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Abstract
This report presents the research activities and achieved results on extreme event recognition
(EER) and control (EEC). This work has been performed within the framework of WP3 of the
SenterNovem project“Sustainable Control (SusCon). A new approach to operate wind turbines”
with project number EOSLT02013.

An extreme wind gust with direction change can lead to large loads on the turbine (causing fa-
tigue) and unnecessary turbine shut-downs by the supervisory system due to rotor overspeed. The
proposed EER algorithm is based on a nonlinear observer (extended Kalman filter) that estimates
the oblique wind inflow angle and the blade effective wind speed signals, which are then used
by a detection algorithm (CUSUM test) to recognize extreme events. The nonlinear observer re-
quires that blade root bending moments measurements (in-plane and out-of-plane) are available.
Once an extreme event is detected, an EEC algorithm is activated that (i) tries to prevent the rotor
speed from exceeding the overspeed limit by fast collectiveblade pitching, and (ii) reduces 1p
blade loads by means of individual pitch control algorithm,designed in anH∞ optimal control
setting. The method is demonstrated on a complex nonlinear test turbine model.
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List of Symbols

The following symbols (with SI dimensions) are used in the text(see also Figure 1 for visualiza-
tion of some wind speed definitions):

cA cord length of blade elementA,
CL, CD, CM lift, drag, and pitch-wise torque coefficients,
FA,bp Prandtl’s tip and root correction term,
M b
x,M b

z lead-wise (in-plane) and flap-wise (out-of-plane) bladeb root bending moment,
Mk (= [M1

x ,M
2
x ,M

3
x ,M

1
z ,M

2
z ,M

3
z ]
T ) vector of blade root bending moments,

Pk state covariance matrix in the extended Kalman filter,
qA,bt aerodynamic pitch-wise moment (nose-down positive) of elementA of bladeb,
qA,bf,n , qA,bf,l aerodynamic forces in normal and leadwise direction for elementA of bladeb,
qAn,lift annulus-averaged lift component of the aerodynamic forcesin normal direction,
R rotor radius,
rA distance from rotor center to the middle of annulusA.
δrA breadth of annulusA,
rroot blade root radius,
SA (= 2πrAδrA) area of rotor annulusA
Tg generator torque reference (output of controller),
Ts sampling time at which the turbine model runs,
T ctrs sampling time at which the control algorithms run,
Ū mean undisturbed wind speed in the longitudinal wind field direction,
Ūax, Ūyw, Ūtlt axial, yaw-oriented and tilt-oriented components ofŪ
ŪAi , V̄ A

i equilibrium axial and tangential induction wind speeds,
δUAi dynamic term on the axial induction wind speed,
δUA,bi,corr Glauert’s correction term toUAi for oblique inflow,

U
A2/3

i (= Ū
A2/3

i + δU
A2/3

i ) axial induction wind speed of annulus at2/3R

UA,btr transport velocity of the wake,
UAtr,F annulus-averaged transport velocity including Prandtl’s tip/root correction term,
ub bladeb effective wind speed,
V̄ A
n , V̄ A

l equilibrium normal and lead-wise effective wind speed at blade elementA,
δV A,b

n , δV A,b
l normal and lead-wise effective wind speed variation at elementA of bladeb,

x state of the (reduced) SDS model,
xa augmented state, consisting ofx, [u1, u2, u3]

T andβ,
αA,b angle of attack of elementA of bladeb,
β additional (toφ̄yw) yaw misalignment angle for modeling wind direction change,
ζ rotor coning angle,
θb pitch angle reference for bladeb (output of controller),
ρ air density,
δφ̄A angle of attack correction for blade elementA due to rotor coning,
φA,b pitch angle of elementA of bladeb,
φb (= φ1,b) pitch angle of bladeb, measured at the blade root,
φ̄yw, φ̄tlt equilibrium yaw and tilt angles of the wind speedŪ (see Figure 1),
ψb azimuth angle of bladeb,
ψ = ψ1 rotor azimuth angle,
δψ azimuth offset angle due to oblique inflow orientation,
Ω rotor speed,
Ωf filtered rotor speed,
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Figure 1: Definitions of tiltŪtlt, yaw Ūyw and axialŪax oriented components of the equilibrium
wind vectorŪ , and yawφ̄yw and tilt φ̄tlt angles.
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1 Introduction

Extreme wind conditions, such as wind gusts and/or wind direction changes, can lead to very large
turbine loads causing fatigue, automatic shut-downs or even damage to some turbine components.
Such effects could be circumvented by means of timely recognition of the extreme event (extreme
event recognition), followed by a promptly and proper control system reaction(extreme event
control). In this report the extreme event recognition (EER) is performed by means of estimating
the oblique inflow angle (yaw misalignment) together with blade-effective wind speed signals
from measurements on the flapwise (out-of-plane) and leadwise (in-plane) bending moments in
the blade roots. These estimates are used to recognize extreme events (wind gusts and/or wind
direction changes), which activates an extreme event control (EEC) algorithm. The EEC has
on the one hand the purpose of preventing rotor overspeed (which can trigger complete turbine
shutdown by the supervisory system) by collectively pitching the blades toward feather, and on
the other hand to reduce 1p (once per revolution) blade loadsby individually pitching the blades.

The problem ofrotor-effectivewind speed estimation has been addressed in the literature on sev-
eral occasions, where the usual approach is to estimate the aerodynamic torque on the rotorTa(u),
which is subsequently inverted to obtain the rotor-uniformwind speedu. The estimation ofTa
is done either by neglecting the rotor dynamics and using thestatic power-wind curve (Thiringer
and Petersson, 2005; Ma et al., 1995), or by considering a simple first-order model of the ro-
tor dynamics, i.e. neglecting shaft torsion, (van der Hooftand van Engelen, 2004; Kodama and
Matsuzaka, 2000; Sbarbaro and Peña, 2000). Recently, somewhat more advanced models have
been used, including first shaft torsion mode to the rotor dynamics (Østergaard et al., 2007). In
estimating the aerodynamic torque, the majority of these methods rely on the computation of the
time-derivative of the rotor speed measurement, and are as such very sensitive to measurement
noise as well as to unmodelled higher order dynamics such as tower sidewards motion and col-
lective blade lead-lag motion. To avoid this, appropriate filtering of the rotor speed is necessary,
which inevitably introduces time delay and, hence, sacrifices the performance of the wind estima-
tor. More advanced methods have, though, also been studied,including extended Kalman filter
(Ma et al., 1995), linear Kalman filter in combination withTa-tracking control loop (Østergaard
et al., 2007), or augmented-state nonlinear filters (Sbarbaroand Peña, 2000). Still, all these pub-
lications have several things in common: they all assume onesingle rotor-effective wind speed
signal, no yaw misalignment, a rigid rotor and tower, and useequilibrium-wake aerodynamics
based on static power-wind curves.

To the best of the author’s knowledge there has been no publication on simultaneous estimation
of blade-effective wind speeds and yaw misalignment angle, which isin the basis of the EER
algorithm developed in this report. More specifically, an augmented state extended Kalman fil-
ter (EKF) is utilized, based on a nonlinear wind turbine model.This model consists of a linear
structural dynamics module (SDM) on which aerodynamic forces and torques are acting as com-
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Figure 2: Turbine simulation scheme
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puted by a nonlinear aerodynamic conversion module (ACM), driven by realistic blade-effective
wind speed signals. Compared to the model used in the Kalman filter, a model of an even higher
complexity is used for simulation and analysis, the main components of which are given in block-
schematic form in Figure 2 (in which the physical meaning of the signals is described later on).
These components are:

• 40-th order linearized structural dynamics model (SDM), obtained using the software TURBU

(van Engelen, 2007), with degrees of freedom in tower foundation, blade flanges and drive
train, and including pitch actuator dynamics,

• nonlinear aerodynamic conversion module (ACM) based on blade element momentum
(BEM) theory, including

- dynamic wake effects as modeled by theECN Differential Equation Model
(Snel and Schepers, 1994),

- Glauert’s azimuth-dependent correction term for the axialinduction speed in case of
oblique inflow (van der Hooft et al., 2007),

- correction on the angle of attack due to rotor coning, as implemented in the nonlinear
aero-elastic wind turbine simulation tool PHATAS (Lindenburg and Schepers, 2001),

• linear blade pitch controller regulating the filtered generator speed at its rated level (when
operating at above-rated conditions), and consisting of a PI-controller in series with low-
pass filter at the 3P blade frequency, notch filter at the first tower sideward frequency, and
notch filter at the first collective lead-lag frequency,

• nonlinear generator torque controller based on static optimal-λ QN-curve at below rated
conditions andconstant powerproduction above-rated, operating on the filtered generator
speed signal (same three filters used as in pitch controller),

• additional azimuth-dependent nonlinearities arising from the Coleman transformations be-
tween the fixed reference frame (in which the input/output signals of the SDM are defined)
and the rotating reference frame (in which the signals of theACM are defined), see blocks
M (modulation) and D (demodulation) in Figure 2,

• realistic blade effective wind speed signals are generated based on the helix approxima-
tion concept, including both a deterministic term for modeling wind shear, tower shadow,
tilt and yaw misalignment, wind gust, and a stochastic term that models blade-effective
turbulence.

The EKF uses a simplified model in which the structural dynamics model is reduced to order
20, and the ADM model excludes dynamic wake effects, as well as the effects of the structural
dynamics onto the aerodynamics, i.e. the effects of the vibration and deformation of the blades
and the tower onto the apparent wind speeds are neglected (the leadwise speeds of the blade
elements resulting from the rotation of the rotor is, of course, not neglected, only the variations
around these speeds).

Based on the blade-effective wind speeds and oblique inflow angle, estimated by the EKF, an
extreme event detection mechanism is used, consisting of a cumulative sum (CUSUM) test that
detects (significant) changes in the mean value of the estimated signals. Once the extreme event
flag is raised by the CUSUM test, an EEC algorithm is activated thatconsists of two components.
The first one is a rotor overspeed prevention algorithm that immediately starts pitching the blades
to feather with the maximally allowed pitch speed, and at thesame time sets the reference gen-
erator torque equal to its rated value. This action has the purpose to prevent rotor overspeed in
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order to avoid a possibly unnecessary turbine shutdown by the supervisory system. The conven-
tional power control is turned back on when either the (filtered) rotor speed begins decreasing, or
the pitch angles have reached a suitably defined reference value, which is a function of the axial
component of the (estimated) wind speed. The last one is computed off-line under the assump-
tion of rated rotor speed and rated generator torque. The process of switching the conventional
control algorithm back on is performed in a bumpless manner by means of proper controller state
re-initialization. The second component of the EEC consists ofan individual pitch control (IPC)
algorithm aiming at the reduction of 1p blade loads, which are rather large under oblique inflow
conditions. A modern optimal-H∞ control methodology is used for the design of the IPC. This
loads reduction control should be only activated after the rotor overspeed prevention system is
deactivated, as their simultaneous activity would requireblade pitch speeds exceeding the max-
imal allowable speed. In fact, the IPC could, principally, belet working even when there is no
extreme event, although the resulting continuous cyclic blade pitching might be undesirable. In
the implementation in this report the IPC is only active whenever the estimated oblique inflow
angle is larger (in absolute value) than10o.

The report is organized as follows. The next section explains the notation used throughout the
report, as well as the physical meaning of the used variables. Section 3 describes the structure and
the main components of the turbine simulation model. The algorithm for detection of extreme
events in developed in Section 4, while extreme event controlis the topic of Section 5. The
complete EER-EEC method is tested in simulations in Section 6. The report is concluded in
Section 7 with some concluding remarks.
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2 Notation

For a scalar or vector variablev, v̄ denotes its equilibrium or mean value, whileδv = v − v̄
is called the (current) variation around the equilibrium value. An superscriptcm, as invcm,
means that the variable is defined in multi-blade coordinatesas obtained by performing a Coleman
demodulation (see Section 4.1) of the signalv (v being defined in the rotating reference frame).
Subscripts/subscriptsb andA, as inUA,bn , denote the number of the blade (b = 1, 2, 3) and
the number of the blade element (A = 1, 2, . . . , Nann) for which the variable is defined. For
simplicity of notation it is assumed in the ADM that the number of blade elements is equal to the
number of annuli, and that the length of theA-th blade element is equal to the breadth of annulus
A. The operationA ⊗ B denotes the Kronecker product betweenA andB, while vec(A) stacks
the columns of the matrixA below each other into one vector. The operator⊕ represents the
direct sum of matrices, i.e.A⊕B = blockdiag(A,B). Then-by-n identity matrix is denoted as
In, andδb,i is the Kronecker delta function.
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3 Turbine Simulation Model

The turbine simulation model represents a typical 3-bladed horizontal axis wind turbine (HAWT).
The model consists of an integration of several blocks, as sketched on Figure 2. These blocks are
explained in more detail in the following subsections.

3.1 Structural dynamics system (SDM)

The SDM block consists of a linearized model, obtained with thesoftware TURBU (van Engelen,
2007). The model assumes rigid blades and tower, but containsdegrees of freedom in the blade
flanges, in the tower foundation, in the rotor shaft, and includes the pitch actuator dynamics.
Although the blades are considered rigid, there areNann = 14 blade elements per blade, al-
lowing for a better representation of the aerodynamic forces, as computed from the ADM block,
described in Section 3.3. The model (see Figure 2) has:

• 40 states: positions and speeds in 3 directions for the three blade flange elements and the
tower bottom element, rotational position and speed for thetwo drive-train elements, and 4
states per blade for modeling the servo-pitch actuators at the three blades (all states defined
in multi-blade coordinates, see Section 4.1),

• 130 inputs: 3 reference blade pitch anglesθcm, one reference generator torqueTg, 3Nann

blade element torquesqcmt , 3Nann normal forcesqcmf,n and3Nann leadwise forcesqcmf,l , all
in multi-blade coordinates, and

• 133 outputs: rotor speedΩ, 3 blade root out-of-plane bending momentsM cm
z , 3 blade root

in-plane bending momentsM cm
x , 3Nann blade element pitch angles(δφA,b)cm, 3Nann

normal velocities(δV A,b
n )cm and3Nann leadwise velocities(δV A,b

l )cm, also in multi-blade
coordinates.

The inputsθcm andTg are controlled inputs, the outputsΩ, M cm
z , andM cm

x are assumed mea-
sured, and the remaining inputs and outputs are used for interconnecting the SDM with the ADM.

3.2 Wind generation

The generated blade effective wind speedsub have two components: a deterministic component
which is the same for all blades and is used to represent wind gusts, wind shear and tower shadow,
and a stochastic turbulence component, which is computed onthe basis of the helix interpolation
algorithm, described Appendix C. These blade-effective wind speeds are computed in such a way
that the resulting flapwise blade root bending moments approximate (in terms of spectrum) those
arising from a three-dimensional wind field turbulence. The blade effective wind speed signals
are defined in longitudinal wind field direction (i.e. parallelto the undisturbed wind vector̄U ).
In addition to that, an oblique inflow angleβ is generated by the wind generation module, which
represents yawed flow.

3.3 Aerodynamic module (ADM)

The ADM consists is summarized in an algorithmic form as follows:
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Algorithm 3.1 (ADM)

Given
Equilibrium values and parameters fromTURBU: Ūax, Ūyw, Ūtlt, ŪAi , V̄ A

i , V̄ A
n , V̄ A

l , φ̄A,b, q̄A,bf,n ,

q̄A,bf,l , q̄A,bt , rA, cA, SA, δrA,R, ζ, ρ, CL(α), CD(α), CM (α).

From SDM:ψ, δφA,b, δV A,b
n , δV A,b

l
From wind module:β, ub
From ADM at previous time instant:δUAi

Step 1 Compute transformation matrixT (β) mapping longitudinal wind field direction (direc-
tion of Ū ) to the axial, yaw and tilt direction (see Figure 1):

Ū =
√

Ū2
ax + Ū2

yw + Ū2
tlt,

φ̄yw = arctan
(∣
∣
∣
Ūyw

Ūax

∣
∣
∣

)

sgn
(
Ūyw

)
,

φ̄tlt = arccos

(∣
∣
∣
∣

√
Ū2

ax+Ū2
yw

Ū

∣
∣
∣
∣

)

sgn
(
Ūtlt
)
,

T (β) =





T1(β)
T2(β)
T3



 =





cos(φ̄tlt) cos(φ̄yw + β)
cos(φ̄tlt) sin(φ̄yw + β)

sin φ̄tlt





(1)

Step 2 Compute undisturbed wind speeds, including current blade-effective wind speed varia-
tionsub (containing turbulence and wind gusts):






Uβax
Uβyw
Uβtlt




 = T (β)Ū ,

ψb = ψ + 2(b−1)π
3 , b = 1, 2, 3.

uR = 1
3

∑3
b=1 ub,

δub = ub − uR,




Uβ,gustax

Uβ,gustyw

Uβ,gusttlt




 =






Uβax
Uβyw
Uβtlt




+ T (β)uR,

(2)

Step 3 Compute Glauert’s correctionδUA,bi,corr to the axial induction speed

δψ =







π
2 sgn

(

Uβ,gusttlt

)

, if Uβ,gustyw = 0.

arctan
(∣
∣
∣
Uβ,gust

tlt

Uβ,gust
yw

∣
∣
∣

)

, if (Uβ,gustyw > 0)&(Uβ,gusttlt ≥ 0).

π − arctan
(∣
∣
∣
Uβ,gust

tlt

Uβ,gust
yw

∣
∣
∣

)

, if (Uβ,gustyw < 0)&(Uβ,gusttlt ≥ 0).

π + arctan
(∣
∣
∣
Uβ,gust

tlt

Uβ,gust
yw

∣
∣
∣

)

, if (Uβ,gustyw < 0)&(Uβ,gusttlt < 0).

2π − arctan
(∣
∣
∣
Uβ,gust

tlt

Uβ,gust
yw

∣
∣
∣

)

, if (Uβ,gustyw > 0)&(Uβ,gusttlt < 0).

δUA,bi,corr = 15π
64RrA tan







arctan





√

(U
β,gust
yw )

2
+(U

β,gust
tlt )

2

U
β,gust
ax −U

A2/3
i





2







cos(ψb − δψ)U
A2/3

i

(3)

Step 4 Compute setting angles of blade elementsφA,b, including angle of attack correction
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δφA,R due to rotor coning (ζ)

δφA,R = cA

2rA
sin ζ,

φA,b = φ̄A,b − δφA,R + δφA,b.
(4)

Step 5 Compute normalUA,bn and leadwiseUA,bl effective wind speeds and angle of attacks per
blade element:

δUA,bni = δUAi − δU
A,b
i,corr

UA,Rn = Uβ,gustax − ŪAi − V̄ A
n ,

UA,Rl = −(V̄ A
l + V̄ A

i )




δubax
δubyw
δubtlt



 = T (β)δub

U bl,obq = sin(ψb)
(

Uβ,gustyw + δubyw

)

− cos(ψb)
(

Uβ,gusttlt + δubtlt

)

UA,bn = UA,Rn + δubax − δUA,bni − δV
A,b
n ,

UA,bl = UA,Rl + U bl,obq + δV A,b
l ,

αA,b = arctan
(
UA,b

n

UA,b
l

)

− φA,b.

(5)

Step 6 Compute normal and lead-wise forces and pitch-wise torquesper blade element

δqA,bf,n = 1
2ρcA

(

CL(αA,b)UA,bl + CD(αA,b)UA,bn

)
√
(

UA,bn

)2
+
(

UA,bl

)2
− q̄A,bf,n ,

δqA,bf,l = 1
2ρcA

(

CL(αA,b)UA,bn − CD(αA,b)UA,bl

)
√
(

UA,bn

)2
+
(

UA,bl

)2
− q̄A,bf,l ,

δqA,bt = −1
2ρc

2
ACM (αA,b)

((

UA,bn

)2
+
(

UA,bl

)2
)

− q̄A,bt .

(6)

Step 7 Update dynamic term on axial induction speedδUAi to be used in next time instant
(ECN Differential Equation Model):

UA,btr =

√
(

Uβ,gustax + δubax − ŪAi − δU
A,b
ni

)2
+
(

Uβ,gustyw + δubyw

)2
+
(

Uβ,gusttlt + δubtlt

)2
,

dA,b = 2πrA

3
UA,b

tr√

(UA,b
tr )

2
+(V̄ A,b

l +δV A,b
l )

2
,

FA,bp = 4
π2 arccos

(

e−(R−rA) π

dA,b

)

arccos
(

e−(rA−rroot)
π

dA,b

)

,

FAp = 1
3

∑3
i=1 F

A,b
p ,

UA,btr,F =

√
(

Uβ,gustax + δubax − FAp ŪAi − δU
A,b
ni

)2
+
(

Uβ,gustyw + δubyw

)2
+
(

Uβ,gusttlt + δubtlt

)2
,

UAtr,F = 1
3

∑3
i=1 U

A,b
tr,F ,

fAa = 2π
/∫ 2π

0

1−
rA
R

cos(γ)
(

1+( rA
R )

2
−2

rA
R

cos(γ)
) 3

2
dγ,

qAn,lift =
∑3

b=1
1
2ρcACL(αA,b)UA,bl

√
(

UA,bn

)2
+
(

UA,bl

)2
,

dUA
i

dt =
δrA
ρSA

qA
n,lift−2FA

p U
A
i U

A
tr,F

2RFA
p f

A
a

δUAi ← δUAi + dUA
i

dt Ts.
(7)
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3.4 Conventional controller

The controller is built up of two loops: pitch control for generator speed regulation (active above
rated only) and generator torque control for power regulation (according to optimal-λ QN-curve
below rated, and constant power above rated). Both loops acton the rotor speed filtered with
a series of low-pass filter at the 3P frequency (4th order inverse Chebyshev type II filter with
cutoff frequency of(3P − 0.8) rad/s and 20 dB reduction), band-stop filter around the first tower
sidewards frequencyfsd (2nd order elliptic filter with stop-band[0.85fsd, 1.15fsd] rad/s, 30 dB
reduction and 1 dB ripple), and a band-stop filter at the first collective lead-lag frequencyfll (4th
order elliptic filter with stop-band[0.8fll, 1.05fll] rad/s, 30 dB reduction and 1 dB ripple). The
pitch controller is a PI compensator designed to achieve a gain margin of 2 and a phase margin of
45 degrees.

3.5 Problem Formulation

In this report, an extreme rising wind gust with simultaneous wind direction change is simulated.
These have been chosen as specified in IEC 61400-1: 15 m/s rising wind gust (on top of the mean
wind Ū = 15 m/s and the additional blade-effective turbulence) in conjunction with a direction
change of720/Ū = 48o. A simulation of the complete turbine model with the described extreme
event occurring5 sec after the beginning of the simulation, is shown in Figure 3. On the top
subplot of the figure the rotor speedΩk (the fluctuating [black] curve), together with its filtered
versionΩf

k (the smoother [green] curve) are given. The rated speedΩ̄, being approximately17.7
rpm is given by the bottom dotted line, while the overspeed limit, which should not be exceeded
as this would trigger the supervisory system to start an emergency stop of the turbine, is given
by the top dashed line. The overspeed limit is set to 15 % above the rated value (20.3 rpm).
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Figure 3: Turbine simulation under extreme rising gust and direction change att = 5 sec, without
EEC
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The supervisory system is not modeled in the simulation, so the turbine is not stopped after the
rotor speed exceeds the overspeed limit aroundt = 9 sec. The second subplot in Figure 3 gives
the collective pitch angle of the rotor blades. In the beginning of the simulation the controller
works at below-rated operation region, and switches to above rated when the filtered rotor speed
exceeds18.7 rpm (= Ω̄ + 1 rpm). The third subplot (middle) shows the generator torque.The
constant-power control strategy above rated is easily recognizable by the inverse proportionality
of the generator torque to the filtered rotor speed. The fourth subplot gives the three flap-wise
blade root bending moments. The 1p loads, resulting from the oblique inflow, are clearly seen in
the second half of the simulation. Finally, the last (fifth) subplot in Figure 3 shows the tower base
fore-aft bending moment.

The purpose of the report is to develop algorithm for extreme event control that

• is capable of preventing rotor overspeed, when possible, and

• achieves 1p blade root bending moment reduction.

To this end, the extreme event should be detected at an early stage, which is the focus of the next
section.
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4 Extreme Event Recognition

The recognition of extreme events, proposed here, is based onthe estimation of the wind pa-
rametersub andβ by means of a nonlinear estimator (EKF), which estimates are then used in
a CUSUM test for detecting changes in their mean values as resulting from extreme wind gusts
and/or extreme wind direction changes. This section describes these components in more detail.

4.1 Simplified model

The algorithm for EER utilizes an EKF for the estimation of a so-called augmented statexa,
consisting of the turbine structural model statex and the unknown inputs (i.e. the three blade
effective wind speed signalsub and the oblique inflow angleβ). In order to somewhat reduce
the computational complexity of the EKF, it is based on a more simplified model than the one
used for turbine simulation, described in Section 3. This simplified model also consists of an
interconnection of an SDM and ADM blocks, although their complexity is somewhat simplified
as described below:

(ADM) The aerodynamics neglects the effects of the movement of the blades and tower onto
the torques and forces acting on the blade elements (with theexception of the leadwise
blade element velocity due to rotor rotation, which is, of course, not neglected). This

boils down to settingδV A,b
l =

V̄ A,b
l

Ω̄
(Ω − Ω̄) andδV A,b

n = 0 in Section 3.3. Furthermore,
the blade element pitch angle variations are assumed to be constant over the blade, i.e.
δφA,b = δφb, and are assumed measured at the blade roots. The third simplification is that
equilibrium wake is considered, being equivalent to setting δUAi = 0 (and skipping Step 7
in the algorithm of Section 3.3). The variations of the axial induction wind speed around
the equilibrium value will then be (approximately) incorporated into the blade effective
wind speed estimates as if there was equivalent longitudinal wind speed variation.

(SDM) The order of the structural model which is used for simulatingthe wind turbine (being
40), is reduced to 20 using the model reduction by balanced truncation technique. In this
way, the 20 least controllable and observable states in the SDM model are removed. This
model reduction is performed on the SDM model with all 130 inputs inputs, but only the
10 measured outputs (i.e.Ω, δφb,M cm

x andM cm
z ).

(Ts) The model reduction, mentioned above, is performed after resampling the SDM model to
T ctrs = 0.02 sec (the sampling time SDM for turbine simulation isTs = 0.005 sec).

Define the Coleman transformationTM (·) (modulation) and inverse Coleman transformation
TD(·) (demodulation)

TD(ψ)
.
=

1

3





1 1 1
2 sin(ψ1) 2 sin(ψ2) 2 sin(ψ3)
2 cos(ψ1) 2 cos(ψ2) 2 cos(ψ3)



 , TM (ψ)
.
=





1 sin(ψ1) cos(ψ1)
1 sin(ψ2) cos(ψ2)
1 sin(ψ3) cos(ψ3)



 = T−1
D (ψ).

The mapTD is used to transform variables, defined in the rotating reference frame, to the non-
rotating reference frame (e.g.M cm

z = TD(ψ)Mz), while TM is used for the inverse operation.
Using this notation, the simplified model can be compactly described in the following state-space
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form
Structural dynamics:
xk+1 = Axk +Bδvcmk +Bdδd

cm
k

δM cm
k = Cxk +Dδvcmk +Ddδd

cm
k

δΩk = CΩxk +DΩδv
cm
k

δφcmk = Cφxk +DΩδv
cm
k

Coleman (de)modulation:
δMk = (I2 ⊗ TM (ψk))δM

cm
k

δφk = TM (ψk)δφ
cm
k

δdcmk = (I3Nann
⊗ TD(ψk))δdk

δvcmk = (TD(ψk)⊕ 1)δvk
Aerodynamics:
δdk = fADM (δΩk, δφk, uk, βk)

(8)

wherexk ∈ R
n contains the (reduced) SDM model state,

δMT
k = [δM1

z , δM
2
z , δM

3
z , δM

1
x , δM

2
x , δM

3
x ]k,

is a vector of in-plane and out-of-plane blade root bending moments,δvTk = [δθT , δTg]k ∈ R
4

contains the control signals (being the reference blade pitch angles and generator torque),uTk =
[u1, u2, u3]k represents the blade-effective wind speeds,δφTk = [δφ1, δφ2, δφ3]k contains the
blade pitch angles, and

δdk = vec











δq1,1n . . . δqNann,1
n δq1,1l . . . δqNann,1

l δq1,1t . . . δqNann,1
t

δq1,2n . . . δqNann,2
n δq1,2l . . . δqNann,2

l δq1,2t . . . δqNann,2
t

δq1,3n . . . δqNann,3
n δq1,2l . . . δqNann,3

l δq1,3t . . . δqNann,3
t






k




 (9)

is a long vector consisting of all blade element normal and lead-wise force variations and pitch-
wise torque variations. The functionfADM (δΩk, δφk, uk, βk) represents the equations (6), rewrit-
ten in terms of the variables{Ωk, δφk, uk, βk} by using equations (1)-(5) and under the simplify-
ing assumptions for the ACM, described in the beginning of this section.

The following nonlinear model then relates the inputs to the measured outputs

xk+1=Axk +B(TD(ψk)⊕ 1)δvk +Bd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk)

δMk=(I ⊗ TM (ψk)) (Cxk +D(TD(ψk)⊕ 1)δvk +Dd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk))
δΩk=CΩxk +DΩ(TD(ψk)⊕ 1)δvk,
δφk=TM (ψk)(Cφxk +Dφ(TD(ψk)⊕ 1)δvk)

(10)
where the rotor azimuthψk is viewed as known time-varying parameter sinceψk is needed in
fADM (δΩk, δφk, uk, βk) but depends only on the rotor speedΩ up to time instant(k − 1), but
not onΩk (and, hence, is not a function of the current state).

The goal is to construct a filter that uses the blade root bendingmoment measurementsMk to
estimate the statexk together with the unknown inputsuk andβk.

4.2 Augmented-state extended Kalman filter

For the purpose of EER, the unknown inputsuk andβk in model (10) need to be estimated. One
way to do this is model them as the response of a given stochastic model to a random white noise
process, to append this model to the turbine dynamics model and then use a Kalman filter to esti-
mate both the state of the turbine and the state of the stochastic model from whichuk andβk are
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computed. Although blade-effective wind turbulence models do exist (van Engelen and Schaak,
2007), their parametrization is in practice not an easy task. A much more practical approach is
the so-calledaugmented-stateKalman filter technique, which is often used in the literaturefor the
estimation of (time-varying) unknown input signals (disturbances), see e.g. Kanev and Verhaegen
(2005) and the references therein. The basic idea behind thisapproach is to model the unknown
input using arandom walk model

[
uk+1

βk+1

]

=

[
uk
βk

]

+ rk, (11)

whererk is a zero-mean white Gaussian process with covariance matrix Rr. Usually, the co-
variance matrixRr of the noise termrk is viewed as design parameter that provides a trade-off
between tracking speed and smoothness of the estimates. Forsimplicity, it is often selected as
diagonal matrix. Faster tracking of the true signals can be obtained by appropriately increasing
the elements ofRr, which however results in less smooth (i.e. more noisy) estimates, and vice
versa.

Basically, the model (11) represents an integrated white noise variable, so that the output will
have its energy concentrated in the lower frequency band, and hence using such model is mostly
suitable for modeling constant or slowly varying signals. The blade effective wind speeds and
the wind orientation angle are naturally low frequency signals, making such kind of modeling
sufficient. Given the random walk model (11), the statex of the system (10) is augmented with
the unknown inputs, resulting in the following augmented-state model

xa
k+1

︷ ︸︸ ︷




xk+1

uk+1

βk+1



 =

f(xa
k,ψk)

︷ ︸︸ ︷




Axk +Bd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk)
uk
βk



+

B̃k(ψk)
︷ ︸︸ ︷




B(TD(ψk)⊕ 1)
0
0



 δvk +

E
︷︸︸︷[

0
I4

]

rk,

δMk =

g(xa
k,ψk)

︷ ︸︸ ︷

(I ⊗ TM (ψk)) (Cxk +Dd(I ⊗ TD(ψk))fADM (δΩk, δφk, uk, βk))

+ (I ⊗ TM (ψk))D(TD(ψk)⊕ 1)
︸ ︷︷ ︸

D̃k(ψk)

δvk,

that, using the equations forδΩk andδφk in (10), can compactly be written in the form

xak+1 = f(xak, ψk) + B̃k(ψk)δvk + Erk,

δMk = g(xak, ψk) + D̃k(ψk)δvk + ek.
(12)

The signalek, which is included in (12), is a zero mean white Gaussian processes with covariance
matrixRe, that can be used to represent measurement noise. Of course,additional measurements
can be added to the blade root bending moments in (12) such as the rotor speed and blade pitch
setting angles, as in equation (10). However, this does not noticeably improve the quality of
the estimation and hence the measurementsδΩk andδφk will only be used to parameterize the
nonlinear functionfADM (δΩk, δφk, uk, βk).

An extended Kalman filter (Boutayeb et al., 1997) can now be applied to the nonlinear state-space
model (12) to estimate the augmented statexak, containing the blade effective wind speedsuk and
the oblique inflow angleβk. The EKF can be summarized as follows

Algorithm 4.1 (Extended Kalman Filter)
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Initialization x̂a0 = E{xa0}, P0 = E{(xa0 − x̂a0)(xa0 − x̂a0)T }.

Step 1 Compute

Ak−1 =
∂f(xa, ψk)

∂xa

∣
∣
∣
∣
xa=x̂a

k−1

Step 2 Time update

x̂ak|k−1 = f(x̂ak−1, ψk) + B̃kδvk−1

Pk|k−1 = Ak−1Pk−1A
T
k−1 + ERrE

T

Step 3 Compute

Ck =
∂g(xa, ψk)

∂xa

∣
∣
∣
∣
xa=x̂a

k|k−1

Step 4 Measurement update:

Kk = Pk|k−1C
T
k

(
CkPk|k−1C

T
k +Re

)−1

x̂ak = x̂ak|k−1 +Kk(δMk − g(xak|k−1, ψk)− D̃kδvk)

Pk = (I −KkCk)Pk|k−1

Remark 4.1 The EKF requires the partial derivatives of the nonlinear functions with respect to
the state variables. These are analytically computed in Appendix A. Of course, they can also be
computed numerically; however, this results in a significant increase of the computational burden,
as well as in numerical inaccuracies. Another, still computationally involved, but derivative-free
alternative to the EKF is the unscented Kalman filter (Wan and van der Merwe, 2000; Julier
et al., 1995). The author’s experience, however, is that for the model described here it often runs
into numerical problems due to the output covariance matrixbecoming numerically singular.

4.3 CUSUM test for Extreme Event Detection

The EKF, discussed above, estimates the turbine structural model statex, together with the blade
effective wind speed signalsu and the oblique inflow angleβ, contained in the augmented state
xa. Under normal conditions,u andβ will be stochastic signals with zero mean value, while
under extreme conditions their mean values will undergo a change. In order that appropriate
extreme event control actions are triggered timely, it is necessary to be able to detect such mean
value changes promptly (with small detection delay and no missed alarms), yet accurately (no
false alarms). An algorithm that directly looks at the current values of the estimateŝuk andβ̂k
would be fast but too sensitive to noise and inaccuracies in the estimates, and would trigger many
false alarms:

To circumvent this, a one-sided CUSUM test (Basseville and Nikiforov, 1993) is used here that
offers a good speed/accuracy trade-off. This algorithm, in combination with the EKF, detects
an extreme wind gust at a very early stage, before any significant increase of the (filtered) rotor
speed. This makes it possible to react timely by pitching the blades, keeping the rotor speed
within allowable limits. The algorithm can be summarized as follows

Algorithm 4.2 (CUSUM test)

Initialization Choose integersku (moving window length),ν (insensitivity parameter),h (thresh-
old) and set̂uf0 = û0 (vector with initial wind speed estimates),ǫ0 = 0.
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Update Compute

ûfk =
(ku − 1)ûfk−1 + ûk

ku
ǫk = max

(

0, ǫk−1 + ûk − ûfk − ν
)

.

Detection If (‖ǫk‖1 > h), setfee,k = 1, else setfee,k = 0.

The signalǫk ∈ R
3, computed by the CUSUM test, remains small under normal circumstances.

The first equation in the update step represents a moving average filter used to estimate the mean
value of the three blade effective wind speed signals. If thewind speed estimatêuk starts in-
creasing,ǫk will also increase until̂uk converges, at which point(ûk − ûfk) < ν andǫk will start
decreasing to zero again. In this way, an easy detection mechanism would be to put a threshold
h on the sum of the elements of the vectorǫk, so that an extreme event flag is raised (fee,k = 1)
whenever‖ǫk‖1 > h. Oncefee,k gets one, the EEC algorithm, described later on, will be ac-
tivated, aiming at preventing rotor overspeed and reducingblade loads. This is the subject of
the next section. It should be pointed out at this stage that the extreme event flagfee,k can be
pulled-down by either the CUSUM test algorithm above (i.e. when‖ǫk‖1 ≤ h), or by the EEC
algorithm itself (when it decides that no further pitching of the blades is necessary, see Algorithm
5.1). In the later case the extreme event might not have finished when the flag is pulled-down, but
the EEC algorithm reckons no (further) action needed.
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5 Extreme Event Control

This section develops and algorithm for EEC that consists of twoparts:

• collective feedforward pitch control for preventing rotor overspeed,

• individual pitch control for blade load reduction.

These two control loops are described in more detail in the following subsections.

5.1 Rotor Overspeed Prevention

As already shown in the simulation on Figure 3, the conventional PI pitch controller is uncapable
to keep the rotor speed within its limits under extreme wind gusts. The reason for that is that (a) it
reacts on the filtered rotor speedΩf

k which is delayed by about 1 sec with respect to the true speed
Ωk, and (b) it does not respond quick enough. In order to react asfast as possible for preventing
rotor overspeed, once an extreme event flag is raised by the CUSUM algorithm in Section 4.3, the
EEC starts pitching the blades to feather with the maximally allowable pitch speed under extreme
conditionsθ̇mx,ext. This results in fast reduction of the rotor speed, but has as aside effect a very
large tower base fore-aft moment due to the large reduction of the rotor thrust force. In order to
limit the tower base moment, after some time∆teec (about 1 sec) the pitching speed is reduced
to the maximum pitch speed under normal conditions,θ̇mx.

The conventional generator torque control at above-rated conditions was designed to achieve
constant power, equal to the rated power (see Section 3.4). This implies a negative generator
torque sensitivity to rotor speed variation, i.e.∂Tg/∂Ω < 0. This has a destabilizing effect on
the rotor speed, which is stabilized by the pitch control algorithm. However, due to the very
slow dynamics of the pitch actuators, this results in higheroscillations of the rotor speed around
its reference (rated) value. At extreme conditions, this destabilizing effect is removed by using
a constant generator torque curve equal to the rated valueT̄g. This results, of course, in an
increase of the generated power of up to 10-15%. Whenever this is not acceptable for the power
electronics, the original constant-power generator torque curve should be used.

The EEC for rotor overspeed prevention is switched off once the extreme event flagfee,k is pulled
down to zero by CUSUM algorithm in Section 4.3, or whenever the pitch angleθk gets “close”
to a reference pitch angleθref,ext(Û

β,gust
ax ), dependent on the estimated axial wind speedÛβ,gustax,k

(see equation (2))

Ûβ,gustax,k = T1(β̂k)

(

Ū +
1

3

3∑

b=1

ûb,k

)

, (13)

whereT1(·) is defined in (1). More specifically,θref,ext(Û
β,gust
ax,k ) is defined as the collective

pitch angle that, for axial wind speed̂Uβ,gustax,k , rated rotor speed̄Ω and rated generator torquēTg,

achieves azimuth-averaged static aerodynamic torqueT̄a = T̄g. For a givenUβ,gustax , θref,ext is
computed by solving the following nonlinear optimization problem

θref,ext(U
β,gust
ax ) = arg min

θ
‖T̄a(Ω̄, θ, Uβ,gustax )− T̄g‖2.

The functionθref,ext(U
β,gust
ax ) is numerically computed off-line and stored for different values of

Uβ,gustax . Simple linear interpolation is then performed on-line.

To avoid unnecessary on/off switchings of the EEC due to fluctuations inθref,ext(Û
β,gust
ax ), hys-

teresis is introduced: the EEC will switch on only when the extreme event flag gets raised (i.e.
fee,k = 1 andfee,k−1 = 0) and the current collective pitch angle is at least∆θonee (e.g.5o) below

ECN-E–08-069 25



the reference pitch angle. The extreme event flag gets pulled down to zero (fee,k = 0), implying
EEC switch-off, by either the CUSUM test in Algorithm 4.2 (meaning that the extreme event has
ended), or when the difference between the reference pitch angle θref,ext(Û

β,gust
ax ) and the true

current collective pitch angle drops below∆θoffee (e.g.4o), meaning that no further EEC action is
needed. The rotor speed limitation algorithm is can be summarized as follows.

Algorithm 5.1 (Collective EEC)

Initialization Select∆θonee , ∆θoffee < ∆θonee , teec = 0.

Step 1 Use the current EKF estimateŝuk andβ̂k to computeÛβ,gustax,k using(13).

Step 2 Run CUSUM test in Algorithm 4.2. Iffee,k = 0 then setteec = 0 and go to Step 5.

Step 3 Compute∆θee,k = θref,ext(Û
β,gust
ax,k )− 1

3

∑3
b=1 φ

b
k.

Step 4 If (fee,k−1 = 1 and∆θee,k ≥ ∆θoffee ) or (fee,k−1 = 0 and∆θee,k ≥ ∆θonee )
then ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

switch conventional control off
teec ← teec + T ctrs ,

θk =

{
θk−1 + θ̇mx,extT

ctr
s if teec ≤ ∆teec,

θk−1 + θ̇mxT
ctr
s otherwise.

Tg,k = T̄g.

else ∣
∣
∣
∣

teec = 0,
fee,k = 0.

Step 5 If fee,k−1 = 1 andfee,k = 0 then

∣
∣
∣
∣

reinitialize conventional pitch control
switch on conventional control.

Notice that the conventional pitch and generator torque controllers are switched off when the EEC
becomes active. The selected EEC strategy causes no transient effects after the transition from
conventional control to EEC. The inverse transition (back to conventional PI control), however,
should be performed with much care since this can result in a very large transient. To prevent this,
the conventional controllers are properly reinitialized before being switched on. This is described
in Appendix B.

5.2 Blade load reduction

As mentioned in the beginning of Section 5, besides rotor overspeed prevention, an important
issue under extreme wind gusts with direction change is the reduction of blade loads. A yawed
wind inflow results in large 1p blade load variations (see Figure 3), and a 0p (i.e. static) rotor tilt
moment, that can be reduced by means of individual blade pitch control. This is the purpose of
this section.

For IPC control design purposes, the nonlinear model (8) is linearized at a given operating point,
resulting in the following linear model in Coleman domain

T :

{
xk+1 = Ãxk + B̃θtyk + B̃uu

ty
k ,

M ty
k = C̃xk + D̃θtyk + D̃uu

ty
k
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∫
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M ty
k

zk

Figure 4: Block scheme for IPC design.

where the signalsutyk , θtyk andM ty
k contain the tilt and yaw oriented components of themulti-

bladeblade effective wind speedsucmk , blade pitch anglesθcmk and flapwise blade root bending
momentsM cm

z , respectively1. The considered extreme event in this report (gust with direction
change) can be modeled by a nonzero constant tilt-oriented (i.e. first) component inutyk . The
collective pitch control loop has only a negligible influenceon the rotor tilt and yaw moments
and has been left out for simplicity. Similarly, the controlsθtyk also barely affect the rotor speed
dynamics and need not be taken into consideration in the conventional rotor speed control design.

The goal here is to design a stabilizing controller that uses the rotor momentsM ty
k as inputs and

computes the control actionsθtyk so as to minimize the low frequency components of the rotor
moments’ signals. In the rotating reference frame this corresponds to the suppression of 1p load
components in the blades. In order to achieve zero steady state rotor moments, an integral action
will be included in the controller. Furthermore, the controlaction should not be too active at
certain frequencies, excited by the external wind disturbance, such as the 3p frequencyf3P , and
eventually the 6p frequencyf6P and the first tower frequencyftow. In addition to that, no high
frequency control activity is desired.

To achieve all these performance specifications, anH∞-optimal controller with integral action
will be designed, optimizing the transfer from the externalinputsutyk to some suitable chosen
weighted versions of the rotor moments and control action. More specifically, Figure 4 provides
an block-schematic view of the IPC design model. In order to include integral action into the
controller, the output of the systemT is appended with integrators (one integrator per output),
which integrated model is used for an optimalH∞ controller designKipc. Once designed, the
final controller is constructed by moving the integrators, used in the design model, to the inputs
of the computed controller (see the area inside the dashed curve on Figure 4).

Of course, an optimal controller designed based on the linearized turbine modelT will only
remain optimal at the working point at which the model is linearized. As the working point
continually changes, it is important that once the controller has been designed, its stability and
performance are evaluated at different working points. To achieve improved robustness proper-
ties to unmodelled dynamics, anH∞ controller is designed. It should be pointed out that it is
relatively simple to achieve better performance throughout the whole operation range of the tur-
bine by means of gain-scheduling. To this end, an approach similar to the conventional way of
including gain-scheduling collective pitch control algorithms (van der Hooft et al., 2003) can be

1Note that the tilt and yaw components (u
ty

k ) of themulti-bladewind signals should not be mistaken with the tilt
and yaw oriented components of the wind velocity vector relative to the rotorplane (see Figure 1). The former are
obtained as a result of the Coleman transformation of the three axial bladeeffective wind speeds and are such that
the yaw-oriented (tilt-oriented) component ofu

ty

k affects (mainly) the yaw (tilt) rotor moment. On the other hand,
the yaw-oriented (tilt-oriented) component of the wind velocity vector mainlyaffects the tilt (yaw) rotor moment,
respectively.

ECN-E–08-069 27



10
−1

10
0

10
1

10
2

10
3−20

−10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (rad/sec)
10

−2
10

−1
10

0
10

1
10

226

28

30

32

34

36

38

40

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (rad/sec)

Figure 5: Bode magnitude plots of the weighting functionsWu (left) andWM (right)

used, i.e. the gain of the IPC controller can be scheduled as a function of the pitch angle in such
a way that the DC gain of the resulting open-loop transfer function remains constant. Although
this approach falls outside the scope of this report, in a practical application gain-scheduling of
the IPC controller needs to be considered.

In order to comply with these frequency domain design specifications, the controllerKipc is
designed by minimizing theH∞ norm of the closed-loop transfer from the external inputsutyk
to the weighted integrated rotor moments and weighted control signals, as shown in Figure 4
(see the generalized output signalzk). To this end, two weighting functions,WM andWu, can
be selected with Bode magnitude plots as shown on Figure 5. Forproducing the left subplot on
Figure 5, the weighting function for the control signals has been chosen as

Wu(z) = 10(Fhp(z) + F3p(z)F6p(z)Ftow(z)− 2)I2, (14)

whereFhp(z) is a second order inverse Chebyshev high-pass filters (frequency fhp = 4P , re-
duction 20 dB, ripple 1dB), andF3p(z), F6p(z) andFtow(z) are second order inverse Cheby-
shev bandpass filters with the same reduction and ripple and bandpass intervals of[0.9, 1.1]f3P ,
[0.9, 1.1]f6P and [0.9, 1.1]ftow, respectively. All filters have been scaled to achieve unity DC-
gain, so thatWu computed via (14) has a DC gain of zero. The so-selected weighting function
Wu punishes control activity at frequenciesftow, f3P , f6P and higher. The weighting function
WM , on the other hand, puts a frequency domain weighting on the integrated rotor moments. As
there is integral action in the controller anyway, the lowerfrequencies need not to be weighted
additionally. Instead,WM could be used to eventually put some weighting on certain frequen-
cies within the desired controller bandwidth which are otherwise not sufficiently actuated by the
integral type control action. The weighting functionWM used for producing the right subplot
in Figure 5 is a lead-lag filter with lead frequency of 1 rad/sec,lag frequency of 5 rad/sec and
DC-gain of 20. Notice thatWM acts on the integrated rotor moments. Translating this to the
original the rotor momentsM ty, this results in some additional weighting of the frequencyband
[1, 5] rad/sec.

The augmented plant with the integrators and the weighting filters has then the following transfer
function

T a(z) :






zk =





[
0 Wu(q

−1)
]

T ctr
s

1−q−1WM (q−1)T (q−1)

T (q−1)





[
utyk
θtyk

]

.

TheH∞ optimal controller forT a(z) is computed via the following optimization problem

Kipc = arg min
K
‖F(T a(z),K(z))‖∞,
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Figure 6: Simulated (solid blue) and estimated (dotted red) blade effective wind speedsub (top,
left) for case 1, and oblique inflow angleβ (right) for case 1 (top, right), case 2 (bottom, left) and
case 3 (bottom, right)

whereF(T a(z),K(z)) denotes the closed-loop system,‖ · ‖∞ denote theH∞ system norm, and
wherein the optimization is defined over all controllersK(z) that have the same number of states
as the augmented modelT a(z). For more details on modern robust control design, the reader is
referred to Zhou and Doyle (1998). The controllerKipc, designed in this way, will be a MIMO
(2-by-2) transfer function, mapping theintegratedrotor tilt and yaw moments to the tilt and yaw
oriented blade pitch angles. Moving the integrators back tothe controller results in the final IPC

Kiipc = Kipc
[
T ctr

s

z−1
T ctr

s

z−1

]

.
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6 Simulation

The performance of the complete algorithm, including extreme event recognition and control,
is demonstrated on simulation data, obtained with the nonlinear test turbine model described in
Section 3. The model represents a 3-bladed HAWT with rated power of 2.5MW, rotor radius
of R = 40 m, and rated rotor speed of̄Ω = 1.85 rad/sec. In the BEM module, the blades are
represented byNann = 15 elements. The structural model is linearized around an equilibrium
point corresponding to rated rotor speed, mean longitudinal wind speed ofŪ = 15 m/s (with
φ̄tlt = −5.138o [mainly due to tilted rotor] and̄φyw = 0.01o) and blade pitch angles of̄φb =
7.24o. The values selected for the tuning parameters of the EER and EEC schemes are given in
Table 2.

In order to evaluate the performance of the proposed algorithm under different wind gust condi-
tions, three different cases are simulated, as summarized in Table 3. The first case corresponds to
theextreme direction change(EDC) as specified in the norm IEC 61400-1. The EDC consists of
a risingVgust = 15 m/s wind gust with a simultaneous wind direction change ofβgust = 720/Ū
degrees. The effects of this on the turbine loads have been described in Section 3.5. The second
case corresponds to the same rising wind gust (Vgust = 15 m/s) but a different, smaller wind
direction change angle (βgust = 30 degrees). This results in even larger 1p loads on the blades
as compared to the first case due to the much larger axial component of the wind velocity vec-
tor, i.e. cos(βgust)(Ū + Vgust). Hence, the second case has the purpose to test the capabilities
of the proposed algorithm to even more serious wind gust conditions, than specified in the IEC
norm. The third case, on the other hand, has the purpose to testwhether the algorithm is not
overly sensitive, and is not responding to minor events, which is not desirable as the conventional
controller should be able to handle them. For that purpose, the third case comprises a 3 m/s wind
gust in combination with a−3 degrees direction change. This last case should not trigger the
EEC algorithm.

Different simulations are run, each being 50 sec long. The turbine dynamics is simulated at a
sample rate of 200 Hz, while the controllers (CPC and IPC) work at 50 Hz. In the time series,

Alg. Variable Value Description
EKF n 20 state dimension

x̂a0 0 initial state estimate

P0

[

10−4In+3

10−5

]

initial state covariance matrix

Rr

[

10−2I2
10−4

]

process noise covariance matrix

Re

[

103I3
102I3

]

measurement noise covariance matrix

Cusum ku 25 moving window length
ν 1 insensitivity parameter
h 100 threshold

EEC θ̇mx,ext 10o/s max pitch speed under extreme event
θ̇mx 4o/s max pitch speed under normal conditions
∆θonee 5o EEC activation zone
∆θoffee 4o EEC deactivation zone
F3p(z)

z4−3.973z3+5.948z2−3.977z+1.002
z4−3.953z3+5.883z2−3.908z+0.9774 3p band pass filter

F6p(z) 1 6p band pass filter
Ftow(z) 1 tower frequency band pass filter
Fhp(z)

10z2−19.48z+9.57
z2−1.554z+0.6415 control signal weighting filter

FM (z) 100z−98.1
z−0.9048 integrated rotor moments lead-lag filter

Table 2: Parameters used in the described algorithms.
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case 1 2 3
Vgust [m/s] 15 15 3
βgust [deg] 48 30 -3

Table 3: Simulated wind gust cases

presented in the figures below, only the first 20 seconds are plotted. The (extreme) events occur
5 sec from the beginning of each simulation. For the power spectra plots later on, the time series
from the 10th sec to the end of the simulations are used, so that only the data after the event
occurrence (and after the transients have died out) is taken. The first two cases are simulated
two times, once with the EEC algorithm turned off (i.e. conventional controller active all the
time), and once with the EEC algorithm turned on. This makes it possible to investigate to
what extend the proposed EEC algorithm improves on the rotor speed control and load reduction
under extreme gust conditions. The third case is simulated only once, since even when the EEC
algorithm is turned on, it does no get activated by the EER scheme as the event is not recognized
as major.

Evaluation of the EER

The performance of the EER scheme is determined by the accuracy of the estimates of the EKF.
To evaluate that, we will compare the simulated blade effective wind speedsub and the simulated
wind direction change angleβ to their estimates, computed by the EKF. Other quantities have
also been investigated, though not reported here as these are not used in the change detection
mechanism.

Figure 6 shows the performance of the EKF scheme under the threesimulated scenarios. The
top left subplot represents the three simulated blade effective wind speeds (solid blue curves) and
their estimates (dotted red curves) by the EKF for case 1 only.The excellent accuracy of the wind
estimates remains unchanged under cases 2 and 3, though these are not reported here for the sake
of brevity. The remaining three subplots in Figure 6 depict thesimulated oblique inflow angle
β (solid blue curves) together with its EKF estimates (dotted red curves) for the three different
cases. Clearly, these estimates are sufficiently accurate for the detection of wind direction changes
wince the estimates do not differ more than about±3 degrees from the simulated values.

Evaluation of the EEC

As discussed in Section 3.5, the purpose of the EEC algorithm is to prevent rotor overspeed
(that can trigger unnecessary emergency shutdown of the turbine) and to reduce large blade 1p
loads under extreme wind gust conditions. On the other hand,the EEC algorithm should remain
inactive under mild gust conditions. To demonstrate its performance, the rotor speedΩ, the blade
pitch anglesφb and the blade root out-of-plane bending momentsM b

z are next investigated under
the above-mentioned three load cases. Figure 7 pertains to load case 1, where the subplots on the
left hand side correspond to the case without EEC, while the subplots on the right – to the case
with EEC. Clearly, when the EEC algorithm is not present, this load case leads to the rotor speed
Ω getting much above its limit. This is due to the conventional controller remaining in partial load
regime until thefilteredrotor speedΩf (dashed green line) exceeds the rated speedΩ̄ by 1rpm, at
which point the true speedΩ is already too large. The EEC algorithm, on the other hand, detects
the gust at an early stage (at time6.125 seconds) and starts pitching the blades to feathering
position, preventing rotor overspeed (see top and middle right-hand side subplots). Moreover,
once the estimated oblique inflow angle exceeds 10 degrees (the red dashed curve on top-right
subplot in Figure 6), the IPC control is activated achieving substantial blade load reduction, as
observed by comparing the bottom subplots on Figure 7 during the second half of the simulation
(where the IPC is active). The achieved blade load reduction can be also appreciated by observing
the left subplot on Figure 9 that depicts the spectra of the blade root out-of-plane bending moment
variationsδM b

z in the cases without (solid red curve) and with (dashed blackcurve) EEC. The
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Figure 7: Turbine simulation under case 1 (extreme 15 m/s rising gust and 48 deg direction change
at t = 5 sec) without EEC (left) and with EEC (right)

simulation results under case 2 are depicted in Figure 8. Again, the subplots on the left hand side
correspond to the case without EEC, while the subplots on the right – to the case with EEC. As
already mentioned, this load case is even more serious than the first one. This can indeed be seen
by observing that the rotor speed (top left subplot in Figure 8) rises to as much as 23 rpm (i.e.
more than 30% above the rated value). Similarly, the 1p blade loads also have a much higher
amplitude as compared to case 1. With EEC, again, the rotor speed remains within its limits (top
right subplot in Figure 8), while the IPC action, initiated after the oblique inflow angle exceeds 10
degrees, achieves significant 1p blade load damping, as can beseen from the bottom right subplot
in Figure 8, as well as from the power spectra in the right-handside subplot of Figure 9.

Finally, case 3 is simulated only once, i.e. with the EEC algorithm on, although it does not get
activated by the EER scheme since the simulated event does not get recognized as a major one
by the CUSUM test. As a result, the conventional controller remains active through the whole
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Figure 8: Turbine simulation under case 2 (extreme 15 m/s rising gust and 30 deg direction change
at t = 5 sec) without EEC (left) and with EEC (right)

simulation. The rotor speedΩ, the blade pitch anglesφb, and the blade root out-of-plane bending
momentsM b

z are given in Figure 10. It can be observed, indeed, that no EEC is necessary in this
case as the rotor speed remains well within its limits, and the blade root bending momentsM b

z

after the event occurrence remain comparable to those before the gust.
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Figure 9: PSD of blade root flapwise bending momentsM b
z for case 1 (left) and case 2 (right),

without EEC (solid curves) and with EEC (dashed curves)
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Figure 10: Turbine simulation under case 3 (3 m/s rising gust and -3 deg direction change att = 5
sec). Due to the mild gust condition, the EEC does not get activated.
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7 Conclusion

Extreme wind gust with direction change can cause turbine shutdown due to rotor overspeed, and
can lead to a significant increase of blade 1p loads. The conventional pitch control algorithm,
acting on the filtered rotor speed, reacts to the wind gust witha large delay caused by the large
rotor inertia and the delay introduced by the rotor speed filter. This delay, combined with the
intrinsically calm reaction of the conventional PI regulator, can easily lead to rotor overspeed, as
demonstrated in this report. To avoid this, an algorithm forextreme event recognition and control
is developed that uses (a) an EKF to estimate the turbine states together with the blade-effective
wind speeds and oblique wind inflow angle, (b) a CUSUM algorithmto detect changes in the
mean of the estimated wind signals, (c) a fast feedforward collective pitch control algorithm for
rotor overspeed prevention, and (d) a feedback individual pitch control algorithm for 1p blade
load reduction. The complete algorithm is demonstrated in different nonlinear simulations with
a 40th order (linearized) structural dynamics model, obtained with the software TURBU, detailed
nonlinear BEM aerodynamics and realistic blade-effective wind speed signals.
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A Computing ∂f/∂x and ∂g/∂x in the EKF
In the extended Kalman filter, summarized in Section 4.2, the derivatives of the nonlinear terms
f(·) andg(·) are needed with respect to the elements of the augmented state vectorxa. This
subsection derives analytical expressions for these derivatives.

SinceδΩk andδφk are functions of the statexk and the inputδvk, fADM (δΩk, δφk, uk, βk) will
be written asfADM (xk, δvk, uk, βk), wherein additionally the time index will be dropped for
notational simplicity. Then, because∂ψk/∂δΩk = 0, it holds that

∂f(xa,ψk)
∂xa =





A
0

0



+





Bd
0
0



 (I ⊗ TD(ψk))
[

∂
∂xT

∂
∂uT

∂
∂β

]

fADM (x, δv, u, β)

∂g(xa,ψk)
∂xa = (I ⊗ TM (ψk))

([
C 0 0

]
+Dd(I ⊗ TD(ψk))

[
∂
∂xT

∂
∂uT

∂
∂β

]

fADM (x, δv, u, β)
)

From (8)-(9) we see thatfADM (·) is a vector containing the blade element torquesδqA,bt , normal
δqA,bf,n and leadwiseδqA,bf,l forces, the derivatives of which with respect tox ∈ R

n, u ∈ R
3 andβ

need to be found.

Denote thei-th element of the vectorxa asxai . Then from (6) follows

∂δqA,bf,n

∂xai
=

1

2
ρcA

(
∂CL(αA,b)

∂αA,b
∂αA,b

∂xai
UA,bl +

∂CD(αA,b)

∂αA,b
∂αA,b

∂xai
UA,bn

)√(

UA,bn

)2
+
(

UA,bl

)2

+
1

2
ρcA

(

CL(αA,b)
∂UA,bl

∂xai
+ CD(αA,b)

∂UA,bn

∂xai

)√
(

UA,bn

)2
+
(

UA,bl

)2
(15)

+
1

2
ρcA

(

CL(αA,b)UA,bl + CD(αA,b)UA,bn

) UA,bn
∂UA,b

n

∂xa
i

+ UA,bl
∂UA,b

l

∂xa
i

√
(

UA,bn

)2
+
(

UA,bl

)2
.

∂δqA,bf,l

∂xai
=

1

2
ρcA

(
∂CL(αA,b)

∂αA,b
∂αA,b

∂xai
UA,bn − ∂CD(αA,b)

∂αA,b
∂αA,b

∂xai
UA,bl

)√(

UA,bn

)2
+
(

UA,bl

)2

+
1

2
ρcA

(

CL(αA,b)
∂UA,bn

∂xai
− CD(αA,b)

∂UA,bl

∂xai

)√
(

UA,bn

)2
+
(

UA,bl

)2
(16)

+
1

2
ρcA

(

CL(αA,b)UA,bn − CD(αA,b)UA,bl

) UA,bn
∂UA,b

n

∂xa
i

+ UA,bl
∂UA,b

l

∂xa
i

√
(

UA,bn

)2
+
(

UA,bl

)2
.

∂δqA,bt

∂xai
= −1

2
ρc2A

∂CM (αA,b)

∂αA,b
∂αA,b

∂xai

((

UA,bn

)2
+
(

UA,bl

)2
)

−ρc2ACM (αA,b)

(

UA,bn

∂UA,bn

∂xai
+ UA,bl

∂UA,bl

∂xai

)

. (17)

The partial derivatives
∂CL(αA,b)

∂αA,b
,
∂CD(αA,b)

∂αA,b
,
∂CM (αA,b)

∂αA,b
,

of the lift, drag and torque coefficients (for which there are no analytical expressions) are com-
puted numerically from their curves. To evaluate (15)-(17)it remains to obtain expressions for

∂αA,b

∂xi
,
∂αA,b

∂ui
,
∂αA,b

∂β
,
∂UA,bn

∂xi
,
∂UA,bn

∂ui
,
∂UA,bn

∂β
,
∂UA,bl

∂xi
,
∂UA,bl

∂ui
,
∂UA,bl

∂β
.
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Since(d arctan(x)/dx) = 1/(1 + x2), from (5), (4) and (10) it follows

∂αA,b

∂x
=

UA,bl
∂UA,b

n

∂x − U
A,b
n

∂UA,b
l

∂x
(

UA,bn

)2
+
(

UA,bl

)2 − eTb TM (ψk)Cφ, (18)

∂αA,b

∂wi
=

UA,bl
∂UA,b

n

∂wi
− UA,bn

∂UA,b
l

∂wi
(

UA,bn

)2
+
(

UA,bl

)2 , with w
.
=

[
u
β

]

(19)

whereeb denotes theb-th column of the3×3 identity matrix. From (5), (2) and (1), and under the
assumptions on the ADM model, given in Section 4.1, the partial derivatives ofUA,bn andUA,bl
with respect to the elements of the vectorxa are given by

∂UA,bn

∂x
= 0, (20)

∂UA,bn

∂ui
= T1(β)δb,i +

∂δUA,bi,corr

∂ui
, (21)

∂UA,bn

∂β
= −T2(β)(Ū + ub) +

∂δUA,bi,corr

∂β
, (22)

∂UA,bl

∂x
=

V̄ A,b
l

Ω̄
CΩ, (23)

∂UA,bl

∂ui
=

(

sin(ψb)T2(β)− cos(ψb)T3

)

δb,i, (24)

∂UA,bl

∂β
= T1(β) sin(ψb)(Ū + ub). (25)

Finally, we need to derive expressions for(∂δUA,bi,corr/∂wi) to be used in (21) and (22). To this
end, denote

f1 = tan

(

1
2 arctan

(

g1g3

g2g3−Ū
A2/3
i

))

,

g1 =
√

cos2(φ̄tlt) sin2(φ̄yw + β) + sin2(φ̄tlt),

g2 = cos(φ̄tlt) cos(φ̄yw + β),
g3 = Ū + uR.

Using (3) and under the assumptionδUi = 0 (see Section 4.1) it can easily be verified that

δUA,bi,corr =
15π

64R
rAf1 cos(ψb − δψ)Ū

A2/3

i . (26)

Hence,

∂g1
∂β

=
1

g1
cos2(φ̄tlt) sin(φ̄yw + β) cos(φ̄yw + β), (27)

∂g2
∂β

= − cos(φ̄tlt) sin(φ̄yw + β), (28)

∂g3
∂ui

=
1

3
, (29)
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and using the fact thatd tan(x)/dx = sec2(x) we have

∂f1

∂β
=sec2

(

1

2
arctan

(

g1g3

g2g3 − ŪA2/3

i

))
1
2

1 +

(

g1g3

g2g3−Ū
A2/3
i

)2

∂g1
∂β g3(g2g3 − Ū

A2/3

i )− g1g2
3
∂g2
∂β

(

g2g3 − ŪA2/3

i

)2

∂f1

∂ui
=sec2

(

1

2
arctan

(

g1g3

g2g3 − ŪA2/3

i

))
1
2

1 +

(

g1g3

g2g3−Ū
A2/3
i

)2

∂g3
∂ui
g1(g2g3 − ŪA2/3

i )− g1g2g3 ∂g3∂ui
(

g2g3 − ŪA2/3

i

)2

(30)
Next, notice that the expression forδψ in equation (3) can more compactly be written as

δψ =







π
2 sgn

(

Uβ,gusttlt

)

, if Uβ,gustyw = 0

arctan
(
Uβ,gust

tlt

Uβ,gust
yw

)

, if Uβ,gustyw > 0

π + arctan
(
Uβ,gust

tlt

Uβ,gust
yw

)

, if Uβ,gustyw < 0

and since it follows from (2) that
Uβ,gusttlt

Uβ,gustyw

=
T3(β)

T2(β)
,

we have
∂δψ

∂β
=

{
0, if T2(β) = 0.
∂
∂β arctan

(
sin(φ̄tlt)

cos(φ̄tlt) sin(φ̄yw+β)

)

, otherwise.

Then, denoting
f2

.
= cos(ψb − δψ)

we can write (with a slight abuse of notation)

∂f2

∂ui
= 0. (31)

∂f2(T2(β) = 0)

∂β
= 0, (32)

∂f2(T2(β) 6= 0)

∂β
= − sin(ψb − δψ)

−1

1 + sin2(φ̄tlt)

cos2(φ̄tlt) sin2(φ̄yw+β)

− sin(φ̄tlt) cos(φ̄yw + β)

cos(φ̄tlt) sin2(φ̄yw + β)
(33)

Hence, from (26) we finally have

∂δUA,bi,corr

∂ui
=

15π

64R
rA
∂f1

∂ui
cos(ψb − δψ)U

A2/3

i , (34)

∂δUA,bi,corr

∂β
=

15π

64R
rA

(
∂f1

∂β
cos(ψb − δψ) + f1

∂f2

∂β

)

U
A2/3

i . (35)

which is the last expression needed for the computation of the derivatives in the EKF.
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B Bumpless Controller Switching

Generally, when switching between two controllers large transients can occur due to the state
of the controller, that is being switched on, not having a “proper” initial value. To prevent this,
different methods for bumpless transfer have been proposedin the literature, such as using gradual
switching based on weighted combinations between the controller being switched on and the one
being switched off (Rodriguez et al., 2003), or using an inner feedback loop around the inactive
controller so as to push its output to follow the one producedby the active controller (Goodwin
et al., 2001; Turner and Walker, 2000). In this report, instead, an algorithm is proposed that aims
directly at proper state reinitialization of the controller that is being switched on.

Although we are dealing in this report with a SISO controller for rotor speed regulation, the
switching strategy is developed for the general MIMO case making it applicable to a wider class
of problems. Consider a bank of controllersK = {K(i), : i = 1, 2, . . . , N}, with the j-th
controller given in state-space form as follows

K(j) :

{

x
(j)
k+1 = A(j)x

(j)
k +B(j)u

(ctr)
k ,

y
(j)
k = C(j)x

(j)
k +D(j)u

(ctr)
k ,

with x(j)
k ∈ R

nj . Notice that the controllers can have different state dimension, while they have

the same inputu(ctr)
k (filtered rotor speed error in the application of this report). No assumption

is imposed on the number of inputs and outputs of the controllers.

Suppose that controllerK(n) (“n” for “new”) is being switched on at the current time instant k.

The idea, used here, is to select an initial value for the controller statex(n)
k in such a way that a

bumpless response is achieved. To this end, a past time interval [k −N, k − 1] of a given length

N considered, for which the initial statex(n)
k−N is chosen such that using the past inputs of the

previously active controllerK(o) (“o” for “old”) up to time instant(k − 1), {u(ctr)
k−N , . . . , u

(ctr)
k−1 },

with K(n) an output signal is produced{y(n)
k−N , . . . , y

(n)
k−1} that best matches the output ofK(o),

i.e. {y(o)
k−N , . . . , y

(o)
k−1}. This hypothetical output ofK(n) is given by

Y
(n)

k−N|k−1

︷ ︸︸ ︷








y
(n)
k−N

y
(n)
k−N+1

...

y
(n)
k−1









=

O(n)

︷ ︸︸ ︷







C(n)

C(n)A(n)

...
C(n)(A(n))N−1







x

(n)
k−N

+








D(n)

C(n)B(n) D(n)

...
...

. ..
C(n)(A(n))N−2B(n) C(n)(A(n))N−3B(n) . . . D(n)








︸ ︷︷ ︸

Γ(n)









u
(ctr)
k−N

u
(ctr)
k−N+1

...

u
(ctr)
k−1









︸ ︷︷ ︸

U
(ctr)

k−N|k−1

The initial statex(n)
k−N will be computed so as to minimize the weighted discrepancy between

Y
(n)
k−N |k−1 and the corresponding vector of outputsY (o)

k−N |k−1 that have actually been output to the
system in the considered time interval, i.e.

x
(n)
k−N = arg min

∥
∥
∥W

(

Y
(n)
k−N |k−1 − Y

(o)
k−N |k−1

)∥
∥
∥

2
. (36)
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The weighting matrixW can be used to put more weight on the more recent outputs. One possible
selection would be to use exponential forgetting of the old data, such as

W =






w1I
. ..

wNI




 , with wl = e5

l−N

N , l = 1, 2, . . . , N,

where the identity matrices have all the dimension of the output signaly(n)
k .

Clearly, the optimal solution to this least squares problemis given by

x
(n)
k−N =

(

WO(n)
)†
W
(

Γ(n)U
(ctr)
k−N |k−1 − Y

(o)
k−N |k−1

)

,

where the symbol† denotes the pseudo inverse operation. However, when the extended observ-
ability matrixO(n) is numerically rank deficient, this solution leads to numerical problems. To
avoid that, a numerically robust solution is described below.

Define

ε
.
= W

(

Y
(n)
k−N |k−1 − Y

(o)
k−N |k−1

)

= W
[
O(n) Γ(n) −I

]







x
(n)
k−N

U
(ctr)
k−N |k−1

Y
(o)
k−N |k−1






,

and compute the QR decomposition

W
[
O(n) Γ(n) −I

]
= Q

[
R1 R2 R3

]

withQ being an orthogonal matrix,R1 an upper triangular matrix, andR1,R2 andR3 having the
same dimension as the matricesWO(n),WΓ(n) andW , respectively. Then obtain the numerical

rank of the matrixR1 by inspecting its main diagonal elements, and denote it asr
(n)
o . Define

[

R̃1 R̃2 R̃3

] .
=
[
Ir(n)

o
0
] [
R1 R2 R3

]
.

Then the optimization problem in (36) is equivalent to the least squares problem

min ‖ε‖2 = min ‖QT ε‖2

= min

∥
∥
∥
∥
∥
∥
∥
∥

[
R1 R2 R3

]







x
(n)
k−N

U
(ctr)
k−N |k−1

Y
(o)
k−N |k−1







∥
∥
∥
∥
∥
∥
∥
∥

2

≈ min

∥
∥
∥
∥
∥
∥
∥
∥

[

R̃1 R̃2 R̃3

]







x
(n)
k−N

U
(ctr)
k−N |k−1

Y
(o)
k−N |k−1







∥
∥
∥
∥
∥
∥
∥
∥

2

,

so that

x
(n)
k−N = −(R̃1)

†
[

R̃2 R̃3

]

[

U
(ctr)
k−N |k−1

Y
(o)
k−N |k−1

]

.

Finally, given the so-computed state ofK(o) at the beginning of the considered past interval of
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time, the state at the current time instantk is computed as

x
(n)
k = (A(n))Nx

(n)
k−N +

Γ
(n)
N

︷ ︸︸ ︷
[
(A(n))N−1B(n) (A(n))N−2B(n) . . . B(n)

]
U

(ctr)
k−N |k−1

= −
[

(A(n))N (R̃1)
†R̃2 + Γ

(n)
N , (A(n))N (R̃1)

†R̃3

]
[

U
(ctr)
k−N |k−1

Y
(o)
k−N |k−1

]

.
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C Blade effective wind speed approximation in case of oblique wind
inflow

In van Engelen and Schaak (2007) an efficient algorithm is proposed for computing realizations
of blade effective wind speeds based on interpolation between six helices (three blade-related,
and three intermediate). The blade-related helices containthe blade effective wind speeds in case
of constant rotor speed, constant wind speed and non-oblique stream. In case of oblique inflow,
each blade effective wind speed is formed by interpolating between the corresponding blade-
related helix and its nearest neighboring (intermediate) helix. This method assumes constant
wind speed, constant rotor speed, not tilt misalignment andis applicable to only relatively small
yaw angles (up to approx. 15 deg), as otherwise the blade getsbeyond the neighboring helix, as
depicted on Figure 11 where the rotor is yawed at 40 degrees, sothat the first blade at azimuth 0
deg does not lie between its helix 1 and the neighboring helix2.

Here this method is generalized to the case when the rotor hasarbitrary (still in between[−π
2 ,

π
2 ])

yaw and tilt angles, as well as varying mean wind speed (as caused by wind gusts) and varying
rotor speed.

h1h2
h3h4h5h6

nominal rotor plane

zero azimuth

Figure 11: Interpolation based on six helices is used to approximate the blade effective wind
speed in case of oblique wind flow

Definitions and assumptions

The orientations of the rotor fixed frame axes is conform the notation used in the software TURBU

(van Engelen, 2007), i.e. in the case of non-oblique inflow thex axis is perpendicular to the rotor
plane and is positive downwind, thez axis points downwards and they-axis points to the right
as seen from a point on the negativex-axis (upwind). In case of oblique inflow (or, equivalently,
tilted and yawed rotor), the rotor fixed reference frame(0, xr, yr, zr) is rotated with respect to
the nominal (non-oblique) rotor fixed reference frame(0, x, y, z) as visualized on Figure 13. The
rotor yaw angleφyw is defined as the angle between they-axis andyr-axis, measured fromy to
yr in anti-clockwise direction as seen from a point on the positive z-axis. The rotor tilt angle,
φtlt, on the other hand, is the angle between thez-axis and thezr-axis inclockwisedirection as
seen from the positiveyr-axis.

The turbulent wind flow is assumed to have only a longitudinal component. It is further assumed
that a turbulence realization on six helixes is given, denoted ashi(ψhxi ) for helix i = 1, 2, . . . , 6,
whereψhxi is the helix azimuth angle. The helixes are computed under theassumption of constant
rotor speed̄Ω and wind speed̄U , so that under the Taylor’s frozen wave hypothesis the helix
azimuth angle explicitly defines a fixed point in time and space.The helixes are numbered anti-
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h1

h2

h3

h4

h5

h6

nominal rotor orientation

oblique rotor orientation

blade1

bl
ad

e2

blade3
ψ1

ψhx6
y
rzr

y

z

Figure 12: Visualization of tilted and yawed rotor, blade numbering, and helix numbering.

clockwise, while the rotor blades - clockwise (see Figure 12). The azimuthal angles are measured
clockwise starting from the positiveyr-axis. The helixes are azimuthally equally spaced over the
rotor plane. Table 4 summarizes some of the notation used. Thehelix azimuth angleψhxi (t) at

notation description
ψi(t) azimuth of bladei
ψ(t) ≡ ψ1(t) rotor azimuth
ψhxi (t) azimuth of helixi
U(t) wind speed

Ū wind speed used in helix realization
Ω(t) rotor speed

Ω̄ rotor speed used in helix realization
φtlt(t) rotor tilt angle
φyw(t) rotor yaw angle

Table 4: Definitions of symbols.

a given time instantt is defined as the azimuthal position of the intersection pointof helix hi
with the nominal (non-oblique) rotor plane, and is hence independent on the rotor orientation
(see angleψhx6 on Figure 12). For an algorithm for computing realizations ofsuch turbulent wind
helixes, see van Engelen and Schaak (2007).

Finally, for a vectorv ∈ R
n, the notationvi is used to denote thei-th element ofv.

The interpolation algorithm

Given the rotor speedΩ(t) and the initial rotor positionψ(0) = ψ1(0), the azimuth angles of the
rotor and the blades at time instantt are given by

ψ(t) = ψ1(0) +

∫ ∞

0
Ω(t)dt,

ψb(t)
.
= ψ(t) +

2π(b− 1)

3
, b = 1, 2, 3.

(37)
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xr

yr

zr

x

y

z

O
φyw

φtlt

wind

Figure 13: Nominal(0, x, y, z) and oblique(0, xr, yr, zr) reference frames, tilt and yaw angle
definition and orientation.

The helix azimuth positions at timet, on the other hand, depend on the wind speedU(t) and the
initial azimuth angle of the first helixψhx1 (0):

ψhx1 (t) = ψhx1 (0) +
Ω̄

Ū

∫ ∞

0
U(t)dt,

ψhxi (t)
.
= ψhx1 (t)− π(i− 1)

3
, i = 1, 2 . . . , 6.

(38)

Assuming rigid rotor for simplicity of the presentation, for a given blade, sayb, a point lying at
distance2R

3 from the blade root2 has the following coordinates in(0, xr, yr, zr) at timet

pr,b(t) =





0
cos(ψb(t))
sin(ψb(t))




2R

3
, b = 1, 2, 3. (39)

whereR is the rotor radius. The coordinates of the same point in the non-oblique coordinate
system(0, x, y, z) can be computed using the following transformation matrices

Ptlt(φ)
.
=





cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)



 ,

Pyw(φ)
.
=





cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1





that represent rotations around thez-axis (yaw) and around they-axis (tilt) in the defined direc-
tions. Therefore, the coordinates of the2R

3 point on bladeb in reference frame(0, x, y, z) are
given by

pb(t) =





xb(t)
yb(t)
zb(t)



 = Ptlt
(
− φtlt(t)

)
Pyw

(
− φyw(t)

)
pr,b(t), b = 1, 2, 3. (40)

2This point is assumed to be the effective location for taking into account theblade position relative to the helixes.
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lh

x+
i,bx−i,b

xb

nominal rotor plane

helix
i

ψhxi (t) + δψhxi,b (t)

ψhxi (t)

ψprojb (t) ψhxi (t) + δψhxi,b (t)− 2π

Figure 14: Visualization of the defined azimuth angles and lengths.

Hence, theprojectedblade onto the nominal rotor plane has azimuth (modulus2π)

ψprojb (t) =







π − arcsin

(

|zb(t)|√
y2

b (t)+z2b (t)

)

, if yb(t), < 0 andzb(t) > 0

π + arcsin

(

|zb(t)|√
y2

b (t)+z2b (t)

)

, if yb(t) < 0 andzb(t) < 0

2π − arcsin

(

|zb(t)|√
y2

b (t)+z2b (t)

)

, if yb(t) > 0 andzb(t) < 0

arcsin

(

|zb(t)|√
y2

b (t)+z2b (t)

)

, if yb(t) > 0 andzb(t) > 0

(41)

For helixi, the difference between the helix azimuthψhxi (t) and the projected azimuth of bladeb
is then

δψhxi,b (t) = (ψprojb (t)− ψhxi (t)) mod (2π). (42)

Figure 14 depicts the helix tube on which the six helixes lie, as well as the nominal rotor plane,
and some azimuth angles and lengths, needed in the sequel. Attime instantt, the 2R

3 point on

bladeb lines on the azimuth line throughψprojb (t), which line intersects with helixi at infinitely
many points, but the closest two to the nominal rotor plane correspond to helixi azimuth angles
(ψhxi (t) + δψhxi,b (t)) and (ψhxi (t) + δψhxi,b (t) − 2π). In reference frame(0, x, y, z), these two
points have cetrainx-coordinatesx−i,b(t) andx+

i,b(t). Given that the helix is generated under the
assumption of constant wind speed and rotor speed, the helixlength is given by

lh = Ū
2π

Ω̄
, (43)

so that

x−i,b(t) =
−δψhxi,b (t)

2π
lh,

x+
i,b(t) = lh + x−i,b(t).

(44)

Given the currentx-position of the2R
3 point of bladeb at time instantt, xb(t), the next thing to

do is to determine the closest two helixes, so as to subsequently interpolate between them. To this
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end, define the matrices

X(b)(t)
.
=













x−1,b(t)
...

x−6,b(t)

x+
1,b(t)

...
x+

6,b(t)













, H(b)(t)
.
=













h1(ψ
hx
1 (t) + δψhx1,b(t))

...
h6(ψ

hx
6 (t) + δψhx6,b(t))

h1(ψ
hx
1 (t) + δψhx1,b(t)− 2π)

...
h6(ψ

hx
6 (t) + δψhx6,b(t)− 2π)













. (45)

Then the closest helix in downwind direction isH(b)
idn
b

(t) with

idnb = arg min
i

{

X
(b)
i (t)− xb(t) : X

(b)
i (t) ≥ xb(t)

}

, b = 1, 2, 3. (46)

Similarly, upwind the closest helix isH(b)
iup
b

(t) with

iupb = arg min
i

{

xb(t)−X(b)
i (t) : X

(b)
i (t) ≤ xb(t)

}

, b = 1, 2, 3. (47)

Notice that the indexesidnb andiupb are also time depended, although not explicitly denoted.

Then a linear interpolation is performed based on the distances between the blade point and the
closest helixes. This is done by defining the interpolation weighting factor

αb(t) =
6
(

X
(b)
idn
b

(t)− xb(t)
)

lh
∈ [0, 1], b = 1, 2, 3, (48)

so that the following convex combination between the two selected helixes can be used

ũb(t) = (1− αb(t))H(b)
idn
b

(t) + αb(t)H
(b)
iup
b

(t), b = 1, 2, 3.

Compensation for the covariance of ũb(t)

In the above expression for̃ub(t), a convex combination is taken between two stochastic signals,

namelyH(b)
idn
b

(t) andH(b)
iup
b

(t). Assuming stationary homogeneous turbulence field with spectrum

at (any) fixed point in spaceSu(w), and denoting̃u(t) as the turbulence at (any) fixed point in
space at timet, the following two expressions hold for the first two moments of ub(t)

E{ũb(t)} = E{ũ(t)} = 0,

E{ũ2
b(t)} = ((1− αb(t))2 + α2

b(t))E{ũ2(t)}
︸ ︷︷ ︸

σ

+2αb(t)(1− αb(t))E{H(b)
idn
b

(t)H
(b)
iup
b

(t)}
︸ ︷︷ ︸

c(d,0)

,

whereσ denotes the variance of a fixed point in space, whilec(d, τ) is the covariance function

between two fixes points in space at a distanced =
(

X
(b)
idn
b

(t)−X(b)
iup
b

(t)
)

. Hence, the variance of

ũb(t) is not equal to the turbulence varianceσ. In order to make the two variances the same, an
additional covariance correction factor,ρb(t), will be used, so thatE{(ρb(t)ũb(t))2} = σ.

Then denotingγ(d, ω) as the coherence function between any two points in space at adistanced
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Figure 15: Plot of the covariance correction factorρ as a function of the interpolation weighting
factorα.

one has

σ =

∫ ∞

−∞
Su(ω)dω,

c (d, 0) =

∫ ∞

−∞
γ (d, ω)Su(ω)dω.

(49)

Then, since the distance,
(

X
(b)
idn
b

(t)−X(b)
iup
b

(t)
)

, between the (neighboring) helixesH(b)
idn
b

(t) and

H
(b)
iup
b

(t) is exactly1
6 lh, it can easily be verified that

ρb(t) =
1

√

(1− αb(t))2 + α2
b(t) + 2αb(t)(1− αb(t))

c( lh
6
,0)

σ

, b = 1, 2, 3. (50)

achievesE{(ρb(t)ũb(t))2} = σ. The parameterρ as a function of the interpolation factorα is
depicted on Figure 15 for the following specific choices for thespectrumSu(ω) and coherence
γ(d, ω)

Su(ω) = σ2
w2L1/Ū

(1+6L1ω/(2πŪ))
5/3 (Kaimal spectrum),

γ(d, ω) = e−8.8d
√

(ω/(2πŪ))2+(0.12Λ/3.5)2 ,

with Ū = 15 m/s, σw = I15(15+aŪ)
a+1 , I15 = 0.17, a = 3, L1 = 170.1 m, andΛ = 21 m.

Hence, adding the rotor-wide wind speedU(t) to the correctedexpression for the turbulence
(ρb(t)ũb(t)), the final expression for the blade-effective wind speed takes the form

ub(t) = U(t) + ρb(t)
(

(1− αb(t))H(b)
idn
b

(t) + αb(t)H
(b)
iup
b

(t)
)

, b = 1, 2, 3. (51)

Numerical implementation

The complete algorithm for approximation of blade effectivewind speeds under oblique wind
inflow conditions consists of evaluation of the expressions in equations (37)-(51) at each time
instantt and for each bladeb. In practice, the rotor speed and the azimuth angle of the rotor is
measured, so (37) need not be numerically evaluated.

In a numerical implementation the same steps can be followedat discrete time instants(kts),
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k = 0, 1, . . . , after making the following small modifications:

Equation (38) Assuming that the wind speed does not change between anytwo time instants,
i.e. U(kts + τ) = U(kts) for τ ∈ [0, ts), the expression for the azimuth of the first helix
takes the form

ψhx1 (kts) = ψhx1 (0) +
Ω̄

Ū

k−1∑

l=0

U(lts)ts.

A better option would to use more advanced numerical integration methods to compute
ψhx1 (kts).

Equation (45) In a numerical implementation the helixes are only given at discrete azimuth an-
gles, so that it is in general not possible to evaluateH(b)(t) at the desired azimuth angles.
One way to circumvent this problem is to evaluateH(b)(t) instead at the closest azimuth
angles at which the helixes are given. Assuming that helixi is defined at azimuth angles
(ψhxi (0) + kδψhx), k = 0, 1, . . . , and define the following projection

Πi(x)
.
= ψhxi (0) +

(
arg mink

∣
∣ψhxi (0) + kδψhx − x

∣
∣
)
δψhx

(38)
= ψhx1 (0)− π(i−1)

3 +
(

arg mink

∣
∣
∣ψhx1 (0)− π(i−1)

3 + kδψhx − x
∣
∣
∣

)

δψhx

= ψhx1 (0)− π(i− 1)

3
+ round

(

x− ψhx1 (0) + π(i−1)
3

δψhx

)

δψhx

that mapsx onto the set of azimuth angles at which helixi is defined. In this way, the
expression forH(b)(t) in (45) should simply be replaced by

H(b)(t) =

















h1

(

Π1(ψ
hx
1 (t) + δψhx1,b(t))

)

...

h6

(

Π6(ψ
hx
6 (t) + δψhx6,b(t))

)

h1

(

Π1(ψ
hx
1 (t) + δψhx1,b(t)− 2π)

)

...

h6

(

Π6(ψ
hx
6 (t) + δψhx6,b(t)− 2π)

)

















.

Numerical example

The algorithm is numerically tested with the data given in Table 5. The helixes are generated
based on the assumption of Kaimal fixed point turbulence spectrum, and under an extreme wind
condition, occurring att = 5 s, and comprising of a rising wind gust of15 m/s in combination of
a yaw angle of 30 degrees. The wind gust and the yaw angle are given on Figure 16 as functions
of time. On each plot in Figure 17 there are four lines. The threedashed lines on all three plots
are the same and correspond to the three blade related helixes (helixes 1,5 and 3); these coincide
with the blade effective wind speeds in the case of non-oblique inflow and constant rotor and
wind speeds. The other three helixes are not plotted. The solidlines on the plots represent the
blade effective wind speeds as computed by the proposed algorithm, one per plot.
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symbol value description

Ū 15 m/s mean wind speed
U(t) see Figure 16 (left) wind gust

Ω̄ 1.85 rad/s mean rotor speed
Ω(t) Ω̄ rotor speed
ψ(0) 354.7 deg initial rotor azimuth
ψhx1 (0) -5.3 deg initial azimuth helix1
ts 0.02 s sampling time
δψhx 5.3 deg helix azimuth sampling angle
φyw(t) see Figure 16 (right) rotor yaw angle
φtlt(t) -5.1271 deg rotor tilt angle
c(lh/6, 0)/σ 0.6879 parameter in equation (50)

Table 5: Data used in the numerical example
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Figure 16: Wind gustU(t) (left) and yaw angleφyw(t) (right).
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Figure 17: Helixes 1,3 and 5 (dashed lines) and the blade effective wind speeds (solid) of blades
1 (left), 2 (middle) and 3 (right).
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