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INTRODUCTION

In 1999, a group of scientists and analysts from academia, industry, and government agen-
cies who were participating in a workshop arranged by the International Energy Agency
(IEA) observed that experience and learning curves “are underexploited for public policy
analysis” ((IEA/OECD 2000, Appendix B, 112). They recommended that experience and
learning curves “are used to analyze the cost and benefits of programs to promote environ-
ment friendly technologies™ and “are explicitly considered in exploring scenarios to reduce
CO, emissions and calculating the cost of reaching emissions targets” (IEA/OECD, 2000,
Appendix B, 114). The IEA Committee on Energy Research and Technology (CERT)
supported the findings of the workshop and initiated an international collaboration.
McDonald and Schrattenholzer (2001) provided the first overview of experience
curves for energy technology. Particular attention in their seminal publication was
given to the distribution of learning rates for 48 cases of different energy technolo-
gies. While the statistical significance of a number of the included learning rates
was not particularly high, several robust overall conclusions could be made on the
basis of their distribution. One of the main findings was that their distribution had
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both commonalities and differences with respect to those published by Dutton and
Thomas (1984) for (not exclusively energy-based) technologies manufactured by
individual companies. Both of these studies found a median learning rate of close to
20%, but McDonald and Schrattenholzer (2001) found a higher frequency of smaller
learning rates than Dutton and Thomas (1984) did.

The last 10 years have seen a steadily increasing amount of studies being carried
out on technology learning as measured by experience curves, initially on renewable
technologies, but now also including fossil, nuclear, hydrogen and end-use technolo-
gies (Junginger 2010; Schoots et al. 2008; 2010). Recent high-level policy documents
embrace the insights from experience and learning curves into the crucial role of
market deployment in order to make low-carbon energy technologies more cost-
efficient (EA/OECD 2006, 2008, 2010; Stern 2006; EESC 2009).

The work in the late 1990s on experience and learning curves at the IEA Secretariat
established their political implications and global reach (IEA/QOECD, 2000), but this
work could rely on earlier pioneering efforts in order to apply to learning curves a
political message in the energy field. Maycock and Wakefield (1975) and Williams
and Terzian (1993) analyzed the reduction in cost of photovoltaic (PV) cells, and Neij
(1999) did the same for wind power. Tsuchiya (1989) showed how niche markets can
act as stepping stones for the riding down of the experience curve and inspired the
launching of Japan’s Residential PV System Dissemination and PV-Roof Program
(IEA/OECD 2000, 64-74). Early efforts to introduce learning curves into energy-
economic models failed because of the strong non-linearities of the curves and the
increasing returns to scale that the introduction of these curves generated in these
models (Manne 1994). Technology learning was then introduced in the technology
modules of the U.S. National Energy Modeling System, but it proved the model
could only be solved iteratively (Kydes 1999). Messner (1997), and Mattsson and
Werne (1997) first managed to introduce learning curves in global bottom-up energy
system models and solve their models in single-solution runs, while van der Zwaan
et al. (2002) were the first to achieve this in a top-down version of energy-economic-
environment (EEE) models. Following these efforts, technology learning is now a
standard feature in most bottom-up energy systems and top-down EEE-integrated
assessment models (Kahouli-Brahmi 2008).

The reason for the political relevance of experience and learning curves is that
technology learning is a key factor behind technological change (Sagar and van der
Zwaan 2006). The curves are therefore important tools in answering the question
of how to retain economic growth while using technology to transform the global
energy system so that it can sustain a low-carbon economy. The insights from experi-
ence and learning curves suggest that such a transformation can be made, but initial
investments in learning will be in the order of hundreds of billions of U.S. dollars
(IEA/OECD 2000, 2008; van der Zwaan and Rabl 2004). This raises the questions of
how well we understand the technology learning process, and how well we can trust
forecasts based on this understanding.

Although high-level policy reports acknowledge the existence of learning effects,
they also point to the large uncertainties in the estimates of future learning phenom-
ena. Because of the long time spans involved, these uncertainties translate into large
uncertainties about the resources or learning investments that are needed to bring
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the new technologies to breakeven with incumbent high-carbon technologies. The
reports stop short of recommending experience and learning curves as operational
policy tools. In their report to the 2006 G8 meeting of heads of state, the IEA finds:

“Technology learning is the key phenomenon that will determine the future cost of
renewable power generation technologies. Unfortunately, the present state of the art
does not allow reliable extrapolations.” (IEA/OECD 2006, 231)

The Stern review observes that:

“There is a question of causation since cost reductions may lead to greater deployment;
so attempts to force the reverse may lead to disappointing learning rates. The data
shows technologies starting from different points and achieving very different learning
rates.” (Stern 2006, 362, 411-412)

A key criticism is that the curves appear to express purely empirical relations between
cost, price or technical performance, and cumulative production or use. Theoretical
grounding is needed to explain observed learning rates, limit uncertainties in extrapo-
lations, and legitimize government deployment programs. Another important point
of criticism is that the set of technologies with associated learning curves is biased:
many technologies exist for which no learning has been observed, for which learning
has inadvertently stopped, or for which, in fact, diffusion itself has halted (or has even

- returned) as a result of unforeseen (and unforeseeable) events (Sagar and van der Zwaan

2006). Furthermore, it is argued that reported learning rates often confuse at least two
(and sometimes more) economic phenomena that are fundamentally different in nature.
Learning-by-doing versus economies-of-scale is a proper point in case, since the former
is realized by cumulative capacity or activity, while the latter is dominated by the size of
the plant or sector under consideration at a given moment in time (for a recent example,
related to hydrogen technology, in which these phenomena are disentangled, see Schoots
et al. 2008, 2010). Several mechanisms have been proposed to explain technology learn-
ing and the observed relationships (Abell and Hammond 1979; Arthur 1988; Argote and
Epple 1990; Adler and Clark 1991; Nemet 2006). Unfortunately, they generally fail to
reconstruct the shape of the learning curves or explain the observed learning rates.

In this chapter we provide some interpretations of experience and learning curves
starting from three different theoretical platforms. These interpretations are aimed
at explaining learning rates for different energy technologies. The ultimate pur-
pose is to find the role that experience and learning curves can legitimately play in
designing efficient government deployment programs and in analyzing the implica-
tions of different energy scenarios. The “Component Learning” section summarizes
recent work by the authors that focuses on the disaggregation of technologies in
their respective components and argues that traditional learning for overall technol-
ogy should perhaps be replaced by a phenomenology that recognizes learning for
individual components. The “Learning and Time” section presents an approach that
departs more strongly from the conventional learning curve methodology, by sug-
gesting that exponential growth and progress may be the deeper underlying processes
behind observed learning-by-doing. Contrary to this view, the cybernetic approach
presented in the “Cybernetic Approach” section sees learning curves as expressing a
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fundamental property of organizations in competitive markets and applies the find-
ings from second order cybernetics to calculate the learning rates for operationally
closed systems. All three interpretations find empirical support. The “Conclusions”
section summarizes the pros and cons of the three approaches from an energy tech-
nology policy perspective and provides some concluding remarks.

COMPONENT LEARNING

Ferioli et al. (2009) investigate the use of learning curves for the description of
observed cost reductions for a variety of energy technologies, using as a starting point
the representation of energy processes and technologies as the sum of different com-
ponents. While it is widely recognized that in many cases learning-by-doing may
improve the overall costs or efficiency of a technology, they argue that, so far, insuffi-
cient attention has been devoted to studying the effects of single-component improve-
ments, which, taken together, may explain an aggregated form of learning. Indeed,
for an entire technology, the phenomenon of learning-by-doing may well result from
the learning of one or a few individual components only. They analyze under what
conditions it is possible to combine learning curves for single components to derive
one comprehensive learning curve for the total product. The possibility that, for cer-
tain technologies, some components (€.g., the primary natural resources that serve as
essential input for their fabrication or use) do not exhibit cost improvements might
account for the observed time-dependence of learning rates as reported in several
studies. The learning rate might also change considerably depending on the (sub)set
of data considered, a crucial issue to be aware of when one uses the learning curve
methodology. These observations may have important repercussions for the extent to
which learning curves can be extrapolated in the future.

Learning-by-doing has often been shown to slow down in the long term. A way
to describe such slowing down is to consider a product, process, or technology as
an aggregate of several components. The cost C of every industrial product can be
expressed as the sum of the costs of its components. If one assumes that the cost of
each component decreases over time according to a power law relation as a result of
learning, it is possible to write the overall cost relation of a generic product as:

n —=bj ~bB; ~in ~by
C(x,)-—-ZCg,- 220 IO .00 RPN () R o e R < B
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in which the index i represents a given cost component. Each component is, in
principle, characterized by a different learning parameter b;, and a different initial
curnulative production xy;. Aggregate learning may or may not be broken down into
component learning according to Equation 23.1. At any rate, the value of cumulative
production for each component is at least as important as the individual learning
parameter. The reason for this is that, between components, x,; may have widely
diverging values, and along with b;, Xo; determines how much scope exists for future
learning. For example, the production of wind turbines has a negligible effect on the
historic cumulative production of steel or aluminum, so that not much production
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cost reduction for these construction materials (needed for components like the sup-
port mast and turbine housing) can be expected by the deployment of wind turbines.
On the other hand, continued cost improvements can be expected for the fabrication
qf (lightweight) rotor blades that so far have reached a much more limited cumula-
tive production. It is therefore necessary to discuss, both in general and for each
technology independently, under what conditions the conventional learning curve
equation can be broken down into the component learning expression of Equation
23.1. Conversely, one may question when the validity of an equation of the form of
Equation 23.1, can be demonstrated, and can it be approximated by the conventional
expression for learning curves; that is, with only one term.

For ease of exposition, Ferioli et al. (2009) analyze the properties of a simplified
model in which the cost for a product or technology is determined by only two com-
ppnents —one characterized by learning, and one for which the cost is constant in time
(i-e., no cost reduction can be observed). If o is the share of the total cost that initially
can be attributed to the learning component, then 1 — ¢ is the beginning cost share of
the non-learning component. The overall cost as a function of the cumulative produc-
tion of the learning component can, in this simplified case, be expressed as:

X

-5
C(x)=0Cy ( j +(1—0)Co, (23.2)

Xo

where C, is the total cost at production level x,. Equation 23.2 can be considered
a special case of the more elaborate model presented by Equation 23.1 and can be
useful to highlight some properties of the latter. A theoretical justification for this
model is the observation (see, e.g., Schoots et al. 2008; Schoots et al. 2010; van der
Zwaan and Rabl 2004) that some parts of a technology, such as the raw materials
and labor, may not experience cost reductions or may become more expensive over
time. The precise value of & can, in principle, be determined for each technology,
which we find may be a valuable avenue for further work. Equation 23.2 assumes t;at
the learning component is the innovative part of the new total product, so that the
cumulated production of the learning component and the overall technology are the
same. It is also supposed that the component does not improve from simultaneously
‘pemg part of another technology, so that the capacity of the composite and its learn-
ing component evolve synchronously.

One can test whether data that is usually fitted with a traditional learning curve
which does not distinguish between different components can be fitted on the basis
of Equation 23.2. Figure 23.1 shows that data for the price of gas turbines from
MacGregor et al. (1991) can be fitted in two different ways. The data points can
be fitted with a learning curve over a range spanning three orders of magnitude of
cumulative deployment. The learning rate (LR) is found to be 13% with R?*=0.95
(Figure 23.1, left plot). It can be observed, however, that the data present an inflec-
tion point. In the literature (see notably Seebregts et al. 1999), it has been proposed
to fit such data with a piecewise-linear learning curve. Figure 23.1 (right plot)
shows a two-piece learning curve applied to the present case: one obtains LR = 19%
and LR = 10%, and R? = 0.97 and R, = 0.94, for the two learning-curve pieces,
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EIGURE 23.1 A set of gas turbine prices fitted in two different ways: linearly z.ind p.iecewise
linearly. (Data from MacGregor et al., The marker outlook for integrated gasification com-
bined cycle technology. General Electric Company, 1991.)

respectively. Given the empirical nature of learning curves, the fact tha.lt the leay’nmg
rate changes over time leads to methodological issues: a constant learning rate 1s one
of the fundamental assumptions of the learning curve methodology. ‘ _
The same set of data can also be fitted with an expression of the form of Equation
23.2, as shown in Figure 23.2. For example, the system can be described as composed
of a learning component (with LR = 24%) that makes up 80% of the tota'l f:ost, and
a non-learning part (hence with constant cost) that accounts for the remaining 2.0%.
One could think of the costs associated with the steel as being necessary to fabnf:ate
the turbine. This fit is clearly better than both of those shown in Figure 23.1, since
it represents overall an R? = 0.97, while applying to the same data set. In azny case,
if one finds learning curves acceptable when they possess an accuracy of R?> 0.90,
one cannot discard any of these regressions—certainly not the two-cgmponent one.
While one may find all three fits to the gas turbine price data gf Figures 23.1 a.nd
23.2 acceptable, clear differences occur when one uses these learning curves for price
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FIGURE 23.2 The fit proposed for the gas turbine price data from Figure 23.1, based on
Equation 23.2 with LR = 24% (for the learning component) and o= 0.8.
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FIGURE 23.3 Two fits for gas turbine prices extrapolated over three orders of magnitude

into the future: A linear regression based on the traditional learning curve (——) and one
based on Equation 23.2 (——-).

or cost estimates in the future. Extrapolating cost data over several orders of magnitude
of cumulative production can lead to significant errors in the estimates of both the
breakeven capacity and learning investment (needed to reach competitivity with the
incumbent technology) when one uses the wrong learning model. We point this out in
Figure 23.3, in which both the fit of the left plot of Figure 23.1 and that of Figure 23.2
are depicted and extrapolated over three orders of magnitude in the future. Indeed, we
see that the two lines diverge rapidly for higher values of cumulative production, with
obvious consequences in terms of, for example, the total learning investment needed
to reach a given cost level in the future. As the cost of the innovative component is
reduced, the non-learning component gains in relative weight in its contribution to the
overall costs. Hence the composite learning process is slowed down.

The above argument suggests that technology cost reductions may not continue indefi-
nitely and that well-behaved learning curves do not necessarily exist for every product. In
addition, even for diffusing and maturing technologies that display clear learning effects,
market and resource constraints can eventually reduce the scope for further improve-
ments in their fabrication or use. It appears likely that some technologies, such as wind
turbines and photovoltaic cells, are significantly more amenable than others to industry-
wide learning. For such energy technologies, Ferioli et al. (2009) assess the reliability of
using learning curves to forecast cost reductions. They argue that due attention must be
paid to cost components that do not decrease over time, or may even increase.

LEARNING AND TIME

In another paper, Ferioli and van der Zwaan (2009) analyze the dynamics for the
growth and cost reduction of innovative products in the energy sector. They pro-
vide a series of examples showing that simple exponential relations can be used
to describe growth and cost reduction as functions of time for many types of tech-
nologies. These two simple models, for technological growth and progress respec-
tively, when taken together, are shown to be a de facto equivalent to the well-known
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learning curve. They propose a stylistic computational component-based model that
accounts for both these exponential relationships. The main novelty of this model
is that it introduces time in the learning curve methodology. While there may be
additional explanatory variables, they argue that accounting for time improves the
understanding and use of learning curves.

In their article, they first point out that much attention has been paid over the
course of the past two decades to how technology development feedback and induce-
ment may be included in theories of economic growth (for an overview see Aghion
and Howitt 1997). This “endogenous growth theory” may benefit greatly from the
abundance of detailed technology assessment studies in the innovation literature
(e.g., Griibler et al. 1999). As these technology assessments confirm, arguably the
simplest model to mathematically represent (the early phase of) technological dif-
fusion assumes growth with a fixed percentage, B, each year. Hence, the total out-
put increases by a factor & =1+ B each year, and the output inyearn+1,y,+1,
is simply y, + 1 = oy, (with y, being the output in year n). Time can be uniformly
normalized by dividing by the unit of one year in order to ensure the dimensional
consistency of the equations. Without a loss of generality, an output can be assumed
of one in year 1. The annual output as a function of time can thus be written as:

)=t (23.3)

The cumulative production, x(), is found by integration of Equation 23.3, which
(unsurprisingly) is again an exponential in ¢ (with an extra multiplicative factor and
a constant introduced by integration). Therefore the growth model for cumulative
production can be approximated by a simplified exponential relation of the form:

x(t)=ab’, 234

in which a and b are fitting parameters. The parameter b of Equation 23.4 is thus not
exactly identical to the annual growth parameter  in Equation 23.3. For many prod-
ucts, companies and technologies, growth in cumulated production can be approxi-
mated by this reduced exponential model. Ferioli and van der Zwaan (2009) give
several examples for non-energy technologies, based on data from Goddard (1981).
Likewise, they show examples for energy technologies, which include PV modules,
wind turbines, sugarcane-based ethanol production in Brazil, and large stationary fuel
cells. The historic cumulative production for these technologies and products is fit-
ted with Equation 23.4 based on data from Harmon (2000), Neijj (2004), Goldemberg
(1996), and Adamson (2006), respectively. The fits prove good to excellent.

Having developed a simple model for technological expansion, they then focus on
the dynamics of progress. They assume that cost reduction occurs through increases
in productivity, such that the unit cost is reduced by a fixed percentage every year.
Hence, the cost in year n+ 1 equals C,,; = ¥C,, withy=1-3and 3 the productivity
gain. Cost as a function of time can thus be expressed by an exponentially decaying
relation of the form:
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in which d and f are fitting parameters (f < 1). For several technologies, it is demon-
strated that costs as a function of time can be approximated by Equation 23.5, based
on dat'fi f¥om Goddard (1981), Harmon (2000) and Goldemberg (1996), respectively.

Ferioli and van der Zwaan (2009) show that the elimination of time from Equations
23.4 and 23.5 leads to a power law relation between the cost and cumulative output:

Inf

c =d £ Inb
(x) [a] . (23.6)

Equ.ation 23.6 is a de facto equivalent to the learning curve. Parameters a and d are
eqmvale.:nt to the usual normalization point (x,, C(x,)), and since f < 1 (that is, costs are
decreiasmg over time) and b > 1 (output is increasing over time), the exponent in Equation
23.6 is negative, so that Equation 23.6 represents a learning curve (with LR = 1 — 2Wn//in&),
They next construct a concise model based on the exponential relations for growth
and technical progress (cost reduction) as expressed by Equations 23.4 and 2’;.5. For
the cost part of their numerical model, they consider the overall cost of a product as
the sum of the costs of its components (as in Ferioli et al. 2009). For example, the
cost of individual parts plus the cost of assembling and marketing may make ul; the
total cost of a given consumer product. As with output growth, they suppose that
cost reduction takes place through a stochastic process. Cost reduction occurs in
a number of finite steps that reduce the cost of each component by a fraction. The
magnitude and number of the cost reduction steps are not fixed, but vary randomly
for ee'ich step respectively. The purchase of a new automated machine, for example.
may in one step reduce the cost of the manufacturing part of a final product by x%j
The cost reduction for each component at each step materializes randomly in time,

that is., not as a function of the cumulative production. The cost part of the model is
graphically depicted in Figure 23.4.

Cost components Cosftﬁre.duction
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Initial cost = 1 <

- Final cost
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FIGURE 23.4 Illustration of the cost reduction model in Ferioli and van der Zwaan (2009).
"ljhe overall technology consists of  components, the cost of each decreasing step-wise over
time on the basis of a multiplication of positive coefficients y; < 1.
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law relation of the traditional learning curve (—).

With the two generators of data for technological growth and progress in this
simple numerical model, and once the few parameters involved have been appropri-
ately chosen, the calculated trends for the output growth and the cost reduction prove
to simulate observed evolutions of these variables for many products and technolo-
gies. It is demonstrated that, taken together, these two sub-models are equivalent to
the learning curves as reported in the literature, which is confirmed by the results
reported in Figure 23.5.

As an additional veracity check to validate their model, Ferioli and van der Zwaan
(2009) compare their learning curve simulations directly to cost-versus-output data
as available in the literature. Figure 23.6 shows two arbitrary examples of reported
learning curve data, for the cost and cumulative output of PV modules (Harmon,
2000) and Brazilian ethanol (Goldemberg 1996) respectively. The numbers for PV,
collected over more than two decades, represent an average annual growth rate dur-
ing this period of as high as approximately 40% per year (Harmon 2000). During
this interval the cost of PV modules decreased by more than an order of magnitude.
For Brazilian ethanol, the average growth rate was significantly lower, at approxi-
mately 10% per year, during a little less than two decades. The ethanol production
cost reduced by about a factor of three during these years (Goldemberg 1996). Ferioli
and van der Zwaan (2009) contrast these historic data with results from their simula-
tions. The main assumptions in their numerical model concern the average annual
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FIGURE 23.6 Comparison of learning curve data for PV (Harmon 2000) and Brazilian

ethanol (Goldemberg 1996) (¢) with data generated by the model simulations by Ferioli and
van der Zwaan (2009) ().

growth rate over the whole period under consideration, the standard deviation of this
yearly growth, and the final total cost reduction, which are all taken so as to stay
close to the real-life values of these quantities. It proves that their model can properly
reproduce the learning curves published for these two cases. It can be shown that
other learning curves can be simulated in a similar way through using this model.

CYBERNETIC APPROACH

The learning curves for a technology show the performance of a human interac-
tive system producing and/or operating the technology. Is this learning system best
understood as an open system reacting to demands and opportunities in the environ-
ment, or as a closed system acting autonomously based on its internal structure?
Most explanations of learning curves and technology learning focus on the role of
environmental interactions in explaining the phenomenon. The cybernetic approach
(Wene 2007, 2008a, 2008b) takes the opposite view by assuming that all perfor-
mance improvements are the result of closed chains of internal operations. Features
of the environment, and events and processes in the environment, appear as pertur-
bations, and the system may decide to modify its operations, but these modifications
are always conditioned by the internal structure of the system. In this approach,
learning rates are the result of the eigenbehavior (Varela 1979; von Forster 2003) of
the system. The underlying theory provides a spectrum of eigenbehavior values for
the unperturbed system in a perfect competitive environment, while the basic eigen-
behavior (or eigenvalue) corresponds to a learning rate of 20%. Perturbations from
the environment result in the observed broad distribution of learning rate values (see,
e.g., McDonald and Schrattenholzer 2001) around the unperturbed eigenbehavior
value(s) (Wene 2010).

The cybernetic approach applies theoretical results for biological and social sys-
tems (von Forster 1980, 2003; Varela 1979, 1984; Luhmann 2002) to technology
learning systems, among others in the energy field. This section exposes the basic
features of this approach and provides the results for learning rate distributions.
The autonomy of the system is expressed as operational closure, meaning that the
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system forms and controls all its operations. While the system is open 0 informa-
tion, and in this case to material and energy flows, the network of internal operations
closes on itself. The closure theorem of cybernetics states that in every operationally
closed system, eigenbehaviors arise. The task of the analyst is to find the operational
loops that represent learning and define the operators whose fixed points provide the
values for the eigenbehavior. Guides for this task are the form of the learning curve
and the well-known OADI-SMM (observe, assess, design and implement—shared
mental model) model for organizational learning (Kim 1993; Espejo et al. 1996).
Occam’s razor, which is generally a good principle in theory design since it urges
for a minimum of elements and assumptions, possesses particular relevance when
specifying the loops and operators involved in OADI-SMM.

The OADI mnemonic emphasizes learning as a result of self-reflection; that is,
making new designs after assessing the observations of one’s own action, which.in
this case is the implementation of previous design efforts. This is consistent with
the assumption of operational closure and is captured in the three feedback loops
in Figure 23.7. The hypothesis is that these loops, taken together, provide the ele-
ments needed to explain technology learning as expressed by learning curves. The
internal and external feedback loops express implementation and observation. The
external loop closes over the market and the internal loop over producing. Together,
with the self-reflecting, third loop (SRL), they provide the double closure proposed
by von Férster (2003) as the process required for an organism or an organizauog to
modify its behavior in order to manage environmental perturbations without losing
operational closure. The internal and external loops reflect the doub.Ie closure over
production and sales as analyzed by Baecker (1996). The self-reflection loop repre-
sents assessment and design and operates on the internal state, Z. This internal state
sets the transfer function of producing. In other words, through its actions on Z, the
SRL determines the performance (i.., the relation between the input and output) of
the learning system. The computing block integrates the three loops. The SRL thus
drives the learning of the system, but is for its operations totally dependent on the
status of the two other loops.

Producing

¥
4

SRL
Internal

External

3| Computing

FIGURE 23.7 The elements of the technology learning system.
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In order to find the mathematical expression for the operators describing the

action of the three loops on the state function, we observe that the learning curve
can be written as:

P(t) = output/input = C, X(£), (23.7)

in which P(@) is the performance of the system at time z. If all inputs are measured
in monetary units, then the performance is the output generated from one monetary
unit of input (which is equivalent to the inverse of the cost per unit output). In this
equation, C, is a constant and X(7) is the sum of all output until time ¢, while E is

referred to as the “experience parameter.” The progress ratio (PR) and learning rate
(LR) are, as usual, given by:

PR=1-1LR=2E (23.8)

Taking the logarithm of Equation 23.7, and differentiating plus rearranging provides:

X/dXxdP/PxX1/E=1 (23.9)

Let us consider the unperturbed case. The external loop carries the urge from the
perfect competitive market to improve performance by as much as possible. Without
perturbations, this loop can be seen as a constant factor. The internal loop tracks
output from production, which is represented by the right-hand-side of Equation
23.7. The SRL sets performance via Z, which is represented by the left-hand-side of
Equation 23.7. Occam’s razor suggests using two operators that work on two inde-
pendent parts of the state function, which we will call C* and Cgy .

One more aspect of the learning curve helps to constrain the choice of operators
and initial state function. The learning curve requires that the identity of the output is
retained, which can be interpreted as implying that the technical properties of the out-
put pertaining to its original use remain the same. The importance of self-reflection
and identity suggests searching for solutions based on complex algebra. For the unper-
turbed case, the identity requirement can be interpreted as constraining all solutions
to the unit circle in the complex Argand plane. C* becomes a stereographic operator
projecting X(?) onto the unit circle, so that X(f) — o is represented by ~i in the complex
plane. In the aggregated universe of the learning curve, the C* operator corresponds
to corporate memory; that is, the SMM in the OADI-SMM.

Equation 23.9 suggests that the Cgg, operator is a function of the cumulative out-
put (X) and additional output dX. Wene (2007, 2010) presents arguments for the
mathematical form of this operator consistent with Equation 23.9 and with research
on individual and organisational learning. Ultimately, however, as in all theoretical
research, the unique form of Cgg, must be justified by its ability to explain and fore-
cast empirical results.

This theory now yields values for the experience parameter, which correspond to
the eigenbehaviors of the technology learning system in the unperturbed case:

Em=1[@2n+1)-x] withn=0,1,23,.., (23.10)
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while the corresponding learning rates are:
LR(n)=1-2"5"  withn=0,1,2,3,..., (23.11)

and the first four modes of learning are:

LR(0, 1,2, 3) = 20%, 7%, 4% and 3%. (23.12)

Changes in eigenbehavior due to perturbations in the external loop can be analyzed
without introducing new operators. The double closure between internal and external
loops, which modifies the operations in the self-reflecting loop, recursively acts on the
system state with an operator matrix with the two basic operators as elements. The
result is a distribution of learning rates around the eigenvalues for the unperturbed
case. The form and width of this distribution depend on the nature of the perturba-
tions. The latter may appear as negative in the form of environmental restrictions, or
as positive in the form of learning spill-overs from other enterprises or industries.

Figure 23.8 from Wene (2010) compares theoretical and empirical distributions
of experience parameters. The empirical distributions are from the compilations by,
respectively, Dutton and Thomas (1984), based on cost measurements in individ-
ual enterprises (Figure 23.8a), and Weiss et al. (2010), for energy supply technolo-
gies based on market prices (Figure 23.8b). Negative and positive perturbations are
assumed to be additive and Poisson distributed. The assumptions on perturbations are
simple but provide good fits and some initial observations.

The Dutton and Thomas (1984) distribution of individual enterprise technologies
shows no significant influence from higher order learning modes. The distribution of
learning rates for energy supply technologies (Weiss et al. 2010), on the other hand,
cannot be reproduced without higher learning modes. The theoretical curve depicted in
Figure 23.8b only includes the distribution around the first higher learning rate mode,
LR(1), but the fit could be improved by also including higher modes. One can speculate
about the cause for the difference between these two distributions. One reason may be
that the learning systems for some energy technologies are not properly closed. The
network of operations may have side-loops outside of the system; that is, the chosen
system boundaries are too narrow to provide full operational closure. A case in point
may be wind tusbines, for which measurements indicate learning rates of 4-8% that
may be representative of higher learning modes (Neij 1999; Durstewitz and Hoppe-
Kilpper 1999). Indeed, it proves that increasing the system boundary to encompass the
complete wind power plant (Neij et al. 2004) or including the production of electricity
from wind power (IEA/OECD 2000; Neij et al. 2004) provides learning rates represen-
tative of the zero learning mode. The results of Junginger et al. (2005) for wind farms
point to the need to widen the boundaries from national to global learning systems. An
analysis of the organisation of the entire wind industry, rather than of just the technol-
ogy itself, may thus be required to understand the low learning rates observed for wind
turbines. This example at least points towards the need for the systematic organisa-
tional studies of entire industrial sectors in order to understand learning systems that
have enough autonomy to provide operational closure.

Cost analysis requires the assessment of the network of operations within a firm.
This aids the investigator in avoiding boundaries which do not provide operational
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FIGURE 23.8 Comparison of theoretical and empirical distributions. (From Wene, C.O.

2010. Adaptation in technology learning systems. The proceedings of the 11th IEAA European
conference. 25-28 August, 2010, Vilnius, Lithuania.)

closure. This may be one explanation for the absence of higher learning modes in the
Dutton and Thomas (1984) distribution. Operations can, of course, be disturbed by
exte.rnal features, events, and processes. Why then should such disturbances influence
the industry but not the firm? This suggests another explanation for the lack of higher
learning modes in Figure 23.8a—namely the choice of firms and technologies. Many
of the energy technologies in the distribution by Weiss et al. (2010) are regulated—
especially fossil and nuclear technologies, which are exposed to insistent but chang-
ing external perturbations, related, for instance, to emissions and safety standards.
Such perturbations may be too strong to manage through double closure, thus forcing
'Fhe system into a higher learning mode. Wene (2008b) discusses government spend-
ing on public research and development (R&D) as another potentially disturbing fac-
tor in the systern’s environment for producers and users of energy technologies. The
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purpose of the spending is typically to produce knowledge that increases le:
but systemically this external production of knowledge represents a perturbati
disturbs the internal network of operations. Prospects for radical innovation
public R&D may yield important rethinking or second-loop learning, which m:
to swift cost reductions and improvements in efficiency. External R&D that rep
a continuous series of minor improvements, however, may disrupt the system
learning operations and leave it in a higher learning mode with a lower learni

From the viewpoint of energy technology policy, the three approaches appear to
- complementary rather than competing. They strengthen learning curves as policy
ols but require further development and grounding in empirical results. Over the
st decade, measuring, understanding, and applying learning curves for energy tech-
ogies has developed into a large field. Our ambition with this chapter has not been
_provide a complete picture of the theoretical developments in this domain, nor
have we been in a position to consistently list all the energy technologies for which
aming curves have been determined. At the time, McDonald and Schrattenholzer
001) provided such a listing, although since their seminal publication this meth-
ology, as applied to the energy sector, has progressed substantially. However, we
pe that this chapter provides the reader with an insight into at least some of the
cent developments, and notably those with which the authors are most familiar. We
ve undoubtedly left out subjects that were close to the heart of one of our great
inspirers in this field, but we are confident—having learned from him before his
unexpected early departure—that he would have enjoyed the exploration of these
temative approaches.

Pt

CONCLUSIONS

This chapter has presented three approaches, which at increasing theoretical
search to explain the learning curve phenomenon. It is not possible at this poj
strike a total balance between the approaches, but following the declared purpo
the chapter we here summarize some of their merits, and present potential defi
cies from an energy technology policy point of view.

Component learning provides a quality-controlled methodology to cons
learning curve for a new technology relying on components for which kno
exists on learning parameters. A typical example is the fuel cell, but the
applies in principle to any technology. The usefulness of this method for tec
policy is obvious, since it provides refined estimates of learning rates for n
nology, and can assist in estimating joint learning for two technologies with
components. While it provides limited insight into the learning process its
component learning approach may increase the reliability of forecasts, parti
in the energy field. In its present form, however, it ignores the possibility of i
ence between components, which may lead to lower or higher rates of learning

Factoring the learning curve into market expansion and cost dynamics pro
new ways to analyze and extract meaning from market and cost time series. Le REFERENCES
curves for different technologies can be simnulated through the use of a small se
fitted parameters. This method widens the theoretical base for learning curs
economic growth and innovation theories, but a further exploration and backi
this base is both desirable and necessary. This may further increase the rel
of technology forecasts based on this approach. In order to provide proper fore
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