Offshore wind power developments

An overview of realisations and planned projects

L.W.M. Beurskens M. de Noord

Preface

The overview in this report has been compiled by ECN, Unit Policy Studies, by L.W.M. Beurskens (Luuk) and M. de Noord (Manuel), in the framework of offshore wind development activities. The ECN project number is 7.7449.

Abstract

This report presents the current status of offshore wind power installations based on an extensive literature and Internet research. In April 2003, the installed capacity of offshore wind farms amounted to 279 MW, of which 233 MW in Denmark, 19 MW in the Netherlands, 23 MW in Sweden and 4 MW in the United Kingdom.

Europe is leading in the realisation of offshore wind projects. Therefore, this report focuses on offshore wind projects in this region of the world.

Based on disclosed plans for offshore wind power, a short-term projection for the year 2006 of approximately 3.2 to 3.4 GW has been found and a long-term projection of 24 to 25 GW. For the long-term projects, in most cases a year of construction is not available. A small part of them could even be realised until the year 2006, possibly increasing the short-term realisations.

The countries in which the plans are most promising, based on the planned capacity, are Germany, Ireland and the United Kingdom, which together have a share of over 90% in the total projections.

If investment costs for offshore projects and plans were found, these have been indicated, but this is only the case for a small number of projects.

CONTENTS

LIS	T OF TABLES	4
LIS	T OF FIGURES	4
SUN	MMARY	5
1.	 INTRODUCTION 1.1 History of offshore wind 1.2 Advantages of offshore wind power 1.3 Projected offshore wind power development 	6 6 6 7
2.	BELGIUM	8
3.	DENMARK	10
4.	GERMANY	12
5.	IRELAND	15
6.	THE NETHERLANDS	17
7.	SWEDEN	19
8.	UNITED KINGDOM	21
9.	OTHER COUNTRIES9.1Finland9.2France9.3Greece9.4Poland9.5Spain9.6Italy, Norway and Portugal9.7Rest of the world	24 24 24 24 24 25 25 25
10.	EVALUATION OF OFFSHORE WIND IN EUROPE	27
REF	FERENCES	29

LIST OF TABLES

Table 1.1	Overview of offshore projects	7
Table 2.1	Projected offshore wind farms in the Belgian part of the North Sea	8
Table 3.1	Offshore wind farms in Denmark	10
Table 3.2	Projected offshore wind farms in Denmark	11
Table 4.1	Firmly planned offshore wind farms in Germany (five wind farms (partially) to	
	be realised until the end of 2005	12
Table 4.2	German wind farms in the planning phase	13
Table 5.1	Timetable for Aitricity's Arklow Bank offshore wind farm	15
Table 5.2	Licences awarded by the Department of Marine to investigate the suitability of	
	sites for offshore wind energy in Ireland	16
Table 6.1	Realised offshore wind projects in the Netherlands	17
Table 6.2	Offshore wind plans in the Netherlands	17
Table 6.3	Overview of wind farm characteristics for the two main Dutch offshore wind	
	farms	18
Table 7.1	Realised offshore wind projects in Sweden	19
Table 7.2	Offshore wind plans for Sweden	19
Table 8.1	Wind farms in the planning phase for the UK	22
Table 9.1	Offshore wind farms in Finland	24
Table 9.2	Offshore wind in France	24
Table 9.3	Offshore wind plans for Poland	24
Table 9.4	Offshore wind plans for Spain	25
Table 9.5	Offshore wind plans for the rest of the world	25
Table 9.6	Inventory of possible offshore sites in the USA as presented by Winergy	26
Table 10.1	A chronological overview of European offshore wind projects in the past and in	
	future. In parentheses, the country names have been indicated	28

LIST OF FIGURES

Figure 2.1	Belgian offshore plans. Projects for Vlakte van de Raan (with the concession	
	areas of Seanergy and FINA-eolia) and Wenduine Bank (C-power concession	
	request which has not been authorised) are indicated	9
Figure 2.2	An overview of Belgian sandbanks, including the Thornton Bank	9
Figure 4.1	Offshore wind power parks projected in German waters: the North Sea at the	
	left, and the Baltic sea at the right	14
Figure 8.1	Offshore wind farms in the planning phase for Great Britain	23
Figure 10.1	Realised offshore wind power until February 2003	27
Figure 10.2	Projections as listed in the previous chapters	28

SUMMARY

At present the offshore wind power market is growing very fast. Considering the whole period from the first offshore wind project in 1991 to the last realisation in the year 2002, an average annual capacity growth of 43% can be observed.

This report gives an overview of all offshore wind projects that are currently known. For those projects that presented a time schedule for the construction phases, the cumulative installed capacity by the year 2006 can amount to 3.2 GW to 3.4 GW. Starting with 256 MW by the end of 2002, an installed capacity of 3.3 GW by the end of the year 2006 would mean an *average annual growth* up to 90%.

Many projects are announced without publishing detailed planning information. The total cumulative capacity of all projects, regardless their time schedule, amounts to 25 GW.

A projection until the year 2006 is presented in the table below.

Table S.1 A chronological overview of European offshore wind projects in the past and in the future¹. In parentheses, the country names have been indicated

Year	Realised	Projected	Average installed	Cumulative d capacity
1990			0	MW
1991	Vindeby (DK)		5	MW
1992			5	MW
1993			5	MW
1994	Lely (NL)		7	MW
1995	Tunø Knob (DK)		12	MW
1996	Dronten (NL)		29	MW
1997			29	MW
1998	Bockstigen (SE)		32	MW
1999			32	MW
2000	Middelgrunden (DK), Utgrunden (SE), Blyth (UK)		86	MW
2001	Vttre Stengrund (SE)		96	MW
2001	Horns Rev (DK)		256	MW
2002	Samsø (DK)	Zeebrugge (BE) Frederikshavn (DK) Nysted	250	101 00
2005	Sumo (DTC)	(DK), La Rochelle (FR). North Hovle (UK)	0.3	GW
2004		Vlakte van de Raan (BE), Meerwind Phase 1 (DE), Kriegers Flak Phase 1 (DE), NSW (NL), Q7-WP (NL), Słupsk (PL), Klasarden Gotland (SE), Ut- grunden II (SE)	1.4	GW
2005		Thornton Bank (BE), Borkum Riffgrund-West Phase 1 (DE), Dan-Tysk Phase 1 (DE), Kriegers Flak Phase 2 (DE), Sandbank 24 Phase 1 (DE), Cabo de Trafalgar (ES)	3.1	GW
2006		Arklow Bank (IE)	3.3	GW

¹ In most cases, construction works have been planned in a period, for example 2004 – 2006. In such cases, the park is attributed to the last year in the period, in this example 2006.

1. INTRODUCTION

1.1 History of offshore wind

The first offshore wind farm has been operating since the year 1991: 11 turbines near Vindeby in Denmark. In the years that followed, additional experience was gained with wind farms across Denmark, the Netherlands, Sweden, and most recently also in the United Kingdom.

These offshore wind farms have mostly been built in moderate circumstances: waters that are not very deep (less than 5 metres), wave-regimes that are not extreme, and locations not too far from the coast. This means that offshore wind power from these early projects has been realised at relatively low cost, despite their pioneer character. As offshore wind farms have only been realised in Europe so far, this report mainly presents an overview of this region of the world.

The European Wind Energy Association (EWEA) has set a target of 5 GW offshore wind power by the year 2010. This compares to a target of installed onshore capacity of 60 GW by the year 2010. The total installed capacity in Europe at the end of the year 2002 amounted to 23 GW (see www.ewea.org/src/europe.htm, June 2003). Recently, EWEA adjusted its target for offshore wind power to 10 GW in the year 2010 and 70 GW for 2020 (EWEA, 2003).

1.2 Advantages of offshore wind power

Installing wind turbines offshore has a number of advantages compared to onshore locations. At a sufficient distance from the coast, visual intrusion and noise are minor issues. These advantages make it possible for offshore wind turbines to be larger (and thus have more MegaWatt (MW) capacity installed) and less attention needs to be devoted to reduce noise emissions, which entails additional costs for onshore wind turbines. Another advantage is the wind pattern, which is more uniform at sea than on land. A less fluctuating load means a decrease in wear. Wind speed is also much higher offshore than onshore, which means that more electricity can be generated per square metre of swept rotor area.

On the other hand, investment costs are higher and accessibility to the turbines is poorer, as a result of which maintenance costs are higher. Also, circumstances at sea are harder: more corrosion due to salt water and additional load from waves and ice. And obviously, the offshore construction is more complicated to build compared to an onshore foundation.

The amount of space available for offshore wind turbines is many times larger than onshore. The potential for wind energy is therefore also considerably greater. As an example for the Netherlands, based on the area available outside the 12-mile zone (about 22 km) with a water depth of less than 20 metres, there is room for roughly 3 GW of wind power.

The North Sea, boarding the Netherlands, has the advantage of a relatively shallow sea: nearly the entire Netherlands Exclusive Economic Zone (delimitation of the Netherlands Continental Shelf) is less than 50 metres deep. The Netherlands shares this advantage with countries such as Belgium, Denmark, the UK and Germany. Other European countries with an extensive coast-line, such as Ireland and Spain, have a relatively small sea area with water depths less than 50 metres. When competition in large-scale renewable energy supply starts between the different European countries, the Netherlands will possibly have a comparative advantage because it has such a large sea area at its disposal.

1.3 Projected offshore wind power development

The offshore wind farms that have been realised in recent years are of a different kind than the first offshore experiences in the early 1990s: larger installed capacities (for both turbines and wind farms) and deeper waters.

In the current overview, all turbines that have been installed in water are accounted for as 'offshore'. This is to avoid discussions whether turbines that are placed only a few meters from the shore should be called 'wet-feet'-types or even onshore. This means that projects in inland seas are also mentioned. As can be seen from Table 1.1, 279 MW of offshore wind power has currently been realised (April 2003).

In the year 2003, a limited number of offshore wind power farms are in the planning phase. For the year 2004, however, the amount of projections increases, and a very strong offshore wind power development is expected in the years 2005 and 2006. Table 1.1 also presents an overview of projects in the planning phase.

Due to very fast technical developments in the wind turbine industry, future projects often indicate their projected capacity as a range; today a 2 MW turbine is standard, but in the short-term this is expected to increase to 3 MW or even more. Therefore, the size of a wind farm may be presented as a capacity range. For some projects, turbines of even 5 MW are projected. Currently, these are not yet available on the market; they merely exist on paper or in prototypes. The largest commercial offshore wind turbine today is produced by GE Wind Energy and has a capacity of 3.6 MW.

In the country-specific chapters that follow, the realisations of offshore projects have been highlighted in more detail. Countries that have significant offshore plans are discussed in separate chapters; others are discussed in the final chapter of the report (Chapter 9). Chapter 9 also gives a short overview of projects in the rest of the world.

5	JJ 1 J	
Offshore wind capacity		
	Installed until April 2003	Planned or under construction
Belgium		Minimal 644 MW
Denmark	233 MW	649 MW
Finland		180 to 240 MW
France		1.5 MW, possibly 100 MW
Germany		6.5 GW until 2006, and much more after that
Greece		Unknown
Ireland		2 GW
Netherlands	19 MW	219 MW
Poland		122 to 183 MW
Spain		250 MW
Sweden	23 MW	114 MW
United Kingdom	4 MW	Minimal 2 GW
Total in Europe	279 MW	Minimal 14 GW
Projects in rest of worl	d	1120 MW

Table 1.1 Overview of offshore projects¹

Realised offshore projects include the year 2002 and the first months of 2003. Commissioning of the wind farms is mostly foreseen for the period 2004-2006

2. BELGIUM

Project	Location	Capacity [MW]	Investment [€/kW]	Commissioning date
Seanergy	Vlakte van de Raan	100	2200	2003-2004 ²
Zeebrugge	Zeebrugge	28		2003
FINA-Eolia	Vlakte van de Raan	100-180		Unknown
C-Power	Wenduinebank	100	2250	Permission refused
		(50 × 2)		
Zephyr	Thornton Bank	300	2000	Unknown
C-Power	Thornton Bank	216 - 300		2005^{3}
		$(60 \times 3.6 - 5)$		
Total		644 - 808		

Table 2.1 Projected offshore wind farms in the Belgian part of the North Sea

The project Seanergy (CPTE and Group of Companies Jan de Nul) of 100 MW (10 MW in 2003, 90 MW in 2004) has been authorised mid 2002, and could possibly be the first Belgian offshore wind farm. Recently, however, the Belgian Council of State forbade the construction works, based on complaints regarding the procedure for the permission granting (Utilities, 2003). For the total wind farm, an investment of \in 220 million is required (Electrabel, 2002).

Furthermore, a 28 MW wind farm near Zeebrugge is planned for 2003; 10 turbines will be placed near the shore, 4 will be placed on a dam.

A 100 to 180 MW farm of FINA-Eolia is in an early planning phase, and is projected for Zeebrugge.

The authority has refused a 100 MW farm on the Wenduinebank, planned by C-Power, projected to cost \in 225 million (SEV, 2001).

For the Thornton Bank, 27 km off Zeebrugge, two consortia applied. The first consortium, Zephyr, consists of Belgian Shell and SPE Power and projects 300 MW (110 turbines) at an expected investment cost of \in 600 million. The second consortium is led by C-Power, which applied for erecting a 300 MW wind farm. Projected are 60 turbines, of which the exact size is not yet known and an annual electricity output of 710 - 1000 GWh (C-Power, 2002).

A schematic impression of the Belgian wind farms is presented in Figure 2.1 and Figure 2.2. Pictures have been taken from Management Unit of the North Sea Mathematical Models (MUMM, 2002; www.mumm.ac.be, December 2002)

² The status of this wind farm is unclear at present, due to a recent judgement by the Belgian Council of State. The wind farm has not been included in the total power projection.

³ Permission has been granted. Internet: www.standaard.be, 24 June 2003.

Figure 2.1 Belgian offshore plans. Projects for Vlakte van de Raan (with the concession areas of Seanergy and FINA-eolia) and Wenduine Bank (C-power concession request which has not been authorised) are indicated (MUMM, 2002)

Figure 2.2 An overview of Belgian sandbanks, including the Thornton Bank (MUMM, 2002)

3. DENMARK

Development of offshore wind in Denmark started in the early 1990s. In Table 3.1 an overview is given of the wind farms that have been realised until April 2003. Future developments are listed in Table 3.2.

Project	Location	Capacity	Investment [€/kW]	Commissioning date
Vindeby	Baltic Sea	4.95 MW (11 × 450 kW)	2600	1991
Tunø Knob	Baltic Sea	5 MW (10 × 500 kW)	2300	1995
Middelgrunden	Baltic Sea	$40 \text{ MW} (20 \times 2 \text{ MW})$	1225	2000
Horns Rev	North Sea	160 MW (80 × 2 MW)	1675	December 2002
Samsø	Paludans Flak (Kattegat)	23 MW (10 × 2.3 MW)	Unknown	January 2003
Total Realised		233 MW		-
February 2003				

Table 3.1 Offshore wind farms in Denmark

For the overview of existing and future wind farms much information has been derived from (Lako, 2002). In 1998, the Danish Ministry of the Environment and Energy asked the electricity suppliers to construct five demonstration wind farms with a combined output of 750 MW. In 2002, the newly elected Danish government reduced the Plan of Action for wind energy to include only two demonstration wind farms, those of Horns Rev (operational) and Rødsand (under construction) with a capacity of 160 MW and 158 MW respectively.

Vindeby

In 1991, the world's first offshore wind farm was put into operation, consisting of 11×450 kW turbines, 1.5-3 km off the coast at Vindeby in 2.5-5 m deep water. The average wind speed is 7.5 m/s. The specific investment cost is established at \notin 2,600/kW (Lako, 2002).

Tunø Knob

The second near-shore wind farm in Denmark is the 10×500 kW (5 MW) wind farm Tunø Knob, commissioned in 1995. The distance to the shore is 3-6 km, and the water depth is 3-5 m. The average wind speed is 7.4 m/s. The specific investment cost is $\notin 2,300$ /kW (Lako, 2002).

Middelgrunden

In 2000, the Middelgrunden wind farm (2 km offshore from Copenhagen) was commissioned, comprising 20 turbines of 2 MW each. The water depth is 2-6 meter, and the annual mean wind speed at hub height (64 m) is 7.1 m/s. The expected electricity production is 89 GWh/year, and the investment costs were € 1225 per kW (Lako, 2002; www.middelgrunden.dk).

Horns Rev

Elsam A/S has built the Horns Rev wind farm, as agreed in the Danish Plan of Action mentioned before. It is located in the North Sea, 14-20 km from the coast near Esbjerg in 6-14 m deep water. The capacity of the wind farm is 160 MW (80×2 MW). The annual mean wind speed is 9.7 m/s. The specific investment cost is \notin 1675 per kW, including a high voltage cable of \notin 250/kW (Lako, 2002). The wind farm became fully operational on 11 December 2003 (www.hornsrev.dk, December 2002). The wind farm is expected to produce approximately 600 GWh in an average year.

	<i>u u</i>		
Project	Location	Capacity	Commissioning date
Frederikshavn	Kattegat	11 MW (4 turbines, 3 types)	Dec. 2002 - June 2003
Nysted	Rødsand (Baltic Sea)	158.4 MW (72 × 2.2 MW)	October 2003
Laesø	Kattegat	160 MW	Unknown
Omø Stålgrunde	Baltic Sea	160 MW	Unknown
Gedser Rev	Baltic Sea	160 MW	Unknown
Total projected		649 MW	

Table 3.2 Projected offshore wind farms in Denmark

Frederikshavn

The offshore farm near Frederikshavn consists of four turbines of different manufacturers: two turbines will be Vestas V 90, one will be a Nordex N90 and one a Bonus 2.3 MW (WSH 2002). One of the four turbines (a Vestas-V90-3MW) will have an innovative 'bucket foundation', to be used for the first time. The 135 tonnes foundation has the shape of an upturned bucket, which is sucked into the seabed by means of vacuum. The wind turbine was placed on the foundation by the end of 2002. The remaining three wind turbines are placed on traditional foundations and are expected to operate by June 2003 (www.hornsrev.dk).

Samsø

The island of Samsø is the official Danish Renewable Energy Island, which should provide in its own energy needs by means of renewable energy. This should be achieved by the year 2008. The offshore wind farm has been erected to supply electricity. It is located 3.5 km south of the island, at Paludans Flak. An amount of 10 turbines of 2.3 MW have a total capacity of 23 MW and will generate approximately 78 GWh per year. The opening of the Samsø wind farm took place in February 2003. (WSH, 2002; www.samsohavvind.dk, April 2002)

Nysted

Nysted offshore wind farm at Rødsand is located about 10 km south of Nysted and 13 km west of Gedser. It is being constructed in the period 2002 - October 2003. The park consists of 72 turbines of 2.2 MW with a hub height of 70m. The total capacity is 158.4 MW and the expected production amounts to 500 GWh (WSH, 2002; www.nystedhavmoellepark.dk).

The fate of the three remaining wind farms of the 1998 Plan of Action, the Laesø, Omø Stålgrunde and Gedser Rev projects has been clouded for some time. Recently, the Danish Ministry of Economic and Business Affairs proposed rules for an offshore tender system. To date, this is all the information that is currently available on these wind farms, besides general information and conditions for tendering parties (WPM, 2002a; www.ens.dk/graphics/publikationer/ forsyning/udbudsprocedure_havvindmoeller.pdf, February 2003).

4. GERMANY

In a strategy paper of the German government (BMU, 2002) the future wind power potential is estimated as 20,000 to 25,000 MW in the year 2030. This concerns the long-term potential. In the same paper, the cumulative amount of requests has been listed, which are known until now. These requests can be divided into North Sea, for which 22 wind farms have been announced, and Baltic Sea, for which 7 wind farms have been announced. Until the year 2006, this would mean an installed capacity of approximately 5000 MW in the North Sea and approximately 1500 MW in the Baltic Sea.

However, no detailed information is available on most of the wind parks. Table 4.1 lists the parks for which a time horizon and a planning scheme are available. According to the figures mentioned above, for less than 25% of the total projected capacity of 6.5 GW a time schedule was released.

Table 4.1	Firmly planned offshore wind farms	in Germany (five wind farms (partially) to be
	realised until the end of 2005 (IWR	2002; Henderson, 2002 and internet sources)

Name	Total Capacity [MW]	Projected until 2005 [MW]	Time horizon
North Sea (EEZ)			
Borkum Riffgrund-West ⁴	1800	231	2004-2005
Dan-Tysk ⁵	1500	400	2005
Meerwind ⁶	819	105	2004
Sandbank 24 ⁷	4905	360 - 432	2005
<i>Baltic Sea (EEZ)</i> Kriegers Flak ⁸	295	295	2004-2005
Projected until 2005		1391 - 1463	

The projects mentioned in Table 4.1 are the only ones that will be taken into account for the inventory until the year 2006, as presented in Chapter 13: Meerwind Phase 1, Kriegers Flak Phase 1 and 2, Borkum Riffgrund-West Phase 1, Dan-Tysk Phase 1 and Sandbank 24 Phase 1, total-ling approximately 1.4 GW by the end of the year 2005.

Depending on the locations of the planned projects, a different authorising body applies. For the Exclusive Economic Zone (EEZ), the issuing body is Bundesamt für Seeschifffahrt und Hydrographie (BSH), while for projects within the 12-mile zone local authorities are important (Landes- und Bezirksregierungen). The overview presented in Table 4.2 is based on a number of literature sources.

⁴ Project by EnergieKontor AG. The first phase is projected for the years 2004-2005, and comprises 77 (of in total 458) turbines of 3 MW (www.ofw-online.de, December 2002) (www.boxer99.de, June 2003).

⁵ Projected by GEO mbH, first phase 400 MW (80×5 MW) in the year 2005 (www.ofw-online.de, December 2002).

⁶ Projected by Windland Energieerzeugung GmbH. Phase 1 of 30×3.5 MW is projected for 2004. In total, 270 turbines are planned, of which 234 in the EEZ. (www.ofw-online.de, December 2002).

⁷ First phase of 120 turbines of 3 or 3.6 MW (www.sandbank24.de).

⁸ Projected by Offshore Ostsee Wind AG. Phase 1 consists of 40 turbines of 3 MW in the year 2004 and 35 turbines of 5 MW in the year 2005. (www.ofw-online.de, December 2002).

Name	Capacity [MW]	Investment [€/kW]	Time horizon
North Sea (EEZ)			
Amrumbank	1250		
Amrumbank West	max. 288		
Borkum Riffgrund	840		
Borkum West ⁹	1040		
Borkum IV	400		
Butendiek	240	1667^{10}	
North Sea Wind power	1210		
Weiße Bank ¹¹	600		
Uthland ¹²	400		
Forseti ¹³			
North Sea (within 12 miles zone)			
Dollart	9		
Nordergründe ¹⁴	> 200		
Offshore Helgoland	200		
Riffgat	135		
Schleswig-Holstein Nordsee	800-1000		
Wilhelmshaven	4,5		
Baltic Sea (EEZ)			
Adlergrund ¹⁵	790		
Arkona-Becken Südost	945		
Beltsee	415		
Pommersche Bucht	1000		
Baltic Sea (within 12 miles zone)			
Pilotprojekt Mecklenburg-	Appr. 40		
Vorpommern	~ ~		
Sky 2000 ¹⁶	100-150		
Total projected	15412 - 15662		
	or more		

Table 4.2 German wind farms in the planning phase¹

The overview has been taken from (IWR, 2002; Henderson, 2002) and Internet sources

⁹ First phase 60 MW (12 turbines), later totalling to 208 turbines (www.ofw-online.de, December 2002).

¹⁰ Total investment € 400 million (www.butendiek.de, December 2002).

¹¹ Projected by Energiekontor AG (www.ofw-online.de, April 2003).

¹² Projected by Gesellschaft für Energie und Oekologie mbH (www.ofw-online.de, December 2002).

¹³ Projected by Prokon Nord Energiesysteme GmbH, planned in 11 phases, 1st phase projected for 2010-2015, the last phase projected for 2020-2025. In total, an amount of 1750 wind turbines are projected, of which the capacity is expected to increase during the installation period: 5 MW in the year 2010, until 10 MW per wind turbine from the year 2020 (www.ofw-online.de, December 2002). ¹⁴ Projected by Energiekontor AG (www.ofw-online.de, December 2002).

¹⁵ Projected by Umweltkontor (www.ofw-online.de, December 2002).

¹⁶ Initially, SHOW-VG mbH planned a 100 MW (64×1.5 MW) wind farm inside the 12-mile zone, but this has been cancelled for ecological reasons and visual intrusion from the coast. Now, a different location has been chosen, for which 50 turbines of 2 to 3 MW are projected (www.ofw-online.de, December 2002).

Figure 4.1 Offshore wind power parks projected in German waters: the North Sea on the left, and the Baltic sea on the right¹⁷

¹⁷ Picture from www.solarenergie.com/solarzeitung/windenergie/Offshore7-02.html.

5. IRELAND

The offshore wind potential of the Republic of Ireland (RoI) is considerable. In a report assessing the technical offshore wind potential (Kirk McClure Morton, 2000), an estimate has been made as a function of maximum water depth and distance to shore. As an example, the area available with a maximum water depth of 20 m and a distance to shore larger than 5 km is estimated at 768 km² for RoI and 47 km² for Northern Ireland (NI)^{18,19}. In this study, the investment costs are estimated between 1362 and 1750 ϵ/kW , including commissioning and grid connection, depending on location and design.

The majority of the potential mentioned above is located at the east and southeast of the island. At present, 11 consortia have been awarded licences to investigate the suitability of sites for offshore wind energy in Ireland. Some of these applications have been withdrawn and some licences have been refused. Another 24 applications are currently being processed²⁰. Table 5.2 lists the projects that are currently known (IWEA, 2003). Based on information available from developers, the combined capacity may be as high as 2000 MW (Garrad Hassan, 2002).

The first construction authorisation has been approved in the beginning of 2002 for the Arklow Bank project in the Irish Sea, consisting of approximately two hundred turbines with a cumulative capacity of 520 MW (www.airtricity.net, December 2002). Construction is planned in four phases, of which the last is projected to be finalised by the end of 2006. Table 5.1 lists the consecutive stages (Garrad Hassan, 2002).

Stage	Capacity [MW]	Commissioned by
1	60	1 December 2003
2	60	1 December 2004
3	160	1 December 2005
4	240	1 December 2006
Total	520	

Table 5.1 Timetable for Aitricity's Arklow Bank offshore wind farm (Garrad Hassan, 2002)

¹⁸ In the report a conversion rate for electricity production has been proposed assuming 1.65 MW and 3.0 MW turbines at 500 m spacing. This exercise yields an energy range of 10.5 to 18.4 TWh for RoI and 0.6 to 1.1 TWh for NI.

¹⁹ Note that these numbers refer to the *technical potential*.

²⁰ This number includes expressions of interest on other sites that currently hold a foreshore licence. There are three expressions of interest outside of Irish territorial waters (IWEA, 2003).

jor ojjsnore w	ind ener	gy in $free and (free EF)$	1, 2005/		
Plan of Irish East coast	Number	Consortium	Area	Licence Status	Capacity
Zun	1	Harland & Wolff Licences Ltd	Blackwater Bank	2 nd Rights	Unknown
LCUTH MEATH	2	Wind Farm Developments Ltd	Blackwater Bank	1 st Rights	Unknown
FROME CLELN 0	3	Sure Partners Ltd	Arklow Bank	1 st Rights	520 MW
WOLLOW	4	Harland & Wolff Licences Ltd	Codling & Greater Codling Bank	1 st Rights	Unknown
	5	Kish Consortium	Bray Bank Kish Bank	1 st Rights	Unknown
Same .	6	Sure Partners Ltd	Dundalk Bay	1 st Rights	Unknown

Table 5.2 Licences awarded by the Department of Marine to investigate the suitability of sitesfor offshore wind energy in Ireland (IWEA, 2003)

6. THE NETHERLANDS

An overview of realised projects in the Netherlands is presented in Table 6.1, projected wind farms have been listed in Table 6.2.

In the Netherlands two projects are known at the moment. To begin with, the Nearshore Wind Park (NSW) of the Shell/Nuon consortium NoordzeeWind, a demonstration project of 99 MW near Egmond aan Zee that has been further delayed from 2003 to 2004 at the earliest, due to legislative procedures. The wind farm has been authorised under the condition that extended monitoring and evaluation programmes are being performed. Moreover, the NSW has to be entirely dismantled after 20 years of operation.

The second wind farm, the E-connection Q7-WP wind farm of 120 MW has also been delayed to 2004. This delay is due to uncertainty about government policy during the year 2002. In the year 1999, E-connection submitted other requests for offshore wind farms. The earlier announced Q4-WP of another 120 MW has been withdrawn in order to concentrate on one single location. This has been decided in consultation with the Ministry of Transport, Public Works and Water management. The name Q7 refers to the name of block Q7 of the Dutch Continental Shelf (www.e-connection.nl, December 2002).

More details about the two wind farm characteristics can be found in Table 6.3.

Besides the cancellation of the Q4 wind farm, previous publications often mentioned a 300 MW nearshore wind farm along the Afsluitdijk, between the IJsselmeer and the Waddenzee. The Waddenzee is a precious nature reserve and activities in this area must meet requirements as defined in the nature conservation law and the European Bird and Habitat Directive. In the year 2002, it was politically decided not to develop wind power in this region, because of the impact on the preservation of the open landscape.

Project	Location	Power	Commissioning date
Lely	IJsselmeer	2 MW (4 × 500 kW)	1994
Dronten	IJsselmeer	$17 \text{ MW} (28 \times 600 \text{ kW})$	1996
Total realised		19 MW	

 Table 6.1 Realised offshore wind projects in the Netherlands

Table 6.2 Offshore wind plans in the Netherlands				
Project	Location	Power	Commissioning date	
NSW	North Sea	99 MW (36 × 2.75 MW)	2004	
Q7-WP	North Sea	$120 \text{ MW} (60 \times 2 \text{ MW})$	2004	
Total projected		219 MW		

	Q7-WP	NSW
Capacity	120 MW ²¹	99 MW ²²
Turbines	$60 \times 2 \text{ MW}$	36 × 2.75 MW
Tower height	57 m above sea level	60, 70 or 80 m above sea level
Expected average net output	435 GWh per year	300 GWh per year
Investment	2250 €/kW ²³	2020 €/kW ²⁴
Distance from shore	23 km off IJmuiden	10 km off Egmond aan Zee
Water depth	20 to 25 m	< 15 m
Development, engineering,	Vestas - Nederland	Noordzeewind Consortium,
construction and start-up	Windtechnologie, Smit	(Shell and Nuon)
	Transport & Heavy Lift, Jan de	
	Nul, Fabricom Oil & Gas and	
	ABB	

Table 6.3 Overview of wind farm characteristics for the two main Dutch offshore wind farms (E-connection, 2002; Olthoff, 2002; PKB NSW, 2000)

 ²¹ The turbines are placed in rows parallel to the radar beam of the harbour radar station of IJmuiden. Spacing between the wind turbines is approximately 550 meters.
 ²² Three distances to shore and distances between turbines are still under consideration
 ²³ Total estimated investment costs amount to € 270 million (Volkskrant, 3 April 2003)
 ²⁴ Total estimated investment costs amount to € 200 million (Ensoc Weekly, 2002)

7. SWEDEN

The first Swedish turbine installed at sea is at Nogersund, a few hundred meters outside the harbour. It is only one turbine of 220 kW, placed on a three-legged platform, commissioned in the year 1990. The project was considered very expensive, and the turbine has been decommissioned (WSH, 2002; Wind and Sea, 2001). The projects that are still in operation or yet to be commissioned are described below (Table 7.1 for realised projects, Table 7.2 for offshore wind plans).

Project	Location	Power	Investment [€/kW]	Commissioning date
Bockstigen	Gotland	2.8 MW (5 × 550 kW)	1700	1998
Utgrunden	Kalmarsund	10.5 MW (7 × 1.5 MW)	1700	2000
Yttre Stengrund	Blekinge	$10 \text{ MW} (5 \times 2 \text{ MW})$	1700	2001
Total realised	-	23.3 MW		

Table 7.1 Realised offshore wind projects in Sweden

Bockstigen

In 1998, the first offshore wind farm in Sweden, the 2.5 MW (5×500 kW) wind farm Bockstigen, 4 km from Gotland in 6 m deep water was commissioned. The specific investment cost amounts to approximately \notin 1,700/kW (Lako, 2002).

Utgrunden

The second nearshore wind farm in Sweden - commissioned in 2000 - is the 10 MW (7 \times 1.43 MW) wind farm Utgrunden, located near Öland in Kalmarsund where the water is 7-10 m deep and the wind speed is 8.5 m/s. The specific investment cost is \notin 1,700/kW (Lako, 2002).

Yttre Stengrund

In 2001, a third 7.5 MW (5 \times 1.5 MW) nearshore wind farm called Yttre Stengrund was commissioned. Yttre Stengrund has roughly the same specific investment cost as Utgrunden (approximately \notin 1,700/kW) (Lako, 2002).

Project	Location	Power	Commissioning date
Klasarden	Gotland	42 MW	2004
Utgrunden II	Kalmarsund	72 MW (24 × 3 MW)	2004^{25}
Total		114 MW	

 Table 7.2 Offshore wind plans for Sweden

Klasarden

At Klasarden, in Gotland, a 44 MW (16×2.75 MW) wind farm is projected for the year 2004. The expected annual electricity production is 120 GWh. The wind farm is planned 1.5 km off the shore, and the water depth varies from 7 to 11 m (WSH, May 2003).

Utgrunden II

The previously mentioned Utgrunden wind farm is projected to have an extension of 72 MW $(24 \times 3 \text{ MW})$: Utgrunden II. The expected annual output is 240 GWh and the installation of the wind farm is projected for the year 2004 (www.airicole.com, June 2003).

²⁵ For Utgrunden II, *installation* is expected for 2004, not commissioning.

Other wind farms that have been mentioned in older publications, but of which no recent information is available, are located in Öresund near Landskrona (20×3.5 MW) and on the Lillgrund Bank near Malmö (48 MW). These have not been taken into consideration in the overview. An overview of possible projects for which precondition investigations²⁶ are under way can be found on www.airicole.com (June 2003).

 $^{^{26}}$ All in all, an additional 1.7 GW is under study, of which the Midsjöbanken project (1.1 GW) is the most ambitious

8. UNITED KINGDOM

England and Wales

England and Wales have one of the largest offshore potentials in Europe and offshore development is supported indeed. The Crown Estate, as landowner of the seabed out to the 12 nautical mile territorial limit, plays an important role in the development of the offshore wind industry by leasing areas of seabed for installation of turbines.

The first offshore wind farm in the UK put into operation was the 4 MW (2×2 MW) Blyth wind farm, commissioned in December 2000. This was the first project in the North Sea. The total investment costs amounted to £ 4 million (Power-Technology, 2003).

In December 2000, a Round was announced by the Crown Estate, in order to assess the interest of wind power developers. An overview of sites and companies that applied is presented in Table 8.1. One of the requirements of the Crown Estate (for Round One) is the maximum amount of 30 turbines and a minimum installed capacity of 20 MW. As can be seen from the table, almost all players apply for the maximum amount of turbines. The total park size thus depends on the turbine size, which ranges from 2 to 3.6 MW according to the plans.

Today, at least 2 GW of projects is in the planning phase. Although not sure yet, the 60 MW wind farm North Hoyle on the coast of Wales could be realised in 2003 (www.natwind power.co.uk/northhoyle/progress.htm, June 2003). The realisation of Scroby Sands, a 60 MW wind farm near Great Yarmouth, is projected for 2003, but it is uncertain whether this will be attained. The project is lead by Powergen Renewables and Vestas, who were also involved in the first offshore two turbine pilot project at Blyth Offshore. For most of the sites, no additional information is available.

Scotland and Northern Ireland

For Scotland, the only offshore wind farm that is projected is Moray Firth to be realised by Talisman Energy, with a projected capacity of 500 MW (news.bbc.co.uk/1/hi/scotland/ 2042867.stm, 23 December 2002). Tunes Plateau, North of Ulster, is a possible wind farm of 150 to 250 MW. More information about the consortia can be found on www.crownestate.co.uk.

Name	Capacity [MW]	Status
Blyth	4	Realised
Solway Firth, Cumbria	180	Applied for
Barrow, Cumbria	108	Applied for
Shell Flat, Lancashire	60-90	Site studies ²⁷
Southport, Lancashire	-	Cancelled ²⁸
Burbo, Merseyside	60+	Site studies
North Hoyle, North Wales	60	Granted ²⁹
Rhyl Flats, North Wales	60+	Applied for ³⁰
Scarweather Sands, South Wales	60+	Site studies
Kentish Flats, Thames Estuary	126	Applied for ³¹
Gunfleet Sands, Essex		Site studies ³²
Scroby Sands, Norfolk	76	Granted ³³
Cromer, Norfolk	< 100	Site studies ³⁴
Lynn, Lincolnshire	< 90	Applied for ³⁵
Inner Dowsing, Lincolnshire	60-90	Applied for
Teesside Hartlepool	60+	Site studies
Tunes Plateau, Northern Ireland	150-250	Site studies
Moray Firth, Scotland	500	Site studies
Total realised	4	
Total projected	1750 - 1910	

Table 8.1 Wind farms in the planning phase for the UK (WPM, 2002b)

²⁷ Projects planned by Shell Renewables (60+ MW), Elsam (60+ MW) and Scottishpower (60-90 MW)

²⁸ EnergieKontor decided to withdraw itself for the moment from UK offshore development in order to concentrate resources on German offshore Projects.

²⁹ Planned are 30 wind turbines totalling 60 MW, projected for the end of the year 2003 (www.natwind power.co.uk/northhoyle/progress.htm, June 2003) ³⁰ 30 wind turbines with an output equivalent to the electricity required by around 60,000 houses

 ³¹ 90MW , to be completed by the autumn of 2004 to spring 2005 (www.offshorewindfarms.co.uk)
 ³² 108MW (30 × 3.6 MW) , will supply electricity for approximately 85,000 homes (www.offshorewindfarms.co.uk)
 ³³ 38× 2 MW, approximately 52,000 homes (www.offshorewindfarms.co.uk)

³⁴ 30 turbines totalling 100 MW equivalent supply of 85,000 homes (www.offshorewindfarms.co.uk)

³⁵ 30 turbines generating annually for over 60,000 homes. Investment of £90 million and construction start in 2004. (www.offshorewindfarms.co.uk)

Figure 8.1 Offshore wind farms in the planning phase for Great Britain (www.crownestate.co.uk, December 2003)

9. OTHER COUNTRIES

9.1 Finland

Four offshore wind farms are planned near Helsinki. Each wind farm is projected to have 15 to 20 turbines of 3 MW each. The development of these wind farms would be part of town development plans. A critical issue will be whether government support will be granted (De Vries, 2002).

	iore wind jurms	in Finiana	
Project	Location	Capacity	Commissioning date
Helsinki	Baltic Sea	Four wind farms of in total 180 to 240 MW (15 to 20 × 3 MW)	Unknown

Table 9.1 Offshore wind farms in Finland

9.2 France

In the requirements to qualify for the feed-in tariff the size of a wind farm is limited to 12 MW, which is rather small for offshore wind power. In combination with the large, and still underdeveloped onshore potential for wind power, this does not really encourage the development of offshore projects. The only known 'offshore project' concerns one 1.5 MW wind turbine, planned 70 meter off the coast, but this is intended for testing rather than for large-scale production of electricity. This project is expected for the year 2003, and will be located at La Rochelle. De Vries (2002) mentions a 100 MW park at Ile de Croix, South of Bretagne, which would be projected by Shell.

Project	Location	Capacity	Commissioning date
La Rochelle	La Rochelle	1.5 MW	2003
Shell	Ile de Croix	100 MW	Unknown

9.3 Greece

According to De Vries (2002) EnergieKontor AG acquired several offshore locations in Greece. (EnergieKontor, 2002) confirms that for the Porto Lagos location a local wind survey is being undertaken. This project is thus in an early stage of the planning procedure.

9.4 Poland

The first Polish offshore wind farm is projected in the region of Bialogora, near the town of Słupsk, totalling 122 to 183 MW, consisting of 61 wind turbines (of each 2 to 3 MW). Start of installation is expected for the beginning of the year 2004. Design is from the German PT&T Technology (P&T, 2002).

 Table 9.3 Offshore wind plans for Poland

Project	Location	Capacity	Commissioning date
Słupsk	Baltic Sea	122 - 183 MW	2004

9.5 Spain

A scoping study for offshore wind in the South of Spain, particularly for the Atlantic coast near Cadiz, has been performed by the KEA-NEK Engineering Group. The wind farm at Cabo de Trafalgar (250 MW, to be installed in 2004-2005) is to be developed in two phases and is located approximately 20 km off the Spanish coast. The total investment is expected to be CDN \$ 550 million (KEA, 2002).

Table 9.4 Offshore wind plans for Spain

Project	Location	Capacity	Investment [CDN \$/kW]	Commissioning date
Cabo de Trafa	llgar Atlantic Ocean	250 MW	2200	2004 - 2005

9.6 Italy, Norway and Portugal

For Italy, Norway and Portugal no offshore wind projects are known.

9.7 Rest of the world

Europe is leading in the realisation of offshore projects. However, the American continent and Japan are also planning offshore wind activities. In British Columbia on the Canadian West-coast, the 700 MW Nai Kun is planned by ABB and Uniterre Resource, which is to be built during the period 2004-2007. In the United States of America, a project is planned near Cape Cod, Boston with a capacity of 420 MW at an investment cost of minimal US\$ 600 million. In Japan, an assessment is being done by the city of Tokyo to build 10 turbines offshore.

As offshore wind power is a sector with fast developments, the number of announced projects is growing very fast. For the United States of America, an inventory of possible sites yielded an amount of 9 GW wind power, and is presented by Winergy (www.winergyllc.com, June 2003). An overview of these locations is given in Table 9.6.

Project	Location	Capacity	Investment [US\$/kW]	Commissioning date
Nai Kun	Canadian Westcoast	700 MW		2005 - 2007
		$(350 \times 2 \text{ MW})$		
Cape Cod	Boston, USA	420 MW	1429	Unknown
		$(170 \times 2.47 \text{ MW})$		

 Table 9.5 Offshore wind plans for the rest of the world

Location	Capacity (indicative) [MW]	Farm size (indicative) [MW]
Jones Beach	241	(67 x 3.6)
Plum Island	12	(6 x 2)
Davis Bank	749	(208 x 3.6)
Asbury Park	353	(98 x 3.6)
Smith Island	796	(221×3.6)
Great Egg	439	(122×3.6)
Nantucket 1	832	(231 x 3.6)
Nantucket 2	763	(212 x 3.6)
Isle Of Wight	1267	(352 x 3.6)
Indian River	1102	(306 x 3.6)
Smith Point	205	(57 x 3.6)
Five Fathom Bank 2	686	(196 x 3.5)
Five Fathom Bank 3	965	(268 x 3.6)
Fire Island	227	(63 x 3.6)
Hampton	295	(82 x 3.6)
Total	8932	

 Table 9.6 Inventory of possible offshore sites in the USA as presented by Winergy (www.winergyllc.com, June 2003)

10. EVALUATION OF OFFSHORE WIND IN EUROPE

At present the offshore wind power market is growing very fast. The shockwise addition of capacity in the years 2000 (Middelgrunden, DK) and 2002 (Horns Rev, DK) cause large annual growth percentages. Considering the whole period 1991-2002, an average annual capacity growth of 43% can be observed. The capacities have been displayed in Figure 10.1.

Figure 10.1 Realised offshore wind power until February 2003

Considering the expected annual growth based on the projections listed in the previous chapters, the installed capacity by the year 2006 can amount to 3.2 GW to 3.4 GW. This comprises only the wind farms whose projections also mentioned a time schedule. From the previous chapters it can be seen that for many projects no time schedule has been published. Therefore, the capacity in the year 2006 could also be higher than indicated.

Starting with 256 MW by the end of 2002, an installed capacity of 3.3 GW by the end of the year 2006 would mean an *average annual growth* up to 90%. This would mean an increase of capacity with almost a factor 13, and consequently a number of capacity doublings exceeding three³⁶. Figure 10.2 indicates these projections until the year 2006.

Summing up all European projects that have been listed in the current report yields a total capacity of 24 to 25 GW. This capacity, however, can only be attained in the long term and is very uncertain. The chronological development in realisations and projections has been listed in more detail in Table 10.1.

³⁶ An increase of capacity by a factor 12.9 means that the amount of capacity doublings is equal to 3.7 (since $2^{3.7}=12.9$).

Figure 10.2 *Projections as listed in the previous chapters* Note: Projects until the year 2006 have been based only on those, for which a time schedule has been available

Year	Realised	Projected	Average Cumulative installed capacity	
1990			0	MW
1991	Vindeby (DK)		5	MW
1992			5	MW
1993			5	MW
1994	Lely (NL)		7	MW
1995	Tunø Knob (DK)		12	MW
1996	Dronten (NL)		29	MW
1997			29	MW
1998	Bockstigen (SE)		32	MW
1999			32	MW
2000	Middelgrunden (DK), Utgrunden (SE), Blyth (UK)		86	MW
2001	Yttre Stengrund (SE)		96	MW
2002	Horns Rev (DK)		256	MW
2003	Samsø (DK)	Zeebrugge (BE), Frederikshavn (DK), Nysted (DK), La Rochelle (FR), North Hoyle (UK)	0.3	GW
2004		Vlakte van de Raan (BE), Meerwind Phase 1 (DE), Kriegers Flak Phase 1 (DE), NSW (NL), Q7-WP (NL), Słupsk (PL), Klasarden Gotland (SE), Utgrunden II (SE)	1.4	GW
2005		Thornton Bank (BE), Borkum Riffgrund-West Phase 1 (DE), Dan-Tysk Phase 1 (DE), Kriegers Flak Phase 2 (DE), Sandbank 24 Phase 1 (DE), Cabo de Trafalgar (ES)	3.1	GW
2006		Arklow Bank (IE)	3.3	GW

 Table 10.1 A chronological overview of European offshore wind projects in the past and in future³⁷. In parentheses, the country names have been indicated

³⁷ In most cases, construction works have been planned in a period, for example 2004 – 2006. In such cases, the park is attributed to the last year in the period, in this example 2006.

REFERENCES

- BMU, BMWi, BMVBM, BMVEL, BMVg (2002): Strategie der Bundesregierung zur Windenergienutzung auf See, Januar 2002.
- C-Power (2002): Internet: www.c-power.be, 23 December 2002.
- E-connection (2002): Internet: www.e-connection.nl, December 2002.
- Electrabel (2002): Press Release Electrabel 25 June 2002.
- EnergieKontor (2002): Three month report, 2002.
- Ensoc Weekly (2002): Commissie kiest NoordzeeWind, Nummer 12, 22 maart 2002.
- EWEA (2003): European Wind Energy Conference 2003 (EWEC), Special Newsletter, Madrid, 18 June 2003
- Garrad Hassan and Partners Limited (2002): Study into the impacts of increased levels of wind penetration on the Irish electricity systems: First Interim Report 2002.
- Henderson, A.R. (2002): Offshore Wind Energy in Europe: The Current State of the Art Section Wind Energy, Delft University of Technology, The Netherlands and others, Re-focus March 2002, Internet: www.re-focus.net/mar2002 1.html.
- IWEA (2003): Irish Wind Energy Association, Internet: www.iwea.ie, 26 March 2003.
- KEA (2002): Internet: www.kellerengineering.com/windenergy/trafalgar.htm, December 2002.
- Kirk McClure Morton et al (2000): Assessment of Offshore Wind Energy Resources in the Republic of Ireland and Northern Ireland, 2000.
- Lako (2003): Learning and Diffusion for Wind and Solar Power Technologies, ECN-C--02-001, ECN, Petten, April 2002.
- Olthoff, J. (2002): Public participation meeting, Egmond aan Zee, 12 September 2002.
- P&T Technology (2002): *Positive decision for offshore wind farm in Poland*, Press Release, 23 January 2002.
- PKB NSW (2000): Project-planologische kernbeslissing locatiekeuze demonstratieproject near shore windpark, februari 2000.
- Power-Technology (2003): Internet: www.power-technology.com/projects/blyth, April 2003.
- Sustainable Energy Ventures (2001): *Newsletter of Sustainable Energy Ventures*, Number 1, November 2001, Internet: www.sev.be/v3/uploads/sev/ACF1637.pdf, 23 December 2002.
- Utilities (2003): Internet: www.utilities.nl/, 28 March 2003.
- Volkskrant (2003): Windparken op zee fors vertraagd, 3 april 2003.
- Vries, E. de (2002): Wereldwijde toename offshore windparken, Stromen 29 november 2002.
- Wind and Sea (2001): Offshore Conference and Study Tour, Internet: www.teknologisk.dk/energi/2001, 20 December 2002.
- Windpower Monthly (2002a): Attracting Investors Offshore in Denmark, December 2002.
- Windpower Monthly (2002b): Offshore Wind Farms in Britain: Steady progress through still waters, Windpower Monthly, October 2002 p. 39.