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ABSTRACT  
 
The sustainability of geothermal fields is based on a paradox. On one side, fractures are 
targeted on heat-flow improvement, and on the other side the same fractures are avoided 
because of induced-seismicity risk. In this context, we developed analytical approaches for 
estimating (1) thermo-poro-elastic stresses in a fractured geothermal system, and (2) 
seismicity rates based on the model of Dieterich (1994). We modeled cold water injected at 
a constant rate into a single fracture surrounded by hot impermeable layers. The rationale 
for focusing on one single isolated fracture was that flow in the vicinity of injection wells is 
often concentrated in a couple of fractures instead of being homogeneously distributed. 
Heat flow appeared to be dominated by advection inside the fracture and conduction 
outside it. Poro- and thermo-elastic stresses around the single fracture were estimated 
separately following two independent analytical approaches; and for any potential fault 
around the single fracture the induced Coulomb stress rates were resolved. The role of 
thermal stresses appeared to be the leading one. We show that thermal-stressing rates can 
induce an increase in the rate of seismicity of more than a thousand-fold at distances up to 
200m from the single fracture. Our fast forward models are suitable for data assimilation 
and they open the route for heat-flow optimization while keeping seismicity at a relatively 
low magnitude. 
 
 
1. Introduction 
 
The understanding of geothermal fields requires coupling between heat flow through 
fractures and induced seismicity: slip along fractures can enhance the heat flow but can also 
lead to large seismic events. The grail is to take advantage of fracture conductivity while 
keeping seismicity at a relatively low magnitude, thus avoiding risks of large earthquakes 
(Zang et al., 2013). Our present contribution targets a better understanding of this complex 
coupling between heat transfer, flow, fractures, and earthquakes. 
 



Flow through a fractured geothermal system is often modelled with complex numerical 
approaches, taking into account the interaction between multiple fractures (Taron et al., 
2009; Izadi and Elsworth, 2010; McClure and Horne, 2010; Jalali, 2013). These models give 
detailed pictures of the Thermo-Hydro-Mechanical couplings, but the time-consuming 
nature of such models preclude processes and physical parameters validation and updating 
through data assimilation. In our vision only a probabilistic approach covering an ensemble 
of fast model realizations can help to build confidence in future predictions.  
 
Instead of modeling an entire fractured system, many authors focused on injection into a 
single fracture (e.g. Mossop, 2001; Catalli et al., 2008; Baisch et al., 2010). This is justified by 
the fact that flow is often channelized in a single highly permeable fracture - instead of 
being homogeneously distributed in the medium. Relatively fast semi-analytical models, 
suitable for data assimilation schemes, already showed complex behavior in terms of 
couplings between stress perturbations due to pressure and temperature changes, 
permeability enhancement, and seismicity. In the same spirit, we focus on a single fracture 
injection model, but with the aim to assess the poro-elastic and thermo-elastic stress 
perturbations in the surrounding media. As a matter of fact, previous models were 
restricted in assessing the poro- and thermo-elastic stress perturbations solely at the 
fracture surface. 
 
It is generally assumed that fault slip occurs when a Mohr-Coulomb stress criterion is 
reached. However, this approach, only considering stress changes, does not honor the 
frictional constitutive behavior of faults. Indeed, laboratory data and models based on rate 
and state friction show that the timing of a dynamic instability depends on both initial 
conditions and applied stress (Dieterich and Kilgore, 1996). Following a stress perturbation 
along a fault plane, an initial aseismic nucleation phase causes a delay in the start of a 
seismic instability. For a population of faults, such characteristic nucleation times become 
manifest in an Omori-type temporal decay of aftershocks after the stress perturbation 
induced by the mainshock. In our case the stress perturbation is the one imposed by the 
cold-water injection through the single fracture. This intrinsic rate dependence in 
earthquake nucleation will be also included in our approach in order to model the spatio-
temporal pattern of the seismicity rate. 
 
The present contribution is an extension of the work of Candela and Fokker (2017) where a 
semi-analytical approach following the nucleus-of-strain concept was presented. This time 
we introduce a fully analytical approach based on existing thermo-elastic theory to compute 
thermal stress changes. 
 
 
2. Pressure and temperature throughout and around a single fracture 
 
We employ an axisymmetric model for flow and temperature (Figure 1), based on the 
approach of Mossop (2001). Cold water (initial temperature 𝑇𝑤0

= 40℃) is injected at 

constant rate into a horizontal permeable fracture surrounded by an impermeable hot 
medium (initial temperature 𝑇𝑅0

= 240℃). Water is assumed to remain liquid and phase 

changes are neglected. 
 



2.1. Pressure distribution 
 
In our flow model, we only consider the radial terms of the diffusion equation as: 
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where 𝑟 is the radial distance from the injection point. 𝑐𝐷 represents the fracture hydraulic 
diffusivity. 
Boundary conditions are defined as: 
𝑝(𝑟 → ∞, 𝑡) = 𝑝0           (2) 

𝑞𝑟(𝑟 = 𝑟𝑏 , 𝑡 ≥ 0) =
𝑚̇𝑟𝑏

2𝜋𝑟𝑏ℎ
          (3) 

where 𝑝0 is the initial pore pressure (constant in the complete domain), 𝑟𝑏 the borehole 
radius, 𝑚̇𝑟𝑏

 the mass injection rate at the borehole wall, ℎ the fracture thickness, and 

𝑞𝑟(𝑟 = 𝑟𝑏 , 𝑡 ≥ 0) the radial component of the fluid flux at the borehole defined as constant. 
Introducing Darcy’s law, equation (3) can be re-written as: 
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with 𝜂 and 𝜌𝑤 are respectively the water dynamic viscosity and density, and 𝑘 is fracture 
permeability. The solution of equation (1) subject to (2) and (4) gives the pore pressure 
distribution in the fracture as a function of radial distance from the injection point and time, 

𝑝(𝑟, 𝑡) =
𝑚̇𝑟𝑏

𝜂
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(Theis, 1935), where 𝐸1 is the exponential integral of the first kind (see Figure 2).  Figure 2 
presents the radial pressure distribution at different time steps of injection, and based on 
the model parameters listed in Table 1. 
 
2.2. Temperature distribution 
 
We assume that the flow of water through the fracture cools down the solid-rock 
component of the fracture by advection, and the surrounding rock (outside the fracture) by 
conduction. Following the approach of Mossop (2001) the problem is reduced to a radial 
flow heat exchanger and is a specific case of a general class of advection-diffusion problems. 
The main simplifying assumptions of the temperature model are:  
 
* The fracture is thin enough (i) to assume thermal equilibrium between the water and 
solid-rock component of the fracture and (ii) to assume the temperature to be constant 
across the thickness of the fracture. 
 
* Within the fracture, the radial thermal advection is supposed dominant and the radial 
thermal conduction is neglected. 
 
* Within the rock outside the fracture, the normal conductive heat is supposed dominant 
and the radial conductive heat is neglected. 
 
The temperature of the rock outside the fracture 𝑇𝑅 must satisfy the heat equation as: 

∇2𝑇𝑅 −
1

𝜅

𝜕𝑇𝑅

𝜕𝑡
= 0          (6) 

where 𝜅 is the rock thermal diffusivity. Energy conservation dictates the boundary 
conditions for solving equation (6): the heat flow from the rock to fracture (right side of 



equation (7)) must be balanced by the heat change in the fracture itself and the heat 
transported away throughout the fracture by the water (left side of equation (7)): 
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with 𝐾 the rock thermal conduction coefficient, 𝑐𝑤 the specific heat capacity, 𝜐 →
𝑚̇𝑟𝑏

/(2𝜋𝑟ℎ𝜌𝑤𝜙) the velocity of the radial flow inside the fracture (with 𝜙 the fracture 

porosity), and 𝜉 a dummy parameter close to unity quantifying the ratio between the total 
heat contained within the rock-fault and the total heat held in the pore water alone. Hence 
in equation (7) 𝑇𝑤 is equal to the temperature of the water and rock-fault since inside the 
fracture the water and solid-rock component are supposed at thermal equilibrium. The last 
boundary condition at the fracture interface imposes that the temperature of the wall rock, 
that is 𝑇𝑅 at the fracture interface, and 𝑇𝑤 should be in equilibrium: 
𝑇𝑤 = 𝑇𝑅|𝑧=±ℎ/2           (8) 

Solving the heat equation (6) for the temperature perturbation 𝑇𝑅 in the rock outside the 
fracture with the boundary conditions [7] and [8] leads to: 
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As already mentioned 𝑇𝑤(𝑟, 𝑡), temperature of the fluid and solid-rock in the fracture, is 
expressed as 𝑇𝑅(𝑟, 𝑧 = ℎ/2, 𝑡). 𝐻 is for Heaviside function. The reader is referred to 
Appendix B of Mossop (2001) for the detailed derivation of the temperature perturbation 
(equation (9)). Figure 3 displays cross-sections of the temperature perturbation in a vertical 
plane passing through the borehole for the parameters listed in Table 1 and after different 
durations of injection. 
 
 
3. Poro-thermo-elastic stresses around the fracture 
 
An increase of pore pressure inside the fracture, due to the injection of water, causes the 
surrounding rock to be compressed. A decrease of the temperature inside and about the 
fracture causes the rock to contract. In poro-elasticity a dilation e caused by an increase of 
the pore pressure ∆𝑝 is defined as 𝑒 = 𝑐𝑚∆𝑝 with 𝑐𝑚 the uniaxial compaction coefficient. In 

the case of thermo-elasticity, 𝑐𝑚 is replaced by (
1+𝜈

1−𝜈
) 𝛼 (with 𝜈 the Poisson’s ratio and 𝛼 the 

coefficient of thermal expansion), and a contraction e caused by a decrease of the 

temperature ∆𝑇 is thus defined as 𝑒 = (
1+𝜈

1−𝜈
) 𝛼 ∆𝑇 (Geertsma, 1973). 

  
We have adopted two approaches for deriving the stress field around the single fracture 
induced by poro- and thermo-elastic volumetric changes. The convention here is to use 
negative sign for compressive stresses. 
 
3.1. Nucleus-of-strain based: approach-A 
 
The first approach, referred to as approach-A in the sequel, is based on the nucleus-of-strain 
concept (Mindlin 1936, 1950, Sen, 1950). In line with our axisymmetric geometry we follow 
the approach developed by Geertsma (1973) and Segall (1992) for spatial integration of 



unitary nuclei over a disk-shaped reservoir. The pressure and temperature distributions are 
treated separately.  
 
For each time step, the pressure distribution is divided into n concentric hollow cylinders 
(Figure 4). The width of each hollow cylinder corresponds to the discrete radial steps, and 
the thickness of the hollow cylinders corresponds to the fracture thickness. Each hollow 
cylinder corresponds to a distribution of nuclei with identical pressure increase. The final 
solution is then given by the spatial integration of unitary nuclei of strain τij*(r,z;ϱ,ς) over the 
radius ϱ and thickness ς of the perturbed zone as: 

∆𝜎𝑖𝑗(𝑟, 𝑧) = ∬ 𝑒(𝜚, 𝜍) 𝜏𝑖𝑗
∗ (𝑟, 𝑧; 𝜚, 𝜍) 𝑑𝜚𝑑𝜍

𝜍 𝜚
       (10) 

 
For the temperature distribution we follow the same approach as for the pressure, except 
that its depth-dependency requires an up-scaling step first. Indeed, for the sake of 
computational speed, the volumetric temperature distribution is vertically averaged to 
obtain a planar distribution. We have confirmed that performing the computation without 
up-scaling, that is considering a vertical array of discrete hollow cylinders, gives similar 
results for the stress distribution around the perturbed disk-shaped volume. 
 
Instead of using the original single center of compression nucleus of strain developed by 
Mindlin (1936) for the stress induced by each nucleus, we used the newly developed 
influence function by Nikkhoo et al., (2017). This new solution extends the well-known 
Okada’s inflation source solution (Okada, 1985, 1992) by addressing the numerical artefact 
and the geometrical limitation problem in his structure.  
 
3.2. Myklestad based: approach-B 
 
Myklestad (1942) derived equations (see Appendix A) for all the components of the stress 
tensor as induced by heating a semi-infinite cylinder to a constant temperature difference 
with respect to the ambient reservoir temperature using elliptical integrals in a radial 
coordinate system. The expressions for all stress components are built up from specific 
elliptic integrals. Before using Myklestad’s approach, we had to change the use of the ±-sign 
of his equation [M25], which was incorrect in the article (see Appendix A). To obtain the 
thermo-elastic stresses around a disk-shaped reservoir, that is the single fracture in our 
case, we subtracted the contributions of two cylinders, the second one translated vertically 
over the thickness h of the zone affected by temperature changes (Figure 5). To derive the 
extent of the zone affected by temperature changes, the temperature distributions 
obtained with equation (9) were approximated by a cylindrically-shaped uniform 
distribution. For each time step, the thickness and radius of the cylinders correspond to the 
distances reached by the temperature front −80℃ respectively at the injection point and 
the tip of the fracture. The averaged uniform temperature perturbation is approximated as 
𝑇𝑅 = −140℃ (see Figure 3). 
 
Figures 6 and 7 present examples of stress fields around the single fracture computed with 
model parameters listed in Table 1 for our both approaches. Tensor of stress changes were 
first translated to Cartesian coordinates using the standard cylindrical coordinate 
transformation (Fjaer et al., 2008). Both approaches give similar thermo-elastic stress 
distributions. Beyond 50m away from the single fracture, the induced poro-elastic stresses 



are negligible compared to the induced thermo-elastic stresses. In the following, therefore, 
the Coulomb stressing rate and the associated seismicity rate will be based on the thermo-
elastic stresses only. 
 
 
4. Coulomb stress 
 
We consider faults uniformly distributed around the single fracture. In other words, each 
location around the single fracture can potentially host a fault. For this particular example 
we consider only one fault family, that is all the faults are normal faults striking N-S and 
dipping 60° toward west (see Figure 1). This setting results in a unit normal vector to the 
fault 𝒏̂ = [−0.866,0,0.5]𝑇and a unit slip vector 𝒔̂ = [−0.5,0, −0.866]𝑇. 
 
Before determining the Coulomb stress, one must compute the shear and normal tractions. 
This can be done combining the stress tensor with the unit slip and normal vectors (Jaeger 
et al., 2007). Finally the Coulomb stress changes reads: 
∆𝑆 = ∆𝜏𝑠 + 𝑓(∆𝜎𝑛)          (11) 
with ∆𝜏𝑠 and ∆𝜎𝑛 the shear and normal tractions changes computed on the assumed fault 
plane, 𝑓 the fault friction coefficient. 
 
 
5. Seismicity rate 
 
We intend to model the seismicity rate induced by the thermo-elastic stress changes. The 
traditional Coulomb failure model predicts that whenever the Coulomb stress reaches a 
threshold value, an earthquake is generated. Assuming a population of faults on which the 
pre-stresses are uniformly distributed up to the threshold value, the Coulomb failure model 
leads to a direct proportionality between the seismicity rate and the Coulomb stress rate. 
During any arbitrary stressing history, as soon as the Coulomb stress starts to decrease, the 
Coulomb failure model predicts an instantaneous shut-down of the seismicity. This 
prediction is not in agreement with the observed seismicity, which generally shows a 
gradual decay following the onset of Coulomb stress decrease. 
 
The Coulomb failure model does not honor the frictional constitutive behavior of faults. 
Laboratory data show that the timing of dynamic instability depends on initial conditions, 
fault properties and applied stress (Dieterich and Kilgore, 1996). The rate-and-state friction 
laws have been established in order to reproduce these laboratory observations (see 
Marone, 1998 for a review). More specifically, the rate-and-state friction laws reproduce the 
fact that the onset of frictional sliding is a non-instantaneous time-dependent process (as 
opposed to the instantaneity assumption of the Coulomb model), which introduces a time-
dependent failure mechanism for the generation of earthquakes. Now assuming a 
population of faults following a rate-and-state frictional behavior, and where the time-to-
failure of the nucleation spots along the faults is uniformly distributed, Dieterich (1994) 
derived the following seismicity rate model: 

𝑅𝐷 =
𝑟0

𝛾𝑆̇0
 where 

𝑑𝛾

𝑑𝑡
=

1

𝐴𝜎̅
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𝑑𝑆

𝑑𝑡
]         (12) 

where 𝑅𝐷 is the seismicity rate, 𝛾 is a state variable, 𝑆 is the Coulomb stress and 𝜎 the 
background effective normal stress. The constant 𝑟0 is the steady-state background 



seismicity rate at the reference stressing rate 𝑆̇0. 𝐴 is a dimensionless fault constitutive 
parameter. 
 
Segall and Lu (2015) reformulated this seismicity rate equation to eliminate the state 
variable 𝛾. They defined a normalized seismicity rate, relative to the background rate, as: 

𝑅 =
𝑅𝐷

𝑟0
            (13) 

The differential equation for 𝑅, derived from equations (12) and (13), is: 
𝑑𝑅

𝑑𝑡
=

𝑅

𝑡𝑎
[

𝑆̇

𝑆̇0
− 𝑅]           (14) 

where 𝑡𝑎 = 𝐴𝜎𝑛
′ /𝑆̇0 is the characteristic time delay for the earthquake nucleation process, 

which also corresponds to the time scale of decay of the aftershock rate following a main 
shock back to the background rate.  
 
The rate of seismicity 𝑅 can be viewed as a statistical representation of the rate of 
earthquakes of a given magnitude, such that 𝑅 = 100 corresponds to a hundredfold 
increase in the rate of earthquakes of a given magnitude. 
 
Before computing the rate of seismicity 𝑅 with equation (14), one needs to calculate the 
Coulomb stressing rate 𝜏̇. This is realized by following an approach similar to Chang and 
Segall (2016). From equation (11), we obtained the Coulomb stress at discrete time steps. 
Then we used a smoothing interpolant in order to estimate the Coulomb stress history at 
arbitrary time steps. This interpolation step needs to be performed with caution and we 
used a spline form (using pchip in MATLAB) that allows to avoid ringing behavior near 
derivative singularities. Finally, one can differentiate the Coulomb stress interpolant (using 
fnder in MATLAB).  
 
After calculation of the Coulomb stressing rate 𝜏̇, we integrate the ordinary differential 
equation (14) using ode45 in MATLAB with relative tolerance of 1e-6 and very small 
absolute tolerance. Figures 8 to 10 display the spatio-temporal patterns of the seismicity 
rates solely induced by thermo-elastic stressing and following the Myklestad-based 
approach (section 3.2).  
 
As a reference scenario, for friction parameters we assume a nominal friction of 𝑓 = 0.6, 
and we take 𝑎 = 0.001 as representative of friction experiments (Marone, 1998). We 
consider a background effective normal stress 𝜎 = 40MPa, and assume a background 
stressing rate 𝜏̇0 = 0.8 × 10−3MPa/years such that a typical 0.8MPa stress drop 
accumulates in 1000 years. Combining these parameters values, this leads to a characteristic 
decay time 𝑡𝑎 = 50years. We also consider two alternative scenarios. In the first, the 
friction is reduced to 0.1 following the assumption that the potential seismic faults are 
smeared by minerals with low friction coefficients (see e.g. Lockner et al., 2011; Di Toro et 
al., 2011). The contribution of ∆𝜎𝑛 in the fault destabilization is then reduced (see equation 
11). The second alternative employed a lower background effective normal stress 𝜎 =
10MPa representative of over-pressurized faults, also implying a shorter characteristic time 
delay 𝑡𝑎. 
 
For the particular fault family set used, the increase of the seismicity rate 𝑅 can be as much 
as ten thousand (log10 R =4) at 100m from the single fracture (Figures 8 to 10). With a 



decrease of the fault friction the seismicity rate is even higher, as the shear stress 
contribution is magnified. With a shortening of 𝑡𝑎, by the reduction of the effective normal 
stress, the increase of the seismicity rate is even faster. 
 
 
6. Discussions and Conclusions 
 
The purpose of this paper was first to depict the details of the fast forward modelling steps 
rather than presenting sensitivity analysis on the model outcomes varying the model 
parameters. We detailed two independent fast routes for modelling induced poro- thermo-
elastic stresses around a single fracture. Figures 6 and 7 reveal that thermo-elastic effects 
are dominant compared to poro-elastic effects at distances beyond 50m from the fracture. 
The same injection model could be also adapted to thicker high-permeability streaks like 
fracture corridors; in this case the volumetric strain induced by injection might lead to more 
significant poro-elastic stressing. It is interesting to see that even with a very thin fracture, 
the thermal disturbance can induce a more than thousand-fold increase in the rate of 
seismicity (log10 R >3) at distances up to 200m from the single fracture (see Figure 8). Of 
course, different families of faults with different orientations would result in different 
spatio-temporal patterns of seismicity rate. We have also demonstrated that fault zone 
frictional properties and in-situ stress properties are essential in estimating seismicity rates.  
 
The next step of our approach would be to integrate the present forward models in a data 
assimilation scheme. Both forward models and model parameters should be considered in 
order to rank their performance. The exercise here consists in confronting model outcomes 
with data in order to refine knowledge about the governing physical processes and the 
driving input model parameters. The spatio-temporal distribution of induced micro-
earthquakes is the natural candidate for the data to be assimilated. At this stage, simplifying 
assumptions of the model could be tested, and one could imagine a step-wise 
complexification of the forward modeling in order to improve the match with the data. For 
example one should be able to assess whether or not full temperature ↔ pressure ↔ stress 
coupling should be integrated in the forward model in order to match the data and process 
of interest. Refining the model parameters of the Dieterich (1994) model would be also a 
purpose of the data assimilation scheme (Catalli, 2008). The limitations of the Dieterich’s 
model, as disregarding the source-to-source stress interactions, could be also tested by data 
assimilation. Finally, one could make the connection to more micro-physics based friction 
models (Niemeyer and Spiers, 2007; Chen and Spiers, 2016). 
 
We presented fast analytical routes suitable for data assimilation in order to model and 
predict seismicity rates in a fractured geothermal system. Our approach combining poro-
thermo-elastic stressing and fault constitutive behavior has been tailored to model 
seismicity rates around a single fracture in a geothermal field. Previous fast models were 
often restricted in assessing the poro- and thermo-elastic stress perturbations and 
seismicity solely at the fracture surface. Clearly both approaches are complementary and 
one could easily imagine combining both as a next forward modeling. Interestingly, we 
showed that even with a very thin single fracture, thermal-stressing rates can induce an 
increase in the rate of seismicity of more than hundredfold at distances up to 200m from 
the fracture. By predicting the spatio-temporal evolution of the locations of 



increase/decrease of seismicity rate one should be able to optimize geothermal systems 
while keeping seismicity at a relatively low magnitude, thus avoiding risks of large 
earthquakes. 
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Table 1. Model parameters 

Pressure & Temperature model 

𝑇𝑤0
 40℃ 

𝑇𝑅0
 240℃ 

𝑟𝑏 0.1m 

𝑚̇𝑟𝑏
 10kg s−1 

𝑐𝐷 1000m2s−1 
ℎ 0.001m 

𝜂 10−3kg m−1s−1 
𝑘 10−8𝑚2 

𝜌𝑤 1000kg m−3 
𝜅 10−6m2s−1 
𝐾 2W m−1K−1 
𝜙 1.0 

𝑐𝑤 4200J kg−1K−1 
𝜉 1.0 

Mechanical model 

𝐶𝑚(pressure) 1.5 × 10−5bar−1 
𝐶𝑚(temperature) 1.7 × 10−5K−1 

𝜇 0.3 × 1011Pa 
𝜆 0.3 × 1011Pa 
f 0.6 & 0.1 

𝑐𝐷 1000𝑚2𝑠−1 
a  0.001 
𝜎 40 & 10MPa 
𝜏̇0 0.8 × 10−3MPa/years 

 
 
 



 

 
Fig. 1. Model geometry. The origin is at the center of the borehole in the middle of the 

single fracture (depth=3000m, thickness=1mm). Potential normal faults (in red) are dipping 

to the west. 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2 Pressure distributions for three different time steps: after 12, 67 and 100 days of 
injection. 

 

 

 



 

Fig. 3 Temperature distributions for different days of injections. Left side: temperature 
distributions obtained with equation 9 and used for the approach-A. The dashed black 
contour on the bottom panel underlines the cylindrical approximations used for the 
approach B (Right side). In order to derive the thickness and radius of the cylinders we 
picked the distance reached by the temperature front -80℃ respectively at the injection 
point and the tip of the fracture. Right side: Cylindrical approximations of the left-side 
temperature distributions used for the approach-B. The uniform temperature perturbation 
𝑇𝑅 of each cylindrical field is -140℃. 

 

 

 

 

 

 



 
 

Fig. 4 Concentric hollow cylinders of nuclei. The color scale marks the distance of each row 
from the origin (center of the borehole – middle of the single fracture). 

 

 

 

 

 

 

 

 

 

 



 
Fig. 5 Set-up of the thermo-elastic approach B for stress changes around the single fracture 

based on semi-infinite cylinders as proposed by Myklestad (1942). See also Appendix A. 

 

 

 

 

 

 

 



 
 

Fig. 6 Poro- and thermo- elastic 𝜎𝑧𝑧 stress fields around the single fracture. X axis is the E-W 

direction perpendicular to fault strike, and Z axis is the vertical direction on top of the single 

fracture (see Figure 1). Thermo-elastic A and B stand for thermo-elastic stresses computed 

via respectively approach A and B. 

 

 

 



 
Fig. 7 Poro- and thermo- elastic 𝜎𝑥𝑧 stress fields around the single fracture. X axis is the E-W 

direction perpendicular to fault strike, and Z axis is the vertical direction on top of the single 

fracture (see Figure 1). Thermo-elastic A and B stand for thermo-elastic stresses computed 

via respectively approach A and B. 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 8 Spatial distribution of the seismicity rate (log10 R) induced by thermo- elastic stressing 

after 100 days of injection around the single-fracture. X axis is the E-W direction 

perpendicular to fault strike, and Z axis is the vertical direction on top of the single fracture 

(see Figure 1). Left: reference case with friction 𝑓 = 0.6 and 𝜎 = 40MPa; center: 𝑓 = 0.1 and 𝜎 

= 40MPa; right: 𝑓 = 0.6 and 𝜎 = 10MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 9 Spatio-temporal distribution of the seismicity rate (log10 R) induced by thermo- elastic 

stressing along the X axis (E-W direction perpendicular to fault strike in Figure 1) and at a 

distance Z = 60m on top of the single fracture. Left: reference case with friction 𝑓 = 0.6 and 

𝜎 = 40MPa; center: 𝑓 = 0.1 and 𝜎 = 40MPa; right: 𝑓 = 0.6 and 𝜎 = 10MPa. The horizontal 

black dashed lines marks the chosen location (i.e. the distance along the X axis = 150m) for 

the slices presented in Fig. 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Fig. 10 Spatio-temporal distribution of the seismicity rate (log10 R) induced by thermo- 

elastic stressing along the  Z axis (on top of the fracture) and at a distance along the X axis = 

150m (see Figure 9). Left: reference case with friction 𝑓 = 0.6 and 𝜎 = 40MPa; center: 𝑓 = 0.1 

and 𝜎 = 40MPa; right: 𝑓 = 0.6 and 𝜎 = 10MPa.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Appendix A Analytical solutions for the thermo-elastic stresses in and around a semi-
infinite cylinder 
 
Myklestad (1942) has proposed equations for the shear stress and radial, tangential and 
vertical normal stress in and around a relatively cold semi-infinite cylinder in a relatively hot, 
isotropic, infinite solid. This analytical solution distinguishes between several regions in and 
around the cylinder. For convenience, radius r and depth z values are normalized to the 

radius of the cylinder, giving 𝑝 =
𝑟

𝑎
 and 𝑛 =

𝑧

𝑎
, where a is the radius of the cylinder. The 

equations are indicated by the letter M followed by a number, to illustrate to which 
equation in Myklestads paper they are linked. Figure 5 shows the set-up of a semi-infinite 
cylinder with the different locations corresponding to the set of equations presented. 
 
The equations by Myklestad (1942) make use of elliptic integrals, which are defined as: 

𝐾̅ = ∫
𝑑𝜃

√1−𝑘2 sin2 𝜃

𝜋

2
0

   complete elliptic integral of the first kind, modulus k 

𝐸̅ = ∫ √1 − 𝑘2 sin2 𝜃
𝜋

2
0

𝑑𝜃   complete elliptic integral of the second kind, 

modulus k 

𝐾̅′ = ∫
𝑑𝜃

√1−𝑘′2
sin2 𝜃

𝜋

2
0

   complete elliptic integral of the first kind, modulus k’ 

𝐸̅′ = ∫ √1 − 𝑘′2 sin2 𝜃
𝜋

2
0

𝑑𝜃  complete elliptic integral of the second kind, modulus k’ 

𝐾̅(𝜑′, 𝑘′) = ∫
𝑑𝜃

√1−𝑘′2
sin2 𝜃

𝜑′

0
  incomplete elliptic integral of the first kind, modulus k’ 

𝐸̅(𝜑′, 𝑘′) = ∫ √1 − 𝑘′2 sin2 𝜃
𝜑′

0
𝑑𝜃 incomplete elliptic integral of the second kind, modulus 

k’ 
The modulus used to evaluate the elliptic integrals differs for the shear and vertical normal 
stress, and the radial and tangential normal stress. The moduli for the elliptic integrals are 
described as: 

𝑘 = √
𝑎2+𝜆2

𝑎2+𝜆1
 for the vertical stress change Δσz and the shear stress change Δτrz 

𝜆1 =
1

2
[𝑟2 + 𝑧2 − 𝑎2 + √(𝑟2 + 𝑧2 − 𝑎2)2 + 4𝑎2𝑧2]  

𝜆2 =
1

2
[𝑟2 + 𝑧2 − 𝑎2 − √(𝑟2 + 𝑧2 − 𝑎2)2 + 4𝑎2𝑧2]  

𝑘 = √
4𝑝

(𝑝+1)2+𝑛2 for the radial and tangential normal stress change Δσr, Δσt 

𝑘′ = √1 − 𝑘2     for all stresses evaluated 
Similarly, phase φ’ for the incomplete elliptic integrals, differs for the radial and tangential 
stress on the one hand, and the vertical and shear stresses on the other hand. They are 
defined as: 

sin2 𝜑′ =
−

1

2
(𝑟2+𝑧2−𝑎2−√𝑟2+𝑧2−𝑎2+4𝑎2𝑧2)

𝑘′2𝑎2  for the vertical and shear stress change 

sin2 𝜑′ =
𝑛2

(𝑝−1)2+𝑛2     for the radial and tangential stress change 

Using the above description of elliptic integrals, the equations used for the contribution of a 
semi-infinite cylinder can be obtained. 
 
Shear stresses  



∆𝜏𝑟𝑧 =
𝐸𝛼𝑇∆𝑇

1−𝜈
∙

1

𝜋
√

1

𝑝𝑘
(𝐾̅ − 𝐸̅)  for all r, z [M17] 

∆𝜏𝑟𝜃 = 0    for all r, z [M17] 
 
Vertical stress 

∆𝜎𝑧 = ± 
𝐸𝛼𝑇∆𝑇

1−𝜈
[

𝐾

𝜋
(𝐸̅(𝜑′, 𝑘′) −

𝐾̅(𝜑′,𝑘′)𝐸′

𝐾′ − √
(1−𝑝𝑘)(𝑝−𝑘)

𝑝
) +

1

2

𝐾̅(𝜑′,𝑘′)

𝐾′ ]    

  
where the minus sign is used for negative z-values, and the plus sign for positive z-values 
[M18]. This equation is valid for r > a or r ≤ a & z < 0.  

∆𝜎𝑧 = ± ( 
𝐸𝛼𝑇∆𝑇

1−𝜈
[

𝐾

𝜋
(𝐸̅(𝜑′, 𝑘′) −

𝐾̅(𝜑′,𝑘′)𝐸′

𝐾′ − √
(1−𝑝𝑘)(𝑝−𝑘)

𝑝
) +

1

2

𝐾̅(𝜑′,𝑘′)

𝐾′ ] −
𝐸𝛼∆𝑇

1−𝜈
)  

  
for r ≤ a, r ≠ 0 and z ≥ 0 [M18]. 

∆𝜎𝑧 = −
1

2

𝐸𝛼𝑇∆𝑇

1−𝜈
[1 +

𝑛

√1+𝑛2
] for r=0, z≥0 [M19]  

     
Radial stress 

∆𝜎𝑟 =  −
𝐸𝛼𝑇∆𝑇

1−𝜈

1

4𝜋𝑝2 [𝜋 +
𝑛

√(𝑝+1)2+𝑛2
[((𝑝 + 1)2 + 𝑛2)(𝐾 − 𝐸) − (𝑝2 + 2𝑝 − 1)𝐾] ± (𝑝2 +

1) [𝐾𝐸̅(𝜑′, 𝑘′) −
𝐾𝐸′𝐾̅(𝜑′,𝑘′)

𝐾′ +
𝜋

2

𝐾̅(𝜑′,𝑘′)

𝐾′ ]]                     

    
for all exterior points at r > a [M24]. Again, for negative z-values the last term is positive, 
whereas for positive z-values, the last term is negative. 

∆𝜎𝑟 =  
𝐸𝛼𝑇∆𝑇

1−𝜈

1

4𝜋
[𝜋 −  

𝑛

𝑝2√(𝑝+1)2+𝑛2
[((𝑝 + 1)2 + 𝑛2)(𝐾 − 𝐸) − (𝑝2 + 2𝑝 − 1)𝐾] −

𝑝2+1

𝑝2 [𝐾𝐸̅(𝜑′, 𝑘′) −
𝐾𝐸′𝐾̅(𝜑′,𝑘′)

𝐾′ +
𝜋

2

𝐾̅(𝜑′,𝑘′)

𝐾′ ]]       

   
for all exterior points r ≤ a, r ≠ 0 and z < 0 [M24a]. 

∆𝜎𝑟 = −
𝐸𝛼𝑇∆𝑇

1−𝜈

1

4𝜋
[3𝜋 +

𝑛

𝑝2√(𝑝+1)2+𝑛2
[((𝑝 + 1)2 + 𝑛2)(𝐾 − 𝐸) − (𝑝2 + 2𝑝 − 1)𝐾] −

𝑝2+1

𝑝2
[𝐾𝐸̅(𝜑′, 𝑘′) −

𝐾𝐸′𝐾̅(𝜑′,𝑘′)

𝐾′
+

𝜋

2

𝐾̅(𝜑′,𝑘′)

𝐾′
]]       

   
for all interior points r ≤ a, r ≠ 0 and z ≥ 0 [M24b].  

∆𝜎𝑟 =
1

4

𝐸𝛼𝑇∆𝑇

1−𝜈
[1 +

𝑛

√1+𝑛2
]          

for all points along the z-axis with r = 0 and z < 0 [M26a].    

∆𝜎𝑟 = −
1

4

𝐸𝛼𝑇∆𝑇

1−𝜈
[3 −

𝑛

√1+𝑛2
]          

for all points along the z-axis with r = 0 and z ≥ 0 [M26].  
 
Tangential stresses 



∆𝜎𝑡 =  
𝐸𝛼𝑇∆𝑇

1−𝜈

1

4𝜋𝑝2 [𝜋 +
𝑛

√(𝑝+1)2+𝑛2
[((𝑝 + 1)2 + 𝑛2)(𝐾 − 𝐸) + (𝑝 − 1)2𝐾] ± (𝑝2 −

1) [𝐾𝐸̅(𝜑′, 𝑘′) −
𝐾𝐸′𝐾̅(𝜑′,𝑘′)

𝐾′
+

𝜋

2

𝐾̅(𝜑′,𝑘′)

𝐾′
]]        

   
for all exterior points at r>a [M25]. For negative z-values the last term is negative, whereas 
for positive z-values, the last term is positive. Note that for equation [M25], the ±-sign is 
used in a different way, than for the rest of the equations. Myklestad (1942) does not 
indicate this, but the model-checks we applied have pointed out that it is the case.   

∆𝜎𝑡 =  
𝐸𝛼𝑇∆𝑇

1−𝜈

1

4𝜋
[𝜋 +  

𝑛

𝑝2√(𝑝+1)2+𝑛2
[((𝑝 + 1)2 + 𝑛2)(𝐾 − 𝐸) + (𝑝 − 1)2𝐾] −

𝑝2−1

𝑝2
[𝐾𝐸̅(𝜑′, 𝑘′) −

𝐾𝐸′𝐾̅(𝜑′,𝑘′)

𝐾′
+

𝜋

2

𝐾̅(𝜑′,𝑘′)

𝐾′
]]       

   
for all points exterior points r ≤ a, r ≠ 0 and z < 0 [M25a]. 

∆𝜎𝑡 =
𝐸𝛼𝑇∆𝑇

1−𝜈

1

4𝜋
[3𝜋 −

𝑛

𝑝2√(𝑝+1)2+𝑛2
[((𝑝 + 1)2 + 𝑛2)(𝐾 − 𝐸) + (𝑝 − 1)2𝐾] −

𝑝2−1

𝑝2 [𝐾𝐸̅(𝜑′, 𝑘′) −
𝐾𝐸′𝐾̅(𝜑′,𝑘′)

𝐾′ +
𝜋

2

𝐾̅(𝜑′,𝑘′)

𝐾′ ]]       

   
for all interior points r ≤ a, r ≠ 0 and z ≥ 0 [M25b].  

∆𝜎𝑡 = ∆𝜎𝑟 =
1

4

𝐸𝛼𝑇∆𝑇

1−𝜈
[1 +

𝑛

√1+𝑛2
]         

for all points along the z-axis with r = 0 and z < 0 [M26].  

∆𝜎𝑡 = ∆𝜎𝑟 = −
1

4

𝐸𝛼𝑇∆𝑇

1−𝜈
[3 −

𝑛

√1+𝑛2
]  

for all points along the z-axis with r = 0 and z ≥ 0 [M26a].  
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