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Summary 

During 2017, a novel method was developed – based on a machine learning 

approach called Gaussian Process Regression – for using raw Lidar data to 

reconstruct instantaneous 3D wind fields. This method was successfully validated 

using a Windcube v2 ground-mounted static beam Lidar, against 10-minute 

averaged data from several cup anemometers at different heights on a met mast 

located on a site with “simple” terrain. 

 

The current report summarises an innovation project funded by ECN part of TNO to 

collect a new data set using its Windcube 200s scanning Lidar, in order to: 

1 validate against a 3D sonic anemometer at 1Hz frequency for clean and 

complex wind conditions; 

2 understand how the method performs when applied to a different Lidar design 

and scanning pattern. 

 

Apart from implementing a method to filter laser pulse reflections from the met 

mast, no changes were required to the method presented in previous reports. 

 

Four scanning patterns were tested, altering the speed and azimuthal scanning 

range. The beam-resolved wind speed predicted by the machine learning method is 

validated against the wind velocity measured by the sonic anemometer, resolved to 

the angle from the Lidar to the sonic anemometer; the results are shown in Table 1. 

Table 1 Results of validation analyses against a sonic anemometer. 

Validation test Length of test (days) Bias (m/s) Scatter (m/s) 

Fast-Narrow 3 0.07 0.78 

Fast-Wide 6 0.20 0.61 

Slow-Narrow 10 -0.06 0.56 

Slow-Wide 25 -0.05 0.91 

Cup anemometer 30 0.03 0.40 

 

These results indicate that scanning Lidar measurements, processed through 

Gaussian Process reconstruction methods, can be used to reproduce reliable 1Hz 

measurements. The conditions experienced at the EWTW site are complex, both in 

terms of atmospheric physics, but also the wakes from a very large number of 

turbines. No filters have been applied on the results by wind direction or wind 

speed. After all, the intention is to create a method that works in all wind conditions. 

 

There are some limitations, in particular, it appears that no matter what scanning 

pattern is used, turbulence with a timescale below 10 seconds is unlikely to be 

resolved. For comparison, with the static WindCube v2, turbulent features down to 

about 3 seconds were observed. This may be caused by the characteristics of the 

Lidar scanning pattern, or the Gaussian Process analysis, or a combination of both.  

 

This study has identified further work: 

1 an error in the code has been identified which causes some errors at the 

boundaries between hours; which should be fixed. 

2 the conversion of Lidar beam speed to wind velocity remains an open question, 

although some work has been completed on algorithms intended to solve this. 
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 1 Introduction 

During 2017, a novel method was developed – based on a machine learning 

approach called Gaussian Process Regression – for using raw Lidar data to 

reconstruct instantaneous 3D wind fields. 

 

As described in the final report [1] and subsequent paper [2], data from Windcube 

v2 ground-mounted static beam Lidar units (supplied by Leosphere) were used for 

development. The results were validated against 10-minute averaged data from 

several cup anemometers at different heights on a met mast located on a site with 

“simple” terrain. 

 

In that project, it was not possible to finish exploring some important questions: 

1. Establishing and implementing a good method for reconstructing the wind 

velocity from the radial speeds output by the Gaussian Processes. 

2. Fully validating the methodology, by comparison at high frequency (at least 

1 Hz) against 3D velocity measurements. 

3. Understanding how the method performs using other Lidar machines and 

data acquisition geometries. 

 

In 2018, therefore, ECN part of TNO funded an internal innovation project to collect 

a new data set and run analysis sufficient to answer the second and third open 

questions above. In the event of successful results, this brings the method closer to 

certification for commercial use.  
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 2 Data Set 

2.1 Instrument Locations 

A scanning lidar (see section 2.2) was installed on the ECN Wind turbine Test site 

Wieringermeer (EWTW), next to one of the prototype turbines, as indicated in 

Figure 1. 

 

 

Figure 1 Satellite image from Google Earth showing the layout of the wind turbine test site 

Wieringermeer. The lidar is indicated by the square next to turbine labelled PW7. The 

met mast with the sonic anemometer is indicated by the triangle labelled M6. 

A sonic anemometer (see section 2.3) is placed on a met mast 123m above ground 

level and at an angle of 140 degrees on a 3m boom. Figure 2 shows the placement 

of the sonic anemometer on the met mast. Above it (at 127m) on the same boom, 

there is a Thies Wind Transmitter First Class Advanced cup anemometer. 

 

The location of the scanning lidar was 52.818943 N, 5.055757 E (638531m N 

5854110m E in UTM co-ordinates). According to [4], the met mast is located at 

52.816613 N, 5.051749 E (638268m N 5853843m E). 

 

From this information, the vector from the lidar to the sonic anemometer should be 

[-261,-269,123].  
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Figure 2 Arrangement of the top of the MM6 met mast – showing the sonic anemometer 

installed upside-down on the 127m, 140 degree boom. 

2.2 Lidar 

ECN part of TNO owns a Leosphere Windcube 200s scanning lidar unit. The 

specifications can be found online at [3]. 

 

The lidar can be set up in a few different scanning regimes. The PPI mode was 

chosen, with the following properties: 

• 9 range gates: from 270m to 510m in 30m steps.  

• 2 degree azimuthal resolution. 

• Azimuthal range centred at 226.5 degrees (the azimuthal angle from the lidar to 

the met mast). 

• 4 elevation steps: 10, 14, 18 and 22 degrees (the elevation angle from the lidar 

to the sonic anemometer is approximately 16 degrees). 

 

Four different scanning patterns were chosen, in order to investigate the impact of 

spatial and temporal separation of the input data on the uncertainty and accuracy of 

the wind reconstruction. These were constructed from all combinations of: 

Speed 

• “Slow”: 5 degrees/s 

• “Fast”: 20 degrees/s 

Azimuthal Scanning Range 

• “Wide”: 30 degrees 

• “Narrow”: 10 degrees 

2.3 Sonic Anemometer 

The instrument used for validation is a Metek uSonic-3, whose specifications and 

calibration certificate are provided in [4] and online at [5]. It measures temperature 

and the three components of wind velocity.  
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 In order to obtain wind direction as a rotation clockwise from North at 0°, it is 

necessary to first rotate the measured horizontal direction θ (calculated from the 

horizontal u and v components of the wind velocity) clockwise by 128.254°, before 

inverting the sense of rotation by calculating (270° - θ). 

2.4 Timeline 

The timeline of the experimental data collection is given in Table 2. 

Table 2 Timeline of data collection and different scanning patterns. 

Scanning pattern Start of data collection End of data collection 

Fast-Narrow 2018-05-25 13:15 UTC 2018-05-28 12:47 UTC 

Fast-Wide 2018-05-29 11:15 UTC 2018-06-04 06:00 UTC 

Slow-Narrow 2018-06-04 06:04 UTC 2018-06-14 13:15 UTC 

Slow-Wide 2018-06-14 13:22 UTC 2018-07-09 11:00 UTC 
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 3 Updates to Analysis Method 

 

A new parsing program needed to be written to load and re-format the scanning 

Lidar raw data files, and save out data in 1-hour blocks. 

 

After some experimentation, it was realised that the met mast structure reflected 

some of the Lidar pulses, causing systematic errors in the data over a large area 

around the structure. As a result the following additional quality check was 

implemented: 

1. Load in each raw Lidar data file. 

2. Calculate the mean and standard deviation of the Carrier-to-Noise-Ratio 

(CNR). 

3. Rescale the CNR values into a z score: 𝑧 =
(𝐶𝑁𝑅 −𝑀𝑒𝑎𝑛)

𝑆𝑡𝑑. 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
⁄  

4. Flag all data points with a z score greater than 2.5. This removes all points 

with an unnaturally-large signal: which is likely to have come from reflection 

off a hard surface, rather than backscatter from atmospheric aerosols. 

 

This needs to be done separately for each file, rather than fixing a single CNR 

threshold, because the intrinsic backscatter strength of the atmosphere varies with 

time. 

 

Otherwise, no changes were required to the structure or assumptions built into the 

Gaussian Processes (GPs) described in [1] and [2].  
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 4 Results 

4.1 Data Processing 

As with the previous study, the GP analysis enables instantaneous 3D mapping of 

the beam velocity from a “Virtual Lidar”; example ‘slices’ using the Lidar data are 

shown in Figure 3. 

 

Figure 3 Top: Spatial map at 120m height above the ground of mean Lidar beam speed 

predicted by the Virtual Lidar at one instant in time, while the Lidar was in the fast-wide 

scanning pattern. Bottom, left: Plan view of data collected within one second of that 

time by the Lidar (size and shape of each point indicates its distance above [+] or 

below [o] the 120m plane). Bottom, right: Spatial map at X = -275m (west of the Lidar) 

of mean Lidar beam speed predicted by the Virtual Lidar at one instant in time. 
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 The raw Lidar data were now processed to produce Lidar beam estimates at 1Hz at 

the location of the sonic anemometer: due to error in the calculations in section 2.1, 

the location required was actually [-272, -258, 123]; due to lack of time this issue 

could not be investigated fully and the results shown in this section assume the 

sonic anemometer is located at [-271, -259, 123] relative to the Lidar. Any 

predictions with an uncertainty standard deviation greater than 1m/s were removed. 

 

The 4Hz data from the sonic anemometer were first averaged to 1Hz, and then 

resolved to the Lidar beam angle for direct comparison with the Lidar beam speeds 

predicted by the GP modelling. 

 

For each scanning pattern, the internal Lidar clock appeared to shift (relative to the 

database clock referencing the sonic anemometer data). An automatic function was 

created to calculate and apply a time shift to best match the two time series.  

 

The following sub-sections show results for each scanning pattern. The number of 

seconds shifted is displayed above each time series graph. 

4.2 Fast-Narrow 

Figure 4 gives an overview of the wind speeds (resolved to the Lidar beam) 

measured during the period and a comparison with the GP output. 

 

Figure 4 Comparison of sonic anemometer (black) with Lidar GP output (blue, including mean 

and +/- one standard deviation) while using the fast-narrow scanning pattern. 

Figure 5 shows a close up of the agreement, for greater understanding. 
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Figure 5 Six minutes of comparison of sonic anemometer (black) with Lidar GP output (blue, 

including mean and +/- one standard deviation) while using the fast-narrow scanning 

pattern. 

Finally, validation can be effected by statistical calculations. The scatter plot is given 

in Figure 6, showing a bias of 0.069 (+/- 0.003) m/s and a scatter of [0.780, 0.784] 

m/s. 90% confidence intervals (assuming independence) are given. 

 

Figure 6 Scatter plot of resolved beam speeds from the GP reconstruction versus the sonic 

anemometer, while using the fast-narrow scanning pattern. 
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 4.3 Fast-Wide 

Figure 7 gives an overview of the wind speeds (resolved to the Lidar beam) 

measured during the period and a comparison with the GP output. 

 

Figure 7 Comparison of sonic anemometer (black) with Lidar GP output (blue, including mean 

and +/- one standard deviation) while using the fast-wide scanning pattern. 

Figure 8 shows a close up of the agreement, for greater understanding. 

 

Figure 8 Six minutes of comparison of sonic anemometer (black) with Lidar GP output (blue, 

including mean and +/- one standard deviation) while using the fast-wide scanning 

pattern. 

Finally, validation can be effected by statistical calculations. The scatter plot is given 

in Figure 9, showing a bias of 0.198 (+/- 0.001) m/s and a scatter of [0.606, 0.608] 

m/s. 90% confidence intervals (assuming independence) are given. 
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Figure 9 Scatter plot of resolved beam speeds from the GP reconstruction versus the sonic 

anemometer, while using the fast-wide scanning pattern. 

4.4 Slow-Narrow 

Figure 10 gives an overview of the wind speeds (resolved to the Lidar beam) 

measured during the period and a comparison with the GP output. 

 

Figure 10 Comparison of sonic anemometer (black) with Lidar GP output (blue, including mean 

and +/- one standard deviation) while using the slow-narrow scanning pattern. 
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 Figure 11 shows a close up of the agreement, for greater understanding. 

 

Figure 11 Six minutes of comparison of sonic anemometer (black) with Lidar GP output (blue, 

including mean and +/- one standard deviation) while using the slow-narrow scanning 

pattern. 

Finally, validation can be effected by statistical calculations. The scatter plot is given 

in Figure 12, showing a bias of -0.056 (+/- 0.001) m/s and a scatter of [0.558, 0.559] 

m/s. 90% confidence intervals (assuming independence) are given. 

 

Figure 12 Scatter plot of resolved beam speeds from the GP reconstruction versus the sonic 

anemometer, while using the slow-narrow scanning pattern. 
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 4.5 Slow-Wide 

Figure 13 gives an overview of the wind speeds (resolved to the Lidar beam) 

measured during the period and a comparison with the GP output. 

 

Figure 13 Comparison of sonic anemometer (black) with Lidar GP output (blue, including mean 

and +/- one standard deviation) while using the slow-wide scanning pattern. 

Figure 14 shows a close up of the agreement, for greater understanding. 

 

Figure 14 Six minutes of comparison of sonic anemometer (black) with Lidar GP output (blue, 

including mean and +/- one standard deviation) while using the slow-wide scanning 

pattern. 

Finally, validation can be effected by statistical calculations. The scatter plot is given 

in Figure 15, showing a bias of -0.054 (+/- 0.001) m/s and a scatter of [0.908, 0.910] 

m/s. 90% confidence intervals (assuming independence) are given. 
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Figure 15 Scatter plot of resolved beam speeds from the GP reconstruction versus the sonic 

anemometer, while using the slow-wide scanning pattern. 
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 5 Analysis and Conclusions 

From the results presented in the previous section, it appears that Lidar 

measurements, processed through Gaussian Process reconstruction methods, can 

be used to reproduce reliable 1Hz measurements. The conditions experienced at 

the EWTW site are usually simple, but away from the dominant wind direction there 

are complex conditions, mostly due to wakes from a very large number of turbines, 

but also (at times of easterly or westerly winds) occasional complex shear profiles 

caused by lake-land-sea boundaries. No filters have been applied on the results by 

wind direction or wind speed. After all, the intention is to create a method that works 

in all wind conditions. 

 

By comparison, the agreement scatter plot between the horizontal wind speeds 

measured by the sonic anemometer and the cup anemometer (as described in 

section 2.1, this is placed 4m higher) are presented for the entire month of June 

2018 in Figure 16.  This overlaps with three of the scanning pattern tests, see Table 

2.  A bias of 0.032 m/s and a scatter of 0.397 m/s is seen. 

 

Figure 16 Scatter plot of horizontal wind speeds measured by the cup anemometer versus the 

sonic anemometer. 

These statistics compare well with the results from the most accurate – slow-narrow 

– scanning pattern. It is clear that the wider azimuthal range introduces additional 

uncertainty in the reconstruction of a wind speed at a point. However, it is not 

certain from this experimental data set whether uncertainty introduced into the 

individual measurements by the very fast scanning patterns is a problem. The 
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 statistical methods should theoretically be able to separate out noise from signal 

efficiently when there is sufficient data of even low quality.  

 

Inspection of the close-up plots in section 4 indicates smoothed wind conditions in 

time – it appears that no matter what scanning pattern is used, turbulence with a 

scale below 10 seconds is unlikely to be resolved. For comparison, with the static 

WindCube v2, turbulent features down to about 3 seconds were observed. This 

may be caused by the characteristics of the Lidar scanning pattern, or the Gaussian 

Process analysis, or a combination of both.  

 

In the results plots, it can be seen that certain (regularly-occurring) times have large 

errors. This is partly due to an error in the coding of the analysis, causing data 

before hour-breaks not to be used. Partly it is due to the Lidar switching itself off 

every 22:00 and then apparently recording incorrect data for a few seconds after 

switching on again. 

 

Finally, it should be noted that this study has not resolved the question of the 

Cyclops effect. Prototype algorithms have been created to infer the wind velocity 

from beam speeds output from the Virtual Lidar at various locations at the same 

instant in time (as suggested in [2]). However, time has prevented conclusive 

investigation of this during this project (which was in any case not one of the 

objectives). 
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