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Summary 

It is a well-known fact that, in order to obtain maximum absorption, 
sound-absorbing materials must not be fastened directly to the structural 
wall or ceiling, but must be kept at a certain distance, small in practice, 
from the wall or the ceiling. After describing a new interferometer some 
results concerning the influence of the thickness of the layer of air 
between material and wall are given. These results are discussed and 
explained theoretically. Most remarkable is the large influence of very 
thin layers of air on the frequency at which a maximum absorption is 
obtained. 

§ 1. Introduction. Under the same title a series of five papers were 
published in Physica 1-5). This paper may be considered as a conti¬ 
nuation of that series. It is hardly possible and it seems also un¬ 
necessary to give here a complete survey of the contents of the 
previous articles. A few words will suffice perhaps to give some idea 
of what problems were dealt with. Sound absorbing materials are 
wanted in practice for noise abatement in offices, factories and large 
rooms, to shorten the reverberation time as well as to eliminate 
echoes in concert halls and the like. Porous materials are the most 
widely used absorbers in practice. Their absorption coefficient a 
(absorbed energy divided by incident energy) depends upon frequen¬ 
cy, the thickness of the absorbing layer and certain partly known 
constants of the material. It would be a great advantage, and there¬ 
fore has been the object of many papers, if it were possible to com¬ 
pute a from these variables. In these calculations the porosity h and 
the specific air resistance a mostly enter as easily measurable quanti¬ 
ties 6 10). It was found experimentally that in porous materials the 
wave length (and the velocity of sound) are considerably smaller 
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than in free air. To account for these facts, the introduction of a 
third constant turned out to be necessary 2), the so-called structure 
factor k, which is greater than one if there are pores in other direc¬ 
tions than perpendicular to the wall surface or if there are pores of 
which the cross-section varies appreciably along the length of the 
pores (which, of course, is always the case in practice). & is a measure 
of the extent to which these deviations from an ideal „honeycomb” 
material are present. See also Korringa, Kronig and 
Smit11), where an exact theoretical treatment of such a case is 
given, that leads to results, which to some extent can also be 
obtained with a £ > 1. The wave length and the velocity of sound 
are proportional to -\/k, which may be looked upon as the definition 
of k. The numerical value of k in ordinary cases lies between 1 
and 10. 

Experimental results are mostly given in terms of the specific 
acoustical impedance 2 (sound pressure over normal particle velocity 
at the surface of the absorbing layer). This makes a comparison with 
theory very simple, since theoretical results can easily be given in 
the form of impedances, whereas, when z is known, a can be obtained 
in a direct way by using the so-called circle diagram, connecting a 
and the phase jump A between incident and reflected sound wave at 
the reflecting surface with the complex impedance. So when z is 
given, the figure a that interests the practical man directly can be 
read from a graph. More information concerning this important 
graph may be found in a paper by Kosten in this issue (page 38). 

For reasons of simplicity only absorption in a direction perpendi¬ 
cular to the absorbing surface is considered. The measurements can 
be easily carried out in this case in a so-called interferometer, which 
consists of a tube, closed at one end with the absorbing sample under 
test, at the other end of the tube by a loudspeaker. The latter emits 
a sound wave towards the sample where it is reflected, perhaps with 
a decreased amplitude owing to absorption. At regular intervals of 
one quarter of a wave length we observe maxima and minima of 
sound pressure, the minima being exactly zero only when absolutely 
no absorption takes place. Absorption by the side walls is avoided as 
far as possible. So the absorption coëfficiënt of the sample can be 
computed from the ratio between maximum and minimum sound 
pressure in the tube. This ratio is measured directly in practice. 
Also the distance between the place of minimum sound pressure and 
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the surface of the sample can be measured, from which distance, 
measured in wave lengths, the phase difference between the sound 
pressure of the incident and reflected wave at the surface can be 
computed. With the aid of a and A the impedance £ at the surface 
can be determined in the complex impedance diagram. 

§ 2. Description of a new interferometer. In principle practically 
all interferometers for sound at normal incidence are the same. They 
differ only in the way in which the sound pressure in the interference 
pattern is measured. In large tubes (which are used with low frequen¬ 
cies) the sound pressure is sometimes measured directly by a small 
microphone in the sound field. At higher frequencies (narrower inter¬ 
ferometer tubes) this method causes too much disturbance of the 
sound field. Then a so-called exploring tube may be used, a tube of 
very small diameter in comparison with that of the interferometer, 
forming an acoustical connection between the microphone outside 
the tube and the measuring point inside. In order to avoid even the 
slight disturbance due to this exploring tube another method was 
followed up to now in our laboratory 12). Along the same lines a new 
interferometer was constructed, in which some shortcomings of the 
older one were avoided (see fig. 1). The whole cylindrical interfero- 

SAMPLE MICROPHONE LOUDSPEAKER 

Fig. 1. Acoustical interferometer. 

meter tube of brass 3.5 mm thick, may be moved relative to the 
loudspeaker and the sample holder which fit in an airtight way, like 
pistons, into the tube and are rigidly fixed to the heavy iron support. 
The tube can be moved over about 43 cm. The microphone is mount¬ 
ed inside in the tube wall. It consists of a stiff membrane (high impe¬ 
dance), lying in the „plane” of the inner surface, with a square 
Rochelle salt cristal mounted behind, one corner of which is brought 
into contact with the membrane by means of a light rod. 

The surface of the membrane is about 1 cm2. This might seem a 
source of errors, since it will be impossible to measure the sound 
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pressure at one “single” point. This objection, however, is not cor¬ 
rect. At places where the sound pressure is a maximum, the pressure 
varies very slowly with the displacement (maxima are very flat), so 
that hereby no difficulties are to be expected. The minima are very 
sharp indeed; denoting the distance from a minimum by x, the 
sound pressure may be written 

pimax C0S W _ 7) ~ COS “ + 7 

where pimax — amplitude of sound pressure of incident wave, 
prmax = dito of reflected wave, 

c = velocity of sound, 
hence 

{Phnax Prmax) C0S C0S ^ "I- iP'max “t“ Prmax) 
sin cot sin 

cox 
c 

ÍÜX 

fPi +Pr ]sin“c ^ lmax rmaxJ 

cDX 

max max min. \ max mm. 

Fig. 2. The interference pattern can be considered as the superposition of 
two standing waves (timefunctions orthogonal however!). At the minima 
the greater standing wave is zero and symmetrical with respect to the 
minimum. A large microphone, therefore, may be used to explore the 

sharp minima. 

The pressure at the minimum is the pressure at v = 0, i.e. the 
first term, that varies with cos cox/c, which has a flat maximum at 
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the minimum under test. The second term, varying with sin cox/c 
does not in the least contribute to the minimum. This term is 
responsible for the sharpness of the minimum. The average value of 
this term between —x and however is zero, so the force on the 
membrane, when it is placed symmetrically with respect to the 
minimum, is proportional to the pressure to be measured. In fig. 2 
the situation is shown in a graph. We can see at once from fig. 2 
that there is no principal difference between the situation at maxima 
or minima. Since the dimensions of the membrane are not negligible 
in comparison with the wave length, the mean value of cos ojx/c over 
the membrane is smaller than unity. This, however, is the case 
equally for minima and maxima so that the ratio of sound pressures 
is always measured in a correct way, independent of the size of the 
microphone membrane. 

Finally, a practical feature of the sample holder is to be noticed. 
A rigid brass plate of 10 mm thickness is situated at the back of the 
sample. This plate may be moved backwards over about 16 cm, so it 
is very easy to carry out investigations on sound absorption with 
samples, backed by an adjustable layer of air, without touching the 
sample itself. 

100% 
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Tig. 3. Absorption coefficient as a function of frequency for different 
layers of air at the back of the sample. The thickness of the layer of air is 
given in cm at each curve. Notice the large influence of very thin layers 

of air! 

§ 3. Sound absorption by a sample of acoustic plaster, backed with 
different layers of air. Fig. 3 shows results of sound absorption 
measurements, carried out on an acoustic plaster (see fig. 4) of 21 mm 
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thickness, consisting of granular pumice (1—4 mm diameter), 
cemented together with a small amount of anorganic adhesive and 
thus giving a material with rather wide pores. The specific aii 
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Fig. 4. Photograph of the sample, in 2-fold magnification. 
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Fig. 5. The curve for 2 cm air of fig. 3 with measuring points added. 

resistance (static value turned out to be 31.103 N sec/m (31 d\ne 
sec/cm4), the porosity 72%. Each curve was measured twice, which 
explains why at several places the curves are doubled. 

At a first glance at fig. 3 the large influence of very thin layers of 
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air seems most remarkable. Whereas without a layer of air maximum 
absorption occurs at 1570 Hz, 5 mm of air suffice to shift this maxi¬ 
mum to about 1070 Hz, 20 mm to as low as 600 Hz. No measuring 
points are given in fig. 3 in order not to overload it. To give an idea 
of the magnitude of unsystematic errors, fig. 5 shows the curve for 
20 mm air with measuring points. - 

cm 
16 

I 
cm 

K / opt. + Xx 
10 cm — 

jfopj 

i ,T /2 ^ ^ 

w~yj. 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 Hz 

treq. 

Fig. 6. The thickness of the layer of air, at which maximum absorption 
occurs, as a function of frequency (left curve). 

It is easily seen from fig. 3 that, in order to get optimal absorption 
at a given frequency, the layer, of air should have a thickness lopt 
depending upon this frequency. The connection between this thick- 
ness l0pt and frequency, as read from fig. 3, is shown in fig. 6 (left 
curve). 

§4. The interconnection of the curves of fig. 3; check of figure. 
It is quite easy to check the curves of fig. 3 at certain points. The 
(acoustical) impedance of a layer of air of one half wavelength thick¬ 
ness (A/2), backed with a rigid plate, is infinite, so the absorption 
coefficient a of any sample must be the same whether it is backed 
direct by a rigid plate or by that plate at a distance A/2 (or even in 
general mA/2) from the back of the sample. In mathematical terms: 
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the absorption coëfficiënt a of a given sample is a function of the 
frequency and the thickness of the layer of air. As to the dependence 
upon this thickness l we know that a must be a periodic function 
with periode 7/2, i.e. 

a(l) = a(l + w7/2) at constant frequency. 

Take for instance 
1 = 0, 

l + 2/2 = 14cm (from which there results the frequency r = 1232Hz), 
then we conclude that at 1232 Hz a for the sample without layer of 
air must be equal to a for the sample backed with 14 cm layer of air, 
i.e. the curves for 1 = 0 and l = \A cm must have a point of inter¬ 
section a 1232 Hz. This, indeed is the case within experimental 
error. Also if 

l = 0.5 cm, 

l -\- 7/2 = 14 cm (from which v = 1278 Hz), 

the point of intersection of the curves for l = 0.5 and cm / = 14 cm 
turns out to be at 1278 Hz, in accordance with the measurements. 
To have a check at the top of the second resonance peak in the 14 
cm-curve we take 

l - 0.3 cm, 

l + 2/2 = 14 cm (therefore v = 1259 Hz). 

The 0.3 cm- and 14 cm-curve will have a point of intersection quite 
near to the envelope ; therefore 1259 Hz must be a good approxima¬ 
tion to the second resonance frequency of the 14 cm-curves. This 
again agrees with experiment. 

In this way we computed the seven points of the second resonance 
peaks in the 10 cm- and 14 cm-curves, marked with a cross in fig. 3. 
The agreement with experiment is evident. For these calculations 
the auxiliary curves to the right in fig. 6 may be of some use. They 
can serve e.g. to calculate with higher precision the position of the 
two second resonance peaks. 

§ 5. Theoretical explanation of the large influence of thin layers of air. 
In the last § the results of fig. 3 were found to be in good agreement 
with each other as far as could be verified. We now proceed to give a 
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simple theory that enables us to predict at which frequency maxi¬ 
mum absorption occurs. For this purpose we first neglect dissipa¬ 
tion, since on the one hand the damping effects are rather small in 
our case, whereas their influence on resonance frequencies, that turn 
out to stand in close connection with the frequencies of maximum 
absorption, is only of second order. Without dissipation it is quite 
easy to calculate the (purely imaginary) impedance of the sample 
considered. Those frequencies for which the impedance becomes 
zero are called resonance frequencies. The effect of small dissipation 
on the computed impedance will be such that to the computed, 
purely imaginary impedance a real part is added. Now the total 
impedance is no longer purely imaginary and some absorption will 
be the result. The effect at resonance frequencies will be very pro¬ 
nounced, for here the impedance zero will increase towards qc, the 
real wave resistance of air. If at resonance, owing to just enough 
dissipation, the impedance equals exactly qc, complete absorption 
(100%) occurs. In fig. 3, therefore, absorption peaks will be found at 
the frequencies at which the sample under test would have impe¬ 
dance zero if there were no dissipation at all. 

_d 

J:";: AA 
■ dx 

A = (2n + i]tT 

at resonance 

2TT 

y2 

d A _ 
dx 

2TT 
x/2 

A-dLscqntinuous 
owing to jump 
in wave resi¬ 
stance 

A = 0 4 

Fig. 7. Scheme indicating the general line along which the resonance 
frequencies of a (porous) material (thickness d) on a layer of air (thickness 

l) may be computed. 

Fig. 7 indicates the way in which these resonance frequencies can 
be established. The standing wave in the layer of air can be consi¬ 
dered as the superposition of an incident wave and a reflected one 
of equal strength (no absorption at the wall). The phase difference A 
of the sound pressures of both waves at the wall is zero (pressures 
are doubled, velocities compensated). Proceeding from the wall into 
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the layer of air, the phase difference varies proportional to the dis¬ 
placement, 2n radians for each half wave length; therefore at a 
distance l from the wall, just at the boundary of the material but 
still in the layer of air, A amounts to 

air = 1/Â. 

On passing the boundary of the material, A changes disconti- 
nuously owing to the sudden change in wave resistance. If the 
impedance in the material at a point with coordinate a be defined as 
the ratio of ft and the average value of v, the average being taken 
over the whole plane % — constant, solid matter included, there is 
no discontinuity at the boundary as to the impedance, for ft as well 
as the average velocity are continuous at the boundary. A depends, 
however, (see below) upon the ratio of impedance and wave resist¬ 
ance, and this ratio is actually discontinuous, owing to the disconti¬ 
nuity in wave resistance. In air the wave resistance amounts to qc, 

in the material to QC^kjh, where h — porosity and k = structure 
factor2). Now there is a very simple relation between a purely 
imaginary impedance z, the real wave resistance zw and the phase 
difference A, namely 

z = jzw ctg ¡ A, 

which may be deduced either from the well-known relation 

‘P z — z 
complex reflection coëff. r = —^ = \ r \ exp. /A =-— 

Pi z + za 

or from the circle diagram, giving in the complex 2-plane circles of 
constant A and absorption a (see page 39). Now, since 2 is conti¬ 
nuous, the discontinuity in A may be computed at once from the 
equation 

mat 2 mat air 2 < 

or 

\ mat = 2 arc ctg 

E.g. taking hjy/k = 0.1 and A^ air — 90°, we find 

A¡, „at = 168°, a discontinuity of about 80° ! 

The change of the phase difference on proceeding over the distance 
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d through the material can at once be given as 4ndß', analogous to 
that in the layer of air. It should be noticed, however, that this time 
A' enters, i.e. the wave length in the material (A' = À/^k2)). There¬ 
fore we find for the total phase difference at a distance l -\- d from 
the wall, however just inside the material, 

A tot 

And t h 2nl \ 
—+2arcctg^/1ctg-rj. 

At resonance Aioi must be equal to n, 3n, 5n, .... etc., for this 
being so, the sound pressure of incident and reflected wave at the 
surface of the sample will compensate each other and the impedance 
will be zero. This leads to the following transcendental equation for 
the resonance frequencies : 

2nvl 2nvd a/k 
tg-tg-V 

c c 

h 

d has in our case a fixed value of 2.1 cm, c is 34500 cm/sec, h=0.72. 
If k were known, we could compute vres as a function of l (for n = 1 
leading to the first resonance frequency and so on). We must, 
however, deduce k from experiment, for which purpose we can use 
the experimental fact that for ¿ = 0 the first resonance frequency is 
about 1570 Hz. This leads to k = 6.85. Now we are able to compute 
at each frequency the thickness of the layer of air that is necessary 
for resonance, i.e. the left curve of fig. 6 must be found. The general 
trend of the curve turns out to be correct ; however, at low frequen¬ 
cies too high values for l are computed, higher than could be caused 
by measuring errors. Assuming a smaller h than 0.72 gives closer 
agreement. In fig. 8 some results of calculations with different 
A-values (curves b, c and d for resp. A-values of 0.28, 0.39 and 0.52) 
are given together with the experimental curve a (left curve of fig. 
6, reproduced here to facilitate comparison). The curve c(h = 0.39) 
agrees fairly well with experiment. The discrepancies at low fre¬ 
quencies might be due to erroneous extrapolation, for in reality no 
absorption peaks below 270 Hz have been measured (see the dotted 
parts of the curves of fig. 3 at low frequencies). The discrepancy 
between the static value h = 0.72 and the dynamic value h = 0.39 
is rather great. The only reasonable explanation seems to be that in 
A=0.72 also those cavities are included that are hardly in connection 
with the outer air and have no function at all at audiofrequencies. 
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In more mathematical terms: those cavities of which the time 
constant (“the RC- or relaxationtime”) is large in comparison with 
the period of the sound do not take part in the dynamical process. 

cm 
22 

20 

0 200 400 600 800 1000 1200 1400 1600 Hz 

-freq. 

Fig. 8. Experimental curve of fig. 6, compared with theoretical curves. 

The question may be raised which material constants are of pri¬ 
mary importance for the large effect of thin layers of air on the 
resonance frequency. Fig. 9 gives an answer to this question for the 
particular case of a sample of 2.1 cm thickness. Six curves are given, 
representing the first resonance frequency as a function of the three 
variables h (porosity), k (structure factor) and l (thickness of layer of 
air). When 1 = 0 (no layer of air) this frequency does not depend 
upon h, the “curves” being straight lines, depending upon the 
structure factor only. When l = 1 cm, the resonance frequency 
depends upon h and k. The influence of the layer of air may be 
measured in the relative drop in resonance frequency caused by the 
introduction of this layer. It is read directly from the graph that the 
resonance frequency drop with £ = 4 and h = 0.8 amounts to 2060— 
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1340 = 720 Hz (about 35%), whereas with k = A and h = 0.\ it is 
increased to 2060 — 590 = 1470 Hz (about 71%). The influence of 
variations in k is simple, all frequencies being approximately pro¬ 
portional to -\/k. Increasing k from 1 to 9 therefore decreases the 

k = 9 i=0 k = 4 i = o k=4 f=o 

0.8- 

0.6 -- 

0.4 

0.2 

0.0 1—t--1 1' i i i I T I I I I I ' I I 
(000 2000 3000 4000 Hz 

‘ “ freq. 

Fig. 9. Graph showing the influence of 1 cm layer of air on the resonance 
frequency (frequency of maximum absorption) as a function of the 
porosity h and the structurefactor k. Thickness of sample 2,1 cm. 

resonance frequency three times. Such large variations, however, 
are seldom obtained, all normal materials yielding. A-values of about 
6-8. Decreasing h may therefore be looked upon as an adequate 
means of lowering the resonance frequencies, provided a layer of air 
is present and relatively low A-values are used. 

Received 1st May 1947. 
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