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In order to respond to climate change, China has committed to reduce national carbon intensity by 40–45% in
2020 and 60–65% in 2030, relative to 2005. Given that energy-intensive industries represent ~80% of total CO2

emissions in China and that China is a large and diverse country, this paper aims to investigate the potential con-
tribution of regional convergence in energy-intensive industries to CO2 emissions reduction and to meeting
China's emissions goals. To the best of our knowledge this matter has never been explored before. Using panel
data from 2001 to 2015, we build three scenarios of future carbon intensities: business as usual (BAU), frontier
(based on the directional distance function, in which all regions reach the efficiency frontier) and best available
technology (BAT, in which all regions adopt the lowest-emitting technology). The frontier and BAT scenarios
represent a weak and a strong form of regional convergence, respectively, and the BAU assumes that it develops
following historical patterns.We thenuse theKaya identity to estimate CO2 emissions up to 2030under the three
scenarios. Our results are as follows: (1) Under BAU, the CO2 emissions of energy-intensive industries increase
from 7382.8 Mt in 2015 to 8127.6 Mt in 2030. Under the frontier scenario the emissions in 2030 are 44.23%
lower than under business as usual, while under the BAT scenario this value becomes 84.81%. Electricity and
ferrous metals are the sectors that most contribute to the reduction potential. (2) Even under BAU the carbon
intensity of energy-intensive industries as a whole and all of its constituent sub-sectors except for electricity
will decrease by more than the nationally-mandated averages. (3) Regional convergence could help the
energy-intensive industries peak its CO2 emissions before 2030, while under BAU the absolute emissions of the
energy-intensive industries keep increasing.
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1. Introduction

The Paris Agreement includes objectives to limit the global tempera-
ture increase above pre-industrial levels towell below2 °C and to pursue
efforts to limit the increase to 1.5 °C. The most important pillar for
achieving the goal of the Agreement is a rapid GHG (greenhouse gas)
emission reduction (IEA, 2017). In this context, the Chinese government
committed to achieve the emissions peak around 2030 or earlier, and
reduce carbon intensity (CO2 emissions per unit of GDP) by 40–45% in
2020 and 60–65% in 2030, compared to 2005. At the global level, the
industrial sector is responsible for over a third of energy consumption
and a slightly higher share of carbon emissions (Fais et al., 2016). This
percentage is even higher in China since the Chinese model of develop-
ment has relied heavily on the industrial sector, with energy-intensive
ences (CML), Leiden

s an open access article und
industries supporting domestic infrastructure construction, heavy indus-
tries and the manufacturing of consumption goods for export (NBSC,
2016). In Statistics Report onNational Economic and Social Development
in 2010, Petroleum Processing and Coking Industry (petroleum), Raw
Chemical Materials and Products Industry (chemicals), Non-metallic
Mineral Products Industry (non-metallic products), Smelting and
Pressing of Ferrous Metals industry (ferrous metals), Smelting and
Pressing of Non-ferrous Metals industry (non-ferrous metals) and
Production and Distribution of Electric and Heat industry (electricity)
are classified as energy-intensive industries due to their higher energy
consumption, where each of them is an energy-intensive sub-sector.
These energy-intensive industries together generated 79.68% of China's
CO2 emissions in 2015 (Shan et al., 2018). Owing to the crucial role
energy-intensive industries play in controlling CO2 emissions in China,
the government has issued special emission reduction policies and set
energy consumption/intensity reduction targets for these sectors: during
the 13th Five Year Plan (FYP) (2016–2020) the energy consumption in
ferrous metals sector should decrease by at least 10% and the energy
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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intensity (energy consumption per unit of GDP) in both non-ferrous
metals and petrochemicals sectors should be reduced by 18%.

The decline in energy intensity has been identified as the most
important factor contributing the historical decrease in carbon intensity
(Fan et al., 2007; Zhang, 2010; Wang et al., 2017, 2018a). In turn, many
studies found that technological progress is a crucial factor historically
driving the improvement of energy intensity in China (Shao et al.,
2014; Wang et al., 2018b). In other words, technology improvements
have been recognized as the primary contributor to China's emission
reduction over the past few years (Guan et al., 2014; Su and Ang,
2017). There are large heterogeneities in the carbon intensity (CO2

emissions per unit of industrial value added) of energy-intensive indus-
tries across provinces varying from 0.059 Mt/billion yuan in Beijing to
1.21Mt/billion yuan in Xinjiang in 2015 (2000 constant price), reflecting
differences in resources endowments and development level. Con-
sidering the heterogeneity across provinces, it is meaningful to explore
the impact of regional convergence on CO2 emissions/intensity.

Economic convergence is the phenomenonwhereby poorer countries
(or regions) approach the income level of richer countries (or regions)
(Sachs and Warner, 1995). According to Hao and Peng (2017) there is
convergence within a country if interior regions are open and there is
free mobility of factors such that the market and the law of diminishing
returnswill produce a self-correcting effect,with the result that per capita
income and/or output levels in different regions tend towards equi-
librium. In China, the relatively high degree of openness among prov-
inces provides the prerequisite for regional convergence (Hao and
Peng, 2017). As far as energy-intensive industries are considered,
there are few technical barriers and a large scope for technological
diffusion, see Bataille et al. (2018) for details of the technological
features of these industries. Thus, regional convergence occurs through
technological diffusion and adoption, leading to the production tech-
nology for a specific energy-intensive sub-sector in different provinces
becoming similar (Ciscar and Soria, 2000; Alexiadis, 2011; Gries et al.,
2018). One aspect of a production technology is its carbon intensity,
and we expect there to be a catch-up effect, with lowest-performing
regions improving in relative terms, when compared with the best
performers, if indeed there is regional convergence. Of course, there
might be good reasons, such as natural endowments or a long life-
time of industrial installations, to prevent convergence in carbon inten-
sities across regions.

In this paper we try to answer how regional convergence in each
energy-intensive sub-sector could impact CO2 emissions and contribute
to meet China's 2020 and 2030 emissions targets. To the best of our
knowledge this question has never been addressed before, although
past studies have examined the likelihood that the 2020 and 2030 emis-
sion targetswill bemet considering other factors, and historical regional
convergence in carbon emissions has been explored in China and else-
where. We review these studies later in the paper.

This paper addresses the research question as follows. First, we
establish three scenarios in terms of carbon intensity until 2030: a
business-as-usual (BAU) scenario, in which the carbon intensity is the
national average and develops following historical patterns; a frontier
scenario, in which each province achieves the median carbon intensity
of provinces on the efficiency frontier, as determined by the directional
distance function (DDF); and a best available technology (BAT)
scenario, in which the carbon intensity of each province approaches
that of the province with the lowest carbon intensity. The BAU scenario
represents a continuation of the current trend of regional convergence
but in empirical terms historical convergence is negligible. The frontier
and the BAT scenarios represent, respectively, a weak and strong form
of regional convergence. Afterwards, these carbon intensity estimates
are combined with estimates of sectoral growth to project absolute
CO2 emissions. Finally, by comparing the three scenarios, we can
study the contribution of regional convergence in energy-intensive
industries to emissions reduction and towards meeting China's emis-
sions goals.
The remainder of this paper is organized as follows. Section 2
reviews the related literature. Section 3 introduces the methods and
data set. Section 4 presents the results. Section 5 interprets and
discusses those results. Section 6 concludes the paper and provides
some policy implications.

2. Literature review

2.1. China's likelihood of meeting the 2020 and 2030 emissions goals

There are many studies exploring whether China could achieve the
proposed emission reduction targets of 2020 and 2030, so for clarity
we organize these materials in several groups. Some studies employed
different methods to establish a relationship between CO2 emissions
and its major drivers, such as GDP, energy consumption, energy struc-
ture and population, in order to predict the CO2 emissions. Zhu et al.
(2015) considered the relationship between CO2 emissionswith energy
consumption, economic development and energy structure to explore
whether (or not) China can realize the carbon intensity targets. Zhu
et al. (2018) set different scenarios based on the growth rates of popu-
lation, GDP per capita and energy structure to investigate the path
choice of achieving China's 2020 intensity targets. Using econometric
analysis, Xu et al. (2017) predicted the energy consumption based on
the estimates of GDP and population, and then calculated the carbon
emissions. Cansino et al. (2015) combined the I\\O (input-output)
analysis with econometric analysis to check the extent to which the
commitment of China to carbon intensity reduction by 2020 will be
fulfilled. These studies obtained the consistent results that the 2020
and 2030 reduction targets of carbon intensity can be achieved with
ongoing policies. On the contrary, Elzen et al. (2016) and Yuan et al.
(2012) pointed out that the peak of CO2 emissions in 2030 and
40–45% reduction in carbon intensity by 2020 might not be achieved
with the policies that are currently implemented.

Additionally, some papers just focused on the contribution of a
single driver to the emissions targets. Considering the impact of energy
structure on CO2 emissions, Li et al. (2012) proved that the low carbon
energy will contribute 9.74–24.42% to the 2020 carbon intensity target
in the different scenarios. Liu et al. (2015) used a system dynamic
model to identify the impact of renewable energy on carbon intensity,
pointing out that carbon intensity will be reduced by 47–50% with the
renewable energy policies. Niu et al. (2016) combined a unitary regres-
sion model, the compound growth model and the gray model together
to examine the relationship between energy system transformation and
emissions peak. The results suggested that with actively creating the
conditions for transforming the energy system, China will achieve
peak emissions by 2035. Focusing on the impact of economic growth
on the emissions targets, Li and Lin (2016) used co-integration relation-
ship to find amoderate range of the economic growth rate for achieving
the 2020 emissions goal, showing that the economic growth rate should
be between 7% and 8.4%. However, Mi et al. (2017) employed the Inte-
grated Model of Economy and Climate (IMEC) and an optimized I\\O
model to assess the tradeoff between emission reduction and economic
growth, and the results showed that carbon emissionswill peak in 2026
if the annual GDP growth rate is b4.5%. Using the gray model, Li et al.
(2018) suggested that China will achieve the emissions peak if the
GDP was no N151,426.15 billion yuan by 2030. Regarding to the impact
of shifts in industrial structure on the emissions targets, using multi-
objective optimization Yu et al. (2018) found that emissions cannot
reach the peak before 2030 if the industry structure (shares of agricul-
ture, industry, service) develops as usual. Zhang et al. (2018) used
dynamic factorization model to study the contribution of industrial
structure to the reduction of CO2 emissions up to 2030, showing that
emission reduction caused by the shifts in industrial structure in three
major industries (agriculture, industry and service) and in the industrial
sub-sectors accounted for 28.22% and 4.26% of the national total emis-
sions, respectively. Yang et al. (2018) studied the impact of industrial
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structure on the CO2 emissions of Shanghai, suggesting that in order to
achieve the emissions goal Shanghai should reduce the share of indus-
trial sector in GDP from 49.4% in 2012 to 38.3% in 2020. Besides,
Yi et al. (2011) employed emissions allocation model to explore how
to allocate the CO2 reduction target regionally to meet the national
reduction target, suggesting that in order to achieve the 2020 target
the provinces of Shanghai, Hebei, Shanxi, Shandong, Guangdong and
Liaoning should reduce their carbon intensities by N45%. Cui et al.
(2014) examined the impact of ETS (emissions trading system) on
achieving China's 2020 reduction targets using the CGE (Computable
General Equilibrium) model, finding that the partial ETS and the na-
tional ETS may result in the total abatement costs by 4.5% and 23.67%
compared with the scenario of no ETS, respectively.

Different models have been used to forecast the CO2 emissions/
intensity of specific economic sectors. For instance, using the bottom-
up model, Xiao et al. (2014) assessed the carbon abatement potential
of building sector; Zheng et al. (2015) evaluated vehicle GHG emission
trends of road transportation sector; and Hao et al. (2015) studied the
possible trajectories of GHG emissions from China's freight transport
sector. Based on the Kaya identity and scenario analysis, Zhou et al.
(2016b) studied the future CO2 emissions of China's civil aviation indus-
try, showing that the CO2 emissions will increase until 2020 and the
carbon intensity cannot achieve the 2020 target with currentmitigation
measures. Within the industrial sector, combining LMDI (logarithmic
mean Divisia index) method and co-integration technique, Wang et al.
(2016) found that the industrial sector can achieve the 2020 and 2030
targets for carbon intensity even with the existing policies while the
peak of CO2 emissions cannot be realized before 2030. Combining the
GM (1,1) and econometricmodels, Liu et al. (2014) drew the conclusion
that the carbon intensity of thermal power sector in 2020 will be twice
that of 2005. Zhou et al. (2018) used global change assessmentmodel to
explore CO2 emissions of China's industrial sector up to 2050, indicating
that CO2 emissions will peak in 2025 with the policies for adjusting
industrial structure, promoting low-carbon energy and capping energy
and coal use. By using the Long-range Energy Alternatives Planning
(LEAP) model, Wu and Peng (2016) estimated the CO2 emissions and
carbon intensity of electricity sector till 2030, indicating that the peak
of emissions and the carbon intensity targets cannot be achieved;
Wang et al. (2007) proved that the CO2 emissions of ferrous metals
sector can peak in 2020, while the carbon intensity targets both in
2020 and 2030 were far from being realized. Additionally, the Kaya
identity, as a famous equation used to develop identical equation for
driving forces, also has been used in industrial sector/sub-sectors. For
instance, Zhang et al. (2017) obtained the partial similar results with
Wang et al. (2016). They pointed out that the targets for carbon inten-
sity in 2020 and 2030 can be achieved and industrial emissions will
peak in 2025 with current policies. Xie et al. (2016) proved that the
peak of CO2 emissions from petroleum sector cannot be reached while
the carbon intensity targets can be achieved.

2.2. Convergence in carbon and energy intensity

The phenomenon of convergence between countries and regions is
receiving increasing attention in studies of energy consumption, CO2

emissions and environmental quality. Zhu et al. (2014) studied the
rate of carbon intensity reduction across 89 countries from 1980 to
2008, and found no convergence in carbon intensity. Mishra and
Smyth (2017) studied whether convergence occurred in the energy
consumption per capita of seven sectors in Australia for the period of
1973–2014 and the results indicated that there was convergence in
energy consumption per capita for six of seven sectors. Kounetas
(2018) studied the energy consumption and CO2 emissions as well as
their intensities in 23 European countries from 1970 to 2010, and
found that there was no convergence. Han et al. (2018) explored the
process of energy efficiency convergence among 89 countries from
2000 to 2014, showing that the efficiency gaps became larger after
2010. Yan et al. (2017) explored the development trend of low-carbon
technologies in 72 countries from1990 to 2012 and 19OECDeconomies
from 1960 to 2012. Their results showed that convergence patterns of
low-carbon technologies did not occur across the 72 countries while it
existed among the 19 OECD countries.

Concerning China in particular, the convergence of energy consump-
tion, CO2 emissions and carbon intensity has been studied recently. At
the provincial level, Zhao et al. (2015) investigated the convergence of
carbon intensity among China's 30 provinces over the period of 1990–
2010, indicating that the carbon intensities are converging across
provinces. Hao and Peng (2017) investigated the convergence of energy
consumption per capita from 1994 to 2014, indicating that there
was convergence across 30 provinces. Other studies do have the city
perspectives. Zhou et al. (2016a) assessed the catch-up effect and con-
vergence of energy use and CO2 emissions across 214 cities from 2003
to 2009, indicating that the industrial energy conservation and emission
reduction exhibited a trend of convergence across these cities during
the study period. Wu et al. (2016) investigated the convergence
of CO2 emissions per capita among 286 cities during the period of
2002–2011. The results showed that CO2 emissions per capita tended
to converge. Focusing the six economic sectors (agriculture, industry,
construction, transportation, service and residential sectors), Wang
and Zhang (2014) examined the convergence of CO2 emissions per
capita in each sector across 28 provinces in China from 1996 to 2010,
showing that the CO2 emissions per capita in all sectors converged
across provinces during the study period.

We now can identify the knowledge gap that motivates the present
study. First, although there are many studies used different models to
study China's emissions goals from different perspectives, most of
them considered the contribution of macroeconomic factors to the
emissions goals for China as a whole or specific regions or industries
but do not pay attention to regional heterogeneities. However, focusing
on specific industries at the regional level may be more relevant for
policy-makers, especially if we focus on energy-intensive industries,
since they play an important role in emission reduction. Second, conver-
gence on energy consumption and CO2 emissions in China has been
studied, but all of these studies only identified whether there was
historical convergence of CO2 emissions/energy consumption across
regions (Zhao et al., 2015; Hao and Peng, 2017; Zhou et al., 2016a; Wu
et al., 2016; Wang and Zhang, 2014). To the best of our knowledge the
potential impact of regional convergence on CO2 emissions and its con-
tribution to China's emissions goals have never been explored. To fill in
the above-mentioned knowledge gaps, this studywill explore this issue
regarding to energy-intensive industries. We will use the Kaya identity
and scenario analysis as methods to address the research question, as
described in the following section.

3. Methods and data sources

3.1. General approach to the construction of sectoral CO2 emission
projections

The Kaya identity expresses CO2 emissions as a product of several
factors and has been widely used as a statistical forecasting model for
CO2 emissions projection (Friedlingstein et al., 2014; Zhu et al., 2015;
Niu et al., 2016; Raftery et al., 2017; Zheng et al., 2018). In the identity,
GDP per capita and population are usually considered as two key socio-
economic driving forces for CO2 emissions, which next to (develop-
ments in) the CO2 emission intensity per unit of GDP determine the
total future CO2 emissions. In this paper population will not be included
as a driver. First, as stated by Zheng et al. (2018), the population size in
the short-term is essentially constant. Furthermore, good projections of
GDP are available for China, so that using a split between growth in GDP
per capita and population growth is not needed. Finally, the focus of this
paper is not the whole economy but specifically a specific set of energy-
intensive industries. Energy-intensive sub-sectors like electricity
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production, ferrous metals production and chemicals production have
very different CO2 emission intensities per unit of output. In this
paper, we therefore use the following formula to make projections of
the industrial CO2 emissions in China from 2016 to 2030, allowing for
the use of sub-sector specific changes in CO2 emission intensities and
sub-sector specific output growth rates as a function of GDP growth:

CO2½ �t;i ¼
CO2

OUT

� �
t;i
� OUT

TOT
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In the preceding expressions, [CO2]t,i is the CO2 emissions in sub-sector
i in year t, with unit of Mt (Million tons) CO2, expressed as the product of
four terms: ½CO2

OUT�t;i is the output-based carbon intensity of sub-sector i in

year t (the ratio of carbon emissions to gross output in each energy-
intensive sub-sector), measured in Mt CO2/billion yuan; ½OUTTOT �t;i stands
for the share of energy-intensive sub-sector i in the energy-intensive
industries as a whole in year t (unit: billion yuan of gross output of sub-
sector i/billion yuan of gross output of energy intensive industries as a
whole); ½TOTGDP�t is the share of gross output of the energy-intensive indus-
tries in GDP in year t (unit: billion yuan/billion yuan): and GDPt stands
for the national GDP (billion yuan) in China in year t.

From one year to another each of the three terms, output-based car-
bon intensity, the share of each specific sector, and the share of the
energy-intensive industries in GDP, is assumed to grow (or decline) at
a constant rate g1i, g2i and g3, respectively. As will be elaborated in the
section on data collection (3.5), historical data for all variables in
Eq. (1) are available from a variety of statistical sources. Future growth
rates of GDP data are readily available from the World Bank (World
Bank, 2017), so the crux of this study is to create estimates for g1i,
g2i and g3. The share of each energy-intensive sub-sector (g2i) and
the share of energy-intensive industries (g3) showed a rather steady
development from 2006 to 2015, and we assumed that the average
changes observed during this time period will continue into the future.
We refer to Tables A1–2 in the Supplementary information. For
assessing potential changes in sub-sector-specific carbon intensities
(g1i) a more sophisticated approach was used. Using observed dif-
ferences in sub-sector specific carbon intensities between provinces,
various scenarios for regional convergence of such carbon intensities
were derived. Further (similar to the approach for g2i and g3) trends
for historical changes sector-specific carbon intensities were extrapo-
lated into the future. These scenarios and extrapolations will be elabo-
rated in more detail in the next section.

After calculating the gross output of each energy-intensive sub-
sector ([OUT]i) and the total gross output of energy-intensive industries
([TOT]) from 2016 to 2030 based on g2i and g3, we corrected [OUT]i, to
ensure that the sum of output shares of energy-intensive sub-sectors
in total output of energy-intensive industries will be equal to 100%.
The initial estimate of [OUT]i for any given year obtained by extrapola-
tion from the preceding year was multiplied by a correction factor, de-
fined as the ratio of [TOT] in that year divided by the sum of all initial
estimates of [OUT]i in that year.

When performing provincial-level calculations, we use gross output
as the metric of economic activity to predict CO2 emissions (Eq. (1)
above), due to the absence of information concerning industrial value
added (IVA) at the provincial level for each energy-intensive sub-sector.
However, the emissions goals contained in Chinese environmental
policies are framed using IVA as metric of economic activity and at the
national level information on both gross output and IVA is available,
thus allowing for the conversion between the two metrics. Because in
the Results' section we will only present values of carbon intensity for
the country as a whole rather than for specific provinces, the metric of
carbon intensity used there will be defined as CO2 emissions per unit of
IVA (Mt/billion yuan).

3.2. Scenarios for sub-sector specific emission intensities based on
provincial differences

Scenario analysis can help us to better understand the possible
evolution of CO2 emissions and carbon intensity in the future, as well
as the impact of regional convergence on CO2 emissions for a specific
energy-intensive sub-sector. In this paper the different assumptions
on the future carbon intensity reflect the different levels of regional con-
vergence. Three scenarios will be considered, materialized in different
values of the parameter of output-based carbon intensity, ½CO2

OUT�t;i: busi-
ness as usual (BAU), frontier and best available technology (BAT). The
framework of scenario design is shown in Fig. 1 and the detailed
description is as follows:

(1) Under the BAU scenario, the point of departure is the average
carbon intensity of a specific energy-intensive sub-sector at the
national level, which can be calculated as the total CO2 emissions
over gross output of a specific energy-intensive sub-sector. For
each sub-sector, historical changes in carbon intensity between
2006 and 2015 are assumed to continue until 2030. Implicitly,
this scenario assumes that any underlying historical trends in
regional convergence will persist into the future.

(2) Under the Frontier scenario, it is assumed that sub-sectors in dif-
ferent provinces converge with regard to the efficiency of the use
of factor inputs in relation to desirable (production) output and
undesirable (emission) output, in our case CO2 emissions. The
Frontier scenario differs from the BAT scenario below, in the
sense that BAT minimizes the carbon intensity of output without
considering any trade-off between environmental and economic
performance. Particularly the large dependence of developing
provinces on energy-inefficient production technologies offers
considerable potential to reduce CO2 emissions. Methods for
estimating this potential have thus far focused on benchmarking
the carbon intensities in all provinces with themost efficient one
(Ward et al., 2017). We apply a specific type of Data Envelop
Analysis (DEA) with the Directional Distance Function (DDF) to
identify the gaps of technical efficiency across provinces, and
calculate a benchmark reflecting an optimal balance between
factor inputs, production output and CO2 emissions. For each
energy-intensive sub-sector, we perform a DDF. Under the DDF
model (explained in more detail in the following subsection),
each of the 30 provinces is interpreted as a decision-making
unit, and we perform the ranking of provinces according to
their technical efficiency (see Tables A3–8 of SI). We then select
the provinces on the frontier and define the median value of
their output-based carbon intensity as the frontier scenario.
Thus, this scenario corresponds to a weak form of regional
convergence, in which different provinces do not necessarily
converge to a common single carbon intensity value, but to a
range of values that reflect each province's particular trade-off
between carbon emissions and economic output.

(3) In order to construct the BAT scenario, we analyzed all provincial
output-based carbon emissions (for every sub-sector) and iden-
tified in which one the output-based carbon intensity is the low-
est. Under this scenario it is assumed that, for a specific energy-
intensive sub-sector, the performance of all provinces converges
to the best-performing province. For the period up to 2030, it is
assumed that the historical improvement rates of the carbon



Fig. 1. The framework of scenario design.
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intensity of the best performing province (whichmay differ from
year to year) will continue. Thus, this scenario corresponds to a
strong form of regional convergence in carbon intensity. This
scenario is less realistic than the preceding ones, particularly
with regard to the assumption that BAT performance can be
achieved in all sub-sectors across all provinces overnight. But
even if onewould allow for a reasonable time frame for diffusion
of BAT, there might be practical constraints preventing the
homogenization of carbon intensities. For example, even if the
physical production technology is the same in different provinces
the value added per unit of physical output might differ due to
the distance between the production unit and the market it is
serving. As another example, there might resource endowments
that make it impractical to use the same physical production
technology in different provinces (e.g., hydropower for elec-
tricity generation).

The regional convergence for each energy-intensive sub-sector in
frontier and BAT scenarios can be achieved by technology diffusion and
adoption. The rates of introduction and diffusion of new technologies
from developed provinces to developing provinces will be driven
by both demand-pull and technology-push forces (Costantini et al.,
2015). Demand-pull approaches rely more on market incentives while
technology-push approaches are often dependent on the knowledge
stock and technological capacities acquired through research and de-
velopment (R&D) activities (Costantini et al., 2015). Previous studies
have shown that demand-pull approaches seem to benefit mature
technologies, whereas technology-push approaches turn out to be neces-
sary in stimulating innovation activities in less-mature technologies
(Costantini et al., 2017). In this paper, we tend to focus on the diffusion
of existing technologies frombenchmarking provinces to other provinces
even though new technology may emerge in the process. Therefore,
the demand-pull policies are more important for guiding the regional
convergence.

3.3. Constructing the frontier scenario using the radial directional distance
function (DDF)

The DDF is a popular way for modeling energy and environmental
issues and has attractedmuch attention due to the advantage of model-
ing good and bad outputs simultaneously. TheDDF efficiencymeasure is
a metric that represents the distance between the current performance
of a decision-making unit (DMU) and its optimal performance,
constrained by the observed performance of all DMUs, when the
DMU is simultaneously allowed to expand desirable outputs and
reduce inputs and/or undesirable outputs (Zhou et al., 2008).

Assume that the DMUs use input vector x to jointly produce desirable
output vector y and undesirable output vector b. The multi-output pro-
duction technology can be expressed as follows:

P xð Þ ¼ x; y; bð Þ : x can produce y; bð Þf g ð5Þ

where P(x) is required to satisfy the standard axioms of production
theory (details see Färe et al. (2007)). Additionally, in order to specify
the environmental technology, weak disposability and null-jointness
assumptions should be imposed on P(x). The weak disposability and
null-jointness assumption can be expressed respectively as follows:

(1) If (x,y,b) ∈ P(x) and 0 ≤ θ ≤ 1, then (x,θy,θb) ∈ P(x) and
(2) If (x,y,b) ∈ P(x) and b = 0, then y = 0.

In order to expand desirable outputs and contract undesirable outputs
simultaneously, the directional output distance function is introduced. Let
d=(dy,db). Since the radial efficiencymeasure of the DDF has been iden-
tified to be effective when measuring technical efficiency (Zhang and
Choi, 2014), the radial DDF proposed by Färe et al. (2007) is selected.

We define the directional output distance function as D0
�!ðx; y; b;dy;dbÞ ¼

max fβ : ðyþ βdy; b−βdbÞ∈ PðxÞg . In general, there are two common
ways to estimate the DDF: the parametric approach and non-parametric
DEA approach. The DEA approach is a good choice if the research focus
is measuring technical efficiency while the parametric method is usually
used to estimate the shadow prices of pollutants (Zhang and Choi,
2014). Since this paper focuses on the technical efficiency, the following
DEA-type model is used to compute the technical efficiency of k-th
DMU for each energy-intensive sub-sector:

D0
�!

xk; yk; bk;dy; db
� � ¼ Max βk

∑ J
j¼1xmjλ j ≤xmk m ¼ 1;…;Mð Þ C1ð Þ

∑ J
j¼1yrjλ j ≥yrk þ βyrk r ¼ 1;…;Rð Þ C2ð Þ

∑ J
j¼1bf jλ j ¼ bf k−βbf k f ¼ 1;…; Fð Þ C3ð Þ

∑ J
j¼1λ j ¼ 1 j ¼ 1;…; Jð Þ C4ð Þ

8>>>><
>>>>:

ð6Þ

λ j≥0 j ¼ 1;…; Jð Þ;1≥β≥0

Image of Fig. 1


1 The capital stock from 2001 to 2015 in this paper is calculated using the perpetual in-
ventory method as Kt = Kt−1 ∗ (1− δt) + It/Pt. Kt, Kt−1, δt, It and Pt respectively represent
the capital stock in year t, t − 1, the depreciation rate in year t, fixed investment and the
fixed asset investment price index in year t.
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where xmj, grj, bfj denote them-th input, the r-th desirable output and the
f-th undesirable output of the j-th DMU, respectively. λj are the intensity
variables. λj are weights assigned to DMU j when constructing the pro-
duction possibilities frontier. J, M, R, and F are the numbers of DMUs,
inputs, desirable outputs and undesirable outputs. βk stands for the feasi-
ble expansion of DMU k. The objective function “maximumβk”means the
maximumproportion of desirable outputs expansion and the undesirable
outputs contraction for DMU k. In this study, the desirable output is gross
output (billion yuan) and the undesirable output is CO2 emissions (Mt
CO2). According to Yang and Pollitt (2010), the assumption of weak
disposability is appropriate to model CO2 emissions since CO2 emissions
cannot be directly reducedusing existing technology like other pollutants.
Therefore, in this study, theweak disposability assumption is used, which
can be reflected by constraint (C3). The input vector x contains three indi-
cators: the capital stock (billion yuan), labor (10^4 people) and energy
consumption (million tons coal equivalent); the desirable output vector
y contains one indicator, gross output (billion yuan); and the undesirable
output vector b contains one indicator, CO2 emissions (Mt CO2). The
sources of data set are explained in Section 3.5.

The efficiency of DMU k can be obtained by the following equation:

Technical Efficiency ¼ 1−βk ð7Þ

If βk equals to zero, DMU k is technically efficient, i.e., it is located at
the frontier. However, a positiveβk indicates the extent of inefficiency of
DMU k. Conceptually, DMU k has the potential to expand its gross out-
put and reduce its CO2 emissions by a factor of βk until it reaches the
technical frontier. Mathematically, if the original CO2 emissions of
DMU k are bk, then its frontier emissions are (1 − βk)bk; if its original
gross output is yk, then its frontier gross output is (1+βk)yk.

As stated in Section 3.2, the DDFmethod is used in this paper to con-
struct the frontier scenario. We choose the provinces whose efficiency
equal to 1 (they are on the technical frontier), and then select the me-
dian output-based carbon intensity of these provinces. Under the fron-
tier scenario the output-based carbon intensity of China as a whole is
assumed to match median output-based carbon intensity of the effi-
ciency frontier. This assumption reflects the idea that individual prov-
inces have moved to the efficiency frontier, exhibiting regional
convergence in economic and environmental performance.

3.4. Uncertainty analysis

Themodel to predict future CO2 emissions described above (Eqs. (1),
(2), (3) and (4)) is deterministic, and yet there are uncertainties in the
estimation of the yearly growth rates g1i, g2i and g3 driving the model.
To estimate the uncertainty of the results we perform a Monte Carlo
analysis, considered as one of the most comprehensive and flexible
techniques for analyzing problems that involve various uncertainties,
as recommended by the IPCC (Zhang et al., 2017). In the Monte Carlo
analysis we model g1i, g2i and g3 as normally distributed random
variables, independently sampled in each consecutive year from 2016
to 2030. We conduct this simulation 100 thousand times and use the
resulting data to estimate the 90% and 50% inter-quantile widths of
CO2 emissions from 2016 to 2030 and thus assess the robustness of
the deterministic results obtained earlier. Given a random variable X,
an inter-quantile width of z% is the pair of lower and upper bounds, xL
and xU for which the cumulative probability distribution is P(X ≤ xL) =
(100 − z)/2% and P(X ≤ xU) = (100 − (100 − z)/2) %. The mean and
standard deviation of g1i, g2i and g3 are calibrated using the observations
from the year 2006 to 2015, smoothed over three-year periods. The
corresponding data is described in Table A9 of SI.

3.5. Data collection and description

In this paper, the study period spans from 2001 to 2030. Energy and
CO2 emissions of each energy-intensive sub-sector from2001 to 2015 at
the provincial level are from Shan et al. (2018). The emissions include
both energy- and process-related (cement) CO2 emissions. Emissions
from the generation of electricity and heat (irrespective of the consum-
ing sector) are allocated to the electricity sector. The IVAdata from2001
to 2007 were collected from the China Statistical Yearbook (NBSC,
2002–2008). Since the IVA data for industrial sub-sectors were only
published before 2007, the data of 2008–2015 were calculated using
the officially reported annual average growth rates of IVA from the
website of National Bureau of Statistics of China (NBSC, 2009–2016).
The IVA is converted into 2000 constant price based on the industrial
producer price index. The GDP from year 2001 to year 2016 was
collected from the China Statistic Yearbook (NBSC, 2002-2017). The
predicted growth rates of GDP from 2017 to 2030 were taken from
the World Bank (World Bank, 2017) (Table A1 of SI). The growth rates
of other indicators (output-based carbon intensity, share of IVA of
each energy-intensive sector, and share of IVA of energy-intensive
industries in GDP) are from our calculation, which are listed in the SI
(Tables A1–2).

The indicators in DDF model include three inputs: capital stock
(billion yuan), labor (10^4 people) and energy consumption (Mtce
(million tons coal equivalent)); one desirable output, gross output
(billion yuan); and one undesirable output, CO2 emissions (Mt). The
capital stock1 from 2001 to 2015 is calculated by the original value of
fixed assets, accumulated depreciation and fixed asset investment,
taken respectively from the China Industry Economy Yearbook (NBSC,
2001-2016) and the Statistical Yearbook of The Chinese Investment in
Fixed Assets (NBSC, 2002-2016a). We consider 2000 as the base year
and the capital stock in 2000 is obtained by the difference between orig-
inal value of fixed assets and accumulated depreciation. When
calculating the capital stock, the fixed asset investment has been
converted into 2000 constant price using the double deflation method
by fixed asset investment price index (NBSC, 2002-2016b). Labor and
gross output values from year 2001 to year 2015 are also from the
China Industry Economy Yearbook (NBSC, 2001-2016). The gross out-
put has been converted into 2000 constant prices.

Table A10 of SI shows the descriptive statistics for the input and out-
put indices of DDF method. Tables A11–16 show the correlation coeffi-
cients for the input and output indices. It can be seen that the
correlation coefficients between the outputs and inputs are all signifi-
cantly positive at the 5% level (P value b0.05), indicating that the out-
puts will increase as the inputs increase. The P value, calculated by the
Stata software, is used to evaluate whether the results of correlation co-
efficient are significant. Thus, the technical efficiency analysis is feasible.
Note that the populations of DMUs considered in this study are the 30
Chinese provinces and we have used all of them in the analysis. There-
fore, the sample is the population and thus representative by definition.

Data for a few specific sectors and years at the provincial level was
missing: the labor of the electricity sector in 2004 in 30 provinces
and the labor of all sectors in 2012 and 2015 in some provinces
(Hebei, Liaoning, Shanghai, Zhejiang, Fujian, Shandong, Henan, Hubei,
Guangxi, Hainan, Guizhou, Yunnan, Shaanxi, Qinghai, Ningxia and
Xinjiang), whichmeans there is 30missing points in 2004 for electricity
sector and 16 missing points in 2012 and 2015 for all six sectors. These
values inferred using the linear interpolation method (Tian and Lin,
2018) between the preceding and subsequent year. The number of
missing points is 16–30, out of a total of 150 points (30 regions times
5 indicators) used in the DEA study, so we believe that the uncertainty
introduced by the interpolation procedure is minor and it is not neces-
sary to use a more complex interpolation procedure.



Fig. 2.Historical CO2 emissions of energy-intensive industries from 2001 to 2015 (Industry= Energy-intensive industries). Bars indicate the contribution of energy-intensive sub-sectors
to national total emissions (unit: %); the black line indicates national total emissions and the red line indicates total emissions of energy-intensive industries (unit: Mt). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Results

We begin this section by presenting the patterns of historical CO2

emissions and carbon intensity of energy-intensive industries and its
component sectors. Then, we display the impact of regional convergence
in energy-intensive industries on absolute CO2 emissions. Afterwards, we
present the contribution of regional convergence in energy-intensive
industries to meeting China's emissions goals in 2020 and 2030. Finally,
we analyze the uncertainty of the CO2 emissions projections.

4.1. Patterns of historical CO2 emissions

The CO2 emissions of energy-intensive industries and its constituent
sectors are shown in Fig. 2. The growth trend of national CO2 emissions
is similar to that of energy-intensive industries, which accounted for
~80% of total emissions from 2001 to 2015. CO2 emissions of energy-
intensive industries grew fast before 2011 (CO2 emissions in 2011
were three times those of 2001), and afterwards they became relatively
flat. The electricity sector accounted for 46–52% of national total
emissions, followed by the ferrous metals (10–15%) and non-metallic
products (9–10%) sectors. The historical data also shows that there
were significant differences in regional CO2 emissions in each specific
sector (shown in Fig. A1 of SI). For example, Shandong, Hebei,
Shandong, Shanxi, Hubei and Henan had the most CO2 emissions in
Fig. 3. Historical output-based carbon intensity of each energy-intensive sector. BAU is the his
tensity in the provincewhere the sub-sector performedbest. Frontier reflects the carbon intensi
of the non-ferrous metals sector in 2001 and 2002 were, respectively, 0.98 and 0.87 Mt CO2/bil
electricity, ferrous metals, non-metallic products, petroleum, chemicals
and non-ferrous metals sectors with an average value of 307.7 Mt,
203 Mt, 53.7 Mt, 37 Mt, 14.6 Mt and 10.7 Mt during the study period,
respectively, while emissions from the smallest provinces were b1 Mt
except for the electricity sector (12.5 Mt). This does not necessarily
mean that provinces with large emissions are worse performers since
there are significant differences in the overall size and composition of
the industrial sector of different provinces. These patterns of historical
CO2 emissions show that there are heterogeneities in CO2 emissions
not only among industries but also across regions.

The historical carbon intensities of each energy-intensive sub-sector
are shown in Fig. 3. The figure shows not only the historical average
national carbon intensity (historical average BAU carbon intensities)
but also the median carbon intensity of sub-sectors in provinces at the
production frontier (Frontier) as defined in Section 3.2 and the lowest
carbon intensity of sub-sectors as found in any of the different provinces
(which in this study are regarded as BAT). There was a wide gap
between BAU, Frontier and BAT carbon intensities, reflecting a wide
difference in past carbon intensity performance between sub-sectors
in different provinces. The gap between the BAU and Frontier carbon
intensities was expanding in the petroleum, chemicals and electricity
sectors, with values between Frontier to BAU decreasing from 70.3% in
2001 to 45.1% in 2015, 82.4% in 2001 to 30.7% in 2015, and 91.8%
in 2001 to 54.2% in 2015, respectively. For and ferrous metals sector,
torical average carbon intensity of the sub-sector in China. BAT is the historical carbon in-
ty of the sub-sector in frontier provinces as defined in Section 3.2. The BAU carbon intensity
lion yuan.
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Table 1
Future CO2 emissions of energy-intensive industries under different scenarios (Unit: Mt). BAU means business as usual and BAT is the best available technology scenario.

Scenarios/year 2016 2018 2020 2022 2024 2025 2026 2028 2030

BAU 7482.7 7676.3 7829.0 7922.6 8022.8 8075.2 8083.3 8103.0 8127.6
Frontier 4337.0 4429.2 4497.6 4532.4 4571.6 4593.0 4589.5 4580.4 4533.0
BAT 1200.2 1224.0 1240.1 1245.9 1251.9 1254.9 1250.8 1242.7 1234.7
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the gap of carbon intensities between BAU and Frontier was relatively
constant with only minor fluctuations. On the contrary, the carbon
intensity between Frontier and BAU for the non-metallic products and
non-ferrous metals sectors respectively increased from 69.4% of in
2001 to 76.5% in 2015 and 7.5% in 2001 to 23.1% in 2015, indicating
that their technology gaps between BAU, i.e. the sector's Chinese
average, and Frontier were narrowing. Regarding to the gaps of carbon
intensity between BAU and BAT, there was an increasing trend in
the sectors of chemicals, non-ferrous metals and electricity, while a
narrowing trend appeared in the sectors of petroleum and ferrous
metals. For non-metallic products sector, the carbon intensity under
BAT relative to BAU was relatively constant (around 25%). Taken
together these observations indicate that regional technological hetero-
geneities persisted in most sectors and therefore historical regional
convergence has been minimal. This in turn means that there is a
large potential for regional convergence, i.e., moving from the BAU
towards Frontier and BAT past performance would lead to significant
improvements in the carbon intensity of most industry sub-sectors.

4.2. Assessment of regional convergence on CO2 emissions

In this subsection we present forecasts of future CO2 emissions of
energy-intensive industries under the three scenarios, and examine
how regional convergence might impact CO2 emissions. Table 1 shows
the future CO2 emissions of energy-intensive industries as a whole
and Fig. 4 presents the CO2 emissions of its specific sectors. Under the
BAU scenario, the CO2 emissions of energy-intensive industries display
an upward trend, rising from 7382.8 Mt. in 2015 to 8127.6 Mt in 2030.
The CO2 emissions of the petroleum, chemicals and ferrous metals
sectors decrease from 2015 to 2030 while the emissions from the
other three sectors increase. The total CO2 emissions of energy-
intensive industries as a whole under the alternative scenarios are
much lower than those under BAU. Under the frontier scenario,
energy-intensive industries could peak its CO2 emissions in 2025 at a
value of 4593.0 Mt. The CO2 emissions of the petroleum and chemicals
Fig. 4. CO2 emissions of the six energy-intensive sub-sectors under the three scenarios. BAU
emissions of the non-metallic products sector in the frontier scenario are higher than those i
BAU and frontier scenario. Therefore, we assume that the CO2 emissions in frontier scenario ar
sectors decrease slightly from 2015 to 2030. On the contrary, the CO2

emissions from the non-metallic products and non-ferrous metals
sectors increase from 2015 to 2030. For the electricity and ferrous
metals sectors, CO2 emissions will peak around 2018 and 2025, respec-
tively. Under the BAT scenario, despite much lower CO2 emissions
compared with the BAU and frontier scenarios, the peak of CO2 emis-
sions of the petroleum, chemicals and ferrous metals sectors is reached
around 2025, while it is reached a little earlier by the electricity sector
(2020). Meanwhile, CO2 emissions of non-ferrous metals decrease
from 2015 to 2030. Only the sector of non-metallic products has higher
CO2 emissions year by year. In summary, we find that under BAU the
CO2 emissions of energy-intensive industries as a whole and the elec-
tricity sector in particular are growing continuously from 2015 to
2030, while they will peak before 2030 under alternative scenarios.

The impact of regional convergence on CO2 emissions is reflected
in the differences between CO2 emissions in BAU and alternative
scenarios. If the frontier scenario can be reached, total annual emissions
will be reduced by 42.0–44.2% from 2016 to 2030 compared to BAU, of
which the electricity sector contributes to 28.4–39.2%. The reduction
potential is even more substantial under the BAT scenario. The total
annual emission reduction increase from 6282.5 Mt in 2016 to
6892.9 Mt in 2030, accounting for 84.0% of BAU emissions in 2016
and 84.8% in 2030. This emission reduction can be attributed mainly
to the electricity sector (4173.2–5076.6 Mt), followed by the sectors of
non-metallic products (737.9–842.3 Mt) and ferrous metals (627.6–
920.1 Mt). The remaining three sectors account for no N5% of the emis-
sions reduction potential from 2016 to 2030. In both frontier and BAT
scenarios, the reduction potential of the petroleum, chemicals and
ferrous metals sectors will be smaller in 2030, indicating that the gaps
of CO2 emissions between BAU and alternative scenarios are narrowing
for these three sectors. However, the gap of CO2 emissions between BAU
and the frontier scenario in the sector of non-metallic products is
narrowing while it is widening under the BAT scenario. The reduction
potential of the non-ferrous metals sector under the frontier scenario
increases from 2016 to 2025, and then decreases until 2030, while it
means business as usual scenario and BAT is the best available technology scenario. CO2

n BAU in the years 2028–2030, indicating that technology convergence occurs between
e equal to those in BAU.

Image of Fig. 4
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increases from 2016 to 2030 under the BAT scenario. The emission
reduction potential of the electricity sector increases over time under
both the frontier and BAT scenarios.

4.3. Contribution to emissions goals

It should be remembered that China promised to achieve a 40–45%
reduction in carbon intensity in 2020 and 60–65% reduction in 2030
compared to 2005. Fig. 5 shows the carbon intensity reduction of
energy-intensive industries as a whole and each specific sector thereof
in time series compared to the 2005 levels. Even under BAU, energy-
intensive industries have a positive contribution to China's emissions
goals, with carbon intensity of every sector decreasing by more than
the nationally-mandated averages. It can be seen that carbon intensity
of energy-intensive industries in 2014 was 43.3% lower than that in
2005, indicating that the 2020 emissions goals have already been
achieved (in energy-intensive industries). The 2020 emission reduction
goals are realized by the chemicals sector in 2010, by non-metallic
products in 2010 and non-ferrous metals in 2011. Note however, that
indirect CO2 emissions from electricity and heat are allocated to
the electricity sector, if such emissions were taken into account
(a consumption-based approach) this progress would have been
slower. The carbon intensity of the ferrous metals sector is 59.2% of
2005 in 2017, indicating that the 2020 emissions goal can be achieved
before 2020. However, the petroleum sector will reach the 2020 goal
in 2021. Additionally, the 2030 emission goal can be reached by the
energy-intensive industries on average in 2020 and five of six sub-
sectors before 2030. On the contrary, the carbon intensity reduction of
electricity sector remains constant (around 30%), indicating that the
2020 and 2030 emissions goals cannot be achieved by the electricity
sector under BAU. Note that so far in this analysis we have considered
that the 2020 and 2030 emissions goals refer to 40% and 60% carbon
intensity reduction relative to 2005. If the values selected are 45% and
65%, the years in which goals are achieved will be postponed by one
or two years.

Fig. 5 also shows the carbon intensity reduction of energy-intensive
industries as well as its constituent sectors from 2005 to 2030 under
alternative scenarios. The data from 2005 to 2015 is BAU data and the
carbon intensity reduction from 2016 to 2030 under the frontier and
BAT scenarios is calculated by comparison with the BAU carbon inten-
sity in 2005. It can be seen that there is a discontinuous jump in carbon
intensity reduction in 2016 under the frontier and BAT scenarios, as
an unrealistic instantaneous adoption of new technology in many
provinces is implied. Of course, a realistic policy of regional convergence
would involve an adaptation period during which the new technology
diffuses across regions. Estimating the speed of such diffusion over
time would imply using additional, uncertain assumptions. Fig. 5
Fig. 5. The contribution of energy-intensive industries to China's emissions goals, measured by
scenarios. The solid lines are historical data and the dashed lines are forecast data following thre
izontal solid gray lines (−40% and−60%) are the 2020 and 2030 emissions goals. “Industry” is e
hence has to be interpreted as simply showing the theoretical emission
reduction potential if frontier or BAT technologies would be imple-
mented in 2016 in all of China. The actual emission reductions that
can be realized by a regional convergence process on the short term
are obviously (much) lower.

Under the BAU scenario energy-intensive industries as a whole and
every constituent sector thereof except electricity meet both carbon
intensity goals, with the electricity sector's improvement never
reaching beyond a 40% reduction in the whole study period. In contrast
to the BAU scenario, under the frontier and BAT scenarios the electricity
sector performs better, achieving both 2020 and 2030 emissions goals.
For the energy-intensive industries as a whole, the carbon intensity
could in theory be reduced by 71.2% and 92.0% in 2016, respectively
under the frontier and BAT scenarios, relative to BAU, and would keep
decreasing further thereafter. The frontier and BAT scenarios show a
large reduction potential for the carbon intensity of each sector, relative
to BAU, ranging from 57.8% to 91.1% in 2016 under the frontier scenario
for the sectors of ferrous metals and chemicals, respectively, and
ranging from 77.8% to 99.1% in 2016 under the BAT scenario also for
the sectors of ferrous metals and chemicals, respectively. This shows
that regional convergence in the energy-intensive industries offers a
large potential for carbon intensity reduction. This may be helpful for
China to achieve the emissions goals, if it is necessary to offset increases
in emissions stemming from other economic activities.

4.4. Uncertainty analysis

Due to the uncertainties surrounding forecast data in this paper, we
conducted an uncertainty analysis to inform the robustness of the
results using the method of Monte Carlo simulation. As described in
Section 3.4 we constructed an alternative stochastic method, from
which the inter-quantile width (IQW) of the prediction could be
obtained. Fig. 6 shows the predicted inter-quantile widths of CO2 emis-
sions up to 2030 for the six sectors within the energy-intensive indus-
tries under the business-as-usual scenario. The projections made
earlier in this paper using a deterministic model are all within the 90%
and 50% inter-quantilewidths of the stochasticmodel.Wenowdescribe
in detail the 90%-IQWranges in 2030. The non-ferrousmetals sector has
the widest relative 90%-IQW, which ranging from 131.9 Mt to 157.6 Mt
represents 17.8% of the deterministic value of 144.2Mt, while the sector
with the narrowest relative 90%-IQW is non-metallic products, with the
range (1070.7–1183.0Mt) representing 9.8% of the predicted emissions
(1148.1Mt). The relative 90%-IQW of the other sectors lies within these
two extremes: the 90%-IQW of the petroleum sector (172.3–201.7 Mt)
is 15.4% of the forecast value (190.3 Mt); the 90%-IQW of the electricity
sector (5053.5–5828.4 Mt) is 14.3% of 5430.1 Mt; the 90%-IQW of the
chemicals sector (81.8–94.0 Mt) is 13.7% of 89.0 Mt; and the 90%-IQW
carbon intensity reduction (%) relative to BAU-2005, under different regional convergence
e scenarios of regional convergence. See Section 3 for the details of each scenario. The hor-
nergy-intensive industries as a whole. Values larger than zero are omitted from the figure.

Image of Fig. 5


Fig. 6.Uncertainty of theCO2 emissions forecast under theBAU scenario. The black solid line is historical data, the blackdashed line is the deterministic prediction, the dark shaded region is
the 50% inter-quantile width and the light shaded region is the 90% inter-quantile width.
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of the ferrousmetals sector (1078.8–1222Mt) is 12.5% of 1148.1Mt. For
every sector considered the 90% inter-quantile width is a range of 10–
18% of the forecast values. The fact that relative inter-quantile widths
are all within a narrow range means that it is sectors whose forecast
emissions are higher that most contribute to the error budget.

5. Discussion

Given that technological improvements are now playing a vital role
in climate change (Zhao et al., 2015),we explored the impact of regional
convergence on the CO2 emissions of energy-intensive industries,
where the regional convergence can be achieved by technological diffu-
sion and adoption, finding that regional convergence can reduce CO2

emissions significantly. From the patterns of historical data, Fig. 3
shows that the non-metallic products sector exhibits a trend of regional
convergence between BAU and frontier, with the ratio of the carbon in-
tensity of the frontier and BAU scenarios increasing from 69.4% in 2001
to 76.5% in 2015. Therefore, with the impact of regional convergence,
the CO2 emissions in frontier scenario are higher than those in BAU
from 2028 to 2030. The frontier scenario means all regions tend to be
technically efficient and it is a better scenario for emissions reduction
than BAU, so we assume that the CO2 emissions of non-metallic sector
from 2028 to 2030 are equal to those in BAU (shown in Fig. 4). More-
over, the chemicals and electricity sectors exhibit a growing technology
gap. Such a phenomenon can be explained by the economic theory of
‘backward disadvantage’, according to which the more a province lags
from the frontier, the harder it will be to catch up with it (Yan et al.,
2017). ‘Backward disadvantage’ is mainly caused by the insufficient
investment to technological innovation, lack of human capital or low
level of financial development (Aghion and Howitt, 2006). However,
there is a competing well-known hypothesis, the ‘advantage of back-
wardness’ (Yan et al., 2017). According to this hypothesis, the further
a regional economy falls behind the national technological leaders, the
easier it is for that economy to move towards the technological frontier
simply by technological diffusion and adoption. Therefore, provinces
whose technology level is far below the frontier/best available tech-
nology can decrease their carbon intensities by joint research with
and technology transfer from more advanced provinces. To counteract
‘backward disadvantage’ the government could provide financial subsi-
dies as an incentive for the laggards to adopt technologies introduced
from more advanced provinces.

In addition, this paper explores the contribution of regional conver-
gence in energy-intensive industries to China's emissions goals. Despite
the significant impact of regional convergence on CO2 emissions for
most sectors, its contribution to China's emissions goals varies across
sectors. Considering the contribution of energy-intensive industries to
China's emissions goals, many previous studies pointed out that China
(China's industrial sector) can achieve the emissions goals with the cur-
rent policies (Cansino et al., 2015; Wang et al., 2016; Xu et al., 2017;
Zhang et al., 2017). On the contrary, some studies showed that existing
policies are not enough for China and energy structure optimization and
energy efficiency improvement are needed (Yuan et al., 2012; Elzen
et al., 2016). Our paper shows that even under business as usual
energy-intensive industries can achieve the emissions goals. Regional
convergence offers a large scope for the reduction of emissions in
energy-intensive industries, and thus can help achieving the emissions
goals. The sectors of non-metallic products and electricity, especially
the latter, exhibit the largest potential for such a decrease. In the hypo-
thetical scenario that the frontier and BAT technologies could be imple-
mented in 2016 in all over China, the CO2 emissions of the electricity
sector would peak in 2018 (2020) and the peak for energy-intensive
industries would be around 2025.

Even though regional convergence can, in principle, significantly
reduce CO2 emissions from energy-intensive industries if a realistic
time period is allowed for diffusion of frontier and BAT technologies,
it is worth considering potential barriers to regional convergence.
(1) The outputs of each industry are not necessarily homogeneous
across regions and so it might happen that one region specializes in
high-value products and another in low-value products. If the emissions
per unit ofmass are identical, the emissions per unit ofmonetary output
will differ. In this case, the difference in performance across regions is
not of a technical nature, and hence cannot be solved by technological
transfer, but is of a business nature, and can only be solved by improved
product design, marketing and similar operations. (2) Regional conver-
gence might be particularly difficult for power generation, as the tech-
nologies (thermal, hydro, nuclear, wind and solar) vary significantly in
different provinces (shown in Tables A18–20 of SI). The energy mix of
a particular province is in part explained by the resource endowments
of that province and thus regional convergence might be difficult.
Note that thermal power is still the primary source for power generation
in China (NBSC, 2002-2016b; CEC, 2016) as well as most of provinces
except for Sichuan, Yunnan, Qinghai, Hubei and Guangxi. In general,
when conducting technology transfer or joint research of technology in
the electricity sector, provinces should take their own resource charac-
teristics and advantages into consideration.

6. Conclusions

Given that energy-intensive industries account for about 80% of the
CO2 emissions of China, they are a key component in China's ability to
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achieve its emissions goals. Motivated by the idea that each particular
sector within energy-intensive industries has similar technical charac-
teristics that can be replicated across regions, this study explores the im-
pact of regional convergence in the CO2 emissions of energy-intensive
industries until 2030. To address this issue, three scenarios are
established which can be used to reflect the degree of regional conver-
gence of a given sector across all provinces. The findings show that
the potential impact of this regional convergence on CO2 emissions is
significant. If the frontier scenario can be reached, the CO2 emissions
of energy-intensive industries can be reduced by 42.0–44.2%; and the
reduction reaches N80% if the best-available technology scenario is
reached. The emission reduction potential is highest in the electricity
and ferrous metals sectors. Even under business as usual, the carbon
intensity of energy-intensive industries can achieve the emissions
goals before the targeted years, with the goals being realized much
earlier under regional convergence. The contributions of regional con-
vergence in the chemicals and electricity sectors are themost significant
to China's emissions goals, especially in electricity sector. Under busi-
ness as usual there is a steady increase in the total volume of emissions
from energy-intensive industries in the period under study, but if there
is regional convergence these emissionswill peak in 2025 (both frontier
and best available technology) and decrease thereafter.

The historical patterns of carbon intensity do not show an obvious
trend of convergence, except in the sector of non-metallic products. In
order to promote regional convergence, theChinese government should
provide policy instruments for the introduction and diffusion of tech-
nologies across provinces. Meanwhile, local governments, especially
those who employ inefficient technologies, need to actively conduct
joint research and introduce advanced technologies under the guidance
of national policies. Of course, the adoption of new technologies should
take into account local characteristics and promote innovation, in order
to achieve a better adaptation. As a supplementary policy, fiscal policy
could be used in conjunction with regulation and guiding policies. For
example, the cost of technology introduction could be reduced through
fiscal means, as cost is a major factor holding back technology conver-
gence (Hao and Peng, 2017). The Chinese government could reduce
the purchase tax or provide financial subsidies for the adoption of
efficient technology. In particular, a significant impact of regional con-
vergence on CO2 emissions and emissions goals manifests in the elec-
tricity sector, so this sector should be prioritized when encouraging
technology convergence.
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