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PREFACE

Within the Dutch research project BLADKNIK buckling load prediction tools were developed for
wind turbine rotor blade design. This project can be considered as follow-up development of the
European BUCKBLADE project and the Dutch STARION project.

The developments reported here are implemented in the wind turbine design package Focus.
This report also serves as reference for the programs and subroutines, and gives a theoretical
background of the buckling load prediction methods.

The BLADKNIK project was supported by SenterNovem, project No: 2020-02-12-10-007.

ABSTRACT

Within the Dutch research project BLADKNIK buckling load prediction tools were improved
and/or developed to be used in wind turbine rotor blade design. These tools include programs
that model buckling of a complete cross-section (Finstrip) and programs that model buckling
of panels within a cross-section. This report contains descriptions of each of the buckling load
prediction methods. For the practical (and fast) engineering ’Design rules’ this description is
in terms of references to design handbooks and publications. For the panel-based prediction
methods this report contains the theoretical background. This includes laminate theory, non-linear
strain-displacement relations for curved panels, stability equations derived from energy methods,
a description of the solution method, and finally a description of the routines that are developed
in the BLADKNIK project. These routines are developed for use in Farob (under Focus), that
includes a structural model of a rotor blade. The program Finstrip for buckling of complete
cross sections is reported in terms of its functional specifications and the improvements that were
issued in the BLADKNIK project. Finally this report contains a functional description of the
Farob option to generate input for a Finite Element Package, together with the improvements that
were issued in this project.
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LIST OF SYMBOLS

A [N/m] In-plane or "membrane" stiffness matrix.
Ayq, Ass  [N/m]  Out-of-plane shear stiffnesses of a (sandwich-) panel;
for an orthotropic sandwich: Ayy = Gag h?/t.; Ass = Gz h?/t. .
B [N] Coupling matrix between in-plane and bending stiffnesses.
b [m] Width of the panel c.q. the half-waves or bulges.
C [m/N] Inverse of the membrane stiffness matrix: C' = AL,
D [Nm]  Out-of-plane bending stiffness matrix.
D [Nm] Reduced bending stiffness matrix: D =D — B-A™'-B.
Eq, Es [N/m?]  Young’s moduli in the direction of the largest-
and smallest principal stiffness respectively.

f [Nm] Airy stress function that applies to Donnell’s in-plane equilibrium
equations (see p.347 of [25]): Nx = fyy; Ny = —fxy i Ny = fxx -
frac Used as relative fraction of shear loading vs combined shear and compression.
G112 [N/m?] In-plane shear modulus.
G13, Go3  [N/m?] Out-of-plane shear moduli in longitudinal- and transverse direction.
h [m] Core thickness, over which out-of-plane shear deformation is modelled.
H Matrix in the set of equations for sandwich panel buckling, Appendix B.
K [m] The matrix product K = A~!- B

ky, ke, ks Dimensionless buckling factors kp, = |Nypena| /[ (/)2 \/ D11 Da2 ] ,
[

kc :—NX/[(W/I))2 \/DH DQQ] , and ks = ‘NXY‘/ (7T/b)2 DQQ\/DH DQQ} .

ksupp [N/m?3] Stiffness of an elastic support, see Appendix A and B.

L [m] Length of the panel c.q. of the half-waves or bulges.

M [N] Bending moment per unit width, giving longitudinal curvature.

M,y [N] Twisting moment in the shell panel per unit width.

M, [N] Bending moment per unit length, giving transverse curvature.

Ny [N/m] Longitudinal-load distribution per unit width.

Ny [N/m]  Shear-load distribution per unit width.

Ny [N/m] Load distribution in transverse direction per unit width.

Qxz, @y, [N/m]  Out-of-plane panel shear loading per unit width.

Ry, R, Ry, Ry Rel. load levels for bending, ax. compression, shear, and transv. compression.
defined as e.g. R. = Nx/Ny.cr-

Ry, Ry [m] Radii of geometric curvature in longitudinal- and transverse direction.

R; [m] Effective radius of transverse curvature, including K matrix elements.

Ryy [m] Inverse of the geometric twist of a panel.

1, T'9 Stiffness ratios for sandwich panels:

r1 = (m/b)? (y/ D11 Doy [Ass) (L+ B)/25 1y = (/b)*(Da2/Ass) (14 B)/2.

T Average stiffness ratio: r = /r1ra.
Sij, Tij Matrices used in solving the 2-point boundary value problem in section A.4.
t [m] Wall thickness of the panel.
te [m] Thickness of the elastic core of a sandwich.
U Matrix in the set of first-order stability equations (section A.4).
U [m] In-plane displacement in longitudinal direction of a point of the panel.
v [m] In-plane displacement in transverse direction of a point of the panel.
w [m] Out-of-plane displacement of a point of the panel.
Y Used in the expression of v.d. Neut for buckling of orthotropic cylinders.
VA Curvature parameter: Z = b%/(Ry \/ D22 Caa ) ;
for isotropic panels: Z = b% - \/12(1 —12)/(Ryt) .
T,y [m Longitudinal- and transverse co-ordinates along the panel.
z [m Out-of-plane co-ordinate of the panel, for a blade positive inward.
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Dimensionless half-wave length: a = (L/b) {/Day/D1; .

!
8 Orthotropy parameter: (3 = (D12 +2 E%)/\/ Di1 Dys .
By [rad] Rotation of the panel cross-section about the x-axis: By = —w,, — v/ Ry + Yy .
€x, €y Longitudinal- and transverse strain.
Yy [rad] Shear strain, positive for reduced angle between x-axis and y-axis.
Yxz [rad] Out-of-plane shear deformation in longitudinal direction.
Vyz [rad] Out-of-plane shear deformation in transverse direction.
Kx [1/m] Elastic panel curvature about the transverse (y-) axis: kx = —W gy .
Ky [1/m] Elastic panel curvature about the longit. (x-) axis: e.g. ky = —Wyy — Vy/ Ry .
Fxy [1/m] Elastic twist of the panel, expressed as: ryy = —2w gy — 2V /Ry .
A Factor on the load distribution for which buckling is calculated.
s My [1/m] Longitudinal- and transverse wave-length parameters;
px = m/L and p, = /b with L and b half-wave dimensions.
b [1/m] Wave-length parameter for the wrinkling mode: puy, = 7/b.
V12 Poisson’s ratio; contraction in the "2" direction due to
an elongation in the " 1" direction.
V91 Contraction in the "1" direction due to an elongation in the
"2" direction. These Poisson’s ratios apply to vi3 Eo = 191 F1 .
T Trigonometric constant: m = 3.1415926536 (value used in the routines).
P Coefficient in the description of a linear varying longitudinal
ComPTCSSiOH N, x, smallest compression — ¢ N, x, largest compression -
()= (.)y [1/m] Differentiation with respect to the x-coordinate or y-coordinate respectively.
TERMINOLOGY

In this document the following terms are used for programs, directions of loads and deformations,

file formats, etcetera:

Expression
Crostab
Farob
Finstrip
Focus
MSC.MARC
Phatas

* . buc file

core

facing

UD laminate

pre-bend

Bending-Torsion
coupling

viii

Description

Program (ECN) for cross-sectional analysis, including panel-buckling.
Program (WMC) for fatigue analysis of a rotor blade, within Focus.
Program (WMC) for linear buckling analysis of a blade cross section.
Design package (WMC) for wind turbines, having a detailed blade model.
Finite-element package with non-linear options for buckling.

Program (ECN) running under Focus for wind turbine response in time domain.
File format that contains the geometry, material definition, and the layup
of a cross section. This was introduced for buckling analyses with Finstrip.
Used for a sandwich panel layup. The ’core’ is the layer (or some layers)
in the middle of a laminated panel that has out-of-plane shear flexibility.
Usually the core is of light foam or a light honeycomb structure.

Used for a sandwich panel layup. The ’facing’ is the layer (or some layers)
on the outer surfaces of a laminated panel that has in-plane load carrying
capabilities, and eventually also some bending stiffness.

Laminate with all fibres in the same direction, *Uni Directional’.

Flapwise (for zero pitch) geometrical curvature of a blade without loading.
Sometimes an up-wind pre-bend is used which partly eliminates the elastic
deformation under normal operating loading. In Phatas the pre-bend is
defined positive as the down-wind geometric shape of the blade tip.
Modification of the blade structure such that a bending moment gives a
torsional deformation. This can be realised e.g. with off-axis UD laminates
(symmetric w.r.t. the blade axis) or with an aft-swept blade tip.
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1 INTRODUCTION

The phenomena of buckling is failure of a load-carrying structure by strong deformation that
distorts the geometrical topology and the associated load-carrying capabilities. For analytical
descriptions of buckling, one may start with the fundamental fact that the energy used for de-
formation of the geometry (elastic or plastic) is provided by the release of strain energy (usually
compression) in the loaded structure.

The phenomena of buckling has been investigated for decades in aerospace industry; for the
design of e.g. launch rockets and the upper skin of aircraft wings. These investigations were
mainly addressed to aluminium (isotropic material) structures, eventually stiffened with stringers.

GARTEUR project

For buckling of fibre-reinforced composite structures fundamental investigations have been per-
formed within the European GARTEUR group, that have been reported by B. Geier (DFVLR,
Stuttgart) [I8]. The investigations reported by Geier dealt with curved orthotropic panels loaded
by compression. This comes close to the problem of buckling of rotor blades loaded by bending.

BUCKBLADE project

Partly based on the fundamentals of the work reported by Geier, the European research project
BUCKBLADE was carried out, addressed to development and evaluation of different tools for
the prediction of buckling of rotor blades. These methods included design rules (based on graphs
and formulas from handbooks), tools for buckling of panels, tools for buckling of cross-sections
of prismatic structures (such as rotor blades), and finite element packages. Part of this research
project was a set of tests on some rotor blade structures at the University of Stuttgart. These rotor
blade structures were designed by LM Glasfiber and built by LM AeroConstruct in the moulds of
the former DEBRA blade.

STARION project

Partly as follow-up of the European BUCKBLADE project the Dutch STARION project was
addressed to implement the tools from the BUCKBLADE project to be used for buckling load
analyses of real rotor blade structures. For this purpose 3 tests were carried out on the outer
parts of rotor blades. Also the panel-based method StaBlad (developed by ECN) and the tool
for cross-sections Finstrip (formerly developed by SPE) were implemented in the design package
Focus.

Scope of the BLADKNIK Investigations

The tools developed in the BLADKNIK project are implemented in the wind turbine design pack-
age Focus. The emphasis of the development was laid on the aspects that previously showed to
be of importance for rotor blades. These aspects are ’including the longitudinal curvature’, the
detailed geometric (transverse) curvature and material distribution, and the buckling of sandwich
panels. The buckling of sandwich panels was specifically addressed to the shear webs in a rotor
blade.

A description of the engineering *Design rules’ is given in chapter 2, while the improved program
Finstrip is described in brief in chapter 3. The description of a numerical prediction method for
buckling of rotor blade panels are given in Appendix A, together with some theoretical back-
ground. The analytical solutions for panels with uniform curvature and material properties are
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are described in Appendix B. The solutions in Appendix B appear to be compliant with several
solutions from literature.

Both the Design rules described in chapter 2 (Farob method 1) and the analytical solution de-
scribed in Appendix B assume uniform material properties for the entire panel. Panels within
a rotor blade structure usually have a varying material distribution in transverse (width) direc-
tion. For these non-uniform distributions of geometry, material, and loading the panel average
properties are calculated by integration using ’weighting functions’ that are based on the defor-
mation energy of the collapse mode. The weighting functions of this approach are described in
Appendix C.

The improvements of the prediction tools with respect to the former BUCKBLADE project are
summarised in chapter 4.

Some concluding remarks and items that can be improved are summarised in chapter 5.

For the buckling-load prediction of rotor blade panels, some FORTRAN routines were developed
for use in Farob (Farob is the blade model under Focus) and for use in Crostab (a structural
analysis tool for blade cross-sections). A description of the argument list and of the functionality
of these routines is given in Appendix D.

2 ECN-C--05-103



2 ’DESIGN RULES’ FOR ORTHOTROPIC SANDWICH PANELS

This report describes the various types of buckling load prediction methods that are implemented
in Farob or used within the wind turbine design package Focus. One of these methods are the
here-called "Design rules" which are relatively fast and therefore suitable for scoping analyses to
find the most unfavourable load combination or for analysing various stackings within the rotor
blade panels.

The design rules developed in the BLADKNIK project are obtained by merging the most appro-
priate formulas from literature and by fitting them to calculated results from more sophisticated
codes. Finally they apply to panels with:

Infinite length for which the buckling mode is the minimum for any half-wave length
of the deformation pattern. The longitudinal edges are simply supported;

Orthotropic material properties This includes asymmetric laminates,
viz for which the B matrix may be non-zero;

Sandwich panels with facings of similar material that may differ in thickness. This means
that the membrane stiffness matrices of the facings are proportional to each other;

Transverse curvature only because longitudinal curvature increases the complexity of
engineering solutions while not many publications deal with longitudinal curvature;

Combined loading in terms of linear varying longitudinal compression and in-plane shear load.

In addition to the Design rules for panels with simply-supported edges this chapter also contains
the buckling load factors of panels with clamped edges. For clamped edge constraints no load
interaction rules are given.

2.1 Load interaction rules

In the BUCKBLADE research project [[13] the basis of the Design rules were the load interaction
rules formulated by Bruhn [4]], Plantema [20]], and by Shanley [23].
These load interaction rules are in terms of the relative loading parameters for axial compression,
transverse compression, in-plane bending, and shear:

R. = NX/NX.CI‘ , Ry :Ny/Ny.cr , Ry :Nxbend/Nxbend.cr ;and Rs = ny/ny.cr .
These load interaction rules apply to panels with finite length, in which case the collapse modes
for each of the individual load components have the same half-wave dimensions. For very long
panels each of the load components may have a collapse mode with a different half-wave length.
This means that the interaction for the different load components is less than for a plate with
finite dimensions. For this reason predictions with these type of interaction rules for panels with
combined loading may result in a (conservative) under estimation of the critical load!

The loading in panels of rotor blade cross sections is characterised by a varying axial loading
combined with some amount of shear load. The latter is due to torsion and/or shear forces in the
rotor blade. With a strong bending moment, the shear web of rotor blade sections may also be
loaded by a transverse compressive loading: *crushing loads’. This however was not yet modelled
in version 5.1 of Focus5, it was found to be too complicated to include transverse compression
properly in the load-interaction rules at that time.
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2.1.1 Load interaction rules of Bruhn et al

For flat plates Bruhn, [4] ch. C.5, gives: R. + Rf +R2=1
1.75

For longitudinal compression and bending only Bruhn [4] gives R + R,**° = 1 while Plantema
[20] p.96 gives for sandwich panels R + R5 = 1. The latter relation is more conservative.

The here mentioned diversity in the contribution of in-plane bending of a panel was the reason to
use the more detailed load interaction rule formulated in NEN6771 [|19] for the combination of
axial compression and in-plane bending, which is the characteristic loading in the contour panels
of a rotor blade structure.

2.1.2 Load interaction rules of NEN6771

For flat panels with linear varying axial loading combined with uniform shear loading NEN6771
gives load interaction rules ((13.6-7) and (13.6-8) of [19]) that are compliant with the DASt
Richtlinie 12). Although the load interaction rules in NEN6771 are presented for flat steel plates,
they will be used as basis for the *Design rules’ presented here.

For a plate with linear varying longitudinal compression NEN6771 gives the critical value of the
largest compressive loading in one of the panel edges.

The critical load factor itself is formulated in terms of the ratio v which is the smallest com-
pressive load divided by the largest compressive load in the panel edges. For a compressive load
distribution with 0 < ¢y < 1 (no tension in the edges) the critical load factor is

ke = 8.2/(1.05 + 1)

and for a linear panel loading with tension in one of the edges ) < 0 the critical load factor is

ke =7.81 — 6.291) + 9.78 ¢ (D

For the states of uniform compression (¢ = 1), for linear loading that is zero in one of the edges
(1 = 0), and of pure in-plane bending (1) = -1) the critical load factors appear to be identical with
the design rules given in "Handbuch Struktur Berechnung’ (H.S.B.) for orthotropic plates, [[7].

2.1.3 Load interaction rules for strong curved panels

For curved panels in general the load interaction rules are hard to find, although literature gives
load interaction rules for cylinders: e.g. Bruhn [4] ch.C.8. R. + R2 + (RZ + R3)'/3 =1.
Here Ry is the torsional shear and Ry, and R, are bending and shear loading on the entire cylinder.

These and the previously presented rules show that different solutions apply for flat (or weak
curved) panels and for panels with a strong curvature. This brings about the difficult choice
whether the rules for flat panels or those for cylinders apply to curved panels. Initially this choice
was made on basis of the dimensionless parameter /. Finally this branch between weak curved
and strong curved panels was eliminated by applying the load interaction rules for a so-called
“critical width’ b¢,i¢. This width is defined as the half-wave width of the collapse mode, of which
it is trivial that it may not be larger than the panel-width.

For buckling of sandwich panels with a relatively soft core however, a branch remains for the face
wrinkling mode.

4 ECN-C--05-103



2.2 Effective half-wave width of strong curved panels

In this subsection some solutions for buckling of curved panels are presented. For application of
the "Design rules’ to buckling of curved panels, these solutions are used to express the curvature
parameter Z to distinguish between weak and strong curved panels.

2.2.1 Buckling of curved isotropic sandwich panels

For long axially compressed curved isotropic sandwich panels Plantema, [20] p.179, gives:

Vv1-—r 4

for Z/n? <4 = ——— + (272 (1—1)/4
1—r 2 1—r _ 2(Z/7%) r 2(Z/7?)
for 4t < Z/n? <V k=2 (1 2D
and for Z/n2 > Y1 =" ke =1/r . )
T

The last expression of k. is for the "shear buckling" mode.
Here Z is the curvature parameter Z = /1 — 12 - b?/(Ry h/2)
and ris the stiffness ratio of sandwich panels r = (7/b)? D/(Ga3 h?/t.).

2.2.2 Buckling of curved orthotropic cylinders

For orthotropic cylindrical shells the curvature parameter Z has the form Z = b* /(R 1/ Dyo )
with 1/ R the "effective curvature’ that includes the asymmetry matrix K see section B.1.

For cylindrical shell panels that are symmetric in thickness direction (a zero B matrix) Van der
Neut [6] has published an approximate solution in which the critical load is related to the collapse

load for axisymmetric buckling Ny = —1 (2/Ry) \/Dll/CQQ .
After adding the terms Dlg , BGG , C12, and Cgg to this expression of V.d. Neut, the factor 7 can

be calculated as = -
J7+anyBace + (Bage) v
= (2C124C ®)
Jr+ Boegel 1y

Following Van der Neut the minimum 7 is found near Y = \/ (Dggy Ca3) /(D11 Chy) .
If this minimum 7 is larger than 1 the shell fails in a mode that is (nearly) axisymmetric with a
short longitudinal half-wave length at a load that corresponds withn =1 .

The buckling load factor k. follows from k. = 2 7 (b/7)?/(Ry \/ Doz C22) = 21 Z/7> .

Combining this expression following Van der Neut with formula (T1) for orthotropic sandwich
plates to an expression of Plantema for long curved sandwich panels (formula (2))) gives:

1—r 2 72
for nZ/ﬂ-ZEkjcﬂat\/l*r ke = kefat +(é+2ﬂ))nﬂ.4 )
V1-r nZ/n? o nZ/m?
for keguvVi-r<nz/m2<¥Y"""  po=2
orkena/1-r <y 2/ ‘ T—r 2 Vs
and for 77Z/7T22\/(1—7’)/7‘1 ke=1/r . 4)

The last expression of (@) describes the "shear buckling" mode, which is a failure mode for sand-
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wich panels of which the facings have negligible bending stiffness. The half-wave length of the
"shear buckling" mode is very small. If the facings have some bending stiffness, the sandwich
panels may collapse in the so-called "face wrinkling" buckling mode, of which a description is
given in section B.6. In the expressions kcfat 1s the buckling factor for flat plates.

The expressions () are
* nearly exact for flat orthotropic sandwich plates;
* a close but conservative approximation for curved orthotropic panels;
* a good and conservative approximation for curved isotropic sandwich panels
of which the core has moderate flexibility: » << 1;
* areasonable (not always conservative) approximation for curved orthotropic
sandwich panels.

2.2.3 Half-wave width considered

The load interaction rules in NEN 6771 [[19] are formulated for flat panels, which implies that
the collapse mode for axial compression has one half-wave in transverse direction. To have a
physical basis to apply the load-interaction rules for linear varying axial loading, the 'Design
rules’ formulated here for curved panels consider a panel width that is (probably) the transverse
half-wave dimension. For this purpose the critical half-wave width is chosen such that the first of
the three expressions of () apply. This critical half-wave width is calculated from

N Zerit /7% = kegat /(1 — 1) . In this expression the averaged sandwich stiffness ratio r is
calculated with the entire panel width (for simplicity). This condition for Z.;; gives an expression
for the critical half-wave width bt

Derit = Zexit | Ry \/ D22 Caz = 7% kicqiar \/ (1 — 7) | RS \/ D22 Caz /.. %)

Here k. q,¢ is evaluated with expression for a flat sandwich plate.
If this critical half-wave width is larger than the panel width then the panel width is used.

If the critical half-wave width is smaller than the panel width the (linear varying) loading is
evaluated on the panel edge with the largest compression. If for a linear varying loading the load
halfway bc,it is tension, the panel width b, is reduced further until the loading halfway b.,i; is
Zero.

6 ECN-C--05-103



2.3 Buckling of axially compressed panels
2.3.1 Axially compressed orthotropic plates

Linear varying longitudinal compression can be decomposed in uniform axial compression and
in-plane bending. The load-interaction rules in NEN6771 however give a critical load factor for
an arbitrary linear varying axial compression, which is related to the largest compressive stress
in one of the panel edges. This factor is expressed for steel plates, which are isotropic. In this
subsection the buckling factors of orthotropic plates found in literature are described for some
characteristic load combinations such as uniform compression, linear compression that is zero in
one of the edges, and pure in-plane bending. The resulting buckling factors will then be merged
with the expressions given in NEN6771 for the critical load factor.

Uniform longitudinal compression (¢ = 1)

For long orthotropic plates with simply supported edges subjected to uniform axial compressive
loading the critical axial compressive load can be derived easily from the stability equations (see

tb in section B.4 for 71 = 3 = 0) which gives: Ny = —kegat (7/0)% \/ Dy1 Dy where the
factor k is
e flat ketar =4+2(8—1). 6)

For long orthotropic plates with clamped edges the relation from *Handbuch Struktur Berech-
nung’ (H.S.B.) [7] (see also section 4.1.1 of the BUCKBLADE report [13]]) holds.

keflat = 6.97 + 2.36 (3 — 1) .

Linear varying axial compression that is zero in one edge (i) = 0)

For long flat orthotropic panels with simply-supported edges loaded with a linear increasing load
that is zero in one of the edges, H.S.B. [[7] gives a graph with the critical load factor that can be
fitted with: Keflas = 7.81 + 3.85 (8 — 1) . 7

For isotropic plates (8 = 1) this expression gives k. qat = 7.81 which equals the factor in the load
interaction rules of NEN6771 [[19]] for ¢ = 0, see in section 2.1.2.

For long isotropic plates with the same loading but with clamped edges [[7] gives kcgay = 13.54.

In-plane bending of orthotropic plates (¢ = -1)

For long flat orthotropic panels loaded with in-plane (edgewise) bending the following rule can
be derived from the graphs in H.S.B. [[7]] and in NASA TP3568 [18]] for simply supported edges
kcflat = 23.88 4+ 10.5(8 — 1) (8)

and for clamped edges
keflat = 39.52 +12.8 (8 —1) — 0.2(8 — 1)%.

Arbitrary linear compressive loading

Following the formulation given in NEN6771 the factor for linear varying axial compression is
defined as function of the parameter v, which is valid for ¢ larger than -1. For panels of which the
loading is described with 1/ smaller than -1, the panel width is reduced (on the tension side) such
that the remaining load distribution applies to » = 1. The expressions (13.6-7) and (13.6-8) in
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NENG6771 [[19] apply to load distributions for ¢ < 0 and for 1) > 0 respectively. For orthotropic
plates the contribution of the orthotropy (represented by (3 — 1)) is included in the expressions
from NEN6771 on a similar way as the factor for orthotropic plates. For 1) > 0 the result is:

Keflar = 8.2/(1.05 + ) + (8 — 1)4.16/(1.08 + ) 9)

and for ¢ < 0 the result is:
kefar = 7.81 — 6.294 + 9.78 % + (3 — 1) (3.85 — 3¢ + 3.651?) . 10)

The coefficients 3 and 3.65 in the orthotropy term of are estimated, but are correct for the
case of pure in-plane bending (¢ = -1) and linear increasing axial compression (¢ = 0).

2.3.2 Axially compressed sandwich plates

The influence of the out-of-plane shear flexibility is expressed as a reduction factor on the buckling
coefficient k. g, Which is a function of the sandwich stiffness ratios r; and ro. The definition of
these stiffness ratios fits to the analytical solution presented in section B.4, see (57).

Uniform axial compression (¢ = 1)

For axially compressed sandwich plates with small values of r; and ry the linearised analytical
solution of the buckling factor was derived in section B.4 see (59) in terms of a ’reduction factor’
on keaat: 1/(1 + 71 + r2). For axially compressed sandwich plates Wiggenraad reported a
reduction factor’ of (1 — 7y + 72)/(1 + 272 + r4). For small values of the stiffness ratios
this expression fits the analytical solution of (59). When considering also quadratic terms in the
stiffness ratios, the "reduction factor’ of Wiggenraad fits very close to the empirical relation that
has been formulated in the former BUCKBLADE project [[13]] which gives:

ket = (442(8—1))/(1+ra+ri+77). (11)

Compared to the solution of Wiggenraad, the expression (L)) is numerically “more robust” for
large values of r; because the factor k. g, can not become negative.

For long orthotropic plates with clamped edges the relation from H.S.B. [7] (see also section 4.1.1
of [13]) holds. Expanding this relation such that it fits to Figure 5.8 on p.137 of Plantema [20]]
gives the expression for sandwich plates

(1 + 7“1)

Fotar = (6-97+2.36 (5 —1)) (1+3.5r +3r2+7132)
: 1

Linear varying compression that is zero in one edge (i) = 0)

For long orthotropic sandwich plates with simply supported edges subjected to uniform axial
compressive loading the critical load was calculated with the "rigorous solution method’ described
in A.4 and A.5 for different values of the sandwich out-of-plane shear flexibilities. From the
relation between the calculated load factors and the dimensionless stiffness ratios r; and r9 the
following conservative expression for the buckling load factor was formulated:

(1+0.379)
(147 +14rg+1.1r2 +1.25r70)

koot = (7.81 4+ 3.85 (3 — 1)) - (12)
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In plane bending (¢ = -1)

For long sandwich plates with an orthotropic core and simply-supported edges loaded by in-
plane bending Plantema, [20] p.145 Fig.5.14, gives a graph for the buckling-factor that can be
approximated conservatively with k¢ ga; = kp = 23.88- (1 +671)/(1+6.57r1 + 475 +8072) .

For isotropic sandwich panels with stiffness ratio 0.1 < r < 0.25 this relation gives an under-
estimation of up to 12%. For other values of the stiffness ratio r this function gives a close
approximation. For a (flexible) core with a large value of the stiffness ratio ; the panel fails in a
"shear buckling" mode for which Plantema gives ky = 1.886/7 .

Combining the expression from H.S.B. from [7]] with the empirical fit for the influence of the
sandwich flexibility properties gives:

(1 +6T1)
(1+6.57 +4ry+80772)

kefiat = kb = (23.88 4+ 10.5(3 — 1)) - (13)

Note that for large values of r; expression approaches kcqae = 1.791/rq .

Arbitrary linear compressive loading

For a linear varying axial loading that is compressive over the entire panel width (so ¢ > 0)
the factor for the sandwich shear flexibilities is interpolated linearly between the expressions for
1 = 0 and ¢ = 1, which gives for the buckling factor:

P (1—1)(1+0.377) ) (14)
L+ro+ri+rd 1+r +1ldrg+1.1r2 +1.257r 7

ke flat = ke (non—sandwich) (

For axial compressive loading that is tension in one of the edges (¢» < 0) interpolation of the

influence of the sandwich flexibilities between expressions for ¢y = 0 and 1) = —1 gives:
& L A < (I14+1)(140.3r2) B (1467 )
cflat = e (non—sandwich) \ 7 U1 Apy $10r2 4125010 146571 +4ry +8072
15)

2.3.3 Curvature effects

The effects of curvature are included using the expressions of Van der Neut in terms of Z for
slightly curved panels (). This is done independent from the detailed axial load distribution:
1—r) 0?22

kc:kca Ta o 2
T or28)

After evaluation of this expression for buckling of curved sandwich panels, one should check
whether the panel fails in a face wrinkling mode with a short half-wave length such as described
in section B.6. Based on the fact that this mode has a short half-wave length the critical load factor
for face wrinkling has to be evaluated with the largest compressive load in one of the edges.
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2.4 Buckling of shear loaded sandwich panels

For long orthotropic plates loaded by shear the graphs in NASA TP3568 [18] can be fitted with
ks =535+1.7(8—1)—0.1(38—1)% for simply supported edges, and with
ks =8.99+2.6(3—1) —0.17(8 — 1) for clamped edges.

For long flat orthotropic sandwich plates, Figure 5.12 on p.142 of Plantema [20] can be fitted with
ks =5.35(1—0.287; +0.172)/(14+2.97r3+0.577) .

Combining these expressions gives

(1—0.2871 +0.175)
(1+29r5+057r) °

ks = [5.354+1.7(8—1) = 0.1(8 —1)?] - (16)
For shear loaded plates with clamped edges the empirical relation (14) on p.92 of Plantema [20]
(for isotropic sandwich plates) can be combined with the graphs in TP3568 to

(1-0.127)

ks = [8.994+2.6(5—1) —0.17(8 = 1]~ =5

Curvature effects

For buckling of long isotropic cylindrical panels loaded by torsional shear Timoshenko & Gere
[25] p.489 give the empirical formula based on many calculations

Teor = 4.82 (t/b)2 EJ1 +0.0145b/(Ry 1) .
On p.C.46 of Dubbel [2], a similar expression is given with the factor 0.0146 instead of 0.0145.
Re-writing the more conservative expression of Timoshenko & Gere in terms of the curvature
parameter Z (for v = 0.295) and the bending stiffness D gives the expression for the shear-

buckling factor: ks = 5.35 ¢/1 4+ 0.0013 Z2 .

Gerard & Becker [10] give design graphs that are also published by Bruhn, [4] C9.4 and C9.2.
The graph C9.4 for simply supported (SS3) edges corresponds closely with the formula given by
Timoshenko & Gere while the graph C9.2 for clamped (C4) edges can be approximated with
ks = 8.98v/1+0.0014 Z2 .
This expression for clamped edges always gives an under-prediction not larger than 11% com-
pared with the graph C9.2 of Bruhn [4].
(Note that in Bruhn the curvature parameter used is Zy, = (b/(Ryt)) - V1 —12.)

Combining the expressions for flat orthotropic sandwich plates with those for curved isotropic
panels with simply-supported edges gives

1-0.28714+0.1
ks = [5.35+ 1.7 (8—1) — 0.1 (8—1)?] ((1+0.5 T:1+2.9T22)> SY150.001322 (17

and for clamped edges

ks = [8.99 4+ 2.6 (3—1) — 0.17 (3—1)2) m  YTT00013 22 .

These expressions are accurate for moderate values of the sandwich stiffness ratios: 1, ro < 1.

N.B.

For long cylindrical isotropic panels loaded by torsional shear Roark & Young [22]] give the em-
pirical rule 7o, = E - (0.1 t/Ry + 5 (t/b)?) for simply supported edges

and 7, = E-(0.1t/Ry +7.5(t/b)?) for clamped edges.

For values of Z between 30 and 500 the expression in Roark and Young is un-conservative com-
pared with the expressions given in section 7.3.2 of Dubbel [2]] and by Gerard & Becker [10].

10 ECN-C--05-103



2.5 Half-wave length and orientation of the collapse mode

The ’Design Rules’ described in this chapter are implemented in the routines/functions bucpan3
and bucweb?2 that are included in the Focus design package (linked to Farob). To return informa-
tion to the Focus user-interface about the failure mode of the rotor blade structure, expressions
are implemented for the half-wave length and the orientation of the deformation pattern.

Axial compression

In section B.4 an analytical solution is derived (58) for the critical half-wave length of sandwich
plates loaded by uniform axial compression:

Leerit = b {/D11/Das (1 +12/2) /(1 + 11 + Br2/2) .

This solution was linearised for small values of 1 and r9. For small values of the sandwich
stiffness ratios, this solution fits to the expression of Plantema, on p.81 of [20]:

Leait = b {/ D1/ Do (T =) T+ 77 -

Note that this expression is invalid if the sandwich stiffness ratio r is larger than 1.

For plates with linear varying longitudinal compression that is zero in one of the edges (1) = 0)
the graphs in H.S.B. [7]] show that the critical half-wave length is nearly the same as for uniform
axial compression. For (non-sandwich) plates loaded by in-plane bending (1) = —1) the graphs

in H.S.B. [7] and NASA TP3568 [[18] give Leeit = 0.674 b /D11/ Doy .

For plates loaded by linear axial compression that is tension in one of the edges (v < 0) the
critical half-wave length is interpolated linearly as function of :

Leais = (14 0.33¢) b {/D11/Dag (1 +12/2) /(1 + 11 + Br2/2) . (18)

Shear loading

For shear loaded (non-sandwich) plates Timoshenko & Gere ([25] p.383) present an approximate

analytical solution that gives a critical half-wave length of Lg,iy = V150 \4/ 1511 / 1322 .

For the *Design Rules’ described here the factor in this expression is approximated with 1.225.
The critical half-wave length of shear loaded (isotropic) sandwich plates is given in Figure 4.4 on
p.92 of [20] which fits to the relation ~ Lg¢riy = 1.225b6(1 — 0.567) /(1 + 0.627) .

This dependency on the sandwich stiffness ratio will be approximated with a factor 1/(1 + r;)
because for axial compression the dependency on r, shows to be weak. In addition the latter
expression also gives a positive half-wave length for large values of 77 .

Combining this expression with that for the half-wave length of orthotropic panels gives:

Loeric = 1.225 b/ D11/Das /(1 +71) . (19)

Orientation of the collapse mode

For axial compressive loading, the direction of the (periodic) deformation pattern has a ’zero’
angle with respect to the transverse direction 0.y = 0 .

For shear loading the deformation pattern is skewed with respect to the transverse direction.
For shear loaded plates this skew angle is 65 ,it = arctan (1/0.5) ~ 35.3° .

Curvature effects

The influence of curvature on the critical half-wave length and the orientation of the collapse mode
is not included in the ’Design rules’ presented here because it was too complicated to derive.
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2.6 Routine for contour panel buckling

The more simplified but faster routines for buckling analyses of rotor blade sections are based on
buckling of the *panels’ between the shear webs or between the shear web and the trailing-edge of
the airfoil. This simplification implies that the interactions of the panel-edges with the complete
cross-sectional structure are omitted. If the panel edges are treated as simply-supported ("hinged’)
the resulting solution is an under-estimation of the buckling load because stiffness at the edges is
omitted. The advantage of this simplification is a reduction in computing time for a reduction of
accuracy that is conservative.

For use by Farob (under Focus) two routines with panel-based buckling load prediction methods
were developed. One of these routines was developed for buckling of non-uniform and curved
contour panels while another routine was developed for buckling of a flat shear web. The latter
routine uses different load-interaction rules because the shear web loading is dominated by in-
plane bending and in-plane shear, see section 2.7.

The simplest buckling prediction method implemented in the panel-based buckling routines is
based on the *Design rules’ that are described in the former sections.

The routines that are based on the *Design rules’ use panel-average material properties and panel-
average loading. The calculation of these properties is described in Appendix C. Compared to the
shear web, the contour panels of a rotor blade can have a non-uniform curvature that is stronger
near the leading edge. The loading of the contour panels is dominated by (non-uniform) axial
compression. Realise that panels loaded by tension are not buckling critical.

The critical load factor is calculated as a factor A on the applied axial and shear loading for
which buckling occurs. The non-uniform axial compression is expressed in terms of a uniform
loading and a (linear) in-plane bending, see section C.3. For the resulting linear load distribution
the critical value is calculated based on the expressions in NEN6771. The relatively small shear
loading in the contour panels is taken into account following the load-interaction rules from Bruhn
([4] expression C5.17 on p.C5.9) for cylindrical curved panels under axial compression and shear:

ANy /Nyer + A2 (Nyy /Nayer) 2 = 1. (20)

From this expression the factor A is solved, which is considered the ’critical load factor’.
The load-interaction rule (20)) is conservative for slightly curved or flat panels.

Half-wave length for axial compression and shear

For combined axial compression and shear the critical half-wave length is calculated by interpo-
lation between the values for compression L. it and shear Lgris. This interpolation is on basis
of the value of the load components relative to their critical values:

Lcrit = (1 - frac) Lc crit + frac Ls crit -

In this expression, frac is calculated from

(Nxy/Nxy.cr)®
(]ny/]\[xy.cr)2 + Nx/Nx.cr '

frac =
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2.7 Routine for shear web buckling

The shear web is characterised as a flat plate with usually a symmetric layup. The loading is dom-
inated by in-plane bending and shear, while there may be a (non-linear) transverse compressive
loading; ’crushing load’. The latter compressive loading is included in the routines developed in
the 'BLADKNIK’ research project.

Similar as for the contour panels, the critical value for the varying axial load distribution is calcu-
lated on basis of the load interaction rules from NEN6771. Using the fact that the loading in the
shear web is dominated by in-plane bending and shear loading, the critical value for the combined
loading is evaluated from the load interaction rule in Bruhn ([4]] expression C5.16 on p.C5.8) :

M2 ((Nx/Nyer)? 4+ (Niy/Nyy.er)?) = 1. 1)

In this relation NVy is the largest compressive loading in any of the panel edges.

Including transverse (compressive) loading

For buckling of an orthotropic flat plate with simply supported edges under in-plane bending and
transverse compression Michael Nementh gives a graph in Figure 7 of [18] that can be fitted with

the empirical relation: ~ (Ny/Ny.er) = 1+ 9.46 (1/1 = (Ny/Ny.ex)/2 = 1) /kctar -

Here k., is according to (8) and Ny is the largest compressive load in one of the edges. Assum-
ing that the in-plane bending moment has roughly the same interaction with transverse compres-
sive loading, the contribution of the in-plane shear loading can be included as follows:

Ay (No/Nar) 2 + (Nay /Nay.ex) 2 = 1 +9.46 (\/1 — A(Ny/Ny.er)/2 — 1) Jkctiar - (22)

Note that in this expression the relative loading terms are multiplied with the load factor \.

A solution for A is obtained numerically from this equation. If the critical value of A appears to be
larger than Ny /Ny and the transverse loading is compressive then the failure mode is dominated
by the transverse compressive loading and thus prismatic. For this case the critical value for A is
Ny /Ny while the half-wave length of the collapse mode is set to the length of the panel, and
the orientation of the collapse mode is set to 7 /2 rad = 90deg.

Orientation of the half-waves for axial compression and shear

For the combined axial compressive (also in-plane bending) and shear loading in the shear web,
the orientation of the deformation pattern is calculated from the relative fractions of these load
components. This is done with a similar ’interpolation’ as for the half-wave length:

Ocrit = (1 — frac) Oc it + frac Oserit -

Similar as for the half-wave length, frac is calculated from

(ny/ny.cr)2
(ny/ny.cr)2 + (Nx/Nx.cr)2 .

frac=
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3 PROGRAM FOR PRISMATIC STRUCTURES FINSTRIP

The program Finstrip is developed at STORK Product Engineering, Amsterdam. With the pro-
gram Finstrip buckling loads of prismatic beams of orthotropic material can be predicted. In Fin-
strip the cross section of the beam (e.g. a rotor blade) is described with a finite number of strips
that can have the material properties of sandwich- and/or single laminates. The cross sectional
loading is longitudinal compression resulting from a longitudinal force and sectional bending
moments.

Meshing of the model is performed automatically by Finstrip for a user-defined maximum element
length. The meshed section can be checked visually. For every load case and half-wave length
bifurcation factors are calculated as the buckling load divided by the applied load.

The bifurcation factors are displayed graphically as a function of the half-wave length. For a
selected half-wave length graphs are shown of the undeformed- and deformed section. To ease
evaluation of the results and to check the input data, some information can be displayed and
printed or saved to text files. Among others this information contains the element mesh, the
section inertia and the strains. The output of the program Finstrip includes a graph of the deformed
cross section showing both the modelling of the cross section and the collapse mode.

The solution method of the program Finstrip is based on the following assumptions:
* Prismatic structure without geometric imperfections;
* Only initial buckling is predicted;

* Non-linear material properties (such as local composite failure and plastic
material behaviour) are not taken into account;

* Only symmetric orthotropic laminate properties. In the A, B, and D matrices,
only elements A11, A12, Ao, Ags, D11, D12, Doo, and Dgg are used;

* The material is modelled symmetric with respect to the defined geometry;

* The load distribution along the blade axis is according to engineering bending theory for
thin-walled sections, such that only normal strains and -stresses are considered (no shear);

* The initial curvature due to bending of the beam is not accounted for.

With the program Finstrip buckling of the 2D model of the cross section can be solved including
the complete interaction of all panels in the cross section. Compared to a non-linear finite element
code the program requires less input properties and is suitable for the (pre-) design of rotor blades.

Finstrip is distributed as part of the Focus Integral Wind Turbine Design Tool. After Stork stopped
all activities on Wind turbine projects, Knowledge Centre WMC started maintaining the software.
In 2002 an update of Finstrip was released by WMC with the following modifications:

* The load axis system was modified into the system recommended by Germanischer Lloyd.

* Optional, blade stiffnesses as calculated by Focus can be used within Finstrip analyses.
Since Finstrip puts the nodes of the elements in the centre of the layup, half of the thickness
is out-side the blade contour, thus calculating a too high stiffness.

* All calculation output is now automatically saved to disk after an analysis is completed.
Originally, all output files had to be saved manually.

Detailed information on Finstrip is provided in the *Theoretical Reference’ [27] and in the *Users
Manual’ [26] which are both part of the Focus documentation.
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4 IMPROVEMENTS OF THE TOOLS

4.1 Improvements on the panel-based prediction methods
Improvements on the Design rules

The research within the BLADKNIK project was addressed to evaluation and further develop-
ment of tools for the buckling load prediction of complete rotor blades. This implies that only
programs and finite-element codes for buckling load prediction of complete cross-sections were
investigated. In (classical) practise many engineers use formulas from design handbooks for
buckling load predictions of flat panels and strips, usually for a quick evaluation of the buckling
strength in the pre-design. For this reason and also because a lot of knowledge on design rules
has already been gained in the (former) BUCKBLADE project, these 'Design rules’ were still
involved in the BLADKNIK project.

The improvements of the ’Design rules’ are:

* For linear axial loading, the expressions from NEN6771 are used instead of
the more rough interaction rules for axial compression and in-plane bending.

* The definition of the sandwich shear stiffness ratios is revised on basis
of analytical solutions for long orthotropic plates, see section B.4.

* The critical load factor for orthotropic sandwich plates is improved, see section B.4.

 Strong curved panels are replaced by smaller panels on basis of a critical half-wave
width. This was done because most Design rules apply to flat (or weak curved) panels.

e The contribution of the terms K;; of the asymmetry matrix K are added to
the so-called "effective curvature’: 1/R}, see Il in section B.1.

» Expressions are added for the critical half-wave length.

In addition to these improvements, the panel average loading, curvature, and material properties
are used instead of properties for the centre of the panel, see Appendix C. Although relatively
simple, the use of panel average properties is considered a practical and useful improvement
compared to the use of stiffness properties in the centre of the panel (as in the Stablad routines
developed in the former BUCKBLADE project).

Improvements on the analytical panel-based solution

The analytical panel-based solutions have not improved substantially, except for the fact that they
are made more robust in the sense that the less reliable influence of anisotropic material properties
has been simplified to the contribution following Tennyson e.a [24], see also section B.2. Other
improvements are:

» Use of panel-average material properties, see Appendix C;
* Use of NEN6771 to account for non-uniform axial loading;

* Use a single parameter for the transverse curvature, evaluated with a more conservative
expression, see section C.4.

In addition to the routine with an analytical solution, a routine was developed that includes the

non-uniform geometry and material properties. At the moment of completion of the BLADKNIK
project this routine worked well for flat panels.
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4.2 Improvements on Crostab
Status of release "'SEP-2002"

The program Crostab was developed at ECN Wind Energy for the prediction of buckling of thin-
walled multi-cell beams. Similar as Finstrip, Crostab can be used for buckling load calculations
of thin-walled prismatic beams, including the geometric longitudinal curvature from bending and
the effects of crushing loads. Crostab solves the buckling of a cross section by stability analyses
of each of the individual panels, where Finstrip models the complete structural integrity within
a cross-section. As for Finstrip, small modifications have been issued to the program since the
STARION project. The calculations for the State of the Art report [16] were performed with
Crostab release "SEP-2002" of which the definition of materials was made more robust in the
winter of 2005.

Improvements of release ''SEP-2005"

Because the program Crostab does not play a vital role in the Focus design tool, its development
as buckling load prediction tool was not given priority. Its function as tool for the calculation of
the sectional properties of multi-cell beams of orthotropic material was still maintained because
the layup of the panels was treated following laminate theory with which it is a good reference
for the calculation of sectional properties.

In release "SEP-2005" of Crostab the *new’ routine ’panini2’ (see section D.1) is linked. In the
call by Crostab the in-plane flexibility matrix C'= A~! is returned, which is used to calculate the
sectional stiffness properties.
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4.3 Improvements on Finstrip

The program Finstrip was originally developed at Stork Product Engineering by M.J. van Varik,
and was developed further by WMC, see chapter 3. The program Finstrip can be used to calcu-
late the buckling load of multi-cell thin-walled prismatic beams. The analytical model does not
account for geometric non-linear effects such as the longitudinal curvature under loading and the
deformation from ’crushing loads’. After the former projects on buckling load prediction methods
"BUCKBLADE’ and *STARION’ some details of Finstrip have been changed. The calculations
for the State of the Art report [[L6] were performed with version 1.5 of Finstrip.

Faster eigenvalue solver

In the initial Finstrip versions an eigenvalue solver was used (based upon the Choleski eigenvalue
solver from "Numerical Recipes" [21]]), which resulted in long calculation times (could be several
minutes or longer). Within the BLADKNIK project a more dedicated solver (based upon DSTEIN
of the Lapack numerical library of www.netlib.orqg) was implemented that searches for the
smallest eigenvalue only. This solver is based on the fact that the stiffness matrix is symmetric
and positive definite and the initial stiffness matrix is symmetric not positive-definite. This new
solver resulted in an up to 20 times faster performance of Finstrip, which allows analyses of more
detailed cross-sections and a more interactive design process.

Use the reduced stiffness matrix

The program Finstrip models the material symmetric with respect to the geometric contour. For
the description of a rotor blade such as in Farob (and in many wind turbine design applications)
the material is defined ’inside’ of the blade contour which means that with Finstrip the overall
bending stiffness of the blade cross section would be over-estimated. This over-estimation of the
bending stiffness has been by-passed by writing more realistic sectional properties from Farob to
the . buc files.

Even with more realistic sectional properties, the B matrix that exists for asymmetric rotor blade
panels is not included. Within the BLADKNIK project the asymmetry of rotor blade panels is
included by using the ‘reduced stiffness matrix’ D which is calculatedas D =D —B-A"1. B,
see also section A.6.

Improvement on sandwich panel modelling

At the end of the former BUCKBLADE project [13]], some uncertainty remained about the model-
ling of sandwich panels. Initially this uncertainty was addressed to the transitions between sand-
wich ’elements’ and conventional ’elements’.

Scoping investigations for a single box-beam with various sandwich layup showed unrealistic
results for sandwich panels if the sandwich core has an in-plane stiffness in the order of the facing
stiffnesses such that the core contributes to the panel bending stiffness.

Correction of the sandwich modelling may be done with the expressions for the out-of-plane shear
flexibility of the panel as calculated following the method in Appendix A.2, and by calculating the
bending stiffnesses as for a conventional panel.
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4.4 Improvements on Farob (Focus)
Modelling of the transverse shear force in a section

In former versions of Farob only the axial strains (and the associated stresses) in a blade cross
section were calculated from the axial force and the bending moments. Within the BLADKNIK
project the model for cross-sectional loads in Farob was extended with the calculation of the shear
strain distribution in the panels of a blade cross section.

Option to define ’Lines’ in a flat plane through a blade

In the Farob blade model material layers and shear webs are defined along so-called ’Lines’.
These Lines are defined along a number of points on the contour of a series of cross sections.
For the edges of a shear web (’spar’) these Lines are the intersection of the overall blade contour
and of the plane of the shear web, which is usually flat. For the intersection of the overall blade
contour with a flat plane the Lines can be defined with the /P option that has been added to Farob.

Specification of material type

Within Farob the definition of materials is rigorously restructured such that the material type can
be specified explicitly. At the DEF MATERIAL input specification the (optional) keyword Type
has been added which can have the values:

’isotropic’ Here E_11 and nu_12 are read and G_12 is calculated by Farob;
’orthotropic’ Here E_11, E_22, G_12, nu_12, and the fiber-angle are read;

’core’ Here E_11, E_22, G_12, G_23, G_31, nu_12, and the fiber-angle are read.

These material properties can be extended to fully anisotropic (also E_33, nu_23, and nu_31).

If Type is specified, a check is performed whether all required material properties are present.
If Type is not specified the material properties are read in the conventional way (to ensure com-
patibility with previous versions).

Although not all of these properties are used by Farob they are used in the input files generated
for FEM calculations. MSC.MARC, MSC.Nastran, and ANSYS all use these material properties.

For conventional strength analyses in Farob (fatigue/stress/strain analyses) the material properties
regarding stiffness are transformed to the blade-longitudinal directions for non-zero fiber angle.

4.5 Improvements on the Focus-FEM interface
Farob-FEM interface for better non-linear elements

On request of Focus users, the finite element mesh generator was improved to have an additional
option for ANSYS output to mesh ’'SHELL181’ elements, which is a composite 4-node thick shell
element. For non-linear analyses in rotor blade certification (such as buckling) the usage of the
8-node thick shell element SHELL99 of ANSYS is no longer accepted by Germanischer Lloyd
because of inaccuracies of SHELL99 for such analyses.
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5 CONCLUDING REMARKS

5.1 Specification of the tools

The following table contains the specifications of all the buckling load prediction tools, that were
improved in the BLADKNIK project and are supported by Farob. The numbers preceding the
panel-based methods indicate the *method’ as used in Farob, see also section D.2.

l.contour | 1.web | 2.analytic. | 3.rigorous | Finstrip | FE.M.
Asymm. orthotr. material . ° ° . approx. °
Anisotropic material Ci6 Co °
Thick-faced sandwich . ° ° . °
Asymmetric sandwich approx. °
Non-uniform material aver. aver. aver. ° ° °
Shear loading . ° °
Transverse compression . . °
Non-uniform transv. curv. (o) °
Strong transverse curv. (o) °
Longitudinal blade curv. ° . °
Pre-buckling deformation °
Geometric twist °
Edge constraints SS-3 SS-3 SS-3 SS-3 full full

This table emphasizes the completeness of using a F.E. method for buckling load prediction.

When finishing the BLADKNIK project the 'rigorous solution’ for panels with non-uniform ge-
ometry, loading, and material properties was only completed for flat panels; see the dots between
brackets (o). In the BLADKNIK project description however, it was stated that the non-uniform
properties of rotor blade panels would be included by either using panel-average properties or
developing the ’rigorous solution’ (section A.4 and A.5) which means that the targets are met.

5.2 Optional improvements

The following improvements on Focus + Farob + buckling prediction methods are foreseen:

* In Farob; calculate the sectional properties (e.g. bending stiffness) with laminate stiffness
properties derived from the material properties of the fibres following laminate theory.
Now the sectional properties are calculated by simply adding the Young’s moduli.

* A more detailed buckling load prediction of the shear web, based on section B.5.
When this is done well, the prediction covers collapse modes with short wave-length.

* Extend Farob with a model for the ’crushing loads’ in the shear webs.
* Include the contribution of S-shaped panel geometry on the buckling load.
» Complete the rigorous solution in routine rlamod3 for non-uniform curvature, see A.5.

* Add an algorithm to the panel-based methods for the geometric pre-buckling deformation
of the contour panels due to the so-called ’crushing loads’.

* Correct the program Finstrip for sandwich layup of which the facings have considerable
individual bending stiffness and/or of which the stresses in the core contribute to the in-
plane stiffness and bending stiffness. Also a proper contribution of the core to the bending
stiffness can be an improvement of both the panel-based methods and Finstrip.

* In the framework of the Focus6 project, full featured (thick shell) finite element solvers will
be implemented in Focus6. One of the options will be buckling analyses of rotor blades.
This new feature will be used in addition to the existing buckling analyses tools of Focus.
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A STABILITY EQUATIONS OF CURVED PANELS

For the fibre-reinforced material of rotor blades the elastic stress-strain relations depend on the
direction of loading. Rotor blade panels may have a sandwich construction in order to obtain a
high out-of-plane bending stiffness in combination with a low weight. This appendix contains
descriptions of:

* Laminate theory used to define the panel stiffness properties;
* Description of out-of-plane shear flexibility with a few parameters;
* Non-linear strain-displacement relations for curved panels;

* The linear stability equations for long orthotropic panels
with non-uniform curvature, material, and loading;

* The non-linear equilibrium equations for long orthotropic panels
with uniform material, uniform loading, and (weak) uniform curvature.

A.1 Shell stiffnesses

The stiffness relations that are derived here are based on the Kirchhoff-Love hypothesis:
"A normal vector in the material of an unloaded shell remains straight
and normal to the deformed shell reference plane after deformation".
For strength analysis this means that the in-plane strain in any point in the shell is the sum of the
strain of the shell reference plane and the distance with respect to this reference plane times the
curvature from elastic deformation:

X(Z) = 6X(Zref) + (Z - Zref) Rx
v(2) = ey(2rer) + (2 — zref) Ky (23)
’ny(z) = ’YXy(Zref) + (Z - Zref) Rxy

2T

The material stiffness relations of a layer have the general form:

Ox S11 S12 S13 S14  S15  S16 €x
Oy S12 S22 S23 S24 S25 526 €y
Oy, _ | S13 523 833 534 535 536 . € (24)
Tyz S14 824 S34 S44 S45  S46 Vyz
Txz S15 825 835 S45 S55 S56 Vxz
Txy S16 S26 S36 S46 S56  S66 Vxy

Note that the matrix in this stiffness relation is symmetric.
For a material that is homogeneous and symmetric w.r.t. the x—y plane this relation has the form

Ox s11 s12 s13 0 0 s €x
Oy S12 S22  S923 0 0 S926 €y
o S S S 0 0 s €
Tyz 0 0 0 S44  S45 0 Vyz
Txz 0 0 0 s45 855 0 Vxz
Txy s16 s26 sz, 0 0 se6 Vxy
Following thin shell theory the out-of-plane normal stress o, is zero.
Elimination of €, = —(s13 €x + 523 €y + 536 Yxy)/S33 gives for the in-plane strains and stresses
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2
Ox S11 — 813/533  S12 — 523513/533  S16 — 536 513/533 €x
2
oy | = | s12—523513/533 S22 — S93 /533 S26 — 523536/533 | | €y
2
Tyy 516 — 536 513/533  S26 — 523 536/533  S66 — S3¢/533 Yxy

or in short form:

Ox 511 S12 S16 €x
oy | = | S12 S22 S || € (26)
Txy S16 526 S66 Vxy

This in-plane stiffness relation is still symmetric.

For most materials the elements of this in-plane stiffness matrix can be obtained either by calcu-
lation from the engineering constants of the fibres and resin, or by means of coupon tests.

For fibre-reinforced materials these orthotropic(!) stiffnesses are usually given with respect to the
longitudinal ‘I’ and transverse ‘t’ fibre directions:

o] gin qi2 O €
oy | =1 @12 g2 O | e (27)
Tit 0 0 g6 Mt

For a layer of fibres of which the fibre direction I makes an angle ¢ with the ‘x’ direction the
stiffness relation after transformation is of the form (A.2).

The individual terms in this relation are related to the stiffnesses ¢;; etc. with respect to the fibre
direction by (from Jones, [12] section 2.6 p.51):

511 = q11 (cos #)* + 2(q12 +2 ge6) (cos @)? (sin @) + goo (sin ¢)? ;

512 = q12 ((cos @) +(sin@)* ) + (q11 +g22 —4 ges) (cos ¢)? (sin @)? ;

S22 = qa2 (cos ¢)* + 2(qu2 +2 qee) (cos ¢)? (sin ¢)? + qu1 (sing)* ; 28)
516 = (qu1 —q12 —2 geg) (cos @) sin ¢ — (g22 —q12 —2 qe6) (sin @) cos ¢ ;

526 = (qu1 —q12 —2 ges) (sin @)* cos ¢ — (g2 —q12 —2 qe6) (cos @) sin ¢ ;

366 = g6 ((cos d)* +(sin ) ) + (qu1 +q22 —2(q12 +ge6) ) (cos ¢)? (sin ¢)? .

The in-plane loading on the entire shell follows from thickness integration of the stresses:
Nx = Jinickness  (511(2) €x(2) + 812(2) €y(2) + 516(2) 1y (2) ) dz 5
Ny = [inickness » (512(2) €x(2) + 522(2) €y(2) + 826(2) 1y (2) ) d2 ;
NXY = j;:hicknessz (Nlﬁ(z) GX(Z) + 526(2) 6}’(2) + 566('2) ’YXY(Z) ) dz ;
while the out-of-plane bending moments follow from the integrations:
My = j;:hicknessz (Z - Zl“ef) (511(,2) 6X(Z) + 512(2) 6}’(2) + 516(2) P)/Xy(z) ) dz ;
My = [ihickness = (2 = 2ret) (512(2) €x(2) + 522(2) €y/(2) + 526(2) 1xy(2) ) dz ;
Myy = Jinickness = (2 = 2ref) (816(2) €x(2) + 526(2) €y/(2) + S66(2) 1xy(2) ) dz .
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Processing of the integrals gives the stiffness relations for an anisotropic shell

Ny Ann Az Aig Bui B2 Bis €x
Ny Aa Az Ay Bia By Bog €y
Niy | _ | A6 A2 Aes Bis B2 Bes | | Yxy 29)
M Bi1 Bia Big D11 D1z Dig Kx
My, Bia B2z B Diz Do Dog Ky
My Big Bos Bes Dis D2 Des Kxy
Ny €x
Ny A B €y
or in short form Ny = Txy
My Kx
B D
My Ky
Here the terms of the matrices A, B, and D are
A;i :/ S;i(z)dz ;
" thickness Z]( )
Bi; = / (2 — zref) 8ij(2) dz ;
thickness
D;; = / (2 — 2ret)? i (2) dz . (30)
thickness

Due to symmetry of the matrices and layer-stress only the terms for
1j=11,12, 22, 16, 26, and 66 have to be evaluated.

For layered shells of which the material is homogeneous through the thickness of each layer the
integrals can be calculated by the summations

k=Niayers
Aij= > (2= 21) 8i(k) 5
k=1
k:Nlayers
Bj= 5(2,3 — 28— 2(zk — 2k1) Zret) 8ij () ;
=1
k=Nlayers
1 3 3\
Djj = 303k = 2ret)” = (21 = 2er) °) 83 () -
k=1

Orthotropic panels

A special type of anisotropic panels are orthotropic panels for which the stiffness properties are
symmetric with respect to the longitudinal- and transverse coordinate axes. This means that shear-
and torsion effects are un-coupled from bending- and normal strain effects and is reflected in zero
values for the stiffness matrix elements A, Aog , Big, Bog, Dig, and Doyg .
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A.2 Out-of-plane shear deformation

Sandwich panels are layered shells characterised by one relatively flexible layer called "core",
between two (laminates of) stiff layers called "facings". In fact all material layers have some
out-of-plane shear flexibility although this is practically not significant except for the "core" layer
that is designed to increase the overall panel thickness and to have little weight.

The out-of-plane shear deformation can be modelled in several ways. For sandwich panels with
a relatively thick and soft core, a simple approach is to omit the contribution of the in-plane
stiffness of the core itself and to assume that the facings do not have bending stiffness. In addition
the sandwich panels are often treated as symmetric (having similar facings), which is usually true
for the shear web in a rotor blade but which may not be true for sandwich panels in the blade
contour.

This section first contains a description for the out-of-plane shear flexibility on basis of the fact
that the transverse shear loading in a panel runs between the midplanes of the facings. The relation
between the panel loading and the transverse shear deformation (-gradients) is given with stiffness
matrices By and Dy, which are slightly smaller than the matrices B and D.

Next an approach is given in which the out-of-plane shear deformation and the out-of-plane shear
stiffness is defined such that the influence of the out-of-plane shear gradients is described with the
panel stiffness matrices B and D.

With shear loading modelled between facing midplanes

Under the assumption that the out-of-plane shear deformation in the core is uniform through the
thickness and the core itself does not contribute significantly to the load-carrying capabilities of
the panel the so-called "first-order shear theory" can be applied. This means that the expressions
for the strains in the upper facing differ from those in the lower facing by an amount:

€x upper(zu) = €x lower(zl) + (Zu - Zl) Kx — Yxz.core,z te 3

€y upper(zu) = €&y lower(zl) + (Zu - Zl) Ry — Vyz.core,y te ;

Txy upper(zu) = Txy lower(zl) + (Zu - Zl) Rxy — ('sz.core,y + ’sz.core,x) tc .
Here ¢. is the core thickness. Because of the fact that the transverse shear stress can be calculated
as if it runs between the facing mid-planes, it is more convenient to express the out-of-plane shear
deformations 7y, and -y, between the facing mid-planes, which are a distance / from each other.

Integration of the stiffnesses with these expressions for the local strains gives the sandwich-shell
stiffness properties:

€x
€
Ny Ay A Ae Bii B2 Big Bsin Bsi2 Bsis Vy
Ny A1g Asy Asg Bia By Bas Bsi2 Bs2 B ny
Ney | _ | A1e A2s Aes Bis Bz Bes Bsie Bsas Bsoo HX
My By B2 Big D1 D12 Dig Dsit Dsi2 Dsis . Y
M, Bia By Bog D1z Das Dog Dsi2 Dszo Dsog 5 Y
My Bi¢ Bas Bgs Dis D2 Des Dsie Ds2s Dses VXZ’I
vz,
Yxz,y T Vyz,x
Ny €x
N, €
Ny A B Y By Vxz,
or in short form ol = S I : Vyzy
M, Kx ’
My B D Ky Dy Vxz,y t Vyz,x
Mxy Rxy
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Here the matrix Dy contains the bending stiffness terms expressed as if they are due to in-plane
strain variations of the facings only, which is related to the use of the core-flexibility as out-of-
plane flexibility of the entire sandwich panel.

For sandwich panels of which the facings have membrane stiffness matrices that are proportional
to each other, the reference plane for out-of-plane shear can be chosen such that the stiffness
matrix Bg equals zero.

For sandwich panels of which the bending stiffness of the core and of the individual facings are
negligible compared to the panel bending stiffnesses, the matrices Bg and Dy can be replaced by
B and D for which the stiffness relations get the form:

Ny €x
]‘ny A B Ey
Xy — . 'ny . (3 1)
MX B D Rx + ’YXZ,CC
My Ky + Vyzy
Mxy /ixy +7xz,y +’sz,x

For the out-of-plane deformation expressed over a thickness h of the anisotropic elastic core with
thickness ¢. the additional relations are

Ny, \ _ [ A Ass [ e
Nxz A45 A55 Yxz '

For an orthotropic core layer with its principal direction (G13 -dir) having an angle ¢ with the z
axis, the stiffness properties are obtained from trigonometric decomposition of the out-of-plane
shear deformation and -flexibility, which gives the inverse of the out-of-plane shear stiffness ma-
trix:

(A" D55 = ((cos §)?/Gi3 + (sin¢)?/Gas ) te/h*

(A_1)45 = cos¢ sing (1/G13 — 1/G23) tc/h2 5

(A_1)44 = ( (COS ¢)2/G23 + (sin ¢)2/G13 ) tc/hz .
The out-of-plane stiffness matrix elements follow from inverting the flexibility matrix A~! :

Ass = (A71)aa/((A )55 (AN — (A71)45 )

Ags = —(A N5 /(A7 )55 (A Nag — (A7) ) 5

Agg = (A7 )55/((A )55 (A g — (A1) ) -
For implementation in a routine, it is recommended to use the flexibility matrix elements A~
because they approach zero for laminates without typical sandwich layup.

Panels with a relatively small out-of-plane shear flexibility, (A™1)44 << (b/7)?/Dg22 and
(A71)55 << (b/m)?/Ds11 do have small out-of-plane shear deformations Yy, and 7y, .
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A.3 Strain-displacement relations

The description of geometric instability is based among others on the non-linear strain-displacement
relations. The form of these relations reflect the character and detail of the geometrical modelling.

The phenomenon of buckling involves the transition from in-plane strain energy to out-of-plane
bending energy, which is the basis of some of the methods described in Appendix B. This means
that for an accurate prediction of the buckling load, the description of the correct amount of in-
plane strain energy (that is transformed into bending energy) is important. The second variation
of the strain energy is calculated with the strain-displacement relations from the variation in shell
deformation. Whether it concerns a simple panel method or a shell element of a finite element
package, the strain-displacement relations that are used are of vital importance.

The complete set of expressions for the strains of shells with double curvature and twist that
is also invariant for rigid body rotations are rather lengthy while it is also difficult to define an
orthogonal coordinate system. For panels that have a small longitudinal curvature 1/Ry and a
small geometric twist 1/ R, but that may have a strong transverse curvature 1/ R, the following
strain-displacement relations are invariant for moderate rigid body rotations:

1,02, 1.2, 1, 2.
€&x =Ugz —w/Bx+swy; +5v; +5u;;

_ 1 2,1 2,12,
&y =vy —w/Ry+ 5 (wy +v/Ry)"+ 5 (vy —w/Ry)* +5u,;
Ty = Uy + V2 = 2w/ Ry + w0z (wy +0/Ry) + 0z (vy —w/Ry) Fuguy;
Fx = —Waai Ky = —Wyy —Vy/Ryl  hixy = =2way — (Ve —uy)/Ry.
The expressions given here are for curvatures that describe a panel with its convex side toward
the positive z direction. The x, y, and z axes form a right handed system. The quadratic terms in
the derivatives of u and v for the in-plane strain are necessary to describe Euler buckling of long
beams under axial compression.

With the fact that the collapse mode is dominated by out-of-plane deformations, the quadratic
terms in u and in v can be omitted from the in-plane strains gives:

2.
T

ey =vy —w/Ry + % (wy +v/Ry)?
Yoy = Uy + Vg —2W/Ryy + w5 (wWy +v/Ry) —vw/Ry .
With a further simplification of the expression for 7., and with a different expression for the
elastic twist kyy gives the relations as reported by V.V. Novozhilov et al.:
€&x =uUy —w/Ry+ %wg? :
ey =vy —w/Ry+ 3 (wy +v/Ry)?;

Yoy = Uy + Uz — 2w/ Ryy +wz (wy +v/Ry) ;

1
€&x =Ugp —wW/Re + 5w

hx = 7Waa ; Ry = —Wyy — Vy/ Ry ; Fay = —2Way — 202/ Ry . (32)

These strain-displacement relations are still invariant for small rigid body rotations that are de-
scribed with u, v, and w. The difference in the expression for the elastic twist was applied
on basis of the assumption that the in-plane shear deformation times the transverse curvature
((uy +v,4)/Ry ) is small compared to the term w 4, .

ran

If also the transverse curvature 1/ Ry, is small compared to the panel dimensions Donnell’s "quasi
shallow shell assumptions" are valid which gives the strain displacement relations in section A.6.
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A.4 Stability equations for non-uniform long prismatic panels

In this section the stability equations are derived for long panels of a rotor blade that are prismatic
along the blade axis (x direction) and that have a non-uniform geometry and material properties
in transverse y direction. The latter direction runs along the airfoil contour. The z axis is defined
such that it points *inward’, to the concave side of the panel if this has a positive curvature 1/R,.

The equations are based on the fact that for marginal stability of an equilibrium state the second
variation of the total energy for the (small amplitude) collapse mode of the loaded panel is zero.

The elastic energy in a loaded panel supported with an elastic stiffness kgpp, is:

y=b rax=L 1
Ug = / . / 0 i[NX Ex+Ny €y +ny’7xy +Qx'7xz+Qyz’7yZ + My (/{X +'7xz,x)
y=0 Ja=

+ My (Ky +Yyay) + My (Fxy +xay +yz) + ksupp w? ] dazdy .

The energy of the applied load is:
y=b rz=L 1]
Uy, = / / “[—Nxuyz—Nyvy — Ney (uy+v,) | dedy .

For equilibrium, the variation of the energy due to variations in the deformation must be zero.
At the load for bifurcation-buckling the state can have some variations in deformation pattern for
which equilibrium is also satisfied. This (marginal) ’stability’ of an equilibrium state is satisfied
if the second variation of the strain energy and energy from the applied load is zero:

(52(UE + UL) =0.

The deformed state is described with a pre-buckling solution and a collapse mode:

u = ug+dou, v=v9+0v,and w = wy+dw where the subscript ¢ indicates the undeformed
state (under loading) and the symbol ¢ indicates the variation that describes the collapse mode.
Substitution of these terms in the strain-displacement relations gives:

€x = €x0 + O + 8¢y, €y = €yo + ey + 626y ,and also ky = Ky + 0Ky etcetera,
and for the loads: Ny = Ny + 0Ny + 62Ny, Ny = Nyo+ 6Ny + (52Ny etcetera.

The second variation of the energy from the applied loads equals zero: 62U, = 0 because the
applied loading at the edges of the panel do not change during collapse while the edges itself
remain on the same location for small collapse amplitudes at the bifurcation point.

The second variation of the elastic strain energy is:
2 y=bre=Lq 2 2
52Us, :/yo /x:o 5[ 9N exo + ONx e+ Neo 026 + 02Ny ey + 6N Oey

+ NyO 62€y + 52ny ’.)/XyO + 5ny 67}(}’ + nyO 52'.)/)(}; + 6QXZ 5FYXZ
+0Qyz 0Vys + O My (8kix + 0Vxz,z) + O My (6ky + 0Vyay)
+ 0Myy (8Kxy + 0Vxay + 0Vyzz) + Ksupp (5w)2 Jdedy = 0.

Based on the assumptions that k0 =0, ky0 =0, Kxy0 =0, Vxz0 =0, and 7y, o = 0 and the relation

52N, 5%,
BN, | =Aa| &%,
52ny 52’7xy

one can derive that Ny 0%y + Nyo 52€y + Nyyo 52fyxy = 02Ny ex0 + 52Ny €y0 + 52ny Yy 0 -
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Using this relation to replace the terms with second variations of the in-plane forces in the energy
expression, and substitution of the stiffness relations gives:

y=b rz=L 1 1
52UE:/ o / 0 [5Nx0<w,x)2+§Ny0(w,y+v/Ry)2+ny0w7:v (wy +v/Ry)
y— _

1 €x Fx + Yxz,z

+ §<5X & M)Al & +(ex €& y)B Ry + Vyzy
Vxy Rxy +’sz,y +7yz,a:

1 Kx + Yxz,z

+ 5 (Kx +Y¥xze Ky FYyzny  Kxy T Vxay HVyze)D Ky + Vyzy
Rxy +’sz,y +’7yz,x
1 2 1 2 1 2
+ 5 Ass Vxz T Ays Yxz Vyz + 5 Asga Vyz + 5 ksupp w ] dx dy =0. (33)

For simplicity the symbols § for all first-order variations of the degrees of freedom are omitted in
this expression, while the subscripts g still indicate the steady-state of the loaded panel.

If the strain-displacement relations are substituted, the general form of this expression is:

//F(wayau,xau,yaUav,zav,yawaw,mw,yaw,xxaw,xy,w,yy,%cza'7xz,:v7'7XZ,yv'YyZv'YyZ,xa'VyZ,y) drdy =0.
yJx

From this integral equation a set of stability equations can be derived using Trefftz’s criterion for
each of the deformations: u, v, w, 7x,, and 7y, , see also Appendix A of [3].

For the u direction the stability equation is given by: —%(a‘aTF) — a%( aauF )=0.

Performing the derivatives and regrouping of some terms gives the stablhty equation:
NX,I + NXy7y = 0 ° (34)

The stability equation for the v direction follows from: ‘3—5 - %(88%) gy ( dav y—=90.

Performing the derivatives and regrouping of some terms gives the stability equatlon
0 Moy 4 ()
Ox" Ry 0y Ry

v
Nyo (wyt )/ By + Neyo we/Ry = Ny = Nygy +2 5 =0. (35)
y

The stability equation for the w direction follows from:

oF g ( oF 0 ( OF 9?2 oF 9?2 9?2 oF \ _

ow ~ 93(Bu.) ~ oy (aw,) + o2 (awM)Jrayax(aw )+(8y) () =0
Performing the derivatives and regrouping of some terms glves the stablhty equatlon

v 0 v 0
Nyo (w,y + Ey)) + %(nyo (w,y + ﬁy)) + %(nyﬂ wﬂ:)

0 0
Z (N =
81'( Xow@) + ay(

+ Ny/Ryx + Ny/Ry + 2 Nyy /Ry + My g0 + My yy + 2 My 2y — ksuppw = 0. (36)
The stability equation for the vy, direction follows from: % — 8%(%) - a%( 835 -)=0.
Performing the derivatives and regrouping of some terms gives the stability equation: -

sz - Mx,x - Mxy,y =0. (37)

The 5 stability equation for the 7y, direction follows from: gTF — % ( 83F ) — % ( B?/F ) =
. . . . . vz Ylyz,x J v,y
Performing the derivatives and regrouping of some terms gives the stability equation:

Qyz - Mxy,ac - My,y =0. (38)
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Equations for long prismatic panels of orthotropic material

Except for the blade root area, the panels of a rotor blade do have a quasi-prismatic geometry,
loading, and material distribution. For this part of the rotor blade the collapse mode is sinusoidal
in spanwise (x) direction which leaves a set of equations in the transverse coordinate y. In this
section, this set of equations in y will be derived as a set of first-order linear differential equations
from the 5 stability equations in the previous section, from the stiffness relations, and from the
expressions for the strain variations.

In addition to the 5 stability equations (34), (33), (36), (37), and (38) one has the 8 stiffness
relations (6 for conventional panels and 2 for the sandwich flexibilities) and the 3 in-plane strain
displacement relations.

For orthotropic panels the stiffness relations can be reduced to:

Ny A A B B Uy —w/Ry

Ny _ Alg A22 Blg B22 ) Vy — ’U)/Ry .
M Bi1 Bi2 D11 Do Wz + Yxzz |
M, Bia Baos Dis Dao Byy

Nuy |\ _ ( As6 Bes | . Uy +Vz .
Mxy Bes  Des 2 By,x + Yxzy — Vyz,x ’

and the sandwich stiffness relations @y, = As5 Vx, and Qy, = A4y, .

The panel stiffness relations can be rewritten (by inverting partially or completely) to:

Uy + Vg b Des —Bess | [ Nxy
2 By,x + Vxz,y — Vyz,x A66 D66 - Bﬁg _BGG AGG Mxy '

These expressions for the in-plane strains will be used while the rotation of the normal vector of
the panel material is introduced By = —w , — v/Ry + vy, .

After some manipulations a set of 10 first order differential equations in ¥ is obtained in the 13
variables: u, v, w, By, Vxz» Nx, Ny, Nxy, Qxz» Qyzs My, My, and Myy with Ny = Ny — My /Ry .

ny,y = - Nx,w ;

Nyy == Niya+2Mxyo /Ry ;
Qyzy = — Nx0 Wae — Qxze — Ne/Rx — Ny /Ry — My /R? + kgupp w
Myy == Mxyo+ Qyz ;
Myyy = = Mxz + Qxz ;
wy == Py —v/Ry + Qyz/Auss ;
Byy = — (Baz/det22) (Ny +My/Ry) + (Agz/det22) M,
— 591 (4 g —w/Ry) — S22 (—W 22 +Vx2.2) ;
vy = w/Ry + (Daz/det22) (Ny +My/Ry) — (Baz/det22) My
— 51 (uzy —w/Ry) — S12 (W 2z +Vxzz) ;
Uy = — 0z + (Deg/det66) Nxy — (Bges/det66) My ;

)

Vxz,y = Qyz,x/A44 - 2/6y7$ — (BGG/d6t66) NXy + (Agﬁ/d€t66) Mxy .

ECN-C--05-103 33



Here the terms det22 and det66 stand for det22 = Agg Dog — 3222 and det66 = Agg Dgg — 3662 .
The matrix elements Sj; stand for:

S11 = (D22 A12 —Bia Byg)/det22 ;

Si2 = (D2 Bia — D12 Ba2)/det22 ;

So1 = (Aga Bia — A2 Bag)/det22 ;

SQQ == (A22 D12 *312 BQQ)/d€t22 .

In addition to these 10 first-order differential equations (preceding page) one has the three expres-
sions from the (partially inverted-) stiffness relations:

Ny = S11 Ny + (S11/Ry + S21) My + Ti1 (vz —w/Rx) + Ti2 (W 2z +Yxz) 5
My = S12 Ny + (S12/ Ry + S22) My + T2 (uz —w/Rx) + To2 (—Wzz +Vxz)

Txz = QXZ/A55 .
The last expression will be used to eliminate yy;, .

Here the matrix elements Tj; stand for:
Ti1 = A1n — A2 511 — B12 591 5
T2 = By1 — A12 512 — Bi2 5o ;
Ty = D11 — B12 S12 — D12 S22 .

Substitution of the expressions for Ny, My, and 7, gives the 10 equations in 10 variables:
Nyyy = =511 Ny gz — (S11/Ry + S21) My o — Th1 U e

+ T we /Ry + T2 W pex — Th2 Qxzzz/Ass
N;7y = — Nyyo +2Myyo /Ry ;
Qyzy = — NxoWar — Qxzz — T12 (Qxz,x/Ass5)/ Rx — Ny /Ry
— 811 N} /R — My/R}? — (S11/Ry + So1) My /Ry
— T /R + 11w/ R + Ti2 W/ R + Ksupp 0 ;
Myy = Qys— My ;
Myyy = —S12 Ny, — (S12/ Ry + S22) My o — Ti2 U 2z
+Tiow /Ry + Too W gue — To2 Qxzaa/Ass + Qxz ;
wy = =Py —v/Ry + Qys/Ass;
Byy = — (Bya/det22) NI + My (Agy — B/ Ry)/det22
— 891 (U —w/Ry) — S22 (—W 2z +Qxz,2/As5) ;
vy =w/Ry+ (Da2/det22) Ny + My (Da/Ry — Baz)/det22
—S11 (ug —w/Ry) — S12 (W 40 +Qxz,2/As5) ;
Uy = — 4+ (Des/det66) Nyy — (Bge/det66) Myy ;

)

(QXZ/A55),y = Qyz,x/A44 - 2/By,:(: - (B66/d6t66) ny + (AGG/det66) Mxy .

The solution of this set of equations is a sinusoidal function in longitudinal direction
sin(rz/L) = sin(ux x) for the variables w, v, By, Ny, Qy,, and My .

From the order of the x derivatives one can derive that the following variables have a cosine
distribution cos(px x): w, Nxy, Qxz,and Myy .
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Substitution of these spanwise (x-) distributions, applying the x- derivatives, and omitting the
sin(ux x) and cos(py x) functions gives the equations (after some re-ordering):

Qyzy = 1t Nxow — (1/Ry + S11 /RNy = (1/R7 + (S11/Ry + Sa1)/ Rx) My

+ (Tur/R? =2 Tia/ R AHhsupp) w+ i (Th1 / R )u+ (14 (Tia/ Ry) /Ass) Qs
wy =— Py —v/Ry + Qys/Aus ;
Qxzy /Ass5 = pix Qyz/Ass — 2 px By — (Bes/det66) Nyy + (Ags/det66) My ;
Myyy = — px S12 Ny — px (S12/ Ry +Sa2) My + p2Tiou
+ i (Tr2/ R = Toa) w + (117 Ton / As5) Qs
Myy = Qyz + px Myy
Byy = — (Bas/det22) NI + ((Agy — Boo/Ry) [det22) M,
+ ix Sa1 w4 (Sa1 /Ry — 1,7 S22) w + fix S22 Qxa [ Ass ;
vy = (Daz/det22) Ny + ((Da2/Ry — Baz)/det22) M,
+ pix S11u 4+ (1/Ry + S11/ Ry — 1,2 S12) w + pix S12 Qxa/ Ass ;
Ny y = tix Niy = 2 pix Myy /Ry 5

u, = — pxv + (Dgs/det66) Nyy — (Bgs/det66) Myy ;
Nyyy = — px S11 N; — px (S11/ Ry +521) My + ,uf Tiiu
+ px (T11/Rx —,uXQ Ti2)w+ ,uf T12 Qxu/Ass - (39)

If the set of equations would be of the form: 0O f /oy =U - f then they could be integrated
straightforward (e.g. using the Euler method) over the panel width. However, if the layup does not
have out-of-plane shear flexibility (if 1/A55 = 0) the third equation does not give an expression
for Qx,,y. To deal with this fact, the derivatives in this set of equations are evaluated with finite
differences over each Ay interval: 8f/8y = (ﬁ+1 — ﬁ)/Ay = Af/Ay )

Here the index ; indicates the values for the subsequent y coordinates.

Likewise the right-hand side terms are evaluated with the average values between the begin and
end of each interval Ay: (fiy1+ fi)/2 = fi+ Af/2 . For the routines that are used under Farob
(such as rlamod3) the material properties are constant for each Ay interval.

The resulting set of equations in A f is:

(I~ (Ay/2)U) - Af = Ay U - ;. (40)
Except for the third element I* is a diagonal unit-matrix. Even with the fact that 1/A55 (third
diagonal element) may be zero, a solution can obtain an explicit expression by (partial) decom-

position of the matrix (I* — U Ay/2). Here one can use the fact that matrix U is sparse to reduce
the amount of CPU needed.
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Discontinuities of variables from non-uniform material distribution

The set of first order linear differential equations are formulated for constant material proper-
ties. With the fact that in the routines (that are called by Farob) the material properties are constant
within each interval Ay the equations (39) can be used to integrate the degrees of freedom that
describe the collapse mode. At the 'nodes’ between the adjacent intervals Ay the material prop-
erties (and axial loading Ny ) may have discontinuities. These discontinuities may also appear
for some of the degrees of freedom such as Q)x, and ;.

Reduced solution for flat plates

For flat plates (1/Ry = 0 and 1/R, = 0) the 6 differential equations for Qy,, w, Qxz, My,, My,
and 3, can be written in the form:

Qyz,y = Mx2 Nyow + px sz )

wy = —Fy+ Qyz/Ass;

Qxay [ Ass = pix Qyz/Ass — 2 pix By + (Ags/det66) Myy ;

My, = — pix Sa2 My + p2 Tiow — 12 Too w + (1 41,2 Tho /Ass) Qs ;

My, = Qyz + px Myy ;

Byy = (Asa/det22) My + piy So1u — .2 Soo w + pix S22 Qxs/Ass - (41)

This set of 6 equations still depend on the in-plane displacement variation u if So; and T7o are
non-zero, which is for non-symmetric laminates. A set of 6 equations in 6 unknowns is realised
for symmetric panels (zero B matrix) or if the contribution of the B matrix is included in the so-
called "reduced stiffness matrix’ D, see also section A.6. Omission of the terms of the B matrix
elements in the expressions for .S;; and 7;; and using D instead of D gives:

S12=5831=T2=0;

Sag = D12/Dag;

Tyy = D1y — Dy? /Doy ;

Agz/d6t22 = 1/D22 5

A66/d6t66 = 1/D66 .

Initially a solution for this simplified set of equations was implemented for *'method 3’.
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A.5 Rigorous solution of the 2-point boundary value problem

Based on the (adjacent) equilibrium equations derived in the previous section a rigorous solution
method is implemented in routine rlamod3 that is linked under Focus, see section D.3. This
method is called "rigorous solution’ because it accounts for the detailed description over the panel
width of panel curvature, axial load distribution, and material properties (including sandwich).

The deformation pattern solved in this routine can have any arbitrary shape in transverse direction
while it has a sinusoidal function in longitudinal direction (separation of variables). This descrip-
tion implies that all asymmetric effects such as shear loading, geometric twist, and anisotropic
material properties are not included. The effect of longitudinal curvature however is still included.

Solution method

The solution method for contour panel buckling solves the collapse mode as a two-point boundary
value problem. The complete set of stability equations for this 2-point boundary value problem
includes 10 first-order equations such as derived in the previous section.

The solution method that was initially implemented was for a reduced set of 6 differential equa-
tions for the case of flat panels, although still with non-uniform material properties. This smaller
set of equations reduces the complexity and the risk of over- or under-flow.

Edge constraints

The remaining 2-point boundary value problem was solved for the edge constraints:

1 the out-of-plane displacements w are zero;
2 the bending moment variations M, are zero;
3 the longitudinal out-of-plane shear loads (), are zero.

The first two edge constraints describe so-called ’simply supported’ edges and imply an under-
estimation compared with a real blade.

For curved panels buckling also involves in-plane load variations and deformations, so that ad-
ditional conditions have to be assessed for v with N, and also for v with Ny. The different
combination of edge constrains are indicated in literature with SS-1, SS-2, SS-3, or SS-4. Un-
fortunately not all authors use the same notation. In this report S.S — 4 is used if both in-plane
deformations v and v are assumed zero. For sandwich panels a fifth edge constraint has to be
considered for 7yy,.

Panels of a rotor blade structure are usually connected with some amount of shear/torsion/twist
stiffness due to the lap-joints. These joints are mostly of +/- 45°layers. This means that one
may consider the in-plane displacement variations (along the edge) of the collapse mode u to be
zero at the edges. The transverse displacement variations v of the collapse mode may have some
flexibility, especially if the panel-edge is also an edge of the cross-section, such as the trailing
edge. For this variable it is assumed that IV, = 0. This set of edge constrains is called SS-3.

Solution process

A non-zero solution of the linear set of first order differential equations is obtained if the equations
are satisfied and if also the variables apply to the edge constraints (see next sub-section). This
will be the case for a specific value of the applied axial loading Ny . With the fact that the axial
loading varies over the panel width y the critical loading will be expressed as factor A on the
applied load level N, (. The solution process is in fact a search process in which the load factor A
is increased until the complete 2-point boundary value problem is satisfied.

ECN-C--05-103 37



A.6 Donnell’s non-linear equations for imperfect shells

For thin-walled shells of which the dimensions and the radii of curvature are large with respect to
the wall thickness Donnell has formulated the *quasi shallow shell assumptions’:

1 The elastic curvatures of the shell do not depend on the in-plane deformations;

2 In the in-plane equilibrium equations the product of the out-of-plane shear loading and the
curvature of the panel can be neglected with respect to the gradients of the in-plane loading.

With these assumptions the strain-displacement relations in (32)) reduce to the simple form:
_ 1,.2.
e&x =Ugz —w/Ry+ 5w ;
_ _ 1,2,
&y =vy —w/Ry+5wy;
Yy = Uy T Vg —2W/ Ry + w5 Wy ;
Fx = ~Waz ; Ky = —Wyy ; Kxy = —2Wazy -

For panels with initial geometric imperfections in terms of a stress-free out-of-plane deformation
field w the elastic in-plane strain-displacement relations are:
e&x =Uy —W/Ry +wa(wy/2+0y,);

&y =vy —w/Ry +wy(wy/2+wy);
Ty = Uy + V= 2w/ Ryy + wal(wy + 0 y) +wy 0 -
These expressions for the strain of weak curved panels apply to the ’compatibility relation’:

Exyy T €yor — Yay,oy T Wyy/Bx + Waa /Ry — 2w 4y / Ryy

= —Wyy (Waa/2 W ze) + Way (Way +2Way) — Wae (Wyy/2 +04y) -

The strain variations ey, €y, and 7y, can be expressed in the (variations of the) in-plane loads and
the curvature terms:

€x Ny —W gz + Vxz,x
€y =C| Ny |- K ~Wyy t Vyzy
Vxy Ny —2W ay +Vxzy FVyz,2

The (variations of the) moments in the panel can be expressed with the stiffness relations as:

M Ny 5 —W gz + Vxz,z
My, = K" Ny [ +D Wy + Vyzy
My Nxy —2W gy +Vxzy V2,2

The matrices used here are: C = A™!, K = A'-B,and D =D — B-A"'.B. Using
these expressions for the strains gives for the compatibility relation (without the out-of-plane
deformation 7y, and 7y,):

N.

0%, 9*. . ) Waz x
- K| w +c. | N

27 2 Yy y
(8y ox Oz Oy 20, Ny

+ W,y Rx — 2W 2y /Ry + W 00/ Ry

= T Wy (W,02/2 +0 52) + W gy (Way +2 w,xy) — W (w,yy/2 +u_),yy) . (42)
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The non-linear out-of-plane equilibrium equation (similar as ) for a ’quasi-shallow’ imperfect
shell becomes (also without vy, and ~y):

N,

9. 92 %, ) - Wae x

2 | D | w —-KT. | N

2 27 Yy y
<3$ dy Oz Oy 2w 4y Nuy

+ ksupp @ — N/ R = 2 Ny [ Ry — Ny /Ry
= Ny (W 3z +0 22) + 2 Nxy (W 5y +0 2y) + Ny (W, +10 ) - (43)

With the ’quasi shallow shell assumptions’ the terms with the transverse curvature 1/Ry in the
first two stability equations (34) and (33)) can be omitted, by which they get the form:

ONy/0x 4+ ONyy /0y = 0 ; ONyy/0x 4+ ONy /0y = 0.
The in-plane loads apply to the Airy stress function f as follows (see also [23]], p.347):
Ny = f,yy ; ny:_f,a:y ) Ny = f,:m: .

Substitution of this stress function in the compatibility equation and expanding the matrix-vector
products for anisotropic panels gives:

022 f,:(:xmc -2 026 f@mﬁy + (2 012+066) f,:ca;yy -2 C'16 f,xyyy + Cll f,yyyy

+ K21 W rxrx + (2 K26_K61) W zxay + (Kll +K22_2 K66) W zxyy
+ (2 K16 Ke2) Wayyy + Ki2 wyyyy + Wane/Ry — 2w ey /Rey + wyy /Ry

= —Wyy (Wae/2 + Waz) + Way (Way +2Way) — Wer (Wyy/2 + D yy) -
Performing the same for the equilibrium equation gives:
Dll W przr + 4 E16 W zrzy T 2 ([)12“‘2 D66) W goyy + 4 b26 W zyyy + -DZZ W yyyy

+ ksuppw - K21 f,xmcx - (2 K26_K61) f,xx:cy - (K11+K22_2 KGG) f,ac:cyy
— (2 K16— Ke2) Fayyy — K12 fyyyy — f,xx/Ry + 2f,xy/ny - f7yy/Rx

= fyy(Waz + W 22) = 2 flay(Way + D ay) + faa(Wyy + D yy) -

For the special case of orthotropic panels without geometric twist (1/ Ry, = 0) and without shear
loading the non-linear compatibility equation for imperfect shells has the orthogonal form

C2 fwzax + (2C12+C66) faeyy + Ci1 fyyyy + K21 W paze
+ (K11 + K2 —2 Ke6) W aayy + K12 W yyyy + W g0/ Ry + w4, / Ry
= — Wy (W az/2 + W pq) + Wy (W ey +2W 4y) — W e (Wyy/2 + 0 yy) ; (44)
and the orthogonal form of the non-linear equilibrium equation
D11 W gz + 2 (D12+2 D ) W gy + Doz W yyyy + Esupp W
— K1 fazee — (K11 +Ko2—2 Ke6) faayy — K12 fyyyy — fae/ By — fyy/Rx

= fyy(Waz + Waz) = 2 fay(Way + Way) + fao(Wyy +yy) . (45)
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B ANALYTICAL BUCKLING SOLUTIONS

This appendix contains a description of some buckling prediction methods based on analytical
solutions for panels with uniform curvature, material, and loading. These solutions form the basis
of some of the improvements of the 'Design Rules’” and can also be used in more simple versions
of the panel-based buckling routines. Most of these conventional prediction methods assume
untwisted symmetric panels for which 1/Ry, = 0 and that have a zero B matrix. Asymmetry
of the panel-layup in thickness direction can be included by using a so-called 'reduced stiffness
matrix’ in which the influence of the B matrix is included.

B.1 Solution method for uniform curved orthotropic panels

For most practical solutions the expressions for curved uniform panels are derived analytically
using Donnell’s strain displacement relations. As shown in section A.6 the in-plane panel loads
can be expressed in the Airy stress function f (here for variations that describe the collapse mode):

Nx:f,yy; Ny:f,za:§ ny:_f,azy-
Using this stress function f in the stability equations (36)), (37), and in the linear version of
the compatibility equation (#2)), and in the expression for the moments ({#3)) and reducing these
equations for ’quasi-shallow shells” with uniform loading (Nyo, Ny, Nxyo) gives:

NxoWzz + Nyowyy + 2 NxyoWay + fryy/Bx + faz/By — 2 fay/ Ry

+ Mx,xa: + My,yy +2 MXYJ»’y - ksupp w=0.

A55 Vxz — Mx,x - Mxy,y =0.
A44 Vyz — Mxy,x - My,y =0.

< 0?2 0?2 —9? ) Fay —Wzx + Vxzx
. . - - |C f:c:r: - K —w + Vyz
a 2 6 2 8 8 ) Yy Yz,y
( y) ( JJ) Ty _f,:py —2w,xy + Vxz,y +’sz,:p

Wz | Wyy Wy
-2 =0 .
+ Ry + Ry Ryy

My f,yy B —W gz T Vxz,x
My, = K" fax +D ~Wyy t Vyzy
My —fay —2W ay + Vxzy T Vyza

Substitution of the expression for the bending moments and expanding the matrix-vector multipli-
cations for orthotropic panels (stiffness matrix elements with indices 16’ and *26’ are zero) gives
for this stability equation, for expressions and (38) for the out-of-plane shear deformation,
and for the compatibility equation:

—NxoWae — Nyowyy — 2 Neyo Wy
+D11 W gz + 2 (D12+2 Do) W sy + D22 W gy + Esupp w
— K1 fazee — (K114+Koa—2 Ke) fawyy — K12 fyyyy — Faoe/Ry — fyy/Rx + 2 fay/Rxy
— D11 Vagawe — (D12 +2 De6) Yawagy — (D12 +2 Deg) Yyzawy — D22 Vyayyy = 0. (46)

Dll W pzr + (DIQ +2 DGG) W pyy — Ko f,a::cx - (Kll _Kﬁﬁ) fﬂ:yy
+ Ass Vxz — Dll Vxz,xx — B66 Vxz,yy — (D12 +D66) Vyz,xy = 0. (47)
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(D12 42 De6) w,zzy + Doz w,yyy — (K22 = Koo) froey — K12 fyyy
- (b12 +b66)7xz,a:y + Ay Vyz — b66 Vyz,xx — D22 Vyz,yy = 0. (48)

K21 W zzzz + (K11 + K22 —2 Ke6) Waayy + K12 W yyyy + W o/ Ry + w4y / Rx
-2 w,zy/ny + Cao fﬂ:mﬁx + (2 012+066) f,x:cyy +Cn f,yyyy
— Koy Vxz,xxe — (Kll *K66) Vxz,xyy — (KQQ *K66) Vyz,xzy — Ko Vyz,yyy = 0. (49)

These are 4 linear equations in the 4 variables w, f, 7, and y,. For untwisted panels without
shear loading (1/Rxy =0, Nxyo =0) these equations apply to the sinusoidal solutions:

w = Cy sin(px ) sin(py y) ;

[ =C sinpx @) sin(py y) ;

Vxz = Uxz COS(MX :1:) Sin(ﬂy y) 5

Vyz = Cyz sin(px ) cos(piy y) -
Here yix = m/L and p1y = 7/b with L the half-wave length and b the half-wave width of the
deformation pattern. Substitution of these functions in the differential equations ( (46), (¢7), (S),
and ) for a non-trivial solution gives the set of characteristic equations:

(11 Nxo + i) Nyo + py D1y + 2 i1 (D12 42 Deg) + piy Dao + ksupp ] C
— g Koy + il (K11 + Ko —2 Kes) + 11y K12 — 17 /Ry — 1 /Ry ] Ct
—[12 Dur + i pry} (D12 +2 Des) | Coy — [ ¢ gty (D12 +2 Deg) + 1) Daa ] Cy = 0

[ Ko1 + 2 ) (K11 + Koo —2 Kee) + g Kig — 12 /Ry — ) /Ry ] Cy
+[ st Coz + pf 1 (2Cha +Cog) + py Cr1 | Cs
—[ 1 Koy + pi 1) (K11 —Kee) | Cxz — [ty (Koz —Keg) + g K12] Cy = 05

— 12 D11+ pix p (D12 +2 Dgg) | Cow + [ 112 Kot + i pf (K11 —Kgg) ] Cr

+[ Ass + p2 D1y + M}? Deg | Ciz + pix fty (D12 +Deg) Cy, =0 ;

—[ 12 pry (D12 42 Des) + 1 Dag] Cow + [ 1 iy (K22 — Keg) + ) K12] C
+ix pty (D12 +De6) Cxz + [ Asa + 1 Deg + 1y Doz ] Cyy =0

This set of equations can be written in matrix-form:

112 Nyo +My2Ny0+H11 Hy; Hi3 Hy Cy 0
Hyo Hyy Hyz3 Hy | | =C¢ [ _ | O
Hy3 Ho3 Hs3 Hsy Ce»n | | O
Hyy Hyy Hzy Hy Cys 0

The applied loads Ny and Ny can be scaled with A such that this set of equations is satisfied.

A numerical solution expressed in (sub)determinants has the risk of overflow, especially for non-
sandwich panels or sandwich panels with a very stiff core. This overflow can be avoided by
multiplying the 3-rd row and 3-rd column with the square-root of the longitudinal out-of-plane
shear flexibility A ! and multiplying the 4-th row and 4-th column with the square-root of the
transverse out-of-plane shear flexibility A 44*1. This gives for the matrix elements of the ‘reduced’
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characteristic equation:
Hyy = pd Dy + 2 ,uy2 (D12 +2 Dgg) + ,u;l Do + ksupp ;

Hoyy = — [Hf Coo + M}f Iu}? (2Ch12 +Cs6) + M;,l Cii];
Hia = g Koy + p py (K11 + Koo —2 Keg) + 1y K12 — pg /Ry — pu] /Ry 5
Hiz =1+ Ayt (u2 Dy + ,uy2 Dee) ;

Hiy = — [ D +Mxﬂy2 (D12 42 Deg) | \/E;
Hyy = — [ Koi + pi i (K11 —Ks) | \/@;
Hiy =1+ Ag' () D66+My2 Da3) ;

H}y = —[pd iy (D12 +2 D) +My3 Dys] \/ES
Hyy = — [ pry (K22 —Keo) + iy Kia ]/ Aur

H§4 = Ux Uy (DIQ +b66) A44_1 A55_1 .

Using the load factor A the matrix-form of the characteristic equation is:

Mg Nxo + pig Nyo) + Hy - Hio  His  Hjy
Hyp Hyy Hj; Hjy
His H3; H3z; H3y
Hi, Hy, H3y Hiy

det =0 (50)

The general solution for A is thus: A (— 2 Nyo — p1 Nyo) = det(H)/subdet(H1) .

Here subdet(H;;) is the determinant of the 3x3 matrix that remains after omission of the first
row and first column from matrix H .

For sandwich panels with moderate out-of-plane shear flexibility and with not too strong asym-
metry in the layup, the terms H3; and Hj, are relatively small. Omission of these terms in the
determinant equation for the critical load factor gives a rather practical expression:

A (=2 Nyo — ,uy2 Nyo) = Hi1 — (H{y)?/Has + termA/termB (51)

With termA = 2 Hfy Hyy H}y — His (Hpy)? — Hiy (His)? and termB = Hiy Hyy — (H3y)? .
For symmetric sandwich panels (zero K matrix) this solution is identical to that of C.W. Bert,

Crisman, and Nordby [}, 16]. It must be noted that the description of the solution given in [6] is
for sandwich panels with relatively thin load-carrying facings and transverse curvature only.

For non-sandwich panels and sandwich panels with very stiff core the terms A L and A4Z1
approach zero, for which the fraction termA/termB approaches zero and the expression for
buckling is simply: X (— 2 Nxo — pf Nyo) = Hii + Hy3/(—Haz) -

This solution is similar to that given in section 3.1.1 of the GARTEUR report by B. Geier [8]],
where — Hos is named G171, Hio is named G2, and Hqq is named Gos .

For panels without longitudinal curvature the contribution of the asymmetry matrix K can be
expressed in an ’effective’ transverse curvature such that the expression for H1 is conserved:

/Ry =1/Ry — uf, ((Mx/uy)2 Kot + (py/px)* K12 + K11 + Kog — 2K66) . (52

Here /i /1ty = b/L can be evaluated with the solution for flat plates in section B.4.
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B.2 Solution for slightly anisotropic non-sandwich panels

Because of the aerodynamic twist of a rotor blade the panels in a blade cross section have some
twist, while the edgewise shear loading in a blade cross section results in shear loads in the
panels. Both the shear loading and the geometric twist introduce odd derivatives in the set of
stability equations, while their contribution may either partially compensate or add-up to each
other. For investigations into buckling of blades with anisotropic material properties (for blades
with Bending-Torsion coupling) and eventually with the effect of shear loading and geometric
twist a relatively simple and approximate solution method is given for non-sandwich panels.

Assuming no out-of-plane shear deformation (7x, = 0 and 7y, = 0) the equations ({#6) and ({#9)
get the form
—Nxowazz = Nyowyy — 2 Nyyo W zy

+D11 W grre T 2 (D12+2 DGG) W zoyy + D22 W yyyy + ksupp w
—Ko1 f,acm:m - (Kll +Kop—2 Kﬁﬁ)f,mzyy - K2 f,yyyy
— faa/Ry — fyy/Bx +2 fay/Ruy = 0. (53)

Ko W przs + (Kll +Ko2—2 K66) W gzyy + Ko W yyyy + w,xw/Ry + w,yy/Rx -2 w,xy/ny
+ C22 f,awx;v -2 C(26 f,wx;vy + (2 C’124‘6166) f,a:xyy -2 C116 f,zyyy + Cll f,yyyy =0. (54)

This problem has some similarities with that analysed by Tennyson and Muggeridge [24] for
anisotropic curved panels, which also includes terms for K14, K26, K1, and Kg2. Reducing the
solution of Tennyson and Muggeridge for slightly anisotropic plates without shear loading gives:

A (= Nyo — pd Nyo) = Hyy + Hy3 /(—Haz — termC? /(—Haz)) - (55)

Here termC' stands for termC = 2 puy py (1,2 Co6 + qu Cig) -

B.3 Routine for buckling of uniform curved sandwich panels

For non-twisted panels with orthotropic material properties and without shear loading, the stabil-
ity equations and the compatibility relation can be expressed in the deformations w, vxz, 7Yy, and
the Airy stress function f. These linear equations have either only even derivatives or only odd
derivatives in both x and y. For those equations the solution of the collapse mode is sinusoidal
in both x and y direction. A derivation of those linear equations is given in section B.1 while
these equations are implemented in routine rlamod3 that returns the critical load factor for a given
length of the deformation pattern, see section D.3.

For a value 2 of the input item ’imethd’, routine rlamod3 returns the factor A\ on the applied loads
Ny and Ny g that is calculated from:

A (=2 Nyo — ,u}? Nyo) = Hyy + H,3/(—Hag — termC?/(—Has)) + termA/termB  (56)

The solution (56)) is a combination of (51 and (55) as presented in sections B.1 and B.2

In the calculation of the critical load factor, several (sinusoidal) half-waves in transverse direction
are traced: sin(my/b), sin(27y/b), sin(37y/b), etcetera. In this analytical solution, both the
longitudinal and transverse curvature are taken into account.

The routine rlamod3 that returns the load-factor for buckling is described in section D.3.

The panel-averaged stiffnesses are calculated using the *weighting functions’ in section C.1.
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B.4 Linearised solution for axially loaded symmetric sandwich plates

For flat symmetric plates the curvatures 1/Ry, 1/Ry, and 1/Ry, and the elementgs of the K
matrix are zero. This means that buckling is described with {@6), (7)), and {8)) only, so without
the compatibility equation(@9) for in-plane load variations The latter can also be concluded from
symmetry with respect to the plane midsurface .

For the set of characteristic equations the independence from the in-plane compatibility equation
means that the terms H1o, Hy3, and Hyy are zero. The expression for buckling of flat plates is
thus equal to (51)) without the Hio terms:

2 Hiy Hy, H3, — His (Hi,)® — Hi, (Hiy)®
Hiy Hyy — (Hy,)?

A (—Mf Nyo — /l)? NyO) = Hy +

For very long sandwich plates the collapse mode will have a half-wave length with the smallest
load factor A. Finding an analytical solution for the half-wave length with the smallest A value
is rather complicated because of the strong non-linearity of the rightmost term with the sandwich
properties. For a sandwich plate with relatively small out-of-plane shear flexibilities all non-linear
terms in these flexibilities A, and As;' can be omitted, which leaves:

A(—pg Neo — pf Nyo) = Hiy — (Hiy)? — (His)?

= pul Dy +2p2 ,u}? (D12 +2 Dgg) + M;} Doy
— Agst (1 Dy + pix My2 (D12 +2 Des))* — Ay (12 py (D12 +2 Des) + HS Dy)*.

To find the smallest A\ value express the half-wave length L as L = x b, so that uy = py/x.
Substitution of this relation in the expression for the critical load factor gives an expression for A
in terms of the variable x (for axial compression only):

/\Mi (—Nxo) = ,u;,l (D11/x? + 2 (D1a + 2 Dgg) + x% Da2)
- Mf (Ag,gl (D11/Xx* + D12 + 2 Des)* + Agy' (D12 + 2 Des + X D22)2/X2> :
The smallest (’critical’) value for A follows from a zero value of the derivative OA/9(x?) = 0.
0 = ud (—Dii/At+ D
= piy (=D11/X" + D22)

¢ (A55 2 Dur (Dua /X2 + Dua +2 D) /x* + A" (D12 +2 Des)?/x* = D)) -

For non-sandwich plates the second term in this relation vanishes so that the smallest factor A is

found for the critical half-wave length x? = \/ﬁn/ Doy and likewise Lo = b [?11/ Do .

For sandwich plates with small flexibilities A.z" and A,;' the influence of these terms on the
collapse mode is also small so that the governing terms in the condition for the critical load factor
A can be evaluated with the y value for non-sandwich plates:

0 = pg (=D11/x* + Dao) 4+l As5' 2/ D11 Doy Dag (1+ B) + nd A" Do3 (8> — 1) .
This equation is satisfied for

(1/X2) =14/ ﬁ22/b11 \/1 + ,UJ}2, ASEl \/ Dll bgg (2 + 2&) + ,u}z, A4Zl bgg (ﬁQ — 1) .

ECN-C--05-103 45



Based on this formulation the following sandwich stiffness ratios are introduced:

ri = pg (VD11 Dyy [As5) (14 3)/2 and 1y = pf (Doa/Ass) (L+8)/2. (57

Using these stiffness ratios r; and 7 gives: (1/x2) = \/Dao/D11 (14271 + 1 (3 —1)) .
The critical half-wave length applies to

Lerit = b/ Di1/Daz (1+472/2) /(1471 + B72/2) . (58)
And finally the expression for the buckling load factor with moderate sandwich properties is:
Acr (—Nxo) = pi2 /Do /D11 (24 28) /(1 + 11 +72) - (59)

These expressions for the critical half-wave length and for the critical load factor are formulated
such that they avoid ’division-by-zero’ in case of large values of ry or 5.

B.5 Solution for symmetric sandwich plates including shear loading

Compared to the solution for curved orthotropic panels described in section B.1 the shear-web of
a rotor blade is also loaded by shear Ny, (. Using the fact that the shear web of a rotor blade is
flat and the (sandwich) layup is usually symmetric allows a relatively simple solution.

After omission of the curvature terms 1/Ry, 1/ Ry, and 1 / Ry, after omission of the elements
of the K matrix (that describes asymmetric layup) from equations (36)), (37), and (38)), and after
substitution of the bending moments by the orthotropic stiffness relations, the resulting set of
equations in w , in 7y, , and in 7y, become:

— NxoWae — Nyowyy — 2 Nyyo Way
+ Dll W grre T 2 (D12+2 D66) W gayy + D22 W yyyy + ksupp w

- Dll Vxz,xxr — (DIQ +2 D66) Vxz,xyy — (D12 +2 DGG) Vyz,xxy — D22 Vyz,yyy = 0, (60)

Dyy W zar + (D12 +2 D66) W zyy

+ Ass Vxz — Dll Vxz,xx — D66 Vxz,yy — (DIQ +D66) Vyz,xy = 0, (61)

(f)12 +2 D66) W zry + D22 W yyy

- (D12 +ﬁ66)7xz,xy + Ay Vyz — [)66 Vyz,xx — DQZ Vyzyy = 0. (62)

This set of equations is used as basis for a more detailed prediction method of shear web buckling.
The shear web of most wind turbine rotor blades is characterised by a sandwich layup with a
relatively thick core. For this layup the failure mode is characterised by a short half-wave length,
of which the *wrinkles’ make some angle ¢ with the spanwise direction. For this collapse mode
the elastic deformation perpendicular to the wrinkles is higher than the elastic deformation for
bending in the length of the wrinkles. For this reason it is conservative to describe this wrinkling
failure mode of thick sandwich plates as a prismatic deformation pattern.

For wrinkles that make an angle ¢ with the blade axis the collapse mode can be described with:

w(z,y) = Cy sin(pp (y cosg —x sing)),
Yaz(,y) = Cxy cos( pp, (y cosd — x sing) ) ,
Vyz(2,y) = — Cyy cos(up, (y cos ¢ —x sing) ) .
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Here pp, = w/b where b denotes the half-wave length of the buckles or *wrinkles’.

Substitution of this collapse mode in the equations (60) to (62)) gives:
2 : 2 2 .
i <Nx0 (sin®)® + Ny (cos p)” — 2 Nyyo sin¢ cos qﬁ) Cyu
+ ,ué (Dll (sin ¢)4 + 2 (D12+2 DGG) (sin ¢)2 (COS ¢)2 + DQQ (COS ¢)4) Cw + ksupp Cy
3 (F 0 4N\3 > s . 2
+ (Dn (sin)” + (D12 +2 Dgg) sin ¢ (cos ¢) ) Cxz

+ u ((1312 +2 [?66) (sin ¢)? cos ¢ + Doy (cos ¢)3) Cy, =0,
u (D (sin @) + (D12 +2 Dgg) sin¢(cos¢)2) C.
b (D11 12 66 W
+ (A55 + 2 (D11 (sin ¢)* + Deg (cos <Z5)2) Cys
+ i (D12 +Deg) sin¢ cos ¢ Cy, =0,

ug’ ((1312 +2 1366) (sin ¢)2 cos ¢ + Do (cos ¢)3) Cyw

+ 12 (D12 +Deg) cos ¢ sin ¢ C,
+ (A44 + ,ug (D66 (sin ¢)2 + DQQ (COS ¢)2 )) Cyz =0.

This set of characteristic equations can be written in matrix-form:

Ny (sin )% 4+ Ny ¢ (cos ¢)?

2 0 yO0

5 < — 2 Nyyo sing cos ¢ +Hy1 Hi2 His gw _ 8
Ho Hyo  Has C;(z 0
H13 H23 H33

A trivial solution is given by zero values of C\, , Cy, , and Cy, .
A non-trivial solution is obtained if the determinant of the matrix equals zero, which is the case
for some factor A on the applied loading:

A i (2 Nyy o sin ¢ cos ¢ — Ny (sin ¢)? — Ny (cos ¢)?) = det(H)/(Hao Hzz — Hy3) . (63)

In this solution the matrix elements H; ; depend on the orientation ¢ and the half-wave length of
the wrinkles. The most critical collapse mode can be found by (numerical) searching along the
orientation ¢ and parameter puy, for the smallest load factor A, . With regard to the finite width
of the shear web and the assumption that the wrinkles are prismatic, it is not realistic to consider
wrinkles with a half-wave length that is larger than the shear web width in this search process.

In a numerical solution of (63) the r.h.s. term may have over-flow for large values of A44 and As;
which is the case for non-sandwich panels or sandwich panels with a very stiff core. Similar as
for the solution described in section B.1 this overflow can be avoided by dividing the 2-nd row
and 2-nd column by \f(A55) and by dividing the 3-rd row and 3-rd column by ﬂA44) .

For a sandwich shear web that is (also) loaded by in-plane bending, the axial in-plane loading
varies over the web width. It is un-conservative to use the 'web-width-average’ axial loading
while it is somewhat conservative to use the largest compressive (most negative) loading in the
panel edge. A fairly reasonable compromise is to use the compressive loading in the shear web at
b/3 from the *most compressive’ loaded edge.
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B.6 Face wrinkling failure modes of sandwich panels

The solution described in the previous section applies to panels with moderate to small out-of-
plane shear flexibility, of which the collapse mode can be described by panel bending.

Sandwich panels with a soft core and facings that are thin compared with the core thickness
may show ’face wrinkling’ when loaded by compression. For this face wrinkling failure mode
deformation energy is absorbed by bending of the facings, by shear deformation of the core, and
also by compression of the core in thickness-direction. For this ’face wrinkling’ failure mode an
analytical solution was derived in the BUCKBLADE project (section 4.2.4 on pp.30-32 of [[13]).

B.6.1 General solution for wrinkling of curved panels

A relatively thick core serves as an elastic support for *wrinkling’ of the facings. For geo-
metrical perfect curved orthotropic panels with an elastic support and with uniform loading and
-deformation pattern in transverse direction the stability is described by the single equation:

2

~ K
(Dllf + 021£ ) W przxr + 2
22

Ko ¢
Cot Ry

Wz + (ksupp + )w = Nyt Wz - (64)

1

2
Cozt Ry
Here f)n t, Ko1¢, and Coo¢ are stiffnesses of one facing and N, ¢ is the axial load in one facing.
If the stiffness terms are for a complete panel, then the solution is that for a box-structure with an
elatic interior foam. Depending on the expression of the support stiffness kg,pp this equation may
apply to face wrinkling of symmetric orthotropic sandwich panels. A solution of this equation is
of the form w(z) = w sin(ux x) .

For a core of a symmetric sandwich panel face wrinkling is the most critical if the collapse mode
is anti-symmetric with respect to the core mid-surface. For this mode the support stiffness is
Esupp = 2 Geore fix sinh(pix te/2)/ cosh(pux tc/2) . The stability equation is then

—Apg Neg = (Dyyg + Kﬂ?)uf 2R sinh(py fe/2) L )
Coot Ry cosh(pxte/2)  Coar R?2

022f ,Uf +2 Gcore J25%

For the most critical collapse mode one has to find the minimum (’critical’) value of the factor
Aer on the axial loading Ny ¢ . This minimum is found for a wave-length parameter p, that is the
positive solution of

2 sinh(px te) — px te 1

e - —0
core fhx cosh(puytc) + 1 Caat R?

~ K
D¢+ =2 4
( Con ) 1

An analytical solution for this equation is hard to find.

Since face-wrinkling occurs for panels with a flexible core (Geore tc?’ < Dllf) and because the
equations are derived for a longitudinal half-wave length that is small, a solution for face wrin-
kling will be sought by linearisation for large values of (uxt.) instead. This means that the
support stiffness can be approximated with kgupp = 2 Geore f1x and the characteristic equation
gets the form

- K, 2 Koyt 1
“AuiN = (D 20fy 4 At 241 9¢a - 65
Hy f ( 11f+022f)ux CQQfRy Uy + core Mhx + 022fR}? ( )

The most buckling-critical value A.; has a minimum value for a wave-length parameter that is the
(only!) positive solution of

(D11 + K3 /Caa) 1 — Goore pix — 1/(Co2 RY) =0
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B.6.2 Solution for wrinkling of flat plates

For flat plates the value of iy that gives the smallest axial loading follows from solving equation

for 1/Ry = 0, which gives: iy = \ZJ‘/Gcore/(an + Ky 2/Co2t) .
Assuming that only the facings carry panel loading, the corresponding axial critical compressive
panel-load for face wrinkling follows after substitution in (63):

—Nyer = Z —ANgs = Z 3 \3/Gcor§ ’ (Dllf +‘Kv21f2/6122f)

facings facings

=3 i))/Gcorg (\?/Dllfl +K21f%/022f1 + \?)/D11f2 +K21f%/022f2> . (66)

For sandwich panels with equal facings that are uniform in thickness direction the term Ko
vanishes while the facing bending stiffness applies to Dy1¢ = t8 Er/(12(1 — v?)).

Substitution of this expression for Dy;¢ gives for the critical panel loading:

~Nyar = 2621t {/Gopy2 Bt/(1 — 12) .

core

Imperfection sensitivity

For an isotropic-type of core for which the shear modulus is 1/2.6 times the Young’s modulus
(ve = 0.3), the solution derived here becomes: —oy o = 0.953 %/Gcore Ecore B¢ /(1 — qu) .

In [6] the critical stress for face wrinkling of a sandwich plate with an isotropic core is reported

as —Oxear = Q \?/ Geore Ecore Et/(1 —v?) where the solution is reported in [6] as Q = 0.825.
The larger factor () = 0.953 in the solution presented here is because the elasticity of the core in
thickness direction is not acounted.

To account for local imperfections of the facings [17]] recommends the expression

—0xer = 0.5 V/Geore Peore Bf Which is a reduction with a factor of about 0.57.
This reduction looks large but one has to realise that the sandwich facings in a blade loaded by
bending may be not-equally loaded.

In the European BUCKBLADE research project, calculations with a non-linear FEM package for
the sandwich tail panel buckling of a rotor blade showed a 0.8 times smaller critical load than
calculations with a linear FEM package, see chapter 6 of [14], where the experimental bucking
load of the sandwich tail panel was another factor 0.8 times smaller. These investigations and the
fact that the failure mode of the experiment was visibly face wrinkling (near a small imperfection)
learned that application of an imperfection sensitivity factor of 0.5 to 0.6 for face wrinkling is
reasonable. For the same ’sandwich tail panel failure’ the prediction for face wrinkling (at the
location of experiment failure) was about 2 times higher than the experimental buckling load,
even after reduction with a factor 0.6. The test specimen however showed a strong notch (local
imperfection) in the outer facing at the location where the tail panel has collapsed.

Rewriting the expression for the critical stress to an expression for the critical panel load for
symmetric sandwich panels (equal facings) and using a reduction factor of 0.5 gives:

— Nyer = 2.2 \3/Gcore Ecore (Dllf +K21f2/022f) . (67)

Notes

* The solution given in this section is an under-estimation for panels with finite width, be-
cause the deformation pattern is assumed prismatic.
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* For facing laminates that are symmetric in thickness direction the terms Ky;¢ are zero
while the longitudinal bending stiffness is simply Dq1¢ .

* For panels with transverse curvature the term Ky ¢ is small compared to 1/ Ry .

* The expression for the support stiffness of the isotropic core is based on the assumption
that the core is infinitely thick while the restraint for in-plane strain of the core near the
facing is omitted. As a result the support stiffness of the core (ksupport = 2 Geore fix ) 1S an
under-estimation.
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C PANEL AVERAGE PROPERTIES

Many of the more simple buckling load prediction methods such as the *Design rules’ in chapter 2
and the analytical solutions presented in Appendix B are formulated for panels with uniform
material properties, uniform geometry, and a uniform or linear distribution of the longitudinal
loading. These uniform properties can be calculated as straightforward average properties over
the panel width (arithmetic averages). This however would give the same contribution of the local
properties near the panel edges and those near the centre while near the edges the deformation is
smaller. Also for the panel average load distribution the axial loading near the edges of the panel
has a much smaller influence on the buckling load than the loading in the centre of the panel.
Because of the different contributions of the edge areas and the central area of the panel, it was
chosen to calculate the panel average stiffness properties with a weighting function that is based
on the contribution of the stiffness to the deformation energy for the ’expected’ (approximate)
failure mode. This expected failure mode is considered for long panels with simply-supported
edge constraints.

A similar approach is applied to calculate the panel average loading.

For flat and weak curved panels with uniform compressive loading and with the assumption of
simply supported edge constraints, the expected failure mode has one half-wave in transverse
direction. For strong curved panels, or panels with compression in only one edge the failure
mode has a transverse half-wave dimension that is much smaller than the panel width. The latter
“effective half-wave width’ is calculated following the description given in section 2.2.

C.1 Panel average stiffness terms

The analytical solution of long axially compressed plates with simply-supported edges is a failure
mode with one half-wave (sin(7 y/b)) in transverse direction for the variable w, see section B.1.
With the strain-displacement relations given in section A.3 one may find that the curvatures ry
and ky and the strains €, and €, also have a sin(7 y/b) function in transverse direction. Applying
the , derivatives in the linear terms of the expressions for the strains (32) one may derive that
Yxys Kxy, and v have a cos( y/b) function in transverse direction.

Using these functions in the expression for the adjacent strain energy in the collapse mode for
buckling of a panel (see in section A.4) gives that the following matrix stiffness terms have
a (Sin(ﬂ' y/b) )2 contribution to the energy expression: Aq1, A1, Aao, Bi1, Bia, Boa, D11, D19,
and D9o. These stiffness terms will also be averaged after multiplication with the weighting
function 1 — cos(27y/b) = 2 (sin(my/b) )?. For the panel average matrix-stiffness terms Agg,
Bgg, and Dgg a 1+ cos(2my/b) = 2 (cos(my/b) )* weighting function is used.

The panels of most rotor blades are of orthotropic material, for which reason many of the design
methods are formulated for orthotropic material properties only (except for the few anisotropy
terms in the solution in section B.4). Most solutions for orthotropic panels are formulated in
terms of the matrix X = A~! B and the ’reduced stiffness matrix’ D = D — BA™! B , while
the ’anisotropy’ terms Big, Bag, Di1g, and Dayg are not accounted for. This means that Kgg =
Bgs/Ags and 1566 = Dgg — Bﬁg /Agg from which it can be derived that the panel average stiffness
terms Kgg and Dgg should also be integrated with the weighting function 1 + cos(2my/b).
For orthotropic panels it follows similarly that /&;; and Dij with (i=1, 2 and j =1, 2) have a
(1 —cos(27y/b) ) contribution to the adjacent deformation energy during collapse, so that their
panel average values should be integrated using the weighting function (1 — cos(27y/b) ).
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C.1.1 Panel average transverse bending stiffness

The panel average value of the transverse bending stiffness term Dy is calculated on a slightly
different basis as the other stiffness terms. For a collapse mode in which only the transverse
deformation is considered, the transverse bending moment ), will be a continuous function
while the transverse curvature xy of the collapse mode will depend on the transverse bending
moment and the local distribution of the stiffness Dgg by ky = My / Dgg . Since the deformation
energy is proportional with the product of xy and My one may conclude that for a continuous
distribution of My, the panel average transverse stiffness should be calculated by integration of its
inverse value 1/ Do . The weighting function will still be (1 — cos(27wy/b) ).

Integration of Doy will give a substantial contribution for (very) local high values, and is therefore
un-conservative for buckling analyses. Integration of 1/Dyo will give a substantial contribution
for (very) local low values, and is therefore conservative.

C.1.2 Panel average anisotropy terms

In the prediction methods discussed here, only the analytical solution described in section B.4
(’method 2’ in Farob) uses some of the anisotropy terms. Because the anisotropy terms describe
interaction between loading in x or y direction and shear- or twist loading, their contribution to the
deformation energy deals with bending (mainly in the centre of the panel) and shear (mainly near
the panel edges). For this reason the panel average anisotropy terms Cg and Cag are calculated
from straightforward averageing, so without a weighting function. These anisotropy terms are
used in the extension of the panel method that is described in section B.2.

C.1.3 Panel average out-of-plane flexibilities

For integration of the panel average out-of-plane shear flexibilities one could use the fact that
the analytical solution for uniform panels has a sin(7 y/b) distribution for ~y, and a cos(my/b)
distribution for 7y,. However the contribution of out-of-plane shear flexibility (or deformation)
can be described as reduction of the panel bending deformation energy. In the *Design rules’ the
relation between bending stiffness and out-of-plane shear flexibility appears as a stiffness ratio:

e.g. 11 = (m/b)? (/D11 Dag [As5) (1 + B)/2 and 7y = (m/b)? (D2 /Ass) (14 3)/2.

The longitudinal out-of-plane shear flexibility A5gl of the collapse mode is still assumed to have
a sin(m y/b) function in transverse direction. The deformation energy in longitudinal direction is
proportional with the longitudinal bending stiffness D;. This deformation energy is reduced by
the longitudinal out-of-plane shear flexibility from which one can deduce that the panel average
longitudinal out-of-plane shear flexibility A5gl should be integrated with the weighting function:
D1y (1 — cos(2my/b)) and finally divided by the panel average value of D1 .

The transverse out-of-plane shear deformation is proportional with the transverse out-of-plane
panel loading ()y,. Knowing that for the collapse mode the load distributions between the panel
edges are continuous functions of y one may conclude that the contribution of the transverse out-
of-plane shear flexibility A421 is not directly related to e.g. the transverse bending stiffness Das.
So the panel average value of A 421 is integrated simply with the weighting function
(I+cos(2my/b)).

The approach to calculated the panel average out-of-plane shear flexibilities is based on the as-
sumption that transverse bending and longitudinal bending are independent from each other. The
existence of panel twisting moments My, in the equations and (38) show that this approach
is not fully complete. Finding a more realistic way to calculate panel average stiffness properties
requires more detailed knowledge about the collapse mode so that it in fact requires solution of
the collapse mode of non-uniform panels, such as presented in section A.4 - A.5.
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C.2 Panel average loading

The integration of the panel average loading is based on the contribution to the released strain-
energy for the collapse mode. Also here the collapse mode is assumed to have a sin(7y/b)
function in transverse direction. Here the axial load distribution Ny for each element in the
panel is calculated from the strains in the nodes and the in-plane flexibility matrix C':
Nyo = (exo — C12 Nyog — Ci6 Nxyo0)/Ch1 -

This expression is based on the fact that for a panel of a long thin-walled beam the shear loading
Nyy o (and transverse loading Ny o) are prescribed from equilibrium within the beam cross-section
while the axial strain directly follows from bending of the blade as beam. Note that the strains
and loads are negative in compression. Also note that for orthotropic panels the flexibility term
C1¢ 1s zero for which the axial loading does not have any interaction with the shear loading.

The resulting distribution of Ny g is used to integrate the panel average axial load distribution with
a weighting function (1 — cos(2my/b)) = 2 (sin(my/b) )2

The panel average loading is used among others in the *Design rules’ that are based on the expres-
sions for linear panel load distribution over the transverse coordinate. For this purpose the panel
average in-plane bending moment is calculated from the axial load distribution Ny . The weight-
ing function now has an additional linear term, and thus becomes (2y/b—1) (1 —cos(27wy/b) ).
After integration, the panel average bending moment is scaled such that it would fit the loading
Ny in the panel edges for pure in-plane bending of a uniform plate.

C.3 Assumed collapse mode for strong curved panels

For panels with a strong transverse curvature 1/Ry the collapse mode may have multiple half-
waves in transverse direction. For a panel with uniform material, curvature, and axial loading the
collapse mode has a sin(n 7 y/b) shape with n the number of transverse half-waves. The number
of half-waves n of the most critical collapse mode increases with increasing panel width and
curvature, and is evaluated with the expressions of Van der Neut [6] from the curvature parameter
Z. Following these expressions, the critical load applies to the form of slightly curved panels
for nZ/ 72 < kegat » See also in section 2.2. From this condition it is concluded that the
here-called “critical curvature” applies to 1) Zit/ 72 = Keflat -

If the panel curvature parameter Z is smaller than (1.25)2 times the critical curvature Ze it is
assumed that the collapse mode has 1 half-wave in transverse direction and the panel average
loading and material properties are integrated with the weighting functions as described in the
previous sections. If the panel curvature Z is larger than (1.25)% times the critical curvature the
critical half-wave width is calculated with beyiy = b/ Zerit/Z , see section 2.2.

The collapse mode of panels with uniform curvature, material properties, and loading has a num-
ber of n half waves of equal size (and shape). For those panels it would be appropriate to use
2 (sin(n 7 y/b) )? weighting functions. However, for non-uniform material and loading the col-
lapse mode will not have a regular periodic sinusoidal shape although near the panel edges the
shape may have a sinusoidal character. The weighting functions that are thus applied to calcu-
late the panel average stiffness properties with subscripts 11, 12,21, and 22 are described by a
(b/(2b = berit)) (1 — cos(m ( — Yedge)/berit) ) function over the panel-area near the edges with
width byit /2. In the panel area in between the weighting function is simply the constant factor
(b/(2b — berit)). This factor is such that the panel average value of the weighting function is 1.

These weighting functions are also used to integrate the panel average loads.

The weighting functions applied to calculate the panel average stiffness properties with subscripts
6 6 are simply 2 minus the latter weighting functions.
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C.4 Panel average curvature

In particular the leading edge panels of a rotor blade cross section with relative thin airfoils may
have a strongly non-linear curvature. For application of the Design rules’ based on the analytical
solution presented in section B.1 the panel geometry has to be expressed in one representative
"panel average’ curvature.

For the panel average curvature it was chosen to use the curvature of an arc that is drawn through
the edge-points and a point in the centre of the panel. For this ’centre point’ one faces the choice
between e.g. the ’arc-length’ middle of the contour and the point on the contour that has the same
distance from each of the edge-points. For panels with a uniform or symmetric curvature the use
of both these ’centre point’ definitions gives the same circular arc. For panels with non-uniform
(asymmetric) curvature, it was concluded that the latter definition gives a smaller panel average
curvature and is therefore conservative. Based on the fact that an asymmetric curved panel tends
to fail by buckling near the *'most flat’ side, the latter —more conservative— ’centre point’ was used
to calculate the panel average curvature.

After calculating the curvature through the 3 points the panel width used is simply the arc-width
of the real non-uniform curvature.

C.4.1 Average curvature for S-shaped panels

For panels with an S-shape such that the centre point is linear between the edge points, the cal-
culated panel average curvature is (nearly) zero. This occurs for tail-panels at the aerodynamic
pressure side of rotor blades. For these panels it may happen that the calculated collapse load
is far too large. In practice the S-shaped curvature also contributes to the buckling resistance.
Including the geometric contribution of the S-shaped panel geometry to the buckling load would
be a major improvement of accuracy of the predictions with the *Design rules’ (method = 1) and
of the analytical solution (method 2).
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D DESCRIPTION OF PANEL-BASED BUCKLING ROUTINES

Part of the work within the BLADKNIK project was addressed to the development of panel-
based routines that are fast compared to the program Finstrip but also may be slightly less accurate
because they do not include the complete structural integrity of a cross section. The fact that these
tools are fast allows many buckling load analyses such as for the time-series of load combinations
from design analyses or for variations of structural design. These two applications require that
the routines should be accurate in the modelling of material properties and also for non-uniform
and combined loading.

Within this scope the following FORTRAN routines were developed:

panini2 Routine that calculates the panel stiffness matrix elements of a given layup. These stiff-
nesses are used by the buckling-load prediction routines bucpan3 and bucweb2 and also by
subroutine rlamod3.

bucpan3 For buckling analysis of the outer contour, that may have varying geometry and mate-
rial layup but of which the panel loading is dominated by longitudinal compression.
This routine returns the critical load factor following different so-called *methods’ in the
Farob input. The algorithm for 'method 1’ is based on the *Design Rules’ for curved sand-
wich panels described in section 2.6.
For other (higher order) *'methods’ routine bucpan3 has a loop that searches over the half-
wave length with the smallest buckling load factor. For the buckling load factor as function
of half-wave length, routine bucpan3 has a call for routine rlamod3.

bucweb2 For buckling analysis of the shear web, of which the geometry is assumed (nearly) flat
but of which the loading can be complex. The algorithm is based on the *Design rules’ for
(nearly) flat sandwich panels with various loading given in section 2.7.

rlamod3 This routine returns the load factor for a curved orthotropic sandwich panel with a
given half-wave length. For an input argument 'imethd’ equal to 2 this routine returns the
analytical solution for panels with uniform curvature and material properties.

For larger values of the input argument *imethd’ this routine returns the numerical solution
for a panel with non-uniform curvature and non-uniform layup.

The call for the routines bucpan3 and bucweb? is identical. All these routines use panel stiff-
ness properties that are calculated in routine panini2. These routines are used by the program
Farob under the design package Focus. Routine panini2 is also used in the tool Crostab for the
calculation of the sectional stiffnesses from the laminate stiffness properties.

A description of the parameter list and of the algorithm of each of these routines is given in the
following sections.
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D.1 Initialisation routine ’panini2’

Routine panini2 calculates the elements of the stiffness matrices for a given ’stacking’ of layers.
The location of the layers with respect to the reference plane is on the negative z side if the layer-
thickness is negative, and on the positive z side if the layer thickness is positive. The A, B, and
D stiffness matrices are calculated with respect to the z = 0 plane, which usually is the outer
contour for a rotor blade panel. The reason to chose the z = 0 plane instead of e.g. the ’neutral
plane’ for longitudinal tensile forces in the panel is that the routine with a ’rigorous solution’ (see
section A.4 - A.5) accounts for the variations in material layup along the panel width.

Argument list of 'panini2’

The arguments of panini2 are described here on basis of their FORTRAN variable name:

Name  Type I/O | Description

imesg  INTEGER In | Unit number for writing messages.

istck INTEGER In | Number of the stacking for which stiffnesses are calculated.
inlay INTEGER In | Number of layers in this stacking.

thlay REAL(*) In | Array with the thicknesses [L] of each layer.

filay REAL(*) In | Array with orientations [rad] of each layer.

imlay INTEGER(*) In | Array with material indices of each layer.

elmat  REAL(¥) In | Array with longitudinal stiffnesses of each material.

e2mat  REAL(*) In | Array with transverse stiffnesses of each material.

rmumat REAL(*) In | Array with Poisson’s ratios of each material.

gl2mat REAL(¥) In | Array with in-plane shear moduli of each material.

gl3inv  REAL(¥*) In | Array with out-of-plane shear flexib. z— 2 of each material.
g23inv  REAL(¥) In | Array with out-of-plane shear flexib. y — z of each material.
cll REAL Out | Element of the in-plane flexibility matrix; C' = A1,

cl2 REAL Out | Element of the in-plane flexibility matrix; C' = AL

c22 REAL Out | Element of the in-plane flexibility matrix; C' = A1,

cl6 REAL Out | Element of the in-plane flexibility matrix; C' = A1,

c26 REAL Out | Element of the in-plane flexibility matrix; C' = AL,

c66 REAL Out | Element of the in-plane flexibility matrix; C' = A1,

zref REAL Out | z-location [L] of the reference plane for longit. stiffness.
lerror LOGICAL Out | If "'TRUE’ an error has occurred.

The elements ’cij * of the in-plane flexibility matrix C' and the z-location of the reference plane
for longitudinal stiffness are only used by Crostab. The length-dimensions (here denoted with
[L]) can be [m] or [mm] or any other unit, as long as this is done consistently for all input and
output arguments of panini2, bucpan3, and bucweb2.

Result

The result of calling routine panini2 are the elements of the stiffness matrices A, B, and D, which
are calculated with respect to the z = 0 plane. From these matrices the matrix K = A~! - B and
the "reduced stiffness matrix’ D = D — B - A~! . B are calculated. The use of the matrices
C = A7', K, and D is introduced by expressing the in-plane strains in the curvatures and the
in-plane panel loads, see section A.6 and section B.1.

For the purpose of the numerical solution for non-uniform panels also the stiffness properties S11,
S12, So21, S92, T11, Th2, and Thy (see section A.4) are assigned in panini2.

All elements of the matrices C, B, K, D, 1~?, S, T, the properties Ags and Agg, and the sandwich
shear flexibilities (As;') and (A,,;") are stored in include file 'PANDAT2.FI’ using the index
“istck’ of the stacking for which panini2 is called.
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D.2 Routines ’bucpan3’ and ’bucweb?2’

Routines bucpan3 and bucweb2 are called by Farob. The call and the argument list of these
routines are identical, although Farob calls bucweb2 for buckling of the shear webs and bucpan3
for buckling of the contour panels. The algorithms for the buckling load factor in routine bucpan3
and bucweb?2 are based on the *Design rules’ that are described in chapter 2. For routine bucweb2
the panel curvature is assumed to be very small (because shear-webs are flat) so that branches for
strong curvature are omitted.

Routine bucpan3 also offers more detailed buckling load analyses, such as the analytical solution
in section B.1 - B.3, or the numerical solution for non-uniform panels in section A.4 - A.5. For
the latter solutions routine bucpan3 has a call for subroutine rlamod3, see section D.3. Routine
rlamod3 is called depending on the value of input argument *imethd’.

Argument list of ’bucpan3’ and ’bucweb2’

Following is a description of the arguments of routine bucpan3 and bucweb2 on basis of their
FORTRAN variable name:

Name Type I/O | Description

imesg INTEGER In | Unit number for writing messages.

inpnts INTEGER In | Number of coordinate points.

xcoord REAL(¥) In | Array with « coordinates [L] of the panel geometry.
ycoord REAL(*) In | Array with y coordinates [L] of the panel geometry.

dels REAL(¥) In | Distance [L] between coordinate points ’(ip)’ and ’(ip+1)’.

istack INTEGER(*) In | Array with indices for the material stacking.
Here ’istack(ip)’ refers to the stacking between
coordinates with index ’(ip)” and *(ip+1)’.

strain ~ REAL(*) In | Array with longitudinal strains in point ("xcoord’, ycoord’).
gflow  REAL(®) In | Array with shear loading [N/L] between ’(ip)’ and *(ip+1)’.
rmyav  REAL In | Panel-average transverse loading [N/L], tension positive.
curvx  REAL In | Longit. blade curvature [1/L] toward flapwise (x) direction.
curvy  REAL In | Longit. blade curvature [1/L] toward lagwise (y) direction.
twist REAL In | Geometric panel twist in longitudinal direction [1/L].
rlemin REAL In | Minimum length [L] of the collapse mode.

rlemax REAL In | Maximum length [L] of the collapse mode.

imethd INTEGER In | Indicates how detailed the buckling analysis should be.
Ishape LOGICAL In | If "TRUE’ also return the collapse mode ("dx’,’dy’).
Ifree LOGICAL In | If "TRUE’ all buckling modes with a half-wave length
between ’rlemin’ and ’rlemax’ have to be examined.

dx REAL(*) Out | x coordinate of the (dimensionless) collapse mode.

dy REAL(*) Out | y coordinate of the (dimensionless) collapse mode.

rlacr REAL Out | Factor on the applied load for which buckling is calculated.
rlencr  REAL Out | Half-wave length [L] for the most critical collapse mode.
theter REAL Out | Orientation [rad] of the waves of the collapse mode.

The longitudinal strains ’strain(ip)’ are defined at the coordinate points *xcoord(ip)’, "ycoord(ip)’.
The shear loading "qflow(ip)’ is defined as constant over an element between coordinate points
with index ’(ip)’ and ’(ip+1)’.

If routines bucpan3 and bucweb?2 are called with input argument *imethd’ equal to 1, the solution
for the buckling load factor ’rlacr’ is calculated with the *Design rules’ (chapter 2) for which
the minimum and maximum half-wave length (input arguments ’rlemin’ and ’rlemax’) and the
flag ’Ifree’ for using a fixed or free length are not used. This is because the *Design rules’ are
formulated for very long panels.
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Panel-average geometry parameters

In both routines bucpan3 and bucweb?2 the ’panel average’ geometry parameters are calculated
so that the *Design rules’ and the analytical solutions from Appendix B can be applied. These
geometry parameters include the panel width and the panel curvature, of which the panel width is
simply the integrated length along the geometric coordinates (xcoord,ycoord).

The approach to calculate the panel average curvature is described in section C.4. The panel
curvature is defined positive if the concave side is toward the z-axis with which the stacking is
given. This z-axis direction is on the 'right’ side following the (xcoord,ycoord) coordinate points
of the panel. For the conventional definition of a rotor blade in Farob the positive z direction is
toward the inner-side of the blade contour, so that the panels near the leading-edge will have a
positive curvature.

Result

The result of routines bucpan3 and bucweb? is the factor ’rlacr’ on the specified loading (arrays
’strain’, ’qflow’, and ’rnyav’) for which bifurcation buckling is calculated. In addition to this
factor, also the half-wave length and the orientation of the "buckles’ w.r.t. the transverse direction
are assigned to the variables 'rlencr’ and ’thetcr’.

Type of analysis based on ‘imethd’

The calculation of the buckling load factor ’rlacr’ by bucpan3 and by bucweb2 partly depends on
the value of the input argument “imethd’:

0 Assign the buckling load factor for non-sandwich panels loaded by linear axial compression
only (bucpan3) or shear loading and in-plane bending only (bucweb?2);

1 Use the Design rules for sandwich panels, based on the load-interaction rules from NEN6771
for the estimated critical half-wave width following the solution of Van der Neut;

2 + (bucweb2) Return the Design rules -solution including transverse loading, see section 2.7;
2 (bucpan3) Return the analytical solution for uniform panels, see section B.1 - B.3;

3 + (bucpan3) Return the numerical solution for non-uniform panels, see section A.4 - A.5.

For values of "imethd’ up to 1, the maximum half-wave length of the deformation pattern and the
flag ’lfree’ for a free/fixed maximum length are not used in routine bucpan3. In routine bucweb2
the parameters for the allowable half-wave length are not used at all.

If the solution of the load-factor is negative, the loading is assumed not buckling-critical (e.g.
dominantly tension) for which the output parameter ’rlacr’ is set to the "very large" value 2.E+30.
In that case the output value of ’rlencr’ is set to zero.

Output of the collapse mode

If routines bucpan3 or bucweb?2 are called with input argument *imethd’ not larger than 1 (Design
rules) and the value of ’rlacr’ appears positive but smaller than 2.E+30 then the output value of
the half-wave length of the collapse mode ’rlencr’ is set to the value for the most critical collapse
mode of orthotropic sandwich plates, such as derived in section B.4.

For bucpan3 and bucweb?2 the output argument for the orientation of the collapse mode ’thetcr’
is a linear combination of that for compression (which is zero) and the value for shear loading,
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depending on the relative fraction of shear loading. If however the applied loading is dominated
by transverse compression the angle ’thetcr’ is set to 7/2.

If ’Ishape’ has the value *.FALSE. or if no positive critical load factor is found then the collapse
mode is set to the undeformed state (the pairs of variables dx’,’dy’ are set to zero).

For routine bucpan3 the collapse mode depends on the type of solution ’imethd’, provided that
"Ishape’ has the value *.TRUE.".

0 a number of sinusoidal half-waves, that fits best to the value of the ’critical half-wave lengt’
berit, see section 2.2. The deformation is assigned perpendicular to a curved line between
the panel edges.

1 a number of sinusoidal half-waves that fits best to the value of the ’critical half-wave length’
berit, see section 2.2. For bucweb2 the collapse mode is assigned perpendicular to a
(curved-) line between the panel edges. For bucpan3 the collapse mode is assigned ac-
counting for the geometric non-linear combination with panel curvature.

2 the number of sinusoidal transverse half-waves from the analytical solution of rlamod3. In fact
the collapse mode is assigned in routine rlamod3, that finally is (or should be) called with a
value "' TRUE.” for ’Ishape’. This collapse mode is assigned as perpendicular to a uniform
curved line between the panel edges.

3 + the collapse mode is the numerical solution for panels with non-uniform loading,
curvature, and material properties.

Because the result of bucpan3 and bucweb?2 is always an eigenvalue solution, the collapse mode
is scaled to a maximum out-of-plane deformation of 1.0.

For a linear varying axial compressive loading, the collapse mode is multiplied with a decreas-
ing function such that the least compressive part of the panel (or tensile part) has the smallest
amplitude of the buckles.
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D.3 Routine ‘rlamod3’

Routine rlamod3 returns the solution of the load factor for which bifurcation buckling is calcula-
ted for a specified half-wave length. Under Farob, routine rlamod3 is called by routine bucpan3
with which this routine was developed.

Argument list of ‘rlamod3’

Following is a description of the arguments of routine rlamod3 on basis of their FORTRAN vari-
able name:

Name  Type I/O | Description

imesg INTEGER In | Unit number for writing messages.

inpnts INTEGER In | Number of coordinate points.

xcoord REAL(*) In | Array with x coordinates [L] of the contour.

ycoord REAL(*) In | Array with y coordinates [L] of the contour.

dels REAL(¥*) In | Distance [L] between coordinate points ’(ip)’ and ’(ip+1)’.

istack INTEGER(*) In | Array with indices for the material stacking.
Here ’istack(ip)’ refers to the stacking between
coordinates with index ’(ip)” and *(ip+1)’.

strain ~ REAL(*) In | Array with longitudinal strains in point ("xcoord’, ycoord’).
gflow  REAL(®) In | Array with shear loading between ’(ip)’ and ’(ip+1)’.

rmmyav ~ REAL In | Panel-average transverse loading [N/L], tension positive.
width REAL In | Integrated panel-width [L].

curvp  REAL In | Panel-average transverse curvature [1/L].

curvx  REAL In | Longit. blade curvature [1/L] toward flapwise direction.
curvy  REAL In | Longit. blade curvature [1/L] toward edgewise direction.
twist REAL In | Geometric panel twist in longitudinal direction [1/L].
rlengt REAL In | Half-wave length [L] for which routine rlamod3 is called.

imethd INTEGER In | Indicates how detailed the buckling analysis should be.

Ifirst LOGICAL In | If "TRUE’ the panel-average loads and stiffnesses are assigned.
lcurv LOGICAL In | If "TRUE’ the longitudinal curvatures are scaled with ’rlacr’.
Ishape LOGICAL In | If "TRUE’ also assign the collapse mode (dx,dy).

rlacr REAL In | Lower bound (start value) of the buckling load factor.
Out | Factor on the applied load for which buckling is calculated.
dx REAL(*) Out | z coordinate of the (dimensionless) collapse mode.
dy REAL(*) Out | y coordinate of the (dimensionless) collapse mode.
thetcr REAL In | Fraction of the critical half-wave width versus panel width.

Out | Orientation [rad] of the waves of the collapse mode.

The coordinates *xcoord’ and "ycoord’ and the strains in the elements are identical to the similar
arguments of routine bucpan3.

Analytical solution for uniform panels

The algorithm that is used to calculate the critical load factor depends on the value of the input
argument "imethd’. For *imethd’ not larger than 2, routine rlamod3 returns the analytical solution
for uniform double curved sandwich panels, see section B.1 through B.3, using panel average
material properties that are calculated with the weighting functions reported in Appendix C. In
this solution the longitudinal and transverse curvature are taken into account. For curved panels
this longitudinal curvature is finally scaled down by multiplication with (distance between panel
edges)/(arc-length width). The latter implies that for a panel with a semi-circular cross section
the longitudinal curvature used for the analysis is thus 2/7 of the blade curvature.
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If the value of the input argument ’lcurv’ is . TRUE. the influence of the longitudinal curvature
is scaled with the load factor ’rlacr’.

The non-uniform axial loading is represented with a constant (compressive) loading and an in-
plane bending-moment. The contribution of the in-plane bending moment to the axial compres-
sive panel loading is taken into account using the rules given in NEN6771 [[19].

To save CPU time the panel average material properties and the panel average loading are only
calculated if ’Ifirst” has the value . TRUE . and are saved for further calls. In routine bucpan3 the
value of ’lfirst’ is set . TRUE . before the first call of rlamod3, and is set .FALSE. for further calls.

Numerical solution for non-uniform panels

If routine rlamod3 is called with a value of "imethd’ equal 3 (or higher) the load factor is obtained
from the solution of the 2-point boundary value problem of which the equations are derived in
section A.4 - A.5. This solution is obtained by incrementing the load factor until the boundary
conditions on both ends of the panel are satisfied, which indicates a collapse mode (bifurcation
point). In this process the initial value for the incrementing load factor is some fraction of the
load factor from the analytical solution similar as for *imethd 2’ calculated without the influence
of transverse compressive loading and without the anisotropy terms C'1g and Cog .
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