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The hidden cost of using low-
resolution concentration data in the 
estimation of NH3 dry deposition 
fluxes
Frederik Schrader1, Martijn Schaap2, Undine Zöll1, Richard Kranenburg2 & Christian Brümmer1

Long-term monitoring stations for atmospheric pollutants are often equipped with low-resolution 
concentration samplers. In this study, we analyse the errors associated with using monthly average 
ammonia concentrations as input variables for bidirectional biosphere-atmosphere exchange models, 
which are commonly used to estimate dry deposition fluxes. Previous studies often failed to account 
for a potential correlation between ammonia exchange velocities and ambient concentrations. We 
formally derive the exact magnitude of these errors from statistical considerations and propose a 
correction scheme based on parallel measurements using high-frequency analysers. In case studies 
using both modelled and measured ammonia concentrations and micrometeorological drivers from 
sites with varying pollution levels, we were able to substantially reduce bias in the predicted ammonia 
fluxes. Neglecting to account for these errors can, in some cases, lead to significantly biased deposition 
estimates compared to using high-frequency instrumentation or corrected averaging strategies. Our 
study presents a first step towards a unified correction scheme for data from nation-wide air pollutant 
monitoring networks to be used in chemical transport and air quality models.

Gaseous ammonia (NH3) plays an important role in the atmosphere as part of the natural and anthropogenic N 
cycle and contributes to a number of adverse effects on the environment and public health1. Recent developments 
allow the direct quantification of NH3 dry deposition and emission fluxes via the eddy-covariance method2–4; 
however, the necessary instrumentation is costly, long-term continuous studies are yet to be published, and the 
method is not trivially applicable in every environment. Alternative methods, such as the aerodynamic gradient 
technique, are even more labour-intensive, usually require expensive wet-chemical analyses, and are prone to 
errors in non-ideal conditions5.

A cost- and labour-efficient alternative to flux measurements is the use of so-called dry deposition inferential 
models. If they are properly validated against flux measurements in different ecosystems, they can be applied for 
regional estimates of NH3 dry deposition using only concentration measurements and a small number of (micro-)
meteorological variables as input data6–10. These models are usually ran on a 30 minute basis, in accordance with 
the typical temporal resolution of flux measurements, or on an hourly basis within some large-scale chemistry 
transport models (CTM), such as LOTOS-EUROS11,12. However, in national monitoring networks, such as the 
Measuring Ammonia in Nature (MAN) network in the Netherlands13, often passive samplers or denuders (e.g. 
DELTA14, or KAPS15,16) are used to measure ambient NH3 concentrations, which typically only yield a tempo-
ral resolution of monthly averages. The impact of using such low-resolution concentration measurements as 
input data for bidirectional NH3 dry deposition inferential models has, to our knowledge, not been thoroughly 
investigated in the published literature, although they have regularly been used from local studies17,18 to inte-
grated projects19. In order to systematically assess potential bias introduced by using low-resolution concentration 
data, we exemplarily analysed a 1 year gap-free record of ambient NH3 concentrations predicted by the CTM 
LOTOS-EUROS in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) mete-
orology as input data for an independent dry deposition inferential model by Massad et al.7, as well as preliminary 
NH3 concentration measurements using quantum cascade laser (QCL) spectroscopy at a remote site in Germany. 
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We investigated the potential magnitude of errors introduced by using low-resolution concentration measure-
ments and formally derived the fundamental equations necessary for the development of correction schemes. 
Our study lays the groundwork for the characterisation of errors and estimation of site-specific correction func-
tions when using NH3 dry deposition models with low-resolution input data.

Methods
Dry deposition inferential modelling. Dry deposition of NH3 is most commonly modelled using param-
eterisations of a big-leaf canopy compensation point model, or a two-layer variant thereof when exchange with 
the soil- or litter-layer is expected to be significant and can be parameterised within reasonable margins of uncer-
tainty6,7,20. We here use the parameterisation of Massad et al.7 in a one-layer configuration to ensure independence 
from the dry deposition module (DEPAC within LOTOS-EUROS) involved in the generation of the synthetic 
data. In this model, the flux density of NH3 is predicted from the difference of the measured air NH3 concentra-
tion χa (μg NH3 m−3) at the aerodynamic reference height z − d (m) and the (modelled) canopy compensation 
point concentration, χc (μg NH3 m−3) (Fig. 1). The sign of this difference governs the direction of the flux (χa > χc 
leads to a deposition flux, with a negative sign by convention, and χa < χc leads to an emission flux). Furthermore, 
the magnitude of the predicted flux density is controlled by the magnitude (i) of χa − χc, and (ii) of a number of 
resistances towards deposition. Within this framework, the total net biosphere-atmosphere exchange flux of NH3, 
F (μg NH3 m−2 s−1), is typically given as

χ χ
= −

−

+
F

R R
,
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where Ra (s m−1) and Rb (s m−1) are the aerodynamic and quasi-laminar boundary layer resistance, respectively, 
and are here modelled as described in detail by Massad et al.7. Instead of calculating the canopy compensation 
point (which is a function of both stomatal and cuticular resistance and, if applicable, their respective compensa-
tion points, and the air NH3 concentration), we can simplify the model scheme to strictly consist of serial resist-
ances only (Fig. 1b). The effective ‘foliar compensation point’, χf (μg NH3 m−3), is then given as a weighted average 
of both leaf-layer pathways via
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where χw (μg NH3 m−3) and χs (μg NH3 m−3) are the cuticular and stomatal compensation point, respectively, 
Rw (s m−1) is the cuticular resistance, parameterised after Massad et al.7, and Rs (s m−1) is the stomatal resistance 

Figure 1. (a) Common structure of a bidirectional one-layer canopy compensation point model for biosphere-
atmosphere exchange of NH3. (b) Simplification of (a) to a serial resistance structure.
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after Emberson et al.21. In the Massad et al.7 parameterisation, χw is zero (i.e., only deposition to the cuticula is 
possible). Rf (s m−1) is the ‘foliar resistance’, similar to the notation of Wichink Kruit et al.8, and is given as

= + .− − −R R R( ) (3)f w
1

s
1 1

To further simplify the calculations, we define an exchange velocity, vex (m s−1), as the inverse of the total 
resistance to NH3 exchange:

= + + .−v R R R( ) (4)ex a b f
1

Note that Rf is not necessarily equal to the so-called canopy resistance, which is usually only used in unidi-
rectional (deposition-only) models (i.e., they are only equal when χf is zero). Similarly, vex is not equal to the 
common concept of a deposition velocity, in which Rf is replaced by the canopy resistance and which is not used 
in conjunction with a compensation point.

Given these definitions, the net NH3 exchange flux can also be written as

χ χ

χ χ

= − ⋅ −

= ⋅ −

F v
v

( )
( ), (5)

ex a f

ex f a

where a positive flux indicates emission and a negative flux indicates deposition.

Flux prediction strategies for low-resolution input concentrations. High-frequency concentration 
measurements are often cost- and labour-intensive, and usually not available within nationwide long-term mon-
itoring networks. A number of different variants to predict long-term average or cumulative flux densities from 
low-frequency concentration measurements can be found in the literature18,19,22–28. We here discuss the case of 
monthly averages, which are a common outcome of passive sampler or denuder measurements, but the calcula-
tions remain the same for any other kind of averaging period. A sensitivity study for other averaging periods is 
given in the Supplementary Material.

Consider the case of (i) (micro-)meteorological input data available at a sampling frequency the model is usu-
ally run at, e.g. 1 hour in our sample datasets, and (ii) ambient NH3 concentrations available at a lower sampling 
frequency, e.g. 1 month. We further assume that, from these data, reasonable flux predictions can only be made 
at the lowest available time scale, i.e. 1 month in this example. However, the model should still be run at a higher 
resolution in order to incorporate the effects of diurnal variations and day-to-day variability in meteorological 
conditions. There are generally two straightforward strategies to predict monthly averaged NH3 fluxes under 
these conditions, the first being:

χ χ= ⋅ −F v ( ) (6)ex f a

Here, an overbar x  denotes the arithmetic mean of some random variable x, and a prime x′ denotes the instanta-
neous deviation from x , i.e. = + ′x x x , similar to the notation commonly employed by the micrometeorological 
community. Consequently, equation (6) means that the model is run on an hourly basis with hourly meteorolog-
ical input data, and the measured monthly average NH3 concentration is used as a substitute for hourly concen-
tration values. In other words, it is assumed that the monthly average NH3 concentration is representative for 
hourly values and that internal mechanics of the model (such as the exponentially temperature dependent con-
version of emission potentials to compensation points20) effectively compensate the effect of the lowered input 
data resolution.

An alternative strategy would be to first calculate the exchange velocity and the compensation points at a high 
resolution (given that they are independent of χa), average them, and then calculate the monthly average flux 
from the monthly average of all other variables:

χ χ= ⋅ −F v ( ) (7)ex f a

We will outline in the following section why both of these variants (equations (6) and (7)) will inevitably lead to 
biased results.

Derivation of the error term. A well-understood, but still often ignored fallacy is the assumption that the 
product of averages yields similar results to the average of products29. However, this is generally only the case 
when all variables involved are completely independent and uncorrelated. Even if not all of these variables are 
formally linked within the governing equations of a dry deposition model, they may be correlated through their 
inherent dependence on external environmental factors (e.g. temperature, radiation, or turbulence). Meyers & 
Yuen30 were among the first to observe the impacts of ignoring this fallacy with regards to (unidirectional) infer-
ential modelling of SO2 and O3 fluxes. For a bidirectional NH3 exchange scheme, the true mean flux over a certain 
period of time can be written as:

χ χ

χ χ

= ⋅ −

≠ ⋅ − .

F v
v

( )
( ) (8)

ex f a

ex f a

Recall our definition of x  and ′x , from which it follows that ′x 2 is equal to the (non Bessel-corrected) variance 
of x, and ′ ⋅ ′x y  to the covariance of two random variables x and y. With these additional definitions, we can cal-
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culate the true average flux from long-term average NH3 concentrations using the linearity of expected values and 
the definition of the covariance, as follows:

F v
v v

v v v v

v v v

( )

( )

( ) (9)
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= ⋅ − + ′ ⋅ ′ − ′ ⋅ ′.

The difference between equation (7) and the last line of equation (9), i.e., the two covariance terms 
v vex f ex aχ χ′ ⋅ ′ − ′ ⋅ ′ (μg NH3 m−2 s−1), is equal to the exact error introduced when calculating average NH3 fluxes 
from average exchange velocities and measured long-term average concentration measurements. When directly 
calculating hourly fluxes with the long-term average NH3 concentrations used as a substitute for hourly values 
and averaging afterwards (i.e., using equation (6)), the error is equal to χ− ′ ⋅ ′vex a

 (μg NH3 m−2 s−1).

A first step towards bias elimination. If we run a dry deposition inferential model with only the ambient 
NH3 concentration as a long-term average and all other driving variables measured at a higher temporal resolu-
tion, as is usually the case for monitoring stations, where the measurement of meteorological variables at a high 
temporal resolution is not very difficult, only the last term of equation (9), i.e. the covariance of vex and χa, is 
unknown. We can expand it to take the form

χ χ
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deviation of vex and χa, respectively, and χ χ′ ⋅ ′ ⋅ ′ ⋅ ′ = χ
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,ex a

 (−) is equal to the Pearson 
product-moment correlation of the two. Again, σvex

 is known and can trivially be calculated from 
higher-resolution modelled estimates of vex. However, σχa

 and χrv ,ex a
 remain unknown at this point.

A simple approach to calculate less-biased fluxes from low-resolution concentration measurements could be 
based on accompanying high-resolution concentration measurements at the same site for a limited amount of 
time. E.g., one would use a single ‘high-frequency’ (0.5 to 1 hour sampling rate) NH3 monitor to take parallel 
measurements at a monitoring site for a few months to gather the necessary data to derive correction factors, and 
then move the instrument to the next site. We can assume an increase of the variation in air NH3 concentrations 
with rising concentration levels, i.e. increasing σχa

, with increasing mean χa, since (i) chemical measurement 
instruments often exhibit relative errors, and (ii) it is reasonable to suspect that, for instance, emissions from 
nearby sources would not only lead to a steady increase of the mean NH3 concentration, but also to a higher var-
iability, depending on turbulent mixing, wind direction, and other factors. The most simple approach is to model 
this with a linear relationship:

σ χ χ= ⋅ +χ̂ m b( ) , (11)a 0 a 0a

where m0 (−) and b0 (μg NH3 m−3) are the slope and intercept of the resulting regression line, respectively.
Modelling the correlation between the exchange velocity and the air NH3 concentration, χrv ,ex a

, is substantially 
less straightforward. A zeroth-order approach would consist of simply taking the mean correlation over the meas-
urement period used for deriving correction functions. However, this would eliminate the possibility of register-
ing potential seasonality in χrv ,ex a

, and the next most simple alternative, a linear regression of χrv ,ex a
 against some 

environmental variable, would yield practically the same results if the slope of the regression is close to zero, 
leaving little reason not to favour at least a simple linear regression over the mean. Unfortunately, the choice of a 
suitable explanatory variable is far from trivial, as we essentially look for a correlation of a correlation, which is a 
somewhat ill-defined and difficult to understand concept. We will here exemplarily perform a linear regression 
against temperature °T ( C)air , assuming that with rising temperature (as a measure for the energy content of the 
system), both volatilisation of NH3 and buoyancy will increase and the corr\elation between the two might 
become stronger. However, this is merely an educated guess and not bound to be the most suitable model, nor is 
temperature guaranteed the most suitable regressor. In fact, we suspect that especially at remote sites with little to 
no diurnal variation in air NH3 concentrations, but pronounced variation in vex (which is strongly linked to 
atmospheric turbulence), most variables with a strong diurnal cycle would work similarly well as a predictor for 

χrv ,ex a
. The model is given as:

= ⋅ +χr̂ T m T b( ) , (12)v , air 1 air 1ex a

with the slope m1 (−) and intercept b1 (−). Equation (9) then becomes:

^ ^χ χ χ σ σ χ= ⋅ − + ′ ⋅ ′ − ⋅ ⋅ .χ χF v v r T( ) ( ) ( ) (13)v vex f a ex f a , airex a ex a
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Comparison of flux prediction strategies. A 12-month gap-free set of ‘synthetic’ input data was gener-
ated by running the Eulerian grid model LOTOS-EUROS31 in conjunction with ECMWF meteorology for the 
year 2016. Through a one-way nesting procedure a simulation over Germany was performed on a resolution 
of 0.125° longitude by 0.0625° latitude, approximately 7 by 7 km2. The high resolution domain is nested in a 
European domain with a resolution of 0.5° longitude by 0.25° latitude, approximately 28 by 28 km2. Emissions 
include the TNO MACC-III European emission inventory for the year 2014. For Germany, the national emis-
sion inventory of the German Environmental Protection Agency (UBA) was used to prescribe the gridded 
emissions. LOTOS-EUROS is one of the few CTMs that include SO2-NH3 co-deposition and bidirectional 
surface-atmosphere exchange of NH3

12,32.
We here used data from one grid cell in the Allgäu region in southern Germany (47°41′34.80′′ N, 10°2′6.00′′ E) 

(Fig. 2a). Average temperature during the year of 2016 was 8.1 °C, total precipitation 1690 mm, and the average NH3 
concentration was 5.6 μg NH3 m−3 (highest hourly means up to 60.6 μg NH3 m−3) at an (aerodynamic) reference height 
of 2.5 m above zero-plane displacement. The annual course of the leaf area index was modelled as implemented in the 
DEPAC deposition module within LOTOS-EUROS12,21. We here exemplarily used land-use parameters for grassy 
semi-natural vegetation; results for other land-use classes can be found in Fig. S1 of the Supplementary Material.

Additionally, we tested the correction scheme for measured data from a flux tower in the Bavarian Forest in 
Germany (Fig. 2b) at 807 m a.s.l. (base of the tower), 48°56′50.27′′ N, 13°25′12.22′′ E33. NH3 concentrations were 
measured using a QCL absorption spectrometer from Aerodyne Research Inc., Billerica, MA, USA (cf. Zöll et 
al.2. for a detailed instrument description) at 31 m above ground level, and with an original sampling rate of 10 Hz 
averaged to 1 concentration value per hour. Turbulence measurements were taken with a sonic anemometer 
(model R3, Gill Instruments Ltd., Lymington, UK) at the same height, as well as temperature and relative humid-
ity using HC2S3 probes (Campbell Scientific, Inc., Logan, UT, USA). Leaf area index and canopy height were 
not measured at the site and parameterised as proposed in Massad et al.7. Annual average temperature at the site 
was 7.4 °C, total precipitation was 1047 mm, and the average of NH3 concentrations used in this study (approxi-
mately 56% data coverage of the year) was 1.1 μg NH3 m−3 (maximum 14.5 μg NH3 m−3). Measured ambient NH3 
concentrations at this site are preliminary, but have undergone common quality procedures, such as despiking, 
and system performance tests with regard to flow rate, temperature, and pressure stability. These data will be pub-
lished in an ecological context in the near future. The purpose of using this dataset is solely meant for assessing 
the correction scheme, thus absolute numbers should not be cited for verifying ecosystem-specific thresholds. 
We also note that we here used the Massad et al.7 parameterisation in its original form, despite the findings of 
Schrader et al.34 regarding a likely too large non-stomatal (cuticular) resistance in this parameterisation. While 
this leads to relatively low predicted fluxes, the derivation of the error term is unaffected. An additional case study 
for a moorland site in southern Scotland can be found in Fig. S2 in the Supplementary Material.

The dry deposition inferential model was run for four different scenarios for each site:

 1. ‘control’: all variables at hourly resolution; flux calculation on hourly basis and subsequent averaging to 
monthly average fluxes (equation (8)).

 2. ‘direct’: monthly average NH3 concentrations and all other variables at hourly resolution; flux calculation 
on hourly basis with hourly NH3 concentrations substituted by their monthly averages; subsequent averag-
ing to monthly average fluxes (equation (6)).

 3. ‘monthly’: monthly average NH3 concentrations and all other variables at hourly resolution; calculation of 
exchange velocities and foliar compensation points on hourly basis; subsequent averaging to monthly aver-
age exchange velocities and foliar compensation points, and calculation of monthly fluxes via equation (7).

 4. ‘corrected’: same as ‘monthly’, but with added correction terms from equations (11)–(13).

Figure 2. Hourly and monthly averaged air NH3 concentrations for the year 2016 of (a) synthetic data 
predicted from LOTOS-EUROS for one grid cell in the Allgäu region in Germany and (b) measured data from a 
flux tower in the Bavarian Forest.
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Note that ‘corrected’ can also be written as equal to ‘direct’ plus only the correction term for the covariance of 
vex and χa. Monthly deposition fluxes for months with gaps in the measured dataset were calculated by multiply-
ing the arithmetic mean flux density of a given month with the number of data points at 100% coverage (assuming 
no bias of the gaps towards a certain time of the day).

Code and data availability. Synthetic data are available at reasonable request from M. Schaap. Measured 
data will be published separately after final analysis. A Python 2.7 implementation of the Massad et al.7 parame-
terisation can be requested from the lead author. An open source version of LOTOS-EUROS is publicly available.

Results and Discussion
Figure 3a,b exemplarily shows the results of the comparison between the different averaging strategies for the 
synthetic dataset, using the parameterisation of the dry deposition model for semi-natural ecosystems. During 
some months, the relative error reaches over 100% higher predicted deposition compared to ‘control’ in a given 
month (e.g., January and April). The lowest error introduced by using uncorrected averaging strategies is in 
August (54% for the ‘direct’ variant, and 58% for the ‘monthly’ variant). Overall, the uncorrected variants overes-
timate total NH3 dry deposition for the year 2016 roughly by a factor of two (Table 1). There is no clear depend-
ency of the magnitude of the relative error on environmental drivers apparent from our observations; however, 
the magnitude of the error is naturally strongly linked to χrv ,ex a

. Consequently, the performance of a correction 
scheme is directly proportional to the certainty with which the correlation of the exchange velocity and the air 
NH3 concentration can be estimated. It also directly follows from a special case of equation (9), when χf is 
assumed to be zero, that the use of average deposition velocities instead of effective deposition velocities in a 
unidirectional framework is affected by the exact same type of error. In fact, due to the implicit integration of the 
compensation point in the deposition velocity, the error can be expected to be larger. Similar observations have 
been made by Matt & Meyers35 and Meyers & Yuen30 for SO2 and O3, in which they attempted to reduce the error 
by employing day- and night-sampling strategies. The proposed correction approach leads to a strong 

Figure 3. (a) Predicted cumulative monthly NH3 deposition for the four scenarios ‘control’, ‘direct’, ‘monthly’, 
and ‘corrected’ of the synthetic dataset (see text for description). Differences are given as percent deviation from 
‘control’. (b) Predicted cumulative monthly NH3 deposition of ‘direct’, ‘monthly’, and ‘corrected’ variants against 
‘control’. Dashed lines are 95% bootstrapped confidence intervals of the regression lines. (c,d) Same as (a,b), but 
for the measured data. The legend in (c) is valid for all four panels.
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improvement during all months (Table 1, Fig. 3a,b), especially considering its relative simplicity. These findings 
are also confirmed by running the model for different synthetic datasets with different land-use types (Table S1 
and Fig. S1 in the Supplementary Material).

For the measured data (Fig. 3c,d), the picture is somewhat less clear, due to alternating over- and underestima-
tions of averaged predicted deposition with respect to the control. While in some months, uncorrected ‘direct’ or 
‘monthly’ flux prediction strategies give the best approximation to flux calculation using high-frequency data 
(e.g., May or October), the sum of all deviations from ‘control’ is still lowest for the ‘corrected’ variant (Table 1). 
However, the mean absolute deviation from ‘control’ is lowest for the ‘direct’ variant, albeit by a very small margin. 
Reasons for this less clear performance can be found in the very uncertain regression of χrv ,ex a

 against ambient 
temperature (Fig. 4d), leading to all estimates of χrv ,ex a

 close to its arithmetic mean, although it clearly changes 
throughout the measurement period. Furthermore, the error introduced by the different averaging strategies is 
already much lower (<25%) than for the synthetic dataset, which indicates a strong site-specificity of χrv ,ex a

. This 
is supported by the observation that other measured datasets exhibit much larger errors (Fig. S2 in the 
Supplement).

The higher than observed anticorrelation between NH3 concentrations and the exchange velocities may be due 
to the large difference in NH3 levels between the synthetic and measured dataset (Fig. 2). Firstly, in source areas 
primary emissions cause nighttime concentration maxima to occur, whereas exchange rates are highest during 
late morning hours when PBL growth has diluted the NH3 concentrations. CTM modelled data from the grid-cell 
that includes the Bavarian Forest site (grey lines in Fig. 4d) exhibit a weaker anticorrelation χrv ,ex a

 than the syn-
thetic dataset from the Allgäu region. LOTOS-EUROS’ resolution may explain why it is still somewhat more 
negative than observed: In each grid cell emissions of NH3 take place, causing a slight nighttime maximum. In 
reality, the stagnant conditions do not allow these emissions to reach a hill site such as the Bavarian Forest meas-
urement tower. Hence, the implicit spatial mixing may explain the stronger anticorrelation found in the 
measurements.

It is evident from Fig. 5, that, unfortunately for the purposes of correcting biased monthly flux estimates, the 
known part of the error term ( χ′ ⋅ ′vex f ) contributes much less to the total error than the unknown part 
( χ− ′ ⋅ ′vex a ). Consequently, the choice between ‘direct’ and ‘monthly’ flux calculation strategies does not substan-
tially change the magnitude of the error. The assumption of a relative error in measured air NH3 concentrations 
appears to be justified from our observations with both modelled and measured concentrations (Fig. 4a,c). 
However, modelling the correlation of the exchange velocity and air NH3 concentrations remains a challenge, as 
difficulties in the interpretation lead to difficulties in the conceptualisation of an adequate model for χrv ,ex a

 
(Fig. 4b,d). Also note that, for NH3, both deposition, and emission can occur. We make no distinction between 
the two in our analysis, as all sites show net deposition on the monthly scale and no artificial management events 
were modelled. Contrary to deposition velocity models, information about the direction of the flux is removed 
from the exchange velocity by explicitly separating it from the compensation point in the derivations. Equation 
(12) appears to work acceptably well for modelling χrv ,ex a

 in the synthetic dataset, but not very well for the meas-
ured one. A better course of action than the one presented here might, for example, be based on a multivariate 
regression using more than one environmental driving factor. However, many potential candidate variables are 
highly correlated, and the number of parameters of such a multivariate model may quickly approach the number 
of data points, leading to an increased risk of overfitting and questionable predictive value. We have investigated 
the potential of fitting the correction factors on a smaller timescale than the averaging period, thereby increasing 
the number of data points for the regression, but this has been rather unsuccessful in terms of reducing uncer-
tainty. With simple regression approaches, an adequate correction function will certainly be site-specific, and it 
will not be universally valid for different parameterisations of biosphere-atmosphere exchange schemes. With the 
increasing availability of optical high-frequency NH3 measurement instruments, fitting ecosystem-type and envi-
ronmental condition specific multivariate correction functions, thereby potentially eliminating the need for 
site-specific parallel measurements, is a promising outlook, but we assume that the number of NH3 concentration 
measurements currently available is simply too low for this task. However, truly site-independent correction 
functions that can be readily applied in existing modelling schemes may not even be possible to derive, as they 
likely depend on a multitude of factors which are not routinely measured. The relationship between vex and χa 
may be vastly different depending on, for example, the N status of the ecosystem of interest, atmospheric 

Scenario Coverage (%) ΣF (g NH3 ha−1) Difference (g NH3 ha−1) MAD (g NH3 ha−1)

synthetic

‘control’

100

4347.0

‘direct’ 8126.5 3779.5 315.0

‘monthly’ 8062.1 3715.0 309.6

‘corrected’ 4329.0 −18.0 40.9

measured

‘control’

56

1629.6

‘direct’ 1572.8 −56.8 13.9

‘monthly’ 1594.5 −35.1 16.2

‘corrected’ 1624.7 −4.9 15.5

Table 1. Performance of the different averaging strategies. Coverage: Raw data coverage of the year 2016; ΣF: 
Sum of all monthly fluxes (positive is deposition); Difference: difference from ‘control’; MAD: mean absolute 
monthly differences from ‘control’.
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composition, and even the measurement period. In agricultural ecosystems, for instance, there are times when the 
concentration is largely driven by emission fluxes from the surface, and times when the ambient concentration 
will drive the flux. The same can be the case for forests before and after leaf-fall36. Further research is necessary to 
develop an optimal strategy to handle these challenges.

Figure 4. Linear regressions as an estimate for (a) the monthly standard deviation of air NH3 concentrations 
and (b) the monthly Pearson correlation of exchange velocities and air NH3 concentrations for the synthetic 
dataset. (c,d) Same as (a,b), but for the measured data. Grey lines in panel (d) are results for CTM data from the 
grid cell that includes the Bavarian Forest measurement tower. Light grey is modelled with land-use parameters 
for a coniferous, dark grey for a deciduous forest.

Figure 5. Variation of the individual error terms in equation (9) with the magnitude of the error for (a) 
synthetic and (b) measured data. Note that the signs are switched in this graph (deposition is positive) for 
consistency with Fig. 3.
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Readers should be aware that the observations and derivations made in this study are strictly only valid for a 
model parameterisation where both vex and χf are not directly dependent on high-frequency observations of the 
air NH3 concentration, χa, such as the parameterisation of Massad et al.7. For instance, Wichink Kruit et al.8 used 
an air NH3 concentration dependent formulation for the cuticular compensation point to approximate saturation 
effects within leaf surface water layers. In this case, it would be advisable to use a corrected formulation based 
on the ‘direct’ variant, so that one χa-dependent covariance in the correction term can be eliminated. Other than 
that, all derivations demonstrated here remain the same, should be adaptable to other parameterisations and 
model structures in a straightforward manner, and they are valid for any arbitrary averaging period.

Conclusions
We have demonstrated and formally shown that commonly used averaging strategies for the prediction of 
long-term average fluxes from long-term average measurements of NH3 concentrations (e.g., from denuder or 
passive sampler records) and high-frequency micrometeorology are biased. The magnitude and variation of this 
bias is dependent on the biosphere-atmosphere-exchange scheme used, and measurement site characteristics, 
such as surface, parameters, pollution level and the distance to NH3 sources. The magnitude of errors in predicted 
fluxes introduced by using uncorrected averaging schemes is directly proportional to the (anti-)correlation of 
NH3 exchange velocities and ambient concentrations, which is expected to be significant due to saturation effects 
on wet leaf surfaces37–39, deposition history-dependent compensation points7,8, and their inherent dependence 
on the same environmental variables. Relative errors of up to 100% deviation from ‘control’ and higher were 
observed in the synthetic dataset, whereas measured data showed both over- and underestimations of less than 
25% that compensated each other over the course of the measurement period. The proposed correction scheme 
consists of

 1. Measuring time-series of average NH3 concentrations with low-frequency, low-cost monitoring 
equipment,

 2. Measuring meteorological drivers at a high-frequency with standard instrumentation,
 3. Taking parallel measurements with a high-frequency NH3 monitor for a limited time to parameterise 

functions to estimate the standard deviation of NH3 concentrations (equation (11)), and the correlation of 
air NH3 concentrations with the exchange velocity (equation (12)),

 4. Calculating corrected monthly average fluxes using equation (13).

The results of our first tests appear promising, but uncertainties in estimating aforementioned correlation 
have to be overcome in the future. In its current state, low-frequency concentration measurements need to be 
accompanied by high-frequency measurements for a certain (yet to be determined) amount of time to derive 
valid site-specific correction functions. In-depth model structure analyses and multi-site studies, especially at 
those with higher NH3 concentrations and possibly emission fluxes, may give further valuable insight into the 
exact mechanics behind the dominant source of the error: the correlation of the NH3 exchange velocities and air 
NH3 concentrations.
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