measurement plan has been drafted [6] where a detailed description of all
planned instrumentation work has been described. Based on this information the instrumentation
work at two Nordex N80 turbines has been carried out. After instrumentation of the turbines
was completed a comprehensive instrumentation report has been written, which describes the
implemented measurement infrastructure in great detail. The report also includes information of
the implementation of measured data in ECN’s LTVM database (which contains all measured
data on the five Nordex N80 turbines), including the formulae for calculating pseudo-signals

[7].
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In addition to this also a detailed wind turbine model has been programmed in ECN’s aero-
elastic code PHATAS [5]. Using measurements of the EWTW farm the model has been evalu-
ated and tuned. Using ECN’s wake analysis program FluxFarm and wind field generation soft-
ware SWIFT various (both free-stream and wake conditions) 3-D wind fields have been gener-
ated, which cover the whole range of operation of a wind turbine. These wind fields then served
as input for the aero-elastic simulation program. Using the output of the simulations relations
between SCADA parameters and load indicator are derived and these have been compared with
the corresponding relations derived from measurements. It is also investigated whether the
simulations can be applied to accurately predict the load accumulation of a wind turbine.

Based on the detailed technical specifications a demo version of the Flight Leader software has
been programmed in MATLAB®. After finishing the first version of the demo a start was made
with evaluating the Flight Leader concept using data from ECN’s EWTW wind farm [11].
Based on the experiences gathered while evaluating the Flight Leader concept some changes to
the software were made [10]. Using the updated software an additional evaluation of the Flight
Leader concept applied at the Dutch OWEZ offshore wind farm was made' [12].

During the course of the project the results of the performed research have been presented at
various workshops and conferences [1, 2, 3, 4].

1.4  Structure of the report

In the following chapters an overview of the results achieved during the course of the project
‘Flight Leader Concept for Wind Farm Load Counting and Performance Assessment’ is given.
In chapter 2 the Flight Leader software model is presented. Finally, in chapter 3 and 4 the re-
sults of, respectively, the onshore and offshore evaluation of the Flight Leader concept are dis-
cussed.

"It should be noted that the evaluation of the Flight Leader concept using data from an offshore wind farm was origi-
nally not foreseen within this project. However, due to good progress (with respect to both time and finance) and the
possibility to use data from the OWEZ wind farm it was decided to also evaluate the Flight Leader software imple-
mented at an offshore wind farm.
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2.  Flight Leader software

Developing an empirical software model has been one of the main goals of the Flight Leader
project. A demo version of the software has been programmed in MATLAB [4, 5, 6]. The soft-
ware includes all aspects of the Flight Leader concept and is intended to be used by operators of
offshore wind farms and can be applied to process the SCADA data and mechanical load meas-
urements from an (offshore) wind farm. The main output of the model is a comparison of the
accumulated mechanical loading of all turbines in the offshore wind farm. This information can
subsequently be used to optimise O&M strategies, for example by prioritising the inspection or
replacement of certain components on the heavier loaded turbines.

The general structure for the flight leader computer model is shown in the flowchart in Figure

2.1.
Empirical DB
g module
SCADA data 3
Categorisation Characteristic load } Accumulated load
module module 7| & output module
Mechanical

load 4

measurements

Data input
ata Inpu Simulated DB |-

Figure 2.1 General structure for the flight leader computer model.

Pre-processin
P 9 Generation of output

2.1 Data input

The most important input for the empirical flight leader model are the data collected from the
offshore wind farm. Two types of data can be distinguished; (1) SCADA data, which is being
collected from all turbines, and, (2) mechanical load measurements, which are being collected
from the flight leader turbines.

Usually the SCADA data is delivered to the (offshore) wind farm owner/operator by the manu-
facturer of the wind turbines in the form of 10-minute statistics. The mechanical load measure-
ments should be collected as time series. These time series need to be processed in order to cal-
culate load indicators (10-minute statistics), which are representative for the degradation or age-
ing of a certain wind turbine component. Since the mechanical load measurement campaign is
usually performed independently from the wind turbine manufacturer, the processing (including
quality control/post-validation) of the mechanical load measurements should be done by either
the wind farm owner/operator or the party performing the mechanical load measurement cam-
paign. The resulting processed 10-minute statistics of the load signals, together with the 10-
minute statistics of the different SCADA parameters subsequently serve as input for the Flight
Leader model. This is indicated in Figure 2.2.
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Figure 2.2 Flowchart indicating the different steps for generating the (measured) input

(SCADA and mechanical load measurements) data for the flight leader
computer model.

2.2 Data categorisation

Unfortunately a wind turbine does not always operate in normal power production mode. Fur-
thermore, when located in an (offshore) wind farm, wind turbines do not always experience
free-stream wind conditions. Both mentioned conditions are expected to have an effect on the
mechanical loading. In order to take this into account the first step of the flight leader model is
to categorise each timestamp in the dataset in one of the possible combinations of the five pre-
defined turbine states j and three pre-defined wake conditions k. The possible combinations are
indicated in Table 2.1.

Table 2.1 Possible combinations of turbine states & transitional modes and wake
conditions.

D Turbine state or transitional mode j Wake condition k
1.1 Free-stream
1.2 Normal power production Partial wake
1.3 Full wake
2.1 Parked/Idling
3.1 Start-u .
4.1 Normal shu}[)down Not Applicable
5.1 Emergency shutdown

2.3 Empirical database

After all available data have been categorised the measurements from the flight leader turbines
can be used to establish relations between (standard) SCADA parameters and load indicators,
which are representative for the damage, aging or degradation of a certain component. As men-
tioned in the previous section, these relations are expected to differ for the identified turbine
states & transitional modes and wake conditions. Therefore the relations between SCADA pa-
rameters and load indicators have to be determined for each of the possible combinations shown
in Table 2.1. The software model offers the possibility to characterise the relations using more
traditional methods such as interpolation or multivariate regression but also using artificial neu-
ral network techniques. An example of the software’s empirical database module is shown in
Figure 2.3.
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Figure 2.3 The Flight Leader’s empirical database module for establishing relations

between SCADA parameters and load indicators.

2.4 Simulation database

The Flight Leader concept is mainly an empirical concept. However, the software also offers the
possibility to include results from aero-elastic simulations. This can be useful in case not (yet)
enough data are available for establishing a solid relation between SCADA parameters and the
load indicator. This is most likely to occur in the period directly after the commissioning of the
offshore wind farm when little measured data are available. Furthermore, also for those situa-
tions with a low probability of occurrence, such as emergency shutdowns or extremely high
wind speeds, including results from simulations might be beneficial.

2.5 Estimating load indicators

Next step is estimating the load indicators at all turbines in the offshore wind farm. This is
achieved by combining the SCADA data, collected at all turbines, with the relations between
SCADA parameters and load indicators as stored in the empirical database. Optionally, for this
process also results from aero-elastic simulations can be incorporated.

The situation might occur that for a certain turbine for a certain amount of time no SCADA data
are available. For these periods the load indicators cannot be estimated neither with the empiri-
cal nor the simulation database. In order to ensure a fair comparison of the total accumulated
loading the software also contains a procedure for handling missing data.
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2.6 Output

Finally, the last part of the model is the process of generating and displaying the desired output
of the flight leader model. The main output consists of a comparison of the accumulated me-
chanical loading of all turbines in the offshore wind farm. This output needs to be shown for the
several load indicators (e.g. blade root bending, tower bottom bending or main shaft torque).

<) output_generation_module - |EI ll
— Ot option:
Characteristic load
Jmef1_load_ecia |
=
r; Accumulated load per ...
(=4
g |1: turkine d
=
©
;E Reference turhine
= 1 a
o
£ 3
= 4
= s
I}
=
=
£
=
o
o
° ]
-
Start time
‘ Year | Manth | Day | Hour |Minute |Sec0nd|
12 1 1 1 1 1 ] 1] 1] i 0 0

turbine |D [-]
End time:

— General option:

| Year |Mnnth| Day ‘ Hour |Minute|Second|
| =003 a7 [ i i

Lipciste Reset Exit

Figure 2.4 Example of the output generation model of the Flight Leader software, where
the relative (to turbine 3) load accumulation of all turbines is displayed.

Besides the main output the software model can calculate and display various breakdowns of the
accumulated loading. For instance the contribution of each turbine state or transitional mode or
wake condition to the total accumulated loading can be displayed. Furthermore the load accu-
mulation per time period can be studied. These outputs can be used to get more insight in the
performance of the offshore wind farm and what operating conditions have the largest impact on
the loading of the turbines in the offshore wind farm. An example of such output is depicted in
Figure 2.5.
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Figure 2.5 Example of the output generation model of the Flight Leader software, where

the contribution of each load case to the total load accumulation is shown.

Besides calculating and comparing load accumulation the Flight Leader software also offers the
opportunity to validate the accuracy of its predictions, by comparing the measured load accumu-
lation with the predicted load accumulation for the Flight Leader turbines. This can be done for
each individual load indicator and load case.
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3.  Flight Leader concept evaluation (onshore)

In this chapter the approach and results of the first (onshore) evaluation of the Flight Leader
concept are discussed. The main goal of the research was to assess if the Flight Leader principle
can be accurately applied in practice. In addition to this the research had the goal to determine
what method is best used for characterising the relation between SCADA parameters and load
indicator, which is essentially the core of the Flight Leader principle. Furthermore it has been
tried to identify the contributors to insecurities in the predictions of the flight leader software.

In the following subsections first some information regarding the measurement infrastructure on
ECN’s EWTW wind farm is provided. In section 3.2 some brief information on artificial neural
networks is given. Next, in section 3.3 the most important results of the analysis are presented.

Finally, in section 3.4 the conclusions are summarised.

3.1 Wind farm description

During the course of the project a lot of use is made of the data collected from the five Nordex
N8O turbines at ECN’s EWTW wind farm. In this chapter some background information of the
location and layout of the wind farm is given. Furthermore, the measurement infrastructure,

which has been greatly expanded during this project, is presented [13, 14, 15].
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Figure 3.1: Overview of the ECN Wind turbine Test location Wieringermeer (EWTW).

3.1.1 Location

The ECN Wind turbine Test location Wieringermeer (EWTW) is located in the Wieringermeer,
a polder in the northeast of the province Noord-Holland, 3 km north of the village of
Medemblik and 35 km east of ECN Petten. The test location and its surroundings are character-
ised by flat terrain, consisting of mainly agricultural area, with single farmhouses and rows of
trees. The lake [Jsselmeer is located at a distance of 2 km east of EWTW.
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3.1.2 Layout

The EWTW contains two rows of wind turbines; a row of five research Nordex N80 turbines
and a row of four prototype turbines. For wind speed measurements three meteorological masts
are located at the EWTW; meteorological mast 3 just south of the row of research turbines and
meteorological masts 1 and 2 just south of the row of prototype turbines. The layout of the
EWTW farm is shown in Figure 3.1.

3.1.3 Measurement campaign

Since October 2004 various measurement campaigns have been carried out at the EWTW wind
farm. The data collected from the five research Nordex N80 turbines include:
e Maintenance sheets;
e SCADA data (134 signals, 10-minute statistics) for all five Nordex N8O turbines. The data
are obtained from Nordex on a daily basis;
e Measured SCADA data (25 Hz) from all five Nordex N80 turbines;
o Turbine operational mode;
Wind speed;
Wind direction;
Electrical power output;
Generator speed;
Yaw direction;
o Pitch angle.
e Mechanical load measurements at 2 Nordex N80 turbines (N6 & N8):*
o Blade root bending moments;
Tower bottom bending moments;
Tower top torsion;
Main shaft torque and bending moments;
High speed shaft torque.

O O O O O

o
(©]
(©]
o

The measurements at the Nordex N8O turbines have been used for various types of research.
Examples are wake analyses, characterising failure behaviour, evaluating condition monitoring
techniques and developing and evaluating new (wind farm) control strategies.

3.2 Artificial neural networks

Characterising the relationships between load indicators and SCADA parameters is an essential
part of the Flight Leader concept. Within this project it has been investigated what characterisa-
tion technique is most accurate and reliable.

3.2.1 General description

Besides the more ‘classical’ techniques of regression and interpolation so-called ‘artificial neu-
ral networks’ can also be applied to model the relationship between two or more variables. A
neural network in fact represents a mathematical model, where a number of (transfer) functions
are connected in parallel and, possibly, also in series. Based on the weighted sum of multiple
input signals each transfer function calculates a value, which subsequently serves as input for
the next transfer function. The transfer function, including the weighted summation of multiple
input signals, is labelled as neuron. A neural network with a sufficient number of neurons is, in
theory, able to approximate every possible function [16, 17]

2 During the course of this project turbine 8 has been full equipped with mechanical load measurements, whereas the
measurements on turbine 6 have been extended with tower top torsion, main shaft bending and torque and high speed
shaft torque mechanical load measurements.
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A schematic representation of a neuron and a neural network (consisting of two ‘hidden’ layers
of neurons) is shown in Figure 3.2.

Neuron Neural network

O

Q ’ Neuron
/

Input Hidden layers Output

Figure 3.2 Schematic representation of a neuron and a neural network.

The main advantage of a neural network is the fact that the network can be trained, using suit-
able algorithms, to approximate the relation between input and output variables. As mentioned
earlier, if the neural network is of sufficient size complex non-linear relations can be approxi-
mated. An obvious disadvantage of using neural networks is the fact that additional software is
required for designing and training the network. It might be difficult to incorporate this software
in the actual flight leader software.

3.2.2 Application
For all analysis performed during the course of this project the MATLAB® Neural Network

Toolbox™ has been used. The neural networks are trained using the Levenberg-Marquardt
backprogagation algorithm. In order to prevent over-fitting the early stopping technique is used.

3.3 Results

In the following subsections the results from the first (onshore) evaluation are presented. In or-
der to keep this report at an acceptable size only a small selection of the full results will be
shown’. In section 3.4 the most important conclusions of the full analysis are listed.

3.3.1 Selection of load indicator and SCADA parameters

The evaluation of the Flight Leader software has been performed for four load indicators; the 1
Hz damage equivalent load range AFgg of:*

e Blade root flapwise bending;

e Tower bottom for-aft bending;

e Main shaft bending;

e High speed shaft torque.

The damage equivalent load range AFyy is the load range that for some arbitrarily chosen num-
ber of cycles N would, in theory, produce the same damage as all actual load ranges (which fol-
low from rain flow counting) combined:

? Note that all results shown in the following subsections have been derived using artificial neural networks as char-
acterisation method (hence also the description of neural networks in section 3.2. An important part of the first
evaluation of the Flight Leader concept was to determine the differences between different characterisation methods.
The results of this comparison are listed in the conclusions in section 3.4.

* For the sake of compactness only the results for blade root flapwise bending are discussed in detail in this chapter.
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3.1)

where m is the Wohler coefficient, #; the actual number of cycles and AF; the actual load range
for each occurring case i.

The measured SCADA data parameters, as described in section 3.1.3, are possible input candi-
dates for the artificial neural network. A trial-and-error approach has been adopted in order to
assess which signals should be in- and excluded in the artificial network. The selected SCADA
parameters are listed in Table 3.1 for each load case.

Table 3.1 SCADA signals used to estimate the load indicator for blade flapwise bending
for each load case.

Load case Rotor speed Pitch angle Power
1D avg std skew  kurt avg std skew  kurt avg std skew  kurt
1.1 0 0 0 0 0 0 0 0 0 0
1.2 0 0 0 0 0 0 0 0 0 0
1.3 0 0 0 0 0 0 0 0 0 0
2.1 0 0 0 0
3.1 0 0 0 0 0 0
4.1 0 0 0 0 0 0
5.1 0 0 0

3.3.2 Data categorisation

As discussed in chapter 2 the first step of the analysis is to categorise the data for each turbine i
and 10-minute timestamp ¢ in one of the pre-defined load cases (see Table 2.1). The results of
the data categorisation step are displayed in Figure 3.3.
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I turbine 1
I turbine 2
[ Tturbine 3
[ turbine 4
I turbine 5

share of total data [%)]

"

11 1.2 1.8 2.1 2.1 4.1 5.1 unknown
load case [-]

Figure 3.3: Results of the data categorisation step.
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The figure illustrates that most of the time the turbines operate in normal power production and
in free-stream conditions. As expected turbines 2, 3 and 4 operate more often in wake condi-
tions compared to turbines 1 and 5 as these turbines are located in the middle of the row con-
figuration (see Figure 3.1). Furthermore, all five turbines are in parked/idling condition for a
significant part of time. This occurs in case of too low wind speeds or when the turbine is
stopped for maintenance. Finally, also around 5% of the data could not be categorised in one of
the defined load cases. This can be caused by (1) the unavailability of the SCADA signals
which are used to categorise the data or (2) by the fact the data does not meet any the categori-
sation criteria for each of the seven defined load cases.

3.3.3 Relation SCADA parameters and load indicator

Next step in the analysis is to establish the relation between the selected SCADA parameters
and load indicator. A separate relation has to be determined for each of the seven defined load
cases (see Table 2.1). As an example in Figure 3.4 the characterisation result is shown for blade
root flapwise bending for the load case power production under free-stream conditions. The
scatter plot shows the predicted values of the load indicator (output) versus the measured values
of the load indicator (target).
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Figure 3.4 Performance of the neural network trained for estimating the blade root
flapwise bending load indicator for a turbine in power production under free-
stream conditions. Data from turbine 2 (blue) are used to train the neural
network, whereas data from turbine 4 (red) are used to validate the network’s
performance.

The results presented in the figure indicate that when applying neural networks as characterisa-
tion method the relation between the selected SCADA parameters and load indicator can be de-
termined (turbine 2, see blue data) in a fairly accurate manner. When applying the trained net-
work to data from turbine 4 (see red data) it can be seen that the established relation is also ac-
curate for the same turbine type placed at a different location.

The results (number of data points and coefficient of determination) for all five load cases are
summarised in Table 3.2.
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Table 3.2 Number of data points and coefficient of determination for the established
relations between SCADA signals and the load indicator for blade flapwise

bending.

Load case Data points R’
1.1 71139 0.9162
1.2 5766 0.8922
1.3 1141 0.8599
2.1 12355 0.8805
3.1 2475 0.9563
4.1 958 0.9411
5.1 16 0.9222

3.3.4 Load indicator estimation

In the previous section it has been described that for each of the seven load cases a relation be-
tween the selected SCADA signals and load indicator has been determined and stored in the
empirical database of the Flight Leader software. Next step is to combine these relations with
the SCADA collected from all five Nordex N80 turbines in the EWTW wind farm in order to
make an estimate of the values of the load indicators for each turbine i and timestamp ¢.

After the load estimation has been executed two post-processing procedures are performed.
Firstly, outliers are identified using the criteria that the calculated value of a load indicator can
never be smaller or larger than a certain factor f multiplied with, respectively, the minimum and
maximum measured value of the load indicator. Timestamps ¢ which do not meet this criteria
have been classified as NaN in the dataset.

(l—ﬂ)-min(AF

EQ,i pr, )S AFEQ,[ < (:B + 1)‘ maX(AF

i) (2)
The initial analysis has been performed for different values of 5. However, it was found that this
did not have a significant influence on the number of corrected outliers. The analyses described
in this report have been performed using £ = 0 (no extrapolation possible).

Next step is to ensure that for all turbines an equal amount of data is available. If for a certain
turbine 7 at a certain timestamp ¢ the value of the load indicator is unknown the value will be es-
timated by taking the average value of load indicator ¢ at all turbines in the farm for which at
timestamp ¢ the value of load indicator ¢ is known.

n

1
EQ.C,lynavaitable » = ; ' Z EQ.C.luyaitate >t (33)

Lavailable

where AF g, is the value for characteristic load ¢ at timestamp ¢, i,ygitapie A0d Lynavaitanie TEPrESent
turbine i for which SCADA data are, respectively, available and unavailable, and » is the num-
ber of turbines for which the value of load indicator ¢ is known.

3.3.5 Output

Now the values of the load indicators have been estimated for each turbines i for each 10-minute
time period ¢ it is possible to calculate the total load accumulation for each turbine i. Total load
accumulation AS,,,;; for each turbine i is calculated as follows:
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N
AS i = m,/ZAS,»’,", (3.4)
t=1

where AS;, is the value of the load indicator for turbine i and 10-minute timestamp ¢.
Subsequently, the relative difference in load accumulation is calculated according:

fo A*Sil‘otal,i - AS
ljfference =
AS

total jiref

(3.5)

total iref

where ASpqi and ASrairer are the total load accumulation for turbine 7 and reference turbine i,
respectively.

In Figure 3.5 a comparison of the load accumulation for the blade root flapwise bending mo-
ment 1s shown. The load accumulation of each turbine 7 is shown relative to the load accumula-
tion of turbine 2.
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accumulated loading relative to turbine 2 [%]
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turbine ID [-]
Figure 3.5 Load accumulation of all five turbines relative to load accumulation of turbine

2 for the load indicator for blade root flapwsie bending.

According to the flight leader software the blades of turbine 4 have accumulated most loading
(8% more than turbine 2), whereas the load accumulation for turbine 1 and 2 is about equal.
Turbines 3 and 5 have accumulated slightly more load compared to turbine 2 (about 1% and 3%
respectively).

In order to be able to explain the results shown in Figure 3.5 several breakdowns of the output
have been generated. This is shown in Figure 3.6, for the results presented in this figure data
from all five turbines have been used.

In the top graph the accumulated loading for each defined turbine state and transitional mode is

displayed. It can be seen that, according to the flight leader software, normal power production
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accounts for about 60% of the total load accumulation. During the parked/idling turbine very
little load accumulation occurs. For start-up, normal shutdown and, especially, emergency shut-
down the load accumulation is larger compared to the time the turbine operates in these tran-

sient events.

The middle graph indicates that load accumulation for all three wake conditions (free-stream,
partial- and full wake) the load accumulation is proportional to the time the turbine operates in
the respective wake condition.
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Figure 3.6
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Different breakdowns of the load accumulation: (1) per turbine state and
transitional mode, (2) per wake condition and (3) per month. The red bars
indicate the amount (relative to total) of data available for each category.
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Finally, the bottom graph indicates that, according to the flight leader software, in January al-
most 30% of all load has been accumulated. Furthermore, in February, March, November and
December load accumulation is also higher than average.

3.3.6 Validation

The output shown in the previous graphs is purely based on the calculated output by the flight
leader software. In order to be able to ensure that the calculated results are reliable it is impor-
tant that the output of the flight leader software is validated. The relationships between SCADA
parameters and load indicator (see section 3.3.3) have all been derived using data from turbine 2
only’. By comparing the predicted load accumulation with the measured load accumulation at
turbine 2 and 4 it is possible to evaluate the accuracy and reliability of the flight leader predic-
tions (see equation 3.6). This comparison is shown in Figure 3.7 for all four load indicators.

AS AS

total , pred -

AS

total ;meas

Error = (3.6)

total ,meas

where Eyiprea and Eyq1req are the predicted and measured total electricity production subse-
quently.
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Figure 3.7 Prediction errors of the Flight Leader software for four different load cases. An
artificial neural network has been used for characterising the relation, where data
from turbine 2 have been used to ‘train’ the network and data from turbine 4 for
validating its performance.

When studying the top left graph it can be seen that for tower bottom for-aft bending for all load
cases except for parked/idling and, to lesser extent, emergency shutdowns, the predicted and
measured load accumulation match extremely well (difference < 5%). In Figure 3.6 it was
shown that close to zero load accumulation takes place during a parked/idling turbine state and

> Note that for artificial neural networks data from turbine 4 have been used to prevent ‘over-fitting” of the data.
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therefore the large prediction error for this load case can be accepted. However, load accumula-
tion during emergency shutdowns is significant and therefore it is necessary to increase the pre-
diction accuracy of the Flight Leader software for this load case.

The second graph shows that for blade root flapwise bending for most load cases the difference
between predicted and measured load accumulation is relatively small (< 5%). The only larger
difference between prediction and measurements is for power production in wake conditions for
turbine 4. At this moment the exact reason for these larger prediction errors is unknown. One
possible explanation could be the fact that turbine predominantly operates in the wake of one
turbine, whereas turbine 4 faces the wakes of three turbines most of the time. Not being able to
measure the amount of wind shear in the rotor plane (which is significant when a turbine oper-
ates in partial wake conditions) could be another factor contributing to the lower accuracy of the
Flight Leader prediction. In addition to this, similar as was found for tower for-aft bending, the
prediction error for emergency shutdowns is also slightly larger compared to the other load
cases.

The results for main shaft bending, as presented in the third graph, indicate that for almost all
load cases a very good prediction accuracy is found (difference < 5%). The large difference be-
tween predicted and measured load accumulation for emergency shutdowns can be explained by
the fact that very little data points were available, which causes the determined relation to have
a lower accuracy.

Finally, in the bottom right graph, which depicts the results for the high speed shaft torque load
indicator, it can be seen that with a few exceptions the prediction errors by the Flight Leader
software are relatively small. The largest difference is again found for the parked/idling case but
since this load case hardly contributes to the total load accumulation the prediction error is ex-
pected to have a negligible influence on the results presented in Figure 3.5.

3.4 Conclusions

For the first (onshore) analysis the feasibility and accuracy of the flight leader software has been
evaluated using data from ECN’s wind farm EWTW. The main goal of the research was to as-
sess if the flight leader principle can be accurately applied in practice. In addition to this the re-
search had the goal to determine what method is best used for characterising the relation be-
tween SCADA parameters and load indicator, which is essentially the core of the flight leader
principle. Furthermore it has been tried to identify the contributors to insecurities in the predic-
tions of the flight leader software.

The evaluation of the flight leader software has first been performed for the load indicator elec-
trical power production. Power production is not a true load indicator in the sense that it is not
meant as a measure for the degradation of a certain component. However, since power produc-
tion is measured at all five Nordex N8O turbines it is an excellent measure for evaluating the
feasibility and accuracy of the flight leader principle. The results have shown that for one par-
ticular turbine a large prediction error of the flight leader software occurred. After performing a
detailed investigation into the causes for this error it has been found that the nacelle anemometer
is the most likely source of the error. This illustrates that calibrated nacelle anemometers are an
absolute prerequisite for the reliable application of the flight leader principle. Therefore, for the
analysis of the four other load indicators the nacelle wind speed has not been used.

The original plan was to investigate three different characterisation methods (second order
polynomial, partial least squares relationship and an artificial neural network). However, the
prediction errors, when using the partial least squares relationship, were found to be much larger
compared to when the other two methods were applied. In order to keep this document at an ac-
ceptable size the results for the partial least squares relationship are not displayed.
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For the four other load indicators (blade flapwise bending, tower for-aft bending, main shaft
bending and high speed shaft torque) in general the results have been encouraging. When com-
paring the two characterisation methods the artificial neural network gives the best results. Usu-
ally the second order polynomial relationship gives accurate results for turbine 2 (whose data is
used to derive the polynomial). However the prediction errors for turbine 4 are generally larger.
When a neural network is used (which is trained on data from turbine 2) the prediction accuracy
for turbine 4 is much better. This can be partly attributed to the fact that during the training of
the neural network data from turbine 4 is used to determine the point where the training should
be halted (in order to ensure the generalisability of the relation).

When evaluating the accuracy of the flight leader predictions it was found that for the load cases
parked/idling and emergency shutdowns often large prediction errors occur. For the former this
can be contributed to the fact that during the parked or idling the mechanical loads are often
very low and show little variation and as a result cannot be correlated with the selected SCADA
parameters. For the latter these large prediction errors are a consequence of the fact that only
very few emergency shutdowns have occurred. Therefore not enough data are available to estab-
lish a solid relation between SCADA parameters and load indicator. A solution here would be to
use the results of aero-elastic simulations in order to estimate the values of the load indicator for
a 10-minute time series where an emergency shutdown occurs.
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4.  Flight Leader concept evaluation (offshore)

The first evaluation of the Flight Leader software showed that in principle the Flight Leader
concept can be used to estimate the load accumulation of all turbines in a wind farm based on
load measurements of only a few reference turbines (see chapter3).

The Flight Leader concept is mainly intended to be used for offshore wind farms since here
O&M costs are high and the benefits of tailor-made maintenance are expected to be larger com-
pared to onshore. Therefore it also has to be shown that the Flight Leader concept is also feasi-
ble to be applied to turbines placed offshore, where wake effects play a more significant role. In
addition to this offshore turbines also face additional wave-induced loading.

In addition to this main goal some additional analyses have been performed during the second
evaluation of the Flight Leader concept. The first evaluation showed that artificial neural net-
works are most suited for characterising the relation between load indicator and SCADA pa-
rameters (see section 3.4). During this second evaluation it has been investigated how the per-
formance of a neural network can be further improved by comparing different methods for train-
ing the neural network.

Another conclusion that was drawn from the first evaluation was the fact that for the emergency
shutdown load case the Flight Leader predictions were less accurate. It was stipulated that this
was caused by the fact that very little data points were available for this load case and that in-
cluding results from aero-elastic simulations could possibly improve the performance of the
Flight Leader software for seldom occurring load cases. This has also been investigated during
the second evaluation discussed in this chapter.

In this chapter the approach and results of the evaluation of the Flight Leader software at the
Offshore Wind farm Egmond aan Zee (OWEZ) are presented. In the first two subsections some
information of the wind farm and the dataset is given. In the following subsections the results
from all steps in the evaluation process are discussed. The last section of this chapter summa-
rises the most important conclusions from the performed evaluation.

4.1 Wind farm description

OWEZ is the first Dutch offshore wind farm, located 10-18 km from the village Egmond aan
Zee. The farm consists of 36 Vestas V90 turbines, which are pitch-controlled variable-speed
machines with a rated power output of 3 MW. Two turbines in the farm are equipped with me-
chanical load measurements on blades and tower and will therefore act as Flight Leader tur-
bines.

4.2 Dataset

The evaluation has been performed using 9 months of measured data from all 36 turbines.
Available SCADA signals include nacelle wind speed, rotor rotational speed, pitch angle, elec-
trical power output and nacelle yaw direction. Mechanical load measurements are performed on
blade (flapwise and edgewise) and tower (north-south and east-west). Additionally, data from
the meteorological mast and nearby wave buoy are available.
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4.3 Results

In the following subsections the results of the offshore evaluation of the Flight Leader concept
are presented in a similar fashion as has been done in chapter 3. It should be noted that again
only a small selection of the total results is presented were the focus lies on the main goal of
proving the feasibility of the Flight Leader concept for a large offshore wind farm. The most
important conclusions from the additional research are summarised in section 4.4.

4.3.1 Selection of load indicator and SCADA parameters

The evaluation of the Flight Leader software has been performed for two load indicators®; the 1
Hz damage equivalent load range AF of (see equation 1):

e Blade root flapwise bending;

e Tower bottom for-aft bending;

Similar as for the onshore analysis (see section 3.3.1) a trial-and-error approach has been
adopted in order to assess which signals should be in- and excluded in the artificial network. It
has also been chosen to, at first, not to include any signals from the meteorological mast or
wave buoy. The selected SCADA parameters are listed in Table 4.1 for each load case (for both
load indicators the same set of SCADA parameters has been used).

Table 4.1: SCADA signals used to estimate the load indicator for tower for-aft bending for
each load case.
Load case Wind speed Rotor speed Pitch angle Power

ID avg std avg std avg std avg std
1.1 0 0 0 0 0 0
1.2 0 0 0 0 o 0
1.3 0 0 0 0 0 0
2.1 0 0 0

3.1 0 0 0 0 0 0 0 0

4.3.2 Data categorisation

As discussed in chapter 2 the first step of the analysis is to categorise the data for each turbine i
and 10-minute timestamp ¢ in one of the pre-defined load cases (see Table 2.1). It should be
noted that instead of the original seven load cases for the OWEZ wind farm only five load cases
have been used since it has not been possible to distinguish between the different transient
events. Therefore all transient events are categorised as load case 3.1.

4.3.3 Relation SCADA parameters and load indicator

After identifying the load indicators and relevant SCADA parameters the next step is to estab-
lish the relation between the selected SCADA signals and the load indicator. A separate relation
has to be devised for each of the five identified load cases. The relations are characterised by an
artificial neural network, which is trained using data from both Flight Leader turbines.

Half of the total amount of data is used for training the network. Another 25% is used to vali-
date the network’s performance for every iteration step and to halt training at the point where
generalisation starts decreasing. The final 25% is used as an independent measure (has no influ-
ence on the network’s training process) of the network’s performance when fed with new data.

® For the sake of compactness only the results for blade root flapwise bending are presented in the following pages.
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The performance of the trained artificial neural network for the load case power production &
free-stream conditions is shown in Figure 3.4.
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Figure 4.1 Performance of the neural network trained for estimating the blade root
flapwise bending load indicator for a turbine in power production under free-
stream conditions.

The results presented in the figure indicate that a good relation exists between the selected
SCADA parameters (see Table 4.1) and the load indicator for the tower bottom for-aft bending
moment (see equation 1). This is confirmed by the value of the coefficient of determination (R’
= 0.95). When studying the green data points, which represent the ‘test’ dataset (which has had
no influence on the network’s training), it can be seen that here also a good performance is
achieved. This is an important indicator for the generalisability of the neural network (its ability
to make accurate predictions when fed with new data). Therefore it can be expected that the
trained neural network will also make accurate predictions for the other turbines in the same
wind farm for this load indicator.

The results (number of data points and coefficient of determination) for all five load cases are
summarised in Table 4.2.

Table 4.2 Number of data points and coefficient of determination for the established
relations between SCADA signals and the load indicator for tower for-aft
bending.

Load case Data points R’
1.1 16174 0.9507
1.2 3266 0.9439
1.3 1669 0.9593
2.1 12987 0.6812
3.1 1193 0.9530
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The table indicates that for all load cases but parked/idling a good accuracy (of around R’ =
0.95) is achieved. This might be unexpected, since no wave-describing parameters are included
as independent variables in the artificial neural network (see Table 4.1). However, wave height
and direction are, in general, strongly correlated with wind speed and direction. As a result the
fluctuations in the tower bottom for-aft bending for an offshore turbine can be accurately esti-
mated without information on the wave conditions.

The main reason why for parked/idling more scatter is observed is the fact that no wave-
describing SCADA signals are included as independent variables in the relation. When the tur-
bine is not in operation it also generates no thrust force, which means that the fluctuations in the
tower bottom for-aft bending are solely caused by wave-induced loading. In case the 10-minute
significant wave height, direction and period are included as independent parameters a signifi-
cantly improved accuracy is achieved (R’ = 0.80-0.85). However, since the data from the wave
buoy is missing for large chunks of time, only about 3000 data points are available. Including
these parameters in the relation also has the consequence that the Flight Leader software cannot
make any predictions of the value of the load indicator for the periods where no wave data are
available. This would lead to a significant error when estimating the total load accumulation and
therefore it is decided to establish the relations without including wave-describing parameters.

4.3.4 Load indicator estimation

In the previous section it has been described that for each of the five load cases a relation be-
tween the selected SCADA signals and load indicator has been determined and stored in the
empirical database of the Flight Leader software. Next step is to combine these relations with
the SCADA collected from all 36 turbines in the offshore wind farm in order to make an esti-
mate of the value of the load indicator the tower for-aft bottom bending moment for each tur-
bine i and timestamp ¢.
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Figure 4.2 Results of the post-processing steps for estimating the values of the load
indicator for tower for-aft bending.
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The results of the post-processing are shown in Figure 4.2. The top graph indicates the number
of data points classified as outliers, the middle graph shows the amount of corrected data for
each turbine and the bottom graph indicates the percentage of missing data after all post-
processing steps have been performed.

It can be seen that for most turbines the number of outliers is quite low (less than 0.4%) for all
turbines. However, for some turbines about up to 4% of the estimated values of the load indica-
tor have been classified as outlier. It can also be observed that for these turbines most outliers
occur for the load case parked/idling. As can be seen in Table 4.2 this is also the load case
where a less accurate relationship between the selected SCADA parameters and load indicator
has been established.

Furthermore, the results of post-processing indicate that the amount of corrected data varies
greatly over the different turbines. For a number of turbines only about 2% of all load estima-
tions had to be done using data from other turbines. Subsequently also a number of turbines has
had around 10% of their load estimations corrected. Finally, for four turbines more than 20% of
the estimated values of the load indicator have been derived from other turbines. This should be
considered when comparing the load accumulation of these turbines with the other turbines as
will be described further on in this report.

The bottom graph indicates that after both post-processing steps have been completed the
amount of missing data is identical for all 36 turbines and is equal to less than 0.5% of the total
amount of data.

4.3.5 Output

Now the values of the load indicator for tower bottom for-aft bending have been estimated for
each turbines i for each 10-minutetime period ¢ it is possible to calculate the total load accumu-
lation for each turbine 7 using equations 3.4 and 3.5. The results are for the tower bottom for-aft
bending are presented in Figure 3.5 where the load accumulation of each turbine i is shown rela-
tive to the load accumulation of turbine 18.
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Figure 4.3 Load accumulation of all five turbines relative to load accumulation of turbine
18.
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The figure indicates that most turbines have suffered a load accumulation which is roughly
within about 10% of the load accumulation of turbine 18. However, also about 10 turbines have
accumulated significantly less load. When interpreting these results the outcome of the load es-
timation post-processing steps should be kept in mind (see Figure 4.2). It was shown that for
turbines 1, 11, 13 and 31 more than 20% of all estimated values of the load indicator have been
derived by averaging the data from the other turbines. This procedure is necessary to ensure that
for all turbines an identical amount of data is available for calculating load accumulation but
also leads to an inaccurate calculation of load accumulation for the mentioned turbines.

In order to get more insight in the presented results a breakdown of the total load accumulation
has been calculated (see Figure 3.6). The graph shows the contribution of three of the five load
cases to the total load accumulation (blue bars). In order to interpret the results in both graphs
the amount of data is also illustrated (red bars). Data from all 36 turbines have been used.
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Figure 4.4 Breakdowns of the load accumulation per load case. Note that the results of

only three of the five load cases are displayed.

The graph shows that on average the 36 turbines operate in power production and under free-
stream conditions for most of the time. However, the total load accumulation for this load case
is a much smaller part of the total. The opposite is found in case the turbine operates in wake
conditions. Especially if the turbines are facing full wake conditions the load accumulation is
more than two times as large compared to the amount of time the turbines operate in these con-
ditions. Although, not shown in the figure it has been found that when the turbines are in parked
or idling condition still a significant amount of load accumulation occurs. For onshore turbines
this was not the case (see Figure 3.6), which indicates that for this load case the wave-induced
loading is dominant. Finally, relatively the largest load accumulation occurs during transient
events. This load case accounts for a very small part of the total data but still the load accumula-
tion during this load case is similar to the one for power production under free-stream condi-
tions for which a staggering 10 times as many data are available.
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4.3.6 Validation

Last step in the analysis is the validation of the accuracy of the Flight Leader predictions. In or-
der to do this the predicted and measured load accumulation for each load case are calculated
for both Flight Leader turbines. The prediction errors are subsequently calculated using equation
3.6. The resulting prediction errors are shown in Figure 4.5.
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Figure 4.5 Prediction errors of the Flight Leader software for the load indicators for tower
bottom for-aft bending and blade root flapwise bending.

The results in left graph show that the Flight Leader predictions of load accumulation are very
accurate for the load indicator for tower for-aft bending. For the power production and transient
event load cases the prediction errors are smaller than 2%. For the parked/idling load case the
errors are slightly larger, which can be contributed to the fact that for this load case the relation
between SCADA parameters and load indicator showed significantly more scatter compared to
the relation for the other load cases.

The results in the right graph show that for blade root flapwise bending the Flight Leader gives
larger prediction errors compared to the errors found for tower bottom for-aft bending. Almost
all errors are smaller than 5%. For normal power production under free-stream conditions the
Flight Leader software underestimates the load accumulation of turbine 8 by more than 7%,
whereas for the parked/idling load case the load accumulation for turbine is underestimated by
almost 10%. The most likely explanation for the observed higher prediction errors is the fact
that the load accumulation is calculated using a Wohler coefficient of m = 10. This has the result
that outliers have a very dominant effect of the load accumulation calculation.

In order to prove this the total load accumulation has been calculated again but now using a
Wohler coefficient of m = 4 (similar as for tower bottom for-aft bending). When evaluating the
prediction accuracy of the Flight Leader software with these settings it is found that for the
power production load cases all prediction errors are smaller than 2%. For the transient events
the error for both turbines is less than 3%, whereas for parked/idling the error is smaller than 5%
for both turbines. These accuracies are at the same level as was found for tower bottom for-aft
bending (see left graph), which indicates that the high value of the Wohler coefficient causes the
lower accuracy of the Flight Leader software when predicting the load accumulation for blade
root flapwise bending.
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4.4 Conclusions

A full Flight Leader analysis has been performed using data from the OWEZ offshore wind
farm. The analysis has been performed for mechanical loading on both tower bottom for-aft
bending and blade root flapwise bending. For both loads the damage equivalent load range is
used as load indicator. The analysis has shown that the results for both load indicators are very
similar. This can be explained by considering that during power production the load fluctuations
in both blade flapwise and tower for-aft bending are mainly caused by fluctuations in rotor
thrust. As a result the most important findings and conclusions will not be listed separately for
each load indicator.

A trial-and-error approach has been adopted in order to determine what SCADA parameters are
relevant for estimating the values of the load indicator. It was found that for both load indicators
the same SCADA parameters should be included as independent variables in the artificial neural
network. For each load indicator a relation between the selected SCADA signals and the values
of the load has been determined. This has been done separately for each of the five identified
load cases. For almost all load cases an accurate relation is established. Only for tower for-aft
bending the relation for the parked/idling load case is surrounded by more scatter, which is
caused by the fact that no wave-describing parameters are included in the relation.

After establishing all required relations the values of the load indicators are estimated for all 36
turbines in the offshore wind farm. Subsequently, the 10-minute load indicator values have been
summed in order to calculate total load accumulation of each turbine in the farm. After compar-
ing the total load accumulation of all turbines it has been found that the difference in total load
accumulation is smaller than 20% for most of turbines. A few exceptions exist, mainly for the
turbines that have been in parked of idling state for large periods of time.

It has also been analysed what load cases contribute most to total load accumulation. The most
striking observation is the very high contribution of transient events to the total load accumula-
tion. Despite its low frequency of occurrence for both tower for-aft and blade flapwise bending
the load accumulation during this load case is about equal to the load accumulation during
power production in free-stream conditions. Furthermore, also load accumulation during wake
operation is relatively high. In contradiction to what has been observed onshore, during the
parked/idling load case still significant load accumulation occurs. For tower for-aft bending this
is caused by the wave-induced loading, whereas for blade flapwise bending the most likely
cause is the fluctuating gravitational force acting on the blades during idling.

Finally, also the output of the Flight Leader software has been validated by comparing the pre-
dicted and measured total load accumulation for both Flight Leader turbines. For tower for-aft
bending very small prediction errors are found for all load cases but parked/idling. The lower
accuracy of the Flight Leader software here can be explained by the lower accuracy of the rela-
tion between SCADA parameters and load indicator for this load case. The prediction errors for
blade flapwise bending are found to be larger. After some additional research it was found that
this is caused by the high value of the Wohler coefficient (m = 10) for calculating the total load
accumulation. This has the consequence that outliers have a huge impact on the load accumula-
tion.
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5. Status and future research

Within this project the Flight Leader software has been developed, tested and evaluated using
data from both an onshore and offshore wind farm. Based on the results of this research it is ad-
vised that in the future the following aspects should be investigated or developed further.

5.1  Online implementation

The evaluation of the Flight Leader using data both an onshore and offshore wind farm have
been performed in an ‘offline’ way; where a dataset is retrieved from an already existing wind
farm, where the measurement infrastructure is not optimised for the application of the Flight
Leader. In the future the Flight Leader concept should be evaluated using ‘online’ implementa-
tion. During the construction of the wind farm the location of the Flight Leader turbines should
be carefully selected. Furthermore, all turbines should be equipped with calibrated sensors in
order to ensure accurate Flight Leader predictions.

After commissioning of the wind farm at regular intervals (every week or month) data should be
retrieved and fed to the Flight Leader software. The software should be applied in order to up-
date the prediction of load accumulation for all turbines in the farm. This information should be
combined with results from inspections or condition monitoring systems in order to assess the
health of the components and adjust the maintenance schemes accordingly.

The offline analysis has shown the Flight Leader concept is a cost-effective method for assess-
ing the load accumulation at all turbines in a wind farm. By using the online implementation the
practical application of the Flight Leader can be assessed.

5.2 Automated SCADA parameter selection

Key to the application of the Flight Leader concept are the relations between standard (SCADA)
signals and load indicators. The more accurate these relations, the more reliable are the calcula-
tions of accumulated loading. Before the relations can be established it has to be decided which
standard signals should be used to estimate the load indicators. Until now this has been done us-
ing a trial-and-error approach. This however is not ideal, especially since a wind farm operator
might not have detailed knowledge about the behaviour of the wind turbine. Therefore an auto-
mated procedure should be implemented in the software which uses some statistical method in
order to select the set of SCADA parameters that should be used to estimate the values of a cer-
tain load indicator. If it turns out that no automatic procedure can be developed at least a library
should be constructed which contains for a number of load indicators a preferred set of SCADA
input signals.

In addition to this it will also be worthwhile to use aero-elastic simulations for assessing the im-
portance of the different SCADA parameters for estimating the values of a certain load indica-
tor. The benefit of using simulations is the fact that a large number of input signals are available
in the simulations, which are not currently measured at the turbines at the EWTW site. Using
the simulations it can be identified if certain parameters (which are not currently measured) can
be used to estimate the values of a load indicator with greater accuracy. If this is found to be the
case the next step would be to investigate if and how it is possible to measure these parameters
on a modern multi-MW wind turbine.
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5.3 Selecting relevant load indicators

For the research done so far relatively simple fatigue-based load indicators have been used. It is
commonly accepted that for a wind turbine blade and tower fatigue is the most important degra-
dation mechanism. However, the degradation of drive train components is much less well un-
derstood. This is a topic subject to further research.

5.4 Impact assumptions

During the development of the Flight Leader software several assumptions have been made. It
needs to be verified whether these assumptions are correct or not. Furthermore, their influence
on the output of the Flight Leader software should be assessed.
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Appendix A Justification work packages

In this appendix the work performed during the course of the project is split up for each of the
defined work packages in the original project proposal. This makes it easy to understand how
the originally planned work is performed and where the different results are documented.

6.4 WP1: Development of initial model at the EWTW

Using the developed Flight Leader software relations between SCADA parameters and load in-
dicators for several wind turbine components have been determined. Separate relations have
been established for each of the seven defined load cases (which are a combination of turbine
state and wake condition). Three different characterisation methods have been evaluated where
it was found that artificial neural networks are the best method for establishing the mentioned
relations.

6.5 WRP2: Structural dynamic analyses for N80 turbine

A detailed aero-elastic wind turbine model of the Nordex N80 has been developed in ECN’s
aero-elastic software simulation tool PHATAS. The model has been tuned and validated using
measured data from turbine 2 at the EWTW wind farm [5].

6.6 WP3: Wake analyses for five Nordex N80 turbines

Using ECN’s wind farm wake analysis program FarmFlow has been applied to calculate the ef-
fects of wakes on the five Nordex N80 turbines at the EWTW site. For both a partial and full
wake situation the added turbulence intensity and wind speed reduction (wake deficit) have
been calculated for the whole operational range of the turbine. These data have subsequently
been fed to ECN’s WakeSWIFT code in order to generate 3-D wake wind fields which can be
used as input for the aero-elastic simulations.

6.7 WP4: Specification of equivalent loads model

During the first months of the project firstly functional specifications for the Flight Leader soft-
ware have been drafted [8]. In this document it has been described what functionality should be
included in the software model and based on this information the actual development of the
software could be started. Based on the functional specifications technical specifications have
been written [9]. These describe the different processes in the software in detail and serve as a
detailed guideline for the actual programming of the software.

6.8 WPS: Programming of equivalent loads computer code

Based on the detailed technical specifications a demo version of the Flight Leader software has
been programmed in MATLAB® [10]. The software includes all aspects of the Flight Leader
concept and is intended to be used by operators of offshore wind farms and can be applied to
process the SCADA data and mechanical load measurements from an (offshore) wind farm. The
main output of the model is a comparison of the accumulated mechanical loading of all turbines
in the offshore wind farm. This information can subsequently be used to optimise O&M strate-
gies, for example by prioritising the inspection or replacement of certain components on the
heavier loaded turbines.
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6.9 WPG6: Verification of equivalent loads computer code

Extensive analyses have been performed using data form ECN’s wind farm EWTW [11]. The
performance and accuracy of the Flight Leader software has been evaluated for different load
indicators. In general the results have been encouraging, where most of the larger errors could
be explained by the fact that the (SCADA) sensors used at the Nordex N8O turbines are not
calibrated. Based on the experiences gathered while evaluating the Flight Leader concept some
changes to the software were made [10].

Although not originally foreseen in the project plan additional analyses have been performed
using data from an offshore wind farm. The goal of this research was to assess whether the en-
couraging results found for the onshore analysis could also achieved when the Flight Leader
concept is applied to an offshore wind farm where wave-induced loading and large-scale wake
effects play an important role. Using data from the OWEZ offshore wind farm it has been con-
firmed that the Flight Leader concept is also valid for large offshore wind farms [12].
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Appendix B Neural network training procedure

In this appendix the training procedure for a neural network is described in more detail. The
complete procedure is indicated by the flowchart in Figure B.1. In the following subsections a
description of the different parts are provided.

Validation
dataset

Training

dataset
L Updated

Initial neural Next iteration Updatg network S Evaluate network
network weights performance

network

no /i\ yes Display

Stop training P network

performance
Figure B.1 Flowchart indicating the procedure of neural network training and output

visualisation.

B.1 Initial neural network configuration

As mentioned already in section 3.2 a neural network in fact represents a mathematical model,
where a number of (transfer) functions are connected in parallel and, possibly, also in series.
Based on the weighted sum of multiple input signals each transfer function calculates a value,
which subsequently serves as input for the next transfer function. The transfer function, includ-
ing the weighted summation of multiple input signals, is labelled as neuron. A neural network
with a sufficient number of neurons is, in theory, able to approximate every possible function.

To start with the network architecture has to be specified. It has to be decided how many neu-
rons are included in the network. In general it can be said that the more input signals are used
the more neurons the network should contain. After the architecture is defined the network is
initialised by randomly choosing a value for each connection weight in the network.

B.2 Updating network weights

After the initialisation is completed the ‘training’ process of the neural network is started. The
goal of the training process is to adjust the network weights in such a way that it is able to esti-
mate the values of the output variable as accurately as possible. During the training process the
following steps are repeated:

1. Present the training dataset to the neural network. The dataset contains multiple samples
(10-minute values) of both inputs (SCADA parameters) and output (load indicator).

2. Compare the network’s output to the desired output from the ‘training’ dataset.
Calculate the error in each output neuron.

3. For each neuron, calculate what the output should have been, and a scaling factor, how
much lower or higher the output must be adjusted to match the desired output. This is
the local error.

4. Adjust the weights of each neuron to lower the local error.

Assign ‘blame’ for the local error to neurons at the previous level, giving greater
responsibility to neurons connected by stronger weights.

b
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6. Repeat from step 3 on the neurons at the previous level, using each one’s ‘blame’ as its
error.

B.3 Evaluate network performance (early stopping)

Common practice in neural network analysis is the fact that ‘over-fitting’ of the trained network
should be prevented at all times. Over-fitting is the phenomenon where the network is more ac-
curate in fitting known data (hindsight) but less accurate in predicting new data (foresight).
Over-fitting mainly occurs when too little training data are available or when the network is
trained for a too long time. In order to prevent an over-fitting network the early-stopping tech-
nique is usually applied.

The neural network is trained using a ‘training’ dataset. Subsequently, for each iteration, the
network’s performance is evaluated using a ‘validation’ dataset. Naturally the networks’ predic-
tion error for the training dataset decreases with every iteration. Usually, for the first number of
iterations, this is also the case for the validation dataset. At the point where the neural network’s
performance starts decreasing the training is halted. The early-stopping technique is shown
graphically in Figure B.2
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Figure B.2 Early-stopping technique for preventing over-fitting of a neural network. The
prediction error (y-axis) for both the training (blue line) and validation (red
line) data sets are plotted as function of the number of performed iterations
(x-axis). At the point (number of iterations) where the prediction error for the
validation dataset starts increasing training should be halted.
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B.4 Display network performance

After the training of the neural network is completed the performance of the trained network can
be visualised. Usually this is done by drawing a scatter plot which shows the desired output (in
this case the measured values of a certain load indicator) on the x-axis versus the predicted out-
put (values of a certain load indicator) on the y-axis. The amount of scatter in this graph is a
good measure for the accuracy of the neural network: The more accurate the network the less
scatter will be observed in this graph.
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