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Netherlands 

1. Introduction 
This chapter presents in a national context energy balancing requirements due to the 
variability and the limited predictability of wind energy in the thermal energy system of the 
Netherlands. In addition options to reduce these requirements are discussed. To this end 7.8 
GW of wind power capacity in a system with 35 GW of total capacity is considered. The 
balancing requirements due to the cross-border flow of wind energy (export of domestic 
wind energy or import of foreign wind energy) however are not covered as these require an 
international context (ETSO, 2008). In addition the potential benefits of an intra-day market 
are not explored.  
This chapter is organized as follows. First, section 2 presents various scenarios for wind and 
other energy capacity in the Netherlands, and introduces the structure of the Dutch 
electricity market. Next, section 3 gives a short overview of studies which addressed 
balancing energy reduction options in the contexts of the electricity markets in Denmark, 
Germany and Spain. Section 4 continues with the modeling of wind variability and wind 
predictability and its relevance to wind energy integration. Sections 5 and 6 then present the 
balancing energy requirements due to wind variability and limited wind predictability. 
Subsequently, section 7 discusses options to reduce the extra balancing energy 
requirements, which options include short-term forecast updates, aggregation, pumped 
storage, compressed air energy storage, fast start-up units, inverse offshore pump 
accumulation system, and wind farm shut-down strategies. Finally, section 8 summarizes 
the results. 

2. Energy scenarios and market structure 
2.1 Synopsis 
In order to study balancing energy requirements in the future in the Netherlands, various 
energy scenarios were developed. These are presented in section 2.2, with attention for wind 
energy production capacity (paragraph 2.2.1), total electricity production capacity 
(paragraph 2.2.2), and flexibility of production (paragraph 2.2.3). The future structure of the 
Dutch electricity market is presented in section 2.3. The material in this section has been 
published in greater detail in de Boer et al., 2007; Gibescu et al., 2008b; and Gibescu et al., 
2009. 
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2.2 Energy scenarios 
2.2.1 Wind energy capacity 
Offshore wind energy growth scenarios were developed that are consistent with the 
renewable policy goals in the Netherlands over the period up to the year 2020. Based on 
these rough estimates, on the onshore wind farm placement in the year 2006, and on the 
pending applications for environmental permits for offshore wind farms, the most likely 
locations and installed capacities were chosen for the years 2010, 2015 and 2020. In addition, 
three offshore wind energy scenarios were created: Low, Basic and Advanced. Only one 
scenario was created for onshore wind installed capacity. The scenarios are summarized in 
table 1. 
 

  Year  
 2010 2015 2020
Low Offshore   720 2010 3800
Basic Offshore 1180 3110 6030
Advanced Offshore 1520 4110 8000
Onshore 1750 1800 1800

Table 1. Scenarios for offshore and onshore wind capacity in MW in the Netherlands 

The aim of the Dutch government (from the 2004 policy) was to have 20% of demand served 
with help of renewable energy in the year 2020. The scenario Advanced will cover this 
completely with wind energy (given capacity factors of 25% and 37% respectively for 
onshore and offshore). Since this is an optimistic view of wind energy growth, the Basic 
scenario is employed in this study. 
The offshore locations of wind farms for the scenario Basic Offshore 2020 were derived from 
the requests for permits for wind farms in the North Sea as filed by early 2006. 

2.2.2 Total electricity capacity 
Scenarios for the total electricity capacity in the Netherlands were developed by considering 
the total production plant in the year 2005, and estimating the retirement and addition of 
plant by the years 2010-2015-2020. The resulting total capacity break-up for the year 2020 is 
shown in table 2. 
 

Production in the Netherlands for several scenarios
2005

Type of power production
KEMA 

database
basic 

scenario
gas 

scenario
coal 

scenario

high 
growth

scenario

low 
growth

scenario
MW MW MW MW MW MW

Gas motor 1.450 1.950 1.950 1.950 2.260 1.680
Gas turbine 890 1.200 1.200 1.200 1.390 1.040
STAG of Combi  11.690 17.470 18.920 15.570 19.950 15.310
Conventional: boiler + ST (gas) 2.100 360 360 360 360 360
Conventional: boiler + ST (coal) 4.180 5.630 4.180 7.530 6.510 4.850
Nuclear 450 450 450 450 450 450
Waste and biomass 390 520 520 520 610 450
Wind 390 7.800 7.800 7.800 10.400 4.800

Total production 21.540 35.380 35.380 35.380 41.930 28.940

2020

 
Table 2. Installed power in the Netherlands for several growth scenarios in 2020 
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As to the conventional production, on basis of the current practice, it is assumed that power 
plants can operate at 150% in respect to the original design. Their capacity is expected to 
decrease from 21 GW in the year 2005 to 9 GW in the year 2020. In addition, it is expected 
that most of the coal fired power plants and gas-fired combined cycle plants are still 
operating in the year 2020. 
As to new production capacity five scenarios - each covering the years 2010–2015–2020 - 
were set up: basic, gas, coal, high growth, and low growth. The following parameters were 
considered: economic growth (respectively 1, 2 and 3% per year), fuel mix (basic scenario 
with current gas-to-coal ratio 1.0:3.5, a gas-and-coal reign scenario), and intensity of wind 
energy (see section 2.2.1). 
In the basic scenario the control capabilities will be dominated the Combined Heat and 
Power (CHP) plants because the major growth of the capacity will most probably come from 
these plant. Power plants build after the year 2000 have better control capabilities: ~ 8% of 
nominal power per minute for gas, and ~3%/min for coal. The range of power change 
capability for CHP plants is 50% or more. 
In the other scenarios the control capabilities differ slightly. For the coal scenario the rate of 
power change capabilities will be somewhat lower and for the gas scenario it will slightly 
higher. 

2.2.3 Flexibility of production 
Flexibility of production is required in order to follow the expected wind power variations, 
and to compensate unexpected wind power variations. This warrants a certain margin and 
rate of change capability, primary for the Programme Responsible Parties (PRPs) and 
secondly for the Transmission System Operator (TSO). The flexibility of production is 
defined in terms of: rate of change of the total capacity, amount of regulating (i.e. spinning) 
power and reserve power, rate of change of the spinning reserve units, and start time of the 
remaining units that are not delivering power during the load following cycle. Most of these 
terms depend on the operating point in the load following cycle and on the types of power 
units operating in that operating point. 
A maximal ramping capability of 8%Pnom/min is expected for gas-fired units and 3% for 
coal-fired units. In the year 2020 the morning shoulder (i.e. the difference between off-peak 
and peak load) is expected to cover approximately 10 GW with a maximal required ramp 
rate of 60 MW/min. The gas fired power units are expected to carry this ramping load. This 
implies that a minimum of 10 GW of gas-fired units have to be spinning. If they have an 
average rate of change of 4%/min, then 400 MW/min can become available. This is enough 
to handle the expected variability due to load.  

2.3 Structure of the electricity market 
In the Netherlands wind power has been fully integrated in the day-ahead and imbalance 
market structures since the year 2001, and this situation is not expected to change in the 
future. Market participants known as Programme Responsible Parties (PRPs), governing a 
portfolio consisting of both renewable and conventional energy resources, submit to the 
Transmission System Operator (TSO) balanced schedules for energy delivered to and 
absorbed from the system during a 15-minute interval known as Programme Time Unit 
(PTU). This arrangement provides some insulation from the full exposure to imbalance 
charges for the wind producer, as conventional units in the PRP’s portfolio may act to 
correct energy programme deviations due to wind variability and limited predictability. 
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3. International experience 
3.1 Overview 
This section presents a short overview of studies on balancing energy reduction options in 
the contexts of the electricity markets in Denmark, Germany and Spain. Section 3.2 starts 
with a short survey of international experiences with instruments for balancing the 
variability and forecasting errors introduced by large-scale wind energy in a power system. 
The focus is on wind power forecast updates (paragraph 3.2.1), aggregation of wind power 
(paragraph 3.2.2), energy storage (paragraph 3.2.3), and wind farm control (paragraph 3.2.4). 
In addition, the design of balancing markets is addressed in subsection 3.3. 

3.2 Technology 
3.2.1 Wind power forecast updates 
The quality of wind power forecasts significantly improves as the forecast horizon decreases 
(Lange and Focken, 2005). The state-of-the-art indicates that the capacity normalized root 
mean square error (cRMSE) may reach a minimum value of 2...3% for a lead time of 2 hours 
before delivery (Krauss et al., 2006). For example in Germany this significant improvement 
in the accuracy of wind power forecasts consequently allowed for a better commitment and 
dispatch of the other generation units (Krauss et al., 2006). By doing so, the reserves held for 
wind power were decreased and the resulting surplus power could be offered by the 
conventional units in for example the intra-day market. Also a more efficient use was made 
of the available ramping capabilities of different units. 

3.2.2 Aggregation of wind power 
Aggregation of wind power over a larger geographical area, apart from smoothing out 
variability, improves the quality of the forecast because of the partly uncorrelated character 
of the forecast errors (Lange & Focken, 2005; von Bremen et al., 2006). As a result, both the 
reserves held and the reserves actually applied in a control area are decreased. Balancing 
wind power across control areas is even more efficient (Krauss et al., 2006). 

3.2.3 Energy storage 
Due to the relatively high investment costs of large-scale energy storage technologies, 
storage has to be multi-functional and market-driven, rather than employed only in order to 
reduce imbalances resulting from wind energy. 
In the Netherlands, several studies were devoted to cost-benefit analysis for large scale 
energy storage systems (Ummels et al., 2008; de Boer et al., 2007). In particular an energy 
storage system has been proposed that would provide the following functions (de Boer et al, 
2007): 
• Download capacity for wind power at night during high wind and light load periods; 
• Download capacity at night for base-load units that cannot be switched off, coupled 

with additional production capacity during peak load; 
• Extra production capacity during periods with cooling water discharge restrictions for 

conventional plants; and 
• Primary action. 
Section 7.4 describes the benefits of such a system when it is used to perform the first function. 
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3.2.4 Wind farm control 
Although in a technical sense clustering of wind farms into a virtual power plant may 
provide benefits for active power management and reactive power control, it is not 
economically attractive to operate such a plant for power balancing if the market design 
penalizes curtailment, as shown in Germany (Wolff et al., 2006). However, occasional use of 
wind farms to provide downward regulating power may be attractive during certain 
periods, e.g. when the surplus price is negative. 

3.3 Balancing market design 
As to the market design for balancing services, there are major differences between various 
countries (Verhaegen et al., 2006), where each market design has an unique impact on how 
balancing is actually provided. For example, there are differences in the institutional 
environment where the responsibility for taking care of imbalances arising from wind 
power either is assigned to a system operator (Germany, Spain, and Denmark for onshore 
wind power) or to a market party (the Netherlands, United Kingdom and Denmark for 
offshore wind power). Also, differences exist in the rules of use and provision of balancing 
services. In the following a number of developments are listed. 
In the past years progress has been made to increase the liquidity of intra-day markets. Gate 
closure times of about one hour ahead of delivery (such as in the Netherlands) are sufficient 
to increase the accuracy of wind energy predictions to an acceptable level. This is in addition 
to the single-buyer balancing market, which is operated by the Transmission System 
Operator (TSO).  
Power systems with dual imbalance pricing are problematic for wind energy due to the high 
penalties imposed, e.g. in the United Kingdom. To minimize imbalance costs, market parties 
should aggregate their production portfolios (Gibescu et al., 2008a). 
If market parties employ wind power forecasts without being made responsible for balancing, 
their aim would be to optimize financial gains rather than to minimize their imbalance. This is 
why in such cases aggregated wind power forecasts have to be managed by the TSO. 
There is a clear trend in Europe towards more cross-border balancing, which certainly 
promises advantages for wind power (Verhaegen et al., 2006). Balancing geographically 
larger control areas will provide benefits for wind power, not only because of overall 
decreased variability and increased predictability, but also because of larger market 
volumes and larger balancing resources. 
Finally it is noted that in all European countries the present organization of support schemes 
– which to date remains the major source of revenues for wind power producers – 
discourages the use of curtailment as a balancing instrument. Controlling the power output 
of wind farms must therefore be considered as an option from a power system operations 
perspective, since the opportunity loss by curtailment is significant. 

4. Wind modeling aspects of wind energy integration 
4.1 Outline 
This section presents the modeling of wind variability and wind predictability and its 
relevance to wind energy integration. First, section 4.2 critically reviews existing methods to 
generate wind power time series for integration studies. Next, the sections 4.3 and 4.4 
present a new method to create measured respectively forecasted wind speed time series. 
And finally in section 4.5 the method to create wind power time series is explained. The 
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methods described in the sections 4.3-4.5 were developed for this purpose by the authors 
(Brand, 2006; Gibescu et al., 2006; Gibescu et al., 2009). 

4.2 Existing methods 
A wind power integration study requires wind power time series originating from wind 
speed time series, where wind speed comprises measured and forecasted data. In addition 
the spatial correlation of wind speeds between sites must be taken into account because, as 
wind farms will be concentrated in areas with favorable wind conditions, their outputs will 
be strongly correlated. The resulting cross-correlations are essential when assessing the 
system-wide variability and predictability in large-scale wind production, and in turn affect 
the system requirements for reserve and regulation energy. 
Three different methods to generate wind time series can be identified, namely by using 
actually measured wind speed time series, by using synthesized wind time series data 
(Doherty & O'Malley, 2005), or by using a combination of measured and synthesized wind 
speed time series (Giebel, 2000; Holttinen, 2005; Norgard et al., 2004). Valued against the 
requirements for integration studies these methods fall short for the creation of both realistic 
measured and forecasted wind power time series. 
In order to correctly account for the spatial and temporal correlations of wind in an area, the 
method in section 4.3 derives the relevant statistical properties of the interpolated series 
from measured wind speeds. To this end assumptions are made only regarding the Markov 
property and the exponential decay of covariance with distance. In addition, this method 
uses 15-minute averaged wind speed in order to accurately model the balancing market in 
the Netherlands. 
Two methods to generate wind forecasts can be identified, namely by using real wind 
forecasts (Lange & Focken, 2005) or by using synthesized wind forecasts (Norgard et al., 
2004; Söder, 2004). 
In order to correctly account for the limitations in a forecasting method and for the degree of 
uncertainty, in section 4.4 real wind forecasts are used. Unlike the alternative, this approach 
does not require assumptions on the distribution, correlation and increase of wind speed 
forecasting errors. 

4.3 Measured wind speed 
4.3.1 Historical wind data 
Wind speed was modeled using historical wind data. To this end wind speed data sets were 
obtained from the Royal Dutch Meteorological Institute (KNMI). The data comprise 10-
minute wind speed averages with a resolution of 0.1 m/s for 16 locations in the Netherlands 
and its coastal waters (six onshore, four coastal and six offshore; see figure 1) measured 
between 31 May 2004 and 1 June 2005. In addition, 10-minute wind speed standard 
deviations are available for the onshore locations and are estimated for the offshore 
locations. (The standard deviations are used in the height transformation in section 4.3.2.) 
The chosen time series reflects the spatial distribution of present and future installed wind 
power in the Netherlands.  

4.3.2 Height transformation 
Sensor height where wind speed was measured may differ between locations. The standard 
method to transform to hub height is to employ the logarithmic vertical wind speed profile 
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Fig. 1. Onshore, coastal and offshore wind speed measurement sites in this study 

in combination with the surface roughness length (e.g. Walker & Jenkins, 1997). The local 
surface roughness length however is difficult to estimate. For this reason Brand, 2006, has 
eliminated this need. Instead, two location-dependent parameters are used: the friction 
velocity u* and the average Monin–Obukhov length Lesti. The friction velocity is estimated 
from the 10-minute wind speed standard deviation which for most locations is available. If 
not, for an offshore location the friction velocity is estimated from the vertical wind speed 
profile. The Monin-Obukhov length is estimated by the average value that follows from the 
positive average heat flux that has been found over the North Sea and over the Netherlands, 
implying that the average vertical wind speed profile is stable (Brand & Hegberg, 2004). 
Given the 10-minute average wind speed μ(zs) and standard deviation σ(zs) at sensor height 
zs, the estimates of the wind speed average and standard deviation at hub height zh are:  

 ( ) ( ) ( )
z z zsh hμ z μ z σ z ln 5u s u su,esti h z Ls esti

⎛ ⎞−⎛ ⎞
⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (1) 

and  

 ( ) ( )σ z σ zu su,esti h = , (2) 

where Lesti is the location-dependent average Monin-Obukhov length. 
If only μ(zs) is available, and provided that the location is offshore, the estimates of the wind 
speed average and standard deviation at hub height are 
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 ( ) ( )
z z zsh hμ z μ z 2.5u ln 5u su,esti *h z Ls esti

⎛ ⎞−⎛ ⎞
⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3) 

and  

 ( )σ z 2.5uu,esti *h = ;  (4) 

where u* is determined from  

 ( ) z g zs sμ z 2.5u ln 5 0u s * 2 LAu esti*

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,  (5) 

and g = 9.81 m/s2 is the gravitational acceleration and A = 0.011 is Charnock’s  constant. 

4.3.3 Averaging-time transformation 
A transformation from 10 to 15-minute averages is required by the design of the Dutch 
balancing market and is accomplished as follows: If μk, μk+1, μk+2 etc are the consecutive 10-
minute wind speed averages, then mk mk+1 etc. are the consecutive 15-minute wind speed 
averages:  

2μ μ3(k 1)/2 1 3(k 1)/2 2mk,esti 3

+− + − +=  and 
μ 2μ3(k 1)/2 2 3(k 1)/2 3mk 1,esti 3

+− + − +=+ . 

4.3.4 Interpolation 
4.3.4a Introduction 
This section describes how wind speed at given locations is sampled conditionally on the 
wind speed at measurement locations. To this end a multivariate Gaussian model is used, in 
combination with assumptions on the spatial and the temporal covariance structure. In 
addition, a variance-stabilizing transformation is used.  
4.3.4b Approach and assumptions 
Consider the natural logarithm W(x, t) of the wind speed at a location x and time t, where  
t = (d, k) is defined by the day of the year d and the time of day k. There are two reasons for 
taking the logarithm. First, there is a pronounced heteroscedasticity (i.e. increasing variance 
with the mean) in the wind speeds, which is stabilized by the log transformation (section 9.2 
in Brockwell and Davis, 1991). Second, upon taking logarithms the (multivariate) normal 
case is reached, which allows one to make extensive use of conditioning. 
Following Brockwell and Davis, 1991, a random vector X is considered which is distributed 
according to a multivariate normal distribution with mean vector μ and covariance matrix 
Σ. Supposing that X is partitioned into two sub-vectors, where one corresponds to the 
sampled data and the other to the observed data, and, correspondingly, the mean vector and 
covariance matrix, then the following may be written: 

 
(1)

(2)

X
X

X

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

   and   
(1)

(2)

μ
μ

μ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

   with   11 12

21 22

Σ Σ⎛ ⎞
Σ = ⎜ ⎟Σ Σ⎝ ⎠

.  (6) 
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If det(Σ22) > 0, then the conditional distribution of X(1) given X(2) is again multivariate 
normal, and the conditional mean and the conditional covariance matrix are: 

 ( ))2()2(1
2212

)1( X μ−ΣΣ+μ −    and    21
1

221211 ΣΣΣ−Σ − .  (7) 

As to the log wind speeds W(x, t) at location x and time t = (d, k), the following model is 
proposed: 

 ( ) ( ) ( )tx,εkx,μtx,W += ,  (8) 

where μ is a deterministic function representing the daily wind pattern by location and ε is a 
zero-mean random process representing the variations around the mean. Note that it has 
been assumed that μ depends on time only through the time of day k. In other words, the 
model does not include seasonal effects. (This assumption was checked and found to be 
reasonable in an analysis aimed at finding any other trend or periodic component, in 
particular a seasonal,  in the 1-year data set.) 
Figure 2 shows the average daily wind pattern for the 16 measurement locations. Since the 
lower curves correspond to onshore and the higher curves to offshore sites, the figure 
suggests that a daily effect is modeled which varies smoothly with geographical location. 
An onshore site is found to have a typical pattern with a maximum around midday, 
whereas an offshore site has a much flatter daily pattern, with a higher overall average. A 
coastal site falls in between.  
The mean log wind speed μ(x, k) is estimated at all measurement locations by the daily 
averages shown in figure 2. Estimates for the locations of interest within the convex hull 
formed by the measurement sites were obtained by using linear spatial interpolation. On the 
other hand, for locations outside that hull, nearest neighbor interpolation was used. The 
results are shown as dotted lines in figure 2. 
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Fig. 2. Daily wind speed pattern for measured and interpolated sites  
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Fig. 3. Wind speed covariance versus site distance for 16 measurement sites 

As to the model for the random part ε(x, t), as explained above, a zero-mean, multivariate 
normal distribution is assumed for the log wind speeds minus the daily pattern. Figure 3 
shows the sample covariance between the log wind speeds at all pairs of (measurement) 
locations versus the distance between them. From the displayed decay and the assumption 
that covariance vanishes at very large distances, it is reasonable to propose an exponential 
decay with distance: 

 ( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−= jxixβexp0αt,jxε,t,ixεCov   (9) 

where .  denotes the Euclidean distance. To be able to sample wind speed time series, 
temporal dependence must be taken into account. Similar to equation (9), the following 
covariance is proposed:  

 ( ) ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−=− jxixβexp

1
α1t,jxε,t,ixεCov   (10) 

The parameters α0, α1 and β are jointly estimated by a least squares fit. The fit for α0 and β is 
shown in figure 3, where α= 0.32 and 1/β= 392.36 km. The latter term is known as the 
characteristic distance. By transforming the parameters of this decay fit from logarithmic to 
pure wind speeds, and by inspecting the correlation coefficients (i.e. covariance normalized 
by the product of the two standard deviations) between location pairs, a value of 610 km is 
obtained for the characteristic distance. This value is in line with the 723 km reported in 
Chapter 6 of Giebel, 2000, which is based on measurements from 60 locations spread 
throughout the European Union, and the 500 km reported in Landberg et al., 1997, and 
Holttinen, 2005, using Danish only and Scandinavian data, respectively. This suggests that 
these values are generic.  
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A final assumption is the Markov property for the sampled time series: it is assumed that 
conditionally on W(x,t-1), W(x,t) does not depend on W(x,t-2), W(x,t-3), etc. Consequently, it 
is not needed to specify the covariance between W(xi,t) and W(xj,s) when  s-t > 1. 
It should be noted that since the equations 9 and 10 do not depend on time, any daily or 
seasonal changes in the covariance structure are ignored. Such effects have been tried to 
identify, but it was found that they were not very large, and not particularly systematic; 
hence, they would not have a substantial effect on the time series that the method ultimately 
generates.  
4.3.4c Interpolation scheme  

The interpolation scheme is as follows. At each stage, a collection of normal random 
variables is conditionally sampled on some other normal random variables. The mean and 
the covariance structure of all random variables is fully described, and therefore the general 
theory from equations 6 can be used, where subset (1) denotes the unobserved wind speeds 
at time t, and subset (2) denotes both observed wind speeds at times t and t-1, and 
unobserved, but already interpolated values at time t-1.  
Once the log wind speeds for the locations of interest are sampled, these are exponentiated 
to obtain the wind speeds. Of course, the time series produced in this way will reflect the 
assumptions that were made, but this does not mean that they will look like samples from 
the multivariate log-normal distribution. The method provides nothing more than linear 
interpolations of the measured time series, and so their Weibull character will be preserved 
to a great extent. 
The effectiveness of the method is evaluated by using cross-validation: leaving one 
measurement location out of the data set and using the remaining n-1 locations to "re-create" 
it. First, it is verified that the method preserves the marginal Weibull parameters. As an 
illustration, figure 4 shows the histogram of the original data for the coastal location 
IJmuiden together with a Weibull fit of the original and the interpolated data. As expected, 
some smoothing has occurred in the interpolated data due to the weighted averaging, but 
not much. Second, it is verified whether or not the method reproduces the (auto-)covariance 
structure of the original data. Figure 5 shows the lag-one auto-correlations for the original 
and cross-validated data, with the straight line indicating a perfect match. Even though 
some over- and underestimation of the auto-covariances can be observed from figure 5, 
there does not seem to be any structural bias.  
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Fig. 4. Wind speed histogram and fit to Weibull distribution at the location IJmuiden 
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Fig. 5. Lag-one auto-covariance, original versus interpolated wind speeds 

As to limitations of this method, it should be kept in mind that the interpolation weights are 
determined by the assumption of the exponential decay of the covariance with distance. As 
a consequence, if this decay does not hold, the covariance structure of the generated series 
will not be correct. In addition, the estimated time series are only as good as the input data 
allows. For instance, under more complex terrain, measured data at closer distances would 
be required to correctly track local changes in wind behavior.  

4.4 Forecasted wind speed 
The 15-minute average wind speed forecast time series are generated for locations where 
measurements are available. These forecasts originate from the wind power forecasting 
method AVDE (Brand and Kok, 2003); a physical forecasting method with an output 
statistics module. In an operational sense, AVDE is a post-processor to the high-resolution 
atmospheric model HiRLAM or any weather prediction model that delivers the required 
input data (two horizontal wind speed components, temperature and pressure in two 
vertical levels on a horizontal grid covering the sites to be considered) in the required 
format (GRIB). If wind speed and/or wind power realizations are available, the output 
statistics module of the AVDE can be used in order to compensate for systematic errors in 
the forecasts. The forecasts are meant to guide wind producers in a day-ahead market, and 
are completed at 12:00 the previous day, thus carrying an increasing delay of 12 to 36 hours. 
By employing a method similar to the one used for the spatial interpolation of wind speed 
measurements, appropriately correlated forecast error time series are generated for the wind 
farm locations. Since the variability of wind forecast errors over successive time intervals is 
not analyzed, it is assumed that, conditional on the forecast errors at the observed locations, 
the forecast errors at the computed locations at time t are independent of the errors 
experienced at time t-1.  
Figure 6 presents the geographical locations of the seven wind speed forecast sites together 
with the projected offshore wind farm locations for the year 2020 and the current density of 
onshore wind energy capacity by province in the Netherlands. 
Similar to the wind speeds, the forecast errors are modeled as the sum between a 
deterministic term, derived from the average daily pattern (figure 7), and a random term, 
which obeys a covariance matrix derived from the exponential fit presented in figure 8. Note  
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Fig. 6. Wind speed forecast sites (labeled), onshore (shaded grey) and offshore (black stars) 
wind farm sites for the Basic 2020 scenario 
 

 
Fig. 7. Daily wind speed forecast error pattern for measured and interpolated sites 
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that the logarithmic transformation was not necessary here because the variance of the 
forecasting error does not significantly increase with its mean. In order to correctly take into 
account the changes in the covariance structure due to the look-ahead time, 24 × 4 = 96 
separate exponential decay curves were fitted as shown in figure 8. 
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Fig. 8. Wind speed forecast error covariance versus distance for various forecast horizons 

4.5 Wind power 
4.5.1 Multi-turbine power curve 
For each location wind power has been created using regionally averaged power curves, 
which depend on the area covered with wind turbines and the standard deviation of the 
wind speed distribution at the location. As the name suggests, regional averaging provides 
the average power of a set of wind turbines placed in an area where the wind climate is 
known, assuming the turbines do not affect each other. The multi-turbine curve is created by 
applying a Gaussian filter to a single-turbine power curve, and is not to be confused with a 
wind farm power curve, which brings the wind shadow of turbines into account.  
Although inspired by and having the same effect as the Gaussian filter in the multi-turbine 
approach of Norgard and Holttinen, 2004, the standard deviation in the new filter correctly 
originates from the local wind climate alone. Unlike the Norgard–Holttinen method, the 
filter does not require estimating the turbulence intensity, which incidentally is a measure of 
variation in a 10-minute period in a given location rather than a measure of variation in the 
same 10-minute period at different locations. Nor does the method apply a moving block 
average to the wind speed time series with the time slot arbitrarily based on the local 
average wind speed.  
Figure 9 shows an example of a multi-turbine power curve as constructed for an offshore 
wind farm of installed power 405 MW at a location where the standard deviation of the 
wind speed is 4.6 m/s. The width σF of the Gaussian filter is given by an estimate for the 
standard deviation that describes the regional variation of wind speeds at different locations 
in the same wind climate (appendix A in Gibescu et al., 2009)  
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 d1 aveσ σ 1 expF 2 Ddecay

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,  (12) 

where σ is the standard deviation of the wind speed distribution, dave is the average distance 
between the locations and Ddecay is the characteristic distance of the decay of correlation (as 
estimated in section 3). If the individual locations are not known, as is the case in this study, 
an estimate for dave is (appendix B in Gibescu et al., 2009):  

 2 A 2d 1ave 3 π M
⎛ ⎞= +⎜ ⎟
⎝ ⎠

,  (13) 

where A is the area of the region and M is the number of locations in that area. In this study, 
the area relates to a province for the onshore wind power and to an individual wind farm 
for the offshore wind power. The area of an individual farm is approximated by the area of a 
rectangle whose sides depend on the number of turbines, the rotor diameter and the spacing 
between turbines.  
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Fig. 9. Example of an aggregated power curve 
The method to determine the regional variation of wind speeds at different locations in the 
same wind climate was verified by using the measured data introduced in section 4.3. The 
method to determine the multi-turbine power curve for a given area is still in need of 
verification data.  

4.5.2 Aggregation levels 
Aggregating the power of the individual wind farms at the system level gives a good initial 
estimate for the degree of variability and predictability that come with large-scale wind 
energy. It however ignores the real situation where wind power is integrated by several sub-
levels, as owned and operated by the individual market parties. To that effect, seven PRPs 



 Wind Power 

 

274 

are defined, each owning a unique combination of installed power and geographical spread 
of onshore and offshore wind farms, as described in table 3. For reasons of confidentiality, 
these parties have fictitious names; however, the installed power are consistent with the 
current and planned developments in the Netherlands.  
 

PRP Offshore (MW) Onshore (MW) Total (MW)
Anton          881          840      1721 
Berta        1792          593      2385 
Cesar          800              0        800 
Dora        2520          140      2660 
Emil            40              0          40 
Friedrich              0            92          92 
Gustav              0          135        135 
System        6033        1800      7833 

Table 3. Programme Responsible Parties (PRP) in the Basic 2020 scenario 

5. Impact of extra variability due to wind 
In this section the balancing energy requirements due to wind variability are presented for 
the scenario with 7.8 GW of installed wind power in the Netherlands in the year 2020. 
Given the locations and installed power for future wind farms, the estimation method of the 
sections 4.3 and 4.4 is used in combination with the aggregated power curve of section 4.5 to 
compute the average wind power generated per 15-minute time interval for the duration of 
a year. By differentiating the wind power time series an estimate is obtained of the 
variability of aggregated power across 15-minute time intervals and above. This quantity 
and its sign are of interest because simultaneous load and wind variations are to be balanced 
by the remaining conventional generation units via the up- or down-ramping of their 
outputs.  
Table 4 presents the 99.7% confidence intervals and the extreme values (smallest and 
largest) of the 15-minute, 30-minute, 1-hour and 6-hour variations at the system level. The 
sorted positive and negative variations in wind power over various time ranges are shown 
in figure 10. Based on the 99.7% confidence interval, the system-wide variations across 15-
minute intervals are in the range of ±14% of the installed power for this scenario. 
Table 5 shows the statistics of the 15-minute variations for each of the seven PRPs 
individually. These variations are in the range of ±12–26% of the power installed by the PRP, 
depending on the geographical spread of its locations. The collective requirement for 
balancing 15-minute variations becomes approximately ±16% of the system’s installed 
capacity, which is 2% more than the requirement at the system level.  
 

Time range Minimum (MW) Maximum (MW) 99.7%Conf.Int. (MW) 
15 min         −2411           2883    −1090.8 to 1054.2 
30 min         −2411           2883    −1252.9 to 1309.6 
1 hour         −3133           3634    −1968.0 to 1846.0 
6 hour         −7211           6790    −5157.8 to 5105.4 

Table 4. Statistics of wind variability in the Basic 2020 scenario 
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Fig. 10. Variations in 7830 MW aggregated wind power 

 
PRP Minimum (MW) Maximum (MW) 99.7%Conf.Int. (MW) 
Anton            -367             481          -201 to 197 
Berta            -755             825          -323 to 327 
Cesar            -482             448          -191 to 188 
Dora          -1264           1420          -461 to 484 
Emil              -36               38              -9 to 9 
Friedrich              -48               42            -22 to 24 
Gustav              -74               78            -26 to 27 
Total PRPs          -3026           3332        -1233 to 1256 
System          -2411           2883        -1091 to 1054 

Table 5. Statistics of 15-minute variability at the PRP level 

6. Impact of limited wind predictability 
In this section balancing energy requirements due to the limited predictability of wind are 
presented for the scenario with 7.8 GW of installed wind power in the Netherlands in the 
year 2020. 
To this end a statistical analysis is performed of the forecasting error as aggregated over the 
wind production of the Netherlands. The time series of forecasted 15-minute average wind 
power include different day-ahead forecasts issued at 24, 18, 12 and 6 hours before delivery. 
System reserve is allocated among online generators to account for equipment outages and 
uncertainties in load and wind forecast errors. Obviously the higher the forecast uncertainty, 
the larger the amount of reserve needed to achieve the same reliability level. Figure 11 
shows the normalized histogram for the system-aggregated forecast error, together with the 
fit to a double-exponential probability density function, which was found to be a more 
accurate analytical representation of the data than the normal distribution.  
Table 6 shows the predictability at the system level in terms of the 99.7% confidence interval 
plus the average, standard deviation, minimum and maximum of the imbalance. (Imbalance 
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is equal to wind power forecast error.) Statistics for positive and negative imbalance are 
presented in the second and third rows of table 6, respectively. Based on the 99.7% 
confidence interval, the positive (up-regulation or reserve) balancing energy requirement is 
about 56%, and the negative (down-regulation) requirement is about 53% of the installed 
capacity.  
Table 7 shows the predictability at the PRP level. Balancing energy requirements for an 
individual PRP are in the range 45–82% of its installed capacity for up-regulation or reserve, 
and 46–72% for down-regulation. 
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Fig. 11. Aggregated forecast error histogram and probability density function for 7830 MW 
installed wind power 
 

Imbalance (MW) Minimum Maximum 99.7% Conf.Int. Mean St.Dev. 
Total    −5366    5692 −4112.9 to 4370.6     18.8 1116.2 
Positive            0    5692         1.2 to 4765.2   789.8   821.1 
Negative    −5366          0 −4471.8 to −1.0 −754.7   790.5 

Table 6. Statistics of wind predictability at the system level 
 

PRP Minimum (MW) Maximum (MW) 99.7% Conf.Int. (MW) 
Anton         −1057         1156        −787 to 773 
Berta         −1604         1621      −1239 to 1242 
Cesar           −696           798        −575 to 660 
Dora         −1941         2169      −1577 to 1726 
Emil             −35             39          −26 to 26 
Friedrich             −78             67          −56 to 45 
Gustav           −116           109          −85 to 74 
Total PRPs         −5527         5959      −4345 to 4546 
System         −5366         5692      −4113 to 4371 

Table 7. Statistics of predictability at the PRP level 
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The collective requirement is about 58% of the total capacity for up-regulation or reserve, 
and about 56% for down-regulation. These collective requirements are larger by up to 3% 
than if the balancing actions were taken at the system level.  
In addition, a statistical analysis is performed of the power forecast error by look-ahead 
time, which in this case varies between 48 and 144 PTUs (i.e. 15-minute intervals), or 12–36 
hour. The results are shown in figure 12, expressed in percentage with respect to the 
installed power. As expected, the performance of the forecast degrades slightly with look-
ahead time. The best values obtained are for the 12-hour-ahead forecast, where the standard 
deviation is 12.7%, and the 99.7% confidence interval is [-50% to +48%]. The standard 
deviation for the 36-hour-ahead forecast goes up to 17.2%. 
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Fig. 12. Standard deviation and 99.7% confidence interval of the aggregated forecast error by 
forecast horizon 
 

 MW Paverage (%) Pinstalled (%)
RMSE 1116.2     32.8     14.2 
MAE   772.3     22.7       9.8 

Table 8. Overall predictability statistics for 7830 MW of wind power 
Table 8 presents the overall forecast error measures: the root mean square error (RMSE) and 
the mean absolute error (MAE); see Madsen et al., 2005. The values are presented both in 
absolute and in percentage with respect to the average power and with respect to the 
nominal power. The percent RMSE value of 14.2% for the system level is smaller compared 
with the 17–19% for the single wind farm level, and the percent MAE (9.8%) is also smaller 
compared with the 12–14%, both reported in Madsen et al., 2005, in percent of installed 
power for lead times between 12 and 36 hour. The values calculated in percentage with 
respect to the average power (equal to 3434.5 MW for the 7800 MW installed capacity 
scenario) are understandably higher. Note that in the presence of an intra-day market, the 
aggregated forecast errors could drop to about half of the day-ahead values, as simulated in 
Ummels et al., 2007. 
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7. Instruments for balancing wind energy 
7.1 Outline 
This section contains a critical discussion on options to reduce the extra balancing energy 
requirements for the scenario with 7.8 GW of installed wind power in the Netherlands in the 
year 2020. The following instruments for balancing wind power forecasting errors are 
analyzed: short-term forecast updates and aggregation (section 7.2), pumped storage, 
compressed air storage and fast start-up units (section 7.3), and inverse pumped accumulation 
(section 7.4). In addition, a wind farm shut-down strategy is discussed in section 7.5.  

7.2 Short-term forecast updates and aggregation 
7.2.1 Influence of forecast lag on system imbalance 
The accuracy of wind power forecasts is evaluated by comparing the forecasted values to 
the produced amounts. The key indicator is the capacity normalised mean of the absolute 
forecast error (cNMAE) (Madsen et al., 2005). As table 9 shows, the impact of bad day-ahead 
forecasts can be alleviated by making use of forecast updates. This clearly shows the 
importance of continuous wind power forecast updates, which will also allow for a better 
allocation of the forecast errors within the operation of other generation units in the system. 
 

Forecast lag before delivery cNMAE [%]
 Min Max 
24 hours 10.5 13.5 
18 hours 10.0 13.0 
12 hours   9.0 11.5 
  6 hours   8.5 11.5 

Table 9. Capacity normalized mean absolute forecast error (cNMAE) for different day-ahead 
forecasts (Duguet and Coelingh, 2006) 
Another indicator for the forecast accuracy is the capacity normalized standard deviation of 
the wind power forecast error (cNRMSE). As shown in figure 13, the cNRMSE is found to 
drop to half between the forecasts performed at 36 hours and 3 hours before delivery. 
It should however be noted that neither the NMAE nor the NRMSE of forecasts based on 
numerical weather prediction models reduce to zero if the forecast lag approaches present 
time because of the intrinsic uncertainty in these models. Such a reduction however can be 
achieved if online production data is included in the forecasts, as is done in figure 13, also 
showing the cNRMSE for the 0 to 6 hours before delivery. 

7.2.2 Aggregation of forecast errors at different levels 
The impact of aggregation of wind power on imbalance due to wind power forecast errors is 
investigated on the basis of forecasts issued 24 hours before the day of delivery. Two 
aggregation levels are considered: the system level and the Programme Responsible Party 
(PRP) level. The PRP level consists of seven individual market parties, each with some wind 
power as part of their portfolio; see table 3. The hypothesis is that a central aggregation 
would allow internal cancelling out of forecast errors. It is found that this indeed is the case: 
aggregation at the system level requires about 6% less overall reserves for the compensation 
of forecast errors (this is the percent reduction in the length of the confidence interval, as 
computed from table 10). 
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Fig. 13. Capacity normalized standard deviation (cNRMSE) of the wind power forecast error 
for 7800 MW of wind power 
 

 Wind power forecast error 
 Max.

[MW]
Min.

[MW]
99.7% Conf.Int. 

[MW] 
Sum PRPs +5257 -5450 [-3754 ... 4071] 
System +5148 -5326 [-3482 ... 3907] 
Difference 109 -124 [-272 ... 164] 

Table 10. Range and confidence interval of wind power forecast error for the sum of 
individual PRPs and the system 

7.3 Pumped storage, compressed air energy storage and fast start-up units 
7.3.1 Methodology 
In this section, pumped storage and compressed air technologies of similar energy content are 
compared. It is assumed that the storage system does not participate in any market trading, in 
order to focus on the effectiveness of various technologies in reducing imbalances arising from 
wind speed forecasting errors. As a further simplifying assumption, the storage system is 
allowed to reverse operation between consecutive Programme Time Units (PTU), i.e. from 
charging to discharging and vice versa, depending on the sign of the forecast error. 
The following comparably-sized storage systems are analyzed for the scenario with 7800 
MW installed wind power, and a 24-36 hour lead time for the wind forecasts: 
• A pumped storage (PS) system of 10.08 GWh, charging time 8 hours, hence 1260 MW 

installed power, with a 0.81 round-trip efficiency, i.e. equal 0.9 pumping and generating 
efficiencies, with efficiencies independent of charging levels. 

• A compressed air energy storage (CAES) system of 7.2 GWh, charging time 8 hours, 
with a 0.8 compression efficiency and a 1.4 charge efficiency factor, which means that 
the amount of energy that can be generated at full discharge is 7200×1.4 = 10.08 GWh, 
thus equal to the pumped storage. 
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In addition, the effect of 852 MW of installed fast start-up units on the reduction of negative 
imbalances (less wind power than predicted) is analyzed. Negative imbalances are 
considered more dangerous to system reliability than positive ones, which can ultimately be 
taken care of by curtailing excess wind production. The fast start-up units are supposed to 
complement the pumped storage and so the value of 852 MW was chosen as equal to the 
standard deviation of the imbalance remaining in the system after the implementation of the 
10.08 GWh pumped storage system. It is assumed that the fast start-up power can be 
switched on or off in increments of 2 MW, and reacts to correct imbalances whose absolute 
value is bigger than 200 MW. This prevents an unnecessarily large number of start-ups and 
shut-downs in cases when the imbalance is less than 200 MW and can thus be covered from 
the spinning reserve carried by conventional units on-line. It is assumed that the fast start-
up units are open-cycle gas turbines (OCGT), and hence are capable of starting and ramping 
up to their installed capacity within one PTU, i.e. 15-minute time interval. 

7.3.2 System level aggregation 
As an illustration, figure 14 shows a 52-day (5000 PTUs) sample from the yearly time series 
for the original and the reduced imbalance after the application of a 10.08 GWh pumped 
storage system in combination with 852 MW installed capacity from fast start-up units. 
Results from the comparison of the various technologies are summarized in table 11, which 
shows the reduced standard deviation and the average positive and negative imbalances, all 
in terms of per unit with respect to their original values. 
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Fig. 14. Time series for 52 days of forecast imbalance, state-of-charge and fast start-up power 
with a 10 GWh pumped storage system and 852 MW of open-cycle gas turbines 
In addition, the reduced 99.7% confidence intervals for the aggregated forecast error are 
shown in the last row. As a reference point, the original confidence interval before applying 
any storage was [-3948 ... 3441] MW. 



Variability and Predictability of Large-Scale Wind Energy in the Netherlands  

 

281 

 10080 MWh 
Pumped Storage

7200 MWh 
CAES 

10080 MWh PS 
852 MW Fast Start-Up 

σ [p.u.] 0.84 0.84 0.66 
μ+ [p.u.] 0.61 0.68 0.61 
μ- [p.u.] 0.68 0.64 0.25 

99.7% C.I. [MW] [-3530..3310] [-3421..3326] [-2678..3310] 

Table 11. Statistical properties for the system imbalance reduction 
From table 11 it can be seen that it is easier for the pumped storage system to take care of 
positive (excess wind) imbalances. This is because the 0.9 pumping and generating 
efficiencies lead to consuming 111% more energy than stored from the positive (excess 
wind) forecasting errors, whereas only 90% of the stored energy can effectively be used 
when discharging to cover for negative (deficit wind) errors. The overall standard deviation 
has been reduced by the CAES system to the same value as in the case of the PS system, i.e. 
84% (from 1013 to 852 MW). By contrast, the CAES system, thanks to its charge efficiency 
factor of 1.4, is slightly better at taking care of negative imbalances than a PS system of 
comparable installed capacity. However, unlike PS, a CAES "discharge" implies burning of 
fuel (gas) and hence extra emissions and higher operating costs. 
The technology for diabatic CAES systems is available and already has been applied 
successfully, e.g. the Huntorf plant in Germany, already in operation for about 20 years. In 
the Netherlands there are a small number of caverns (unused salt domes) which can be used 
for CAES. However these caverns are more favorable for storing gas or CO2. For this reason 
it is concluded that CAES development in the Netherlands will be hard and will have to 
compete with other technologies. 
The last column of table 11 shows the results for the pumped storage and fast start-up units 
combination. The resulting reduction in average negative imbalance is to 25% of its original 
value, which is achieved with an average of 6.5 start-ups per day. The reduction in positive 
imbalance is naturally the same as that without the fast start-up units, whereas the overall 
standard deviation is now reduced to 66% (667 MW). 

7.3.3 PRP level aggregation 
The installed 7800 MW wind power is now distributed over seven market parties at the 
Programme Responsible Party (PRP) level; see table 3. In order to facilitate comparison with 
the results for the system level aggregation, the installed storage and fast start-up capacities 
are allocated proportionally to the installed wind power of each PRP. These installations are 
now controlled to correct the individual imbalances due to forecasting errors as experienced 
by each PRP. Figure 15 shows the reductions in negative imbalance for system versus PRP 
level aggregation, for various technologies, and increasing values of storage capacities, up to 
30 GWh. From this figure it can be noted that installing storage and/or fast start-up units to 
be controlled for reducing the imbalance at system level is slightly more advantageous than 
at the PRP level in terms of reducing the average negative imbalance. The advantage stays 
approximately constant regardless of storage capacity, with the largest difference 
experienced for the PS and fast start-up combination, at about 0.12 p.u., which translates to 
86 MW. By contrast, installing storage and fast start-up units to be controlled for reducing 
the imbalance at PRP level is slightly more advantageous than at the system level in terms of 
reducing the total spread -- or standard deviation -- of the imbalance. The advantage 
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increases with higher storage capacities, with the largest difference being about 0.025 p.u., 
which translates to about 25 MW. 
It is concluded that differences between system and market participant level aggregation 
seem insignificant from the standpoint of being more or less effective in reducing the 
forecast imbalance. It follows that decisions about where storage units are to be installed 
and how they are to be controlled will probably be governed more by geographical 
constraints, considerations about economies of scale, ease of accounting, technical 
accessibility and confidentiality of control signals. 
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Fig. 15. Reductions in average negative imbalance for PS, CAES and PS with 426 MW fast 
start-up units for PRP versus system level aggregation 

7.4 Inverse offshore pump accumulation system 
Next an inverse offshore pump accumulation system (IOPAC) is considered (de Boer et al., 
2007). The IOPAC has been proposed to be stationed on an “Energy Island”, that is an 
artificial island at sea consisting of a ring of dikes (6x10 km2) enclosing a deep dredged 
reservoir. The intended depth of the reservoir is 50 m below sea level, and the water level of 
the reservoir will typically vary between  –32 and –40 m.  In figure 16 an artist impression of 
the “Energy Island” is shown. 
The IOPAC is equipped with a control system that aims to prevent the storage from being 
saturated, and thus makes it more capable of reducing the imbalance due to wind energy. 
The strategy of the control system involves selling power during peak hours (8 am to 11 pm) 
if the water level is too low, and buying power during off-peak hours if the water level is too 
high. In this way the control system keeps the water level around the half-full operating 
point (around –36 m). 
Energy is bought from or sold to the intra-day market, assuming any needed energy volume 
is available within the limits of the storage device. This is feasible; whether a surplus or a 
shortage of energy in the reservoir can be noticed by simply monitoring the water level. The 
lower part of figure 17 shows this correction signal (where positive power means bought 
from the market and used to charge the storage system). 
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Fig. 16. Artist impression of the Energy Island with an Inverse Offshore Pump 
Accumulation (IOPAC) 
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Fig. 17. Impression of average power absorbed/delivered in order to maneuver the IOPAC 
around the half-full operating point 
The effectiveness of the IOPAC in alleviating imbalance is analyzed by considering a 
pump/turbine power rating of 2000 MW, with a storage energy capacity of 30 GWh. Initial 
imbalances result from wind power forecasts issued at noon before the day of delivery (with 
a lag of 12-36 hours). The upper part of figure 17, showing the impact of the control system 
on the variation of the water level as a response to these imbalances, reveals that the control 
system prevents the water level from drifting away. Figure 18 shows the original imbalance, 
the imbalance after employing the IOPAC alone, and the imbalance for the IOPAC with 
intelligent control strategy. The imbalance reduction, measured in terms of per unit 
standard deviation with respect to the base-case, ranges from 0.714 (IOPAC alone) to 0.697 
(IOPAC with intelligent control). Some imbalance remains after the application of IOPAC, 
but this could be handled by fast responding conventional units and/or combining these 
measures with short-term wind power forecasts. 
The proposed intelligent IOPAC is therefore shown to alleviate imbalances due to wind 
power forecast errors. 
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Fig. 18. Imbalance before and after the application of IOPAC storage, 2000 MW installed 
power, with 30 GWh energy capacity 

7.5 Wind farm shut-down strategies 
Finally, the impact of wind farm shut-down strategy on the imbalance is analyzed. Two 
shut-down strategies are considered. In the abrupt shut-down strategy, a wind farm is shut 
down within 10 seconds if the 15-minute averaged wind speed exceeds 25 m/s, and is 
started up again within 10 seconds if the 15-minute average wind speed is less then 22 m/s. 
In the gradual shutting-down strategy, on the other hand, the power of a wind farm varies 
linearly with the wind speed between full load and zero if the 15-minute averaged wind 
speed is between 23 and 32 m/s. 
In practice the abrupt shut-down strategy or a close variant is applied, where the turbines in 
a wind farm may either shut down individually based on their individual wind speed 
measurements or collectively based on one central wind speed measurement system in the 
wind farm. In this analysis a whole wind farm shuts down based on its 15-minute averaged 
wind speed. Also, in reality the shutting-down and starting-up times may differ from the 
value of 10 s employed in this analysis. These choices however do not strongly affect the 
conclusions. 
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Fig. 19. The wind speed at the 25 offshore locations during one day with wind speeds 
exceeding 25 m/s 
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In addition the 15-minute average wind speeds at the wind farm locations foreseen in the 
Netherlands for the period of one year were considered. It is found that on three days the 
wind speed exceeds 25 m/s in at least one location. Day 222 was selected for further 
analysis; the wind speeds are presented in figure 19. It should be noted that the wind speed 
does not exceed 25 m/s at all wind farms, so that not all wind farms shut down. 
As shown in figures 20 and 21, with the abrupt shut-down strategy, there are large 
differences between the forecasted and the produced wind power, and, as a consequence, 
larger imbalances. With the gradual shut-down strategy, the differences are significantly 
less. It was found that with gradual shut-down the imbalance due to forecasting errors is 
reduced by more than 50% as compared to abrupt shut-down. In addition, benefits in terms 
of decreasing the variability in the wind power output can also be observed in figure 20. 
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Fig. 20. Wind power production and forecast during the day with wind speeds over 25 m/s 
and after applying the abrupt and gradual shut-down strategies 
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Fig. 21. Remaining forecast imbalance during the day with wind speeds over 25 m/s and 
after applying the abrupt and gradual shut-down strategies 
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The concept of shutting down the wind farm gradually as a linear function of the (high) 
wind speed is therefore found to be significantly better than abrupt shut-down. 

8. Summary 
A statistical interpolation method to generate time series of system- and participant-
aggregated wind power production and forecast values has been presented. The method 
takes into account the spatial and temporal correlations among multiple sites, as derived 
from the measurement and forecast data. In addition, a method for deriving park-
aggregated power curves with smooth cut-in and cut-out, that takes into account the local 
wind climate, was introduced. 
In the scenario with 7.8 GW of wind power in the Netherlands in the year 2020, at the 
system level the imbalance energy requirements due to wind variations across 15-minute 
intervals are ±14%, while the imbalance energy requirements due to forecast errors vary 
between 53% down-regulation and 56% up-regulation or reserve. If 15-minute variations 
and forecast errors are compensated individually by market participants, the collective 
balancing energy requirements are larger: ±16% for the 15-minute wind variations, and 
between 56% down-regulation to 58% up-regulation or reserve for the forecast errors. 
Various alternatives for balance control as required by the addition of wind energy in the 
Netherlands have been investigated. From this analysis it is concluded that the following 
instruments for balance control are most applicable: continuously updated short-term 
forecasts, pumped-accumulation storage systems, fast start-up units, and gradual shut-
down strategies for wind farms. 
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