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Abstract

Aims

Endothelial activation is involved in many chronic inflammatory diseases, such as athero-

sclerosis, and is often initiated by cytokines. Oncostatin M (OSM) is a relatively unknown

cytokine that has been suggested to play a role in both endothelial activation and atheroscle-

rosis. We comprehensively investigated the effect of OSM on endothelial cell activation

from different vascular beds and in APOE*3Leiden.CETP mice.

Methods and results

Human umbilical vein endothelial cells, human aortic endothelial cells and human microvas-

cular endothelial cells cultured in the presence of OSM express elevated MCP-1, IL-6 and

ICAM-1 mRNA levels. Human umbilical vein endothelial cells and human aortic endothelial

cells additionally expressed increased VCAM-1 and E-selectin mRNA levels. Moreover,

ICAM-1 membrane expression is increased as well as MCP-1, IL-6 and E-selectin protein

release. A marked increase was observed in STAT1 and STAT3 phosphorylation indicating

that the JAK/STAT pathway is involved in OSM signaling. OSM signals through the LIF

receptor alfa (LIFR) and the OSM receptor (OSMR). siRNA knockdown of the LIFR and the

OSMR revealed that simultaneous knockdown is necessary to significantly reduce MCP-1

and IL-6 secretion, VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphoryla-

tion after OSM stimulation. Moreover, OSM administration to APOE*3Leiden.CETP mice

enhances plasma E-selectin levels and increases ICAM-1 expression and monocyte adhe-

sion in the aortic root area. Furthermore, Il-6 mRNA expression was elevated in the aorta of

OSM treated mice.
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Conclusion

OSM induces endothelial activation in vitro in endothelial cells from different vascular beds

through activation of the JAK/STAT cascade and in vivo in APOE*3Leiden.CETP mice.

Since endothelial activation is an initial step in atherosclerosis development, OSM may play

a role in the initiation of atherosclerotic lesion formation.

1. Introduction

The endothelium is involved in many processes including maintenance of the endothelial bar-

rier function, prevention of spontaneous blood clot formation, inflammatory cell recruitment

upon injury and regulation of the vascular tone[1–3]. Impairment of one or more of these

functions is often referred to as endothelial dysfunction, and may lead to the development of

atherosclerosis, angiogenesis in cancer, vascular leakage, infectious diseases or stroke[4].

Although endothelial dysfunction is often described as the inability to dilate vessels,

endothelial dysfunction is also characterized by endothelial activation, which is marked by

increased cytokine release, adhesion molecule expression and endothelial permeability.

The released cytokines attract leukocytes to the site of the activated endothelium, where the

leukocytes bind to the endothelial barrier, which is enabled by enhanced adhesion molecule

expression. Firmly adhered leukocytes then migrate through the endothelial barrier into the

underlying tissue[5].

The process of endothelial activation can occur both, locally on well-known predilection

sites and systemically, and is often triggered by traditional cardiovascular risk factors such as

hypercholesterolemia, hypertension, smoking or diabetes and is initiated by inflammatory

cytokines. One such a cytokine, which was first discovered in the cancer field, is oncostatin M

(OSM). This relatively unexplored cytokine is an interleukin-6 family member that can signal

through the LIFR and the OSMR, which are both dependent on heterodimerization with the

gp130 receptor to form a functional receptor complex[6]. OSM is upregulated in multiple

chronic inflammatory diseases including periodontitis, rheumatoid arthritis and inflammatory

bowel diseases and is known to induce angiogenesis and smooth muscle cell proliferation and

migration, both processes that are involved in atherosclerosis development[7–16]. Other pro-

inflammatory cytokines that promote angiogenesis, smooth muscle cell proliferation and

endothelial activation, such as TNFα and IL-18, have already been proven to accelerate athero-

sclerosis[17–24]. Furthermore, OSM is found in human carotid atherosclerotic plaques and in

the intima and media of atherosclerotic mice[16].

Based on these findings and on the knowledge that endothelial cells are very high expressers

of OSM receptors[25], we hypothesized that OSM may be involved in atherosclerosis develop-

ment partially by inducing endothelial activation as a first step in the development of athero-

sclerosis. In this study, we incubated human endothelial cells with OSM to investigate if OSM

induces systemic or local endothelial activation. As the cell heterogeneity among endothelial

cells is huge[26,27] and endothelial cells from different vascular beds show different responses/

behave different to physiological stimuli[28,29], we tested the effect of OSM in endothelial

cells derived from multiple vascular beds, human umbilical vein endothelial cells (HUVECs),

human aortic endothelial cells (HAECs) and human microvascular endothelial cells (HMEC-

1). Of which HAECs are the most suitable endothelial cell type to study atherosclerosis devel-

opment as atherosclerosis mainly affects the medium and large-sized arteries[30]. To validate

our findings in cultured endothelial cells in vivo, we administered OSM to APOE�3Leiden.

CETP mice, a translational mouse model for hyperlipidemia and atherosclerosis[31,32]. The
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mildly pro-inflammatory state that is present in this animal model of hyperlipidemia makes it

a suitable model to investigate the role of OSM in atherosclerosis prone conditions. We found

that OSM induces endothelial activation in all different investigated human endothelial cell

types and in mice after chronic administration and identified the JAK/STAT pathway as a key

player in this process.

2. Materials and methods

2.1 Cell culture

2 different batches of pooled primary human umbilical vein endothelial cells (HUVECs,

Lonza, the Netherlands), a single batch of primary human aortic endothelial cells from one sin-

gle donor (HAECs, ATCC, Manassas, VA, USA) and a human dermal microvascular endothe-

lial cell line (HMEC-1, ATCC, Manassas, VA, USA) were cultured in EBM1-2 medium

(Lonza, Walkersville, MD) supplemented with EGMTM-2 SingleQuots1 (Lonza, Walkersville,

MD) under normoxic conditions (21% O2). Throughout the study, passage 6 was used for

HUVECs and HAECs, while passage 27 was used for the HMEC-1 cell line. All experiments

were performed in 70% subconfluent HUVECs, HAECs, or HMEC-1 cells. After each experi-

ment, cells and conditioned medium were collected for subsequent RNA or protein analysis.

Repetitive experiments were only started if the previous experiment had been finished.

2.2 In vitro RNA expression

Human OSM (R&D systems, Minneapolis, MN) was added to HUVECs, HAECs and HMEC-

1 cells in a concentration range from 0–20 ng/mL. After 3 or 6 hours, RNA was isolated with

the NucleoSpin1 RNA kit (Macherey-Nagel, Düren, Germany) according to the manufactur-

er’s protocol. Isolated RNA (500 ng) was reverse transcribed into cDNA with the qSCript™
cDNA Synthesis Kit (Quanta Biosciences, Beverly, MA) and analyzed by real-time fluores-

cence assessment of SYBR Green signal (iQ™ SYBR1 Green Supermix, Bio-Rad, Hercules, CA)

in the CFX96™ Real-Time Detection System (Bio-Rad, Hercules, CA). Each sample was mea-

sured in duplicates. Primers were designed for the human genes of interest, sequences are

listed in Table 1. MRNA levels were analyzed and corrected for the housekeeping gene ACTB.

Experiments were repeated 4–7 times.

2.3 In vitro cytokine release

To determine the effect of OSM on endothelial activation, HUVECs, HAECs or HMEC-1 cells

were incubated with 5 ng/mL OSM. 3h and 6h after OSM treatment, conditioned medium was

collected. To investigate the effect of OSM on endothelial activation after siRNA knockdown

of the LIFR and OSMR, siRNA transfected HUVECs were treated with 5 ng/mL OSM 48h

post transfection. 6h after OSM treatment conditioned medium was collected. Conditioned

medium was analyzed with the ProcartaPlex Mix&Match Human 6-plex (Thermo Fisher, Wal-

tham, MA) according to the manufacturer’s protocol and measured on the Bio-plex1 200 sys-

tem (Bio-Rad, Hercules, CA) to determine the release of MCP-1, IL-6, soluble E-selectin,

soluble P-selectin and soluble VCAM-1. Experiments were repeated 3–7 times.

2.4 Flow cytometry

5 ng OSM was added to HUVECs, HAECs, or HMEC-1 cells for 18h. Cells were washed with

PBS and detached with accutase. Subsequently, cells were fixed with 1% PFA and incubated

with 2.5 μL antibodies/ 1,000,000 cells against VCAM-1, ICAM-1, P-selectin and, E-selectin all

obtained from Thermo Fisher (S1 Table). The experiment was repeated 3 times.
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2.5 siRNA transfection

Knockdown of LIFR and OSMR was achieved by transfection with a mix of 4 specific siRNA

sequences directed against the human mRNA sequence (SMARTpool siGENOME, GE Dhar-

macon, Lafayette, CO) in 70% subconfluent HUVEC cultures. Cells were incubated for 1 hour

in a small volume of EGM-2 medium supplemented with DharmaFECT 1 (GE Dharmacon,

Lafayette, CO) according to manufacturer’s instructions. After 2 hours cells were supple-

mented with extra EGM-2 medium to complement medium volumes. As controls, HUVECs

were transfected with a mix of 4 scrambled, non-targeting siRNAs (siSham Smartpool; GE

Dharmacon, Lafayette, CO). siRNA transfected HUVECs were treated with OSM 48h after

siRNA transfection.

2.6 Western blot

HUVECs were lysed with cOmplete™ Lysis-M, EDTA-free reagent (Sigma Aldrich, Saint Louis,

MO) for 15 minutes on ice. Next, protein concentration was determined with the Pierce™ BCA

protein Assay Kit (Thermo Scientific, Waltham, MA). The protein sample was treated with

NuPAGE™ Sample Reducing Agent (Thermo Scientific, Waltham, MA) and NuPAGE™ LDS

Sample Buffer (Thermo Scientific, Waltham, MA). Subsequently, the solution was boiled at

70˚C for 10 minutes. Samples were loaded on a Bolt™ 4–12% Bis-Tris Plus gel (Thermo Scien-

tific, Waltham, MA), run for 50 minutes at 160V and transferred to an iBlot12 PVDF Stack

(Thermo Scientific, Waltham, MA) with the iBlot12 Gel Transfer Device (Thermo Scientific,

Waltham, MA). Blots were incubated with the primary antibody overnight at 4˚C (S1 Table).

Subsequently, blots were incubated with the appropriate secondary antibody conjugated with

horseradish peroxidase (HRP) for 1h at RT (S1 Table). Peroxidase labeled antibodies were

detected with Chemiluminescent Peroxidase Substrate (Sigma, Saint Louis, MO).

Table 1. Primer sets for qPCR analysis.

Gene Species Direction Primer sequence (5’-3’)

MCP-1 Human Forward TGGAATCCTGAACCCACTTCT

Reverse CAGCCAGATGCAATCAATGCC

IL-6 Human Forward AGTGAGGAACAAGCCAGAGC

Reverse GTCAGGGGTGGTTATTGCAT

ICAM-1 Human Forward TTGAACCCCACAGTCACCTAT

Reverse CCTCTGGCTTCGTCAGAATCA

VCAM-1 Human Forward TGGGAAAAACAGAAAAGAGGTG

Reverse GTCTCCAATCTGAGCAGCAA

E-SELECTIN Human Forward AAGCCTTGAATCAGACGGAA

Reverse TCCCTCTAGTTCCCCAGATG

ACTB Human Forward GATCGGCGGCTCCATCCTG

Reverse GACTCGTCATACTCCTGCTTGC

Mcp-1 Murine Forward TTAAAAACCTGGATCGGAACCAA

Reverse GCATTAGCTTCAGATTTACGGGT

Il-6 Murine Forward CTATACCACTTCACAAGTCGGA

Reverse GAATTGCCATTGCACAACTCTTT

Icam-1 Murine Forward TCCGCTACCATCACCGTGTAT

Reverse TAGCCAGCACCGTGAATGTG

Hprt Murine Forward TCAGGAGAGAAAGATGTGATTGA

Reverse CAGCCAACACTGCTGAAACA

https://doi.org/10.1371/journal.pone.0204911.t001
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2.7 Animals and treatments

Thirty-two female APOE�3Leiden.CETP transgenic mice (15–22 weeks of age) were used. The

number of animals per group was calculated with Java Applets for Power and Sample Size

[Computer software], from http://homepage.stat.uiowa.edu/~rlenth/Power/index.html using a

one-way ANOVA with a probability of 0.05 and a Dunnett’s correction, a SD of 20%, a power

of 80% and a minimal expected difference of 35%. Mice were housed under standard condi-

tions with a 12h light-dark cycle and had free access to food and water. Body weight, food

intake and clinical signs of behavior were monitored regularly during the study. Mice received

a Western type diet (WTD) (a semi-synthetic diet containing 15 w/w% cacao butter and 0.15%

dietary cholesterol, Altromin, Tiel, the Netherlands). At T = 0 weeks, after a run-in period of 3

weeks, mice were matched based on plasma total cholesterol levels, plasma triglyceride levels,

body weight, and age in 4 groups of 8 mice. Two mice died during the diet intervention period,

1 in the 1μg/kg/day OSM group and 1 in the 10μg/kg/day OSM group. At T = 7 weeks, an

ALZET1 Osmotic Pump Type 1004 (4-week release duration, Durect, Cupertino, CA) con-

taining either 1, 3 or 10 μg/kg/day murine OSM (R&D systems, Minneapolis, MN) or PBS was

placed subcutaneously in the flank. Doses were based on previous studies, which gave a single

or double injection of 5–50 μg/kg OSM resulting in local increased permeability, edema, swell-

ing, infiltration of immune cells, increased serum VEGF levels and increased angiopoetin 2

expression[33–36]. All solutions, also PBS of control group, contained 1% mouse serum to

prevent OSM from sticking to plastics. Prior to surgery, mice received the analgesic Carprofen

(5 mg/kg s.c.) and were anesthetized with isoflurane (induction 4%, maintenance 2%). At

T = 10 weeks, mice were euthanized by gradual CO2 inhalation (6 L/min in a 20 Liter con-

tainer). CO2 flow was maintained for a minimum of 1 minute after respiration ceased (as

observed by lack of respiration and faded eye color). Death was confirmed by exsanguination

(via heart puncture). Hearts were isolated for immunohistochemistry in the aortic root and

aortas were isolated for RNA expression analysis. EDTA blood samples were drawn after a 4

hour fast at T = 0 and T = 10 weeks. All animal experiments were performed conform the

guidelines from Directive 2010/63/EU of the European Parliament on the protection of ani-

mals used for scientific purposes or the NIH guidelines. The care and use of all mice in this

study was carried out at the animal facility of The Netherlands Organization for Applied

Research (TNO) in accordance with the ethical review committee “TNO-DEC” under the reg-

istration number 3683. Animal experiments were approved by the Institutional Animal Care

and Use Committee of TNO under registration number TNO-202.

2.8 Plasma parameters

Plasma cholesterol and triglycerides were measured spectrophotometrically with enzymatic

assays (Roche diagnostics). The inflammatory markers, E-selectin and MCP-1 were measured

with ELISA kits from R&D. Plasma ALT and AST were determined using a spectrophotomet-

ric assay (Boehringer Reflotron system) in group wise-pooled samples from sacrifice plasma.

All assays were performed according to the manufacturer’s instruction.

2.9 Histological assessment of vascular inflammation

Vascular inflammation was assessed in the aortic root area as reported previously by Landlin-

ger et al[37] in control mice and mice receiving 10 μg/kg/day OSM. Briefly, the aortic root was

identified by the appearance of aortic valve leaflets and serial cross-sections of the entire aortic

root area (5 μm thick with intervals of 50 μm) were mounted on 3-aminopropyl triethoxysi-

lane-coated slides and stained with hematoxylin-phloxine-saffron (HPS). Each section con-

sisted of 3 segments (separated by the valves) and in 4 sections ICAM-1 expression and the
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number of monocytes adhering to the activated endothelium was counted after immunostain-

ing with mouse monoclonal ICAM-1 antibody (Santa Cruz) and AIA 31240 antibody (Accu-

rate Chemical and Scientific) respectively (S1 Table). One mouse from the control group was

excluded from analysis due to a technical error, resulting in 7 and 8 mice per group.

2.10 RNA isolation murine tissue

To isolate RNA from aortic tissue, RA1 lysis buffer (Macherey-Nagel, Düren, Germany) con-

taining 1% DTT was added to the tissue, which was cut in tiny pieces and subsequently

minced. RNA was isolated with the RNeasy1 Plus Micro Kit (Qiagen, Hilden, Germany)

according to the RNeasy Fibrous Tissue Mini Kit protocol (Qiagen, Hilden, Germany). Iso-

lated RNA (500 ng) was reverse transcribed into cDNA with the qSCript™ cDNA Synthesis Kit

(Quanta Biosciences, Beverly, MA) and analyzed by real-time fluorescence assessment of

SYBR Green signal (iQ™ SYBR1 Green Supermix, Bio-Rad, Hercules, CA) in the CFX96™
Real-Time Detection System (Bio-Rad, Hercules, CA). Each sample was measured in dupli-

cates. Primers were designed for the murine genes of interest, sequences are listed in Table 1.

mRNA levels were analyzed and corrected for the housekeeping geneHprt. RNA isolation was

unsuccessful in one mouse from the 3μg/kg/day OSM group resulting in 6, 7 and 8 mice per

group.

2.11 Statistical analysis

qPCR data was analyzed according to the ΔΔCt method, statistical tests were performed on

ΔCt values. Two-way-anova was used to analyze in vitro data to take into account day-to-day

variation of the experiments. Not normally (Gaussian) distributed parameters were trans-

formed with the natural logarithm or in case of undetectable values analyzed with the appro-

priate non-parametric test. Dose-dependency was determined by a Pearson correlation. All

statistical analyses were performed in SPSS statistics version 21.0. A two-tailed p-value of 0.05

was regarded statistically significant in all analyses. Graphs were made in GraphPad Prism ver-

sion 7.02 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com

3. Results

3.1 OSM induces endothelial activation in human endothelial cells

To investigate whether OSM induces endothelial activation, we first examined cytokine

mRNA expression in HUVECs, HAECs and HMEC-1 cells treated with 5 ng/mL OSM for 3 or

6 hours. OSM treatment was found to increase mRNA expression of the cytokinesMCP-1
(p<0.01) and IL-6 (p<0.001) in HUVECs, HAECs (p<0.001) and HMEC-1 cells (p<0.001)

at both 3h and 6h time points (Fig 1A–1F). Since these cytokines are released by activated

endothelial cells, we next measured MCP-1 and IL-6 protein concentrations in conditioned

medium of OSM treated HUVECs, HAECs and HMEC-1 cells. Both MCP-1 (p<0.05) and

IL-6 (<0.001) release were increased in OSM treated HUVECs, HAECs (p<0.05 and p<0.01

respectively) and HMEC-1 cells (p<0.001) at both time points (Fig 1G–1L). Subsequently, we

measured adhesion molecule expression, which is another feature of endothelial activation.

ICAM-1mRNA expression was increased by OSM treatment in HUVECs (p<0.001) and

HAECs (p<0.01) again at both 3h and 6h time points and in HMEC-1 cells 3h after addition

of OSM (p<0.01)(Fig 2A–2C). VCAM-1mRNA expression was upregulated in HUVECs at

3h (p = 0.008) and in HAECs at both 3h and 6h (p<0.001)(Fig 2D and 2E). Moreover, we

observed an upregulation in E-selectinmRNA expression in both HUVECs and HAECs at

both 3h and 6h (p<0.001 and p<0.05)(Fig 2F and 2G), while VCAM-1 and E-selectinmRNA
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levels were too low expressed in HMEC-1 cells. In addition, ICAM-1 membrane expression

was increased in HUVECs (p<0.05), HAECs (p<0.05) and HMEC-1 cells (p<0.05) (Fig 2H–

2J), but not membrane expression of VCAM-1, P-selectin or E-selectin (S1 Fig). Since these

adhesion molecules can also be shed upon endothelial activation[38], we measured P-selectin,

E-selectin, soluble VCAM-1 and soluble ICAM-1 levels in conditioned medium. Soluble

VCAM-1 was upregulated in conditioned medium of HUVECs 6h after OSM addition

(p<0.05) and in HAECs at both 3h and 6h post OSM addition (p<0.01) (Fig 2K and 2L). Solu-

ble VCAM-1 was not detectable in conditioned medium of HMEC-1 cells. Additionally, E-

selectin levels were upregulated at both time points in conditioned medium of OSM treated

HUVECs (p<0.05) and HAECs (p<0.01) and 6h post OSM addition in HMEC-1 cells

(p<0.05) (Fig 2M–2O). P-selectin levels were not detectable. Overall, these results indicate

that OSM consistently induces endothelial activation in vitro in the different human endothe-

lial cell types. Therefore, subsequent mechanistic studies were conducted in HUVECs.

3.2 JAK/STAT signaling is involved in OSM induced endothelial

activation

IL-6 family members signal through the Janus kinase/signal transducers and activators of tran-

scription (JAK/STAT) pathway, a pathway that is often involved in cytokine and growth factor

signaling[39–41]. Therefore, we investigated whether this pathway is also involved in OSM

induced endothelial activation. STAT1 and STAT3 phosphorylation were markedly increased

(p<0.05) (Fig 3) upon addition of OSM indicating that the JAK/STAT pathway is involved in

OSM induced endothelial activation as well.

3.3 OSM induces endothelial activation by simultaneous signaling through

the LIFR and OSMR

As OSM can signal through both the OSMR and the LIFR, a siRNA knockdown was per-

formed to investigate which of these receptors is involved in OSM induced endothelial activa-

tion. LIFRmRNA expression was decreased to 25 ± 6% (mean ± SD), and OSMRmRNA

expression to 52 ± 15%. Simultaneous knockdown resulted in a decrease of the LIFR to

31 ± 8% and of the OSMR to 45 ± 11% (Fig 4A and 4B). Single knockdown of LIFR did signifi-

cantly decrease MCP-1 (p = 0.019) and IL-6 secretion (p = 0.005), but not VCAM-1 or E-selec-

tin shedding. Single knockdown of OSMR did only decrease IL-6 secretion (p<0.001), while

MCP-1 secretion was significantly increased (p = 0.007). VCAM-1 and E-selectin shedding

were both not significantly changed. Double knockdown did not only decrease IL-6 (p<0.001)

and MCP-1 (p<0.001) secretion, but also VCAM-1 (p = 0.009) and E-selectin (p<0.001) shed-

ding compared to non-targeting siRNA treated cells (Fig 4C and 4D). A similar effect was

observed for STAT1 and STAT3 phosphorylation, which was only reduced by double knock-

down (p<0.05) compared to control (Fig 4E and 4F). Altogether, these data indicate that OSM

signals through LIFR and OSMR simultaneously in human endothelial cells.

Fig 1. OSM increases cytokine release in different endothelial cells. HUVECs, HAECs and HMEC-1 cells were incubated with 5 ng/mL OSM for

the indicated period of time. All values are relative values compared to control, which was given an arbitrary value of 1. Values were normalized to

ACTB and calculated with the ΔΔCt method. A two-way ANOVA with Dunnett’s test was performed on the ΔCt values to test for significance

(A-F). MCP-1 and IL-6 release was measured in conditioned medium of HUVECs, HAECs and HMEC-1 cells incubated with 5 ng/mL OSM for 3

or 6h. Values too high to measure were arbitrarily set on 100,000 and are indicated with ● or ■. Data sets without missing values were ln

transformed and analyzed with an independent t-test for significance while data sets with missing values were analyzed with a Mann Whitney U

test (G-L). All data represent geometric mean ± geometric SD. �p<0.05 ��p<0.01 ���p<0.001 compared to control (n = 4–7).

https://doi.org/10.1371/journal.pone.0204911.g001
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3.4 OSM induces an inflammatory response in APOE�3Leiden.CETP mice

To investigate whether OSM activates the endothelium in vivo as well, hyperlipidemic

APOE�3Leiden.CETP mice were administered OSM for 3 weeks. No clinical signs of deviant

behavior and no significant effects on food intake were noted in any treatment group as com-

pared to control. Plasma ALT and AST, measured at end-point as safety markers, showed no

aberrant results (S2 Table). Also, no significant difference in body weight, triglyceride, or cho-

lesterol levels were observed compared to control (Fig 5A–5C). As endothelial activation goes

hand in hand with a pro-inflammatory response, plasma levels of inflammatory markers

MCP-1 and E-selectin were measured. Plasma MCP-1 tended to be increased (p = 0.107) and

plasma E-selectin was increased (p<0.001) in mice treated with 10 μg/kg/day OSM compared

to the control group (Fig 5D and 5E).

3.5 OSM induces endothelial activation in the vasculature of

APOE�3Leiden.CETP mice

To further investigate if OSM is able to induce endothelial activation, the aortic root area was

examined for relevant markers. ICAM-1 protein expression tended to be elevated from

39 ± 15% (mean ± SD) to 59 ± 22% (p = 0.067) and an increase in monocyte adhesion to the

activated endothelium was observed from 5.7 ± 3.0 to 10.3 ± 4.7 monocytes (mean ± SD,

p<0.05) in mice treated with 10μg/kg/day OSM (Fig 6). Furthermore, aortic mRNA expres-

sion analysis revealed a dose-dependent increase in Il-6 expression (p<0.001) and Icam-1
expression tended to be increased in the 1μg/kg/day and 10μg/kg/day OSM treated groups

(p = 0.101 and p = 0.133 respectively) compared to control.Mcp-1mRNA expression was not

enhanced (Fig 7). These results show that OSM does not only induce endothelial activation in
vitro, but also in vivo in a hyperlipidemic mouse model.

4. Discussion

The present study demonstrates that OSM induces endothelial activation in cultured human

endothelial cells as well as in vivo in APOE�3Leiden.CETP mice. The data show increased

release of inflammatory markers and adhesion molecule expression, both features of endothe-

lial activation. Furthermore, OSM increased monocyte adhesion in the aortic root area, as

functional marker of endothelial activation.

We studied OSM induced endothelial activation in vitro by investigating the effect of OSM

in three different types of human endothelial cells. Our data add to and expand on previous

data that showed that OSM increases IL-6, IL-8 and MCP-1 secretion, ICAM-1 and VCAM-1

membrane expression and PMN adhesion to endothelial cells in vitro [34,42,43]. Consistently,

increased VCAM-1 and E-selectin shedding was observed in all three endothelial cell types.

ICAM-1 is an important adhesion molecule in monocyte binding as ICAM-1-/- endothelial

Fig 2. OSM increases adhesion molecule expression and release in different endothelial cells. HUVECs, HAECs and HMEC-1

cells were incubated with 5 ng/mL OSM for the indicated period of time. All values are relative values compared to control, which

was given an arbitrary value of 1. Values were normalized to ACTB and calculated with the ΔΔCt method. A two-way ANOVA

with Dunnett’s test was performed on the ΔCt values to test for significance (A-C). ICAM-1 membrane expression was determined

in HUVECs, HAECs and HMEC-1 cells treated with 5 ng/mL OSM for 18h. A two-way ANOVA was used to test for significance

(D-F). Shedding of VCAM-1 and E-selectin was determined in conditioned medium of HUVECs, HAECs and HMEC-1 cells

treated with 5 ng/mL OSM for 3 or 6h by measuring soluble VCAM-1 and E-selectin. Soluble VCAM-1 values too low to measure

were arbitrarily set on 1 and are indicated with ● or ■. Soluble E-selectin values too low to measure were arbitrarily set on 100 and

are indicated with ▲. Data sets without missing values were ln transformed and analyzed with an independent t-test for significance

while data sets with missing values were analyzed with a Mann Whitney U test (G-K). All data represent geometric

mean ± geometric SD, except for flow cytometry data which shows a representative histogram of control and OSM treated cells

(n = 3–7). �p<0.05 ��p<0.01 ���p<0.001 compared to control, ns = not significant.

https://doi.org/10.1371/journal.pone.0204911.g002
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cells show a strong attenuation in monocyte binding compared to control endothelial cells

[44]. Although we did not observe an increase in membrane E-selectin and VCAM-1 expres-

sion, OSM did increase soluble E-selectin and VCAM-1. Soluble VCAM-1 was previously

shown to serve as a monocyte chemoattractant agent and soluble E-selectin enhances leuko-

cyte migration and binding to endothelial cells[45,46]. Taken together, these observations

show that OSM induces different biomarkers of endothelial activation in cultured endothelial

cells.

Fig 3. JAK/STAT pathway is involved in OSM induced endothelial activation. HUVECs were incubated with 5 ng/mL OSM for 15 or 30 min. A

representative picture shows STAT1 phosphorylation at Tyr701, STAT1, STAT3 phosphorylation at Tyr705, STAT3 and GAPDH (A). Bar graphs show

relative STAT1 and STAT3 phosphorylation (B,C). A two-way ANOVA was performed to test for significance. Data represent mean ± SD (n = 5). �p<0.05
��p<0.01 ���p<0.001 compared to control.

https://doi.org/10.1371/journal.pone.0204911.g003
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Previous short term in vivo studies in healthy wildtype mice with OSM administered for

only 6 to 24 hours have shown signs of acute endothelial activation, such as increased angio-

poetin 2 expression in cardiac tissue, increased plasma VEGF levels and increased permeability

and infiltration of inflammatory cells[33–36]. It is important to note that publicly available

datasets show that Osmr and Lifr mRNA are expressed in aortic endothelial cells from mice as

well (data accessible at NCBI GEO database [47], accession GSE114805 and [48], accession

GSE115618).

The aim of the present study was to investigate the effect of chronic OSM exposure on

endothelial activation in a hyperlipidemic mouse model, the APOE�3Leiden.CETP mouse.

This mouse model features elevated lipid levels, representing humans with hyperlipidemia

and mild chronic inflammation who have an increased risk of developing atherosclerosis

Fig 4. Simultaneous downregulation of LIFR and OSMR decreases IL-6 and MCP-1 release and prevents STAT1 and STAT3 phosphorylation.

LIFR (A) andOSMR (B) mRNA expression levels were downregulated by siRNA transfection in HUVECs. 48h post transfection, HUVECs were

treated with 5 ng/mL OSM for 6h to determine IL-6 and MCP-1 secretion and VCAM-1 and E-selectin shedding (C-F) or for 15 min to determine

STAT1 and STAT3 phosphorylation (G-J). A two-way ANOVA with Dunnett’s test was performed to test for significance. All data represent

mean ± SD (n = 3–4). �p<0.05 ��p<0.01 compared to control, ns = not significant.

https://doi.org/10.1371/journal.pone.0204911.g004

Fig 5. OSM enhances plasma levels of inflammatory markers in APOE�3Leiden.CETP mice treated with OSM. After 3 weeks of OSM treatment, bodyweight

(A), triglyceride (B), cholesterol (C), E-selectin (D) and MCP-1 (E) levels were measured and compared to control mice. A one-way ANOVA with Dunnett’s test

was performed on ln transformed data, except for the bodyweight, to test for significance. All data represent geometric mean ± geometric SD, except for

bodyweight which represents mean ± SD (n = 7–8). ���p<0.001 compared to control, ns = not significant.

https://doi.org/10.1371/journal.pone.0204911.g005
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[31,32,37]. We found that OSM tended to increase plasma MCP-1 and significantly increased

plasma E-selectin, both markers of activated or dysfunctional endothelium[5,49] after 3 weeks

of chronic OSM administration. Moreover, mRNA expression of Il-6was increased dose-

dependently in aortic tissue of OSM treated mice. We also observed a trend towards increased

ICAM-1 expression in the aortic root of OSM treated mice and a markedly enhanced mono-

cyte binding as functional marker of activated endothelium, thus demonstrating augmented

endothelial activation. ICAM-1 expression and adhesion of monocytes are strongly related, as

previous studies show increased monocyte binding upon enhanced ICAM-1 expression and

decreased monocyte binding upon reduced ICAM-1 expression[44,50]. Collectively, these

findings provide evidence that OSM does not only induce endothelial activation in vitro, but

Fig 6. OSM increases ICAM-1 expression and monocyte adherence in the aortic root area in OSM treated APOE�3Leiden.CETP. Representative pictures

showing the endothelial ICAM-1 expression (brown staining) in a control (A) and a 10 μg/kg/day OSM treated (B) mouse and monocyte adherence (arrows)

in a control (C) and a 10 μg/kg/day OSM treated (D) mouse. Endothelial ICAM-1 expression was determined as percentage of the endothelial surface in the

cross sections (E) and adhering monocytes were counted per cross-section after staining with AIA 31240 (F). Data represent mean ± SD (n = 7–8). An

independent t-test was used to test for significance. Data represent mean ± SD. �p<0.05.

https://doi.org/10.1371/journal.pone.0204911.g006
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also in vivo on top of the inflammatory state that is present in hyperlipidemic mice, resulting

in increased monocyte recruitment and adherence.

Even though, endothelial cells are directly activated by OSM in vitro, it is important to note

that the in vivo situation is much more complex and other cell types may have contributed to

the observed effects as well. For instance, the increase in plasma MCP-1 and cardiac Il-6
expression can partly be caused by fibroblasts or smooth muscle cells, as these two cell types

Fig 7. OSM increases Il-6 mRNA expression in aortic tissue of APOE�3Leiden.CETP mice treated with OSM. After 3 weeks of OSM treatment, mRNA was

isolated from the aorta and analyzed by qPCR. Il-6 (A),Mcp-1 (B) and Icam-1 (C) mRNA expression were quantified. All values are relative values compared to the

control group, which was given an arbitrary value of 1. Values were normalized to HPRT and calculated with the ΔΔCt method. A one-way ANOVA with

Dunnett’s test was performed on the ΔCt values to test for significance. Data represent geometric mean ± geometric SD (n = 6–8). All values were compared to

control. �p<0.05 ���p<0.001 compared to control, ns = not significant.

https://doi.org/10.1371/journal.pone.0204911.g007
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also show increased IL-6 and MCP-1 expression upon OSM treatment in vitro[51,52]. Further-

more, OSM can promote growth factor and cytokine release in cell types other than endothe-

lial cells, these released growth factors and cytokines can in turn activate the endothelium,

thereby inducing indirect endothelial activation[51–53]. An example of such a growth factor is

vascular endothelial growth factor (VEGF), which can be upregulated by OSM in multiple cell

types[35,54–56] and is known to induce endothelial activation by increasing adhesion mole-

cule expression and leukocyte adhesion[57].

Although our in vivo study was not aimed at and was too short to investigate whether

chronic OSM exposure aggravates atherosclerosis, our results do give clues that OSM may be

involved in the initiation of the atherosclerotic process. Some of the diverse hallmarks of endo-

thelial activation that we observed, have previously been associated with atherosclerosis devel-

opment in humans[49,58]. Further indications come from reports showing that OSM is

present in both murine and human plaques[16], and higher mRNA expression levels of OSM

in PBMCs derived from coronary artery disease patients compared to healthy individuals[59].

Moreover, a recent paper showed that prevention of OSM signaling, as opposed to stimulation

of OSM signaling in our study, in OSMR-β-/-ApoE-/- mice resulted in less and smaller athero-

sclerotic lesions and less macrophages compared to ApoE-/- mice[60].

Other studies have shown that partial inhibition of endothelial activation by knockdown of

E-selectin, P-selectin, ICAM-1 or MCP-1 attenuates atherosclerosis development in mice

[61,62]. Therefore, lowering of plasma OSM levels or intervention in OSM signaling might be

worth investigating as a possible future approach in the treatment of atherosclerosis.

As it is currently unknown which of the OSM receptors is involved in OSM induced endo-

thelial activation, we performed a siRNA knockdown of the LIFR and the OSMR. Single

knockdown experiments showed that solely LIFR or OSMR downregulation is not sufficient

to prevent OSM induced endothelial activation or JAK/STAT signaling. Only simultaneous

knockdown of both receptors was able to dramatically decrease IL-6 and MCP-1 release,

VCAM-1 and E-selectin shedding and STAT1 and STAT3 phosphorylation. Hence, it is essen-

tial to block both receptors simultaneously or to target OSM when considering intervening in

OSM signaling as a possible future therapy. Targeting both receptors or OSM itself could be a

relative safe approach since OSM-/- mice are viable and healthy[63].

Taken together, our comprehensive study provides new evidence that OSM induces activa-

tion of human endothelial cells from different vascular beds and in APOE�3Leiden.CETP

mice chronically treated with OSM. Moreover, we provided data indicating both receptors for

OSM as well as OSM itself as potential therapeutic targets in atherosclerosis and other chronic

inflammatory diseases in which endothelial activation is involved such as rheumatoid arthritis,

abnormal angiogenesis and thrombosis[64–67].
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