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Abstract This paper introduces mutual liability problems, as a generalization of
bankruptcy problems, where every agent not only owns a certain amount of cash
money, but also has outstanding claims and debts towards the other agents. Assum-
ing that the agents want to cash their claims, we will analyze mutual liability rules
which prescribe how the total available amount of cash should be allocated among the
agents. We in particular focus on bilateral ϕ-transfer schemes, which are based on a
bankruptcy rule ϕ. Although in general a ϕ-transfer scheme need not be unique, we
show that the resulting ϕ-transfer allocation is. This leads to the definition of ϕ-based
mutual liability rules. For so called hierarchical mutual liability problems an alterna-
tive characterization ofϕ-basedmutual liability rules is provided.Moreover it is shown
that the axiomatic characterization of the Talmud rule on the basis of consistency can
be extended to the corresponding mutual liability rule.

Keywords Mutual liability problems · Bankruptcy · Monetary interrelationships in
financial crises

JEL Classification C71 · G33

1 Introduction

The classical bankruptcy problem, consisting of a single estate andmultiple claimants,
is introduced by O’Neill (1982). A bankruptcyrule prescribes, for each bankruptcy
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problem, how to divide the estate over the claimants. In the literature one can find
a wide variety of bankruptcy rules, which arise from both an axiomatic as well as a
game-theoretic analysis, see for an overview, Thomson (2003, 2015). The classical
bankruptcy problem has been extended in various ways. Without trying to provide
a complete overview, we mention extensions to multi-issue allocation situations in
which the estate has to be divided among a group of agents with claims stemming
from different issues, see Calleja et al. (2005), to stochastic bankruptcy games (Habis
and Herings 2013), to rationing problems in the presence of baselines (see Hougaard
et al. 2013a, b), and to allocating the losses due to financial distress within a busi-
ness sector (Van Gulick 2010). Lately, a main trending topic is multiple estates. In
a current work of Bjorndal and Jornsten (2010) a bankruptcy problem with multiple
banks (estates) is represented by a flow model. The banks can have separate claims on
each other and there is a set of agents having separate claims on those banks. Pálvöl-
gyi et al. (2014) consider the case of agents with non-homogeneous preferences over
multiple estates. Here, the agents have a single claim, but the utility per estate differs.
The problem is analyzed from a non-cooperative perspective and focusses on how the
agents should divide their claim into subclaims over the estates. Moulin and Sethura-
man (2013) analyze bipartite rationing problems with multiple estates, agents with a
single claim, but in which the agents are not necessarily compatible with all estates.
These compatibilities are represented by a bipartite graph. By analyzing the flows in
the graph and using a consistency axiom, bankruptcy rules are extended to this setting.

In this paper we introducemutual liability problemswithmultiple estates of a rather
different nature. In financial accounting a liability is defined as an obligation of “an
entity arising from past transactions or events, the settlement of whichmay result in the
transfer or use of assets, provision of services or other yielding of economic benefits in
the future.”1 Usually a liability is associated with an uncertainty, but this need not be
the case. The more creditors an agent has, the higher the liabilities. We will investigate
the scenario where a group of agents is related by havingmutual liabilities, but reaches
the point in time where the agents want to cash their claims. Before this time moment,
none of the agents worry about the possible insufficient cash in the current assets.
Until, for some exogenous reason, individuals start cashing their claims. This will
lead to a cascading effect and will reveal the possibly insufficient cash level of agents
and the agents typically might not obtain all of what they, however rightfully, claim.

This approach can be applied to financial networks and can be seen as a simplified
and deterministic model of the monetary interrelationships between banks, govern-
ments and companies in case of a financial crisis and threatening bankruptcy of banks.
We refer to Eisenberg and Noe (2001) for an overview, and to Glasserman and Young
(2015) and Acemoglu et al. (2015) for further issues on (in)stability and contagion
in financial networks. Mutual liabilities also relate to so-called claims problems with
circular priorities as mentioned in e.g. Benson (1935) and Kocourek (1935). These
papers consider the legal perspective on interdependent claims, whereas we consider
the mathematical perspective using the current knowledge of bankruptcy problems.
Mutual liabilities in a discrete and decentralized financial network setting are analyzed

1 Loosely quoted from the framework of the International Financial Reporting Standards Foundation.
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in Csóka and Herings (2016, 2017), whereas we consider a continuous and centralized
framework.

A mutual liability problem can be represented by a matrix, in which an entry rep-
resents a claim from one agent on another agent. The diagonal entries represents the
players’ cash levels. A special class of mutual liability problems are the hierarchical
mutual liability problems in which the claim matrix is triangular. This implies that we
can index the agents, such that every agent only claims from agents with lower index.
In this sense there is a hierarchy among the agents. For an example, think of the vertical
relations in a supply-chain: insufficient cash of a buyer may lead to insufficient cash
of his supplier(s).

This paper will analyze mutual liability problems from an allocation perspective:
if in a mutual liability problem the agents reach the stage that they want to cash their
claims and remove all current liabilities, how should the total amount of available
cash be fairly distributed among the agents? At this moment we refrain from a for-
mal cooperative game theoretic approach. In our opinion one should first analyze the
numerous new intricacies of our new model on the level of individual agents before
attempting a coalitional approach. Instead, we implicitly assume that there is an inde-
pendent authority charged with the task of fairly solving the mutual liability problem.
Amutual liability rulewill for each mutual liability problem prescribe how to allocate
the total cash among the agents. Since the choice of the independent authority for such
a rule might well be inspired by underlying bilateral transfers (as are the claims)—and,
in practice, will be quite hard to defend without them,—we assume each allocation
to stem from a so-called (bilateral) transfer scheme. In fact we show that, under a
weak condition (called reasonability), every allocation can be supported be such a
transfer scheme. More specifically, given a bankruptcy rule ϕ, we consider ϕ-transfer
schemes, in which the incoming plus available cash of every agent is allocated among
his claimants according to the bankruptcy rule ϕ. We show that for every bankruptcy
rule ϕ there always exists a ϕ-transfer scheme, which is not necessarily unique. Inter-
estingly, it is seen that each ϕ-transfer scheme leads to the same ϕ-transfer allocation,
so allocation-wise a unique outcome is provided. For the subclass of hierarchical
mutual liability problems, it is seen that the ϕ-transfer scheme is also unique.

These results imply that each bankruptcy rule ϕ can be extended to amutual liability
rule: a ϕ-based mutual liability rule. We provide an explicit characterization for the τ -
based mutual liability rule based on the Talmud rule τ (Aumann and Maschler 1985),
by extending the properties of consistency and the concede and divide-principle from
the bankruptcy setting to the context of mutual liability problems.

Profiting from the special structure of hierarchical mutual liability problems, one
can extend bankruptcy rules in an alternative recursive way into mutual liability rules.
It is shown that for each bankruptcy rule ϕ, the resulting allocation coincides with the
unique transfer allocation prescribed by the corresponding ϕ-based mutual liability
rule, thus providing another characterization of ϕ-based mutual liability rules on the
class of hierarchical mutual liability problems.

The paper concludes with a brief discussion of the assumptions underlying a
mutual liability problem and sketches an alternative approach to solve mutual liabil-
ity problems, which involves reducing non-hierarchical problems into more tractable
hierarchical mutual liability problems by bilaterally and cyclically leveling the claims.
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We will see, however, that there is no straightforward procedure how to eliminate the
cycles and that different procedures may result in different reduced problems.

The organization of this paper is as follows. In Sect. 2 we will formally intro-
duce mutual liability problems. Then, in Sect. 3 we will give a short introduction to
bankruptcy rules ϕ, define transfer schemes, ϕ-transfer schemes and corresponding
transfer allocations. Section 4 studies mutual liability rules and in particular ϕ-based
mutual liability rules in a hierarchical setting, while Sect. 5 analyzes ϕ-based mutual
liability rules on the general class of mutual liability problems, including the charac-
terization of the τ -based mutual liability rule. Section 6 concludes.

2 Mutual liability problems and mutual liability rules

A classical bankruptcy problem involves an estate E that has to be divided among
a finite group of agents N , all having a nonnegative claim di , i ∈ N , on the estate.
We summarize these claims into a vector d = (di )i∈N . The set of all bankruptcy
problems (E, d) on N is denoted by BN . For expositional reasons, we do not impose
that

∑
i∈N di > E for a bankruptcy problem (E, d) ∈ BN . Of course, if

∑
i∈N di ≤ E ,

then any bankruptcy rule will lead to the allocation d ∈ R
N .

In a mutual liability problem, a finite group of economic agents, denoted by N ,
have been interacting for a certain time period. Their past economic transactions have
resulted in a situation in which the agents have nonnegative claims on each other
(think of debtors and creditors or accounts payable and receivable). As in bankruptcy
problems, we assume that these claims are known, rightful and justifiable. Further,
every agent has a certain nonnegative cash level or cash reserve with which he can
(partially) pay his possible debtors. A mutual liability problem can be represented by
a nonnegative matrixC ∈ R

N×N+ . Here each cell ci j ∈ C represents the claim of agent
j on agent i , i �= j , and cii represents the cash level of agent i . If

∑

i∈N
cii <

∑

i, j∈N ,i �= j

ci j ,

there is not sufficient cash to fulfill all the claims. If for some agent i ∈ N ,

∑

j∈N
c ji −

∑

j∈N\{i}
ci j < 0,

agent i will never be able to satisfy all his claimants. We will, however, not impose
any restrictions except nonnegativity on the matrix C beforehand. The main question
is how to divide

∑
i∈N cii over the agents in N .

We denote by LN the set of all mutual liability problems on N . A mutual liability
rule (LR) f : LN → R

N is such that f (C) ≥ 0 and
∑

i∈N fi (C) = ∑
i∈N cii for all

C ∈ LN .
We will distinguish a class of mutual liability problems with a special triangular

structure. A mutual liability problem C ∈ LN is called a hierarchical mutual liability
problem if, by reordering the agents, C can be transformed into an upper triangular
matrix with zeros below the diagonal. The set LN ,� contains all hierarchical mutual
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liability problems on N . A mutual liability rule that is defined on the domain of
hierarchical mutual liability problems is called a hierarchical mutual liability rule.

Example 2.1 Let N = {1, 2, 3} and C ∈ LN be given by

C =
⎡

⎣

1 2 3

1 3 1 4
2 2 2 6
3 1 0 1

⎤

⎦.

The matrix should be interpreted in the following way. Agent 1 has a cash level of 3.
He has a claim of 2 on agent 2 and a claim of 1 on agent 3, while agent 2 and 3 have
a claim of 1 and 4 on agent 1. Agent 2 has a cash level of 2. He has no further claims,
than the 1 on agent 1 we already mentioned, but agent 1 and 3 have a combined claim
of 8 on him. This means in particular that agent 2 will never be able to pay off his
debts. Agent 3 has a cash level of 1, agent 1 has a claim of 1 on his cash, while agent
3 has a claim of 4 on agent 1 and a claim of 6 on agent 2. ��

Example 2.2 Let N = {1, 2, 3, 4} and C ∈ LN be given by

C =

⎡

⎢
⎢
⎣

4 2 4 4
0 3 0 1
0 0 2 3
0 0 0 2

⎤

⎥
⎥
⎦ .

The claimmatrix is upper triangular, since agent 1 only faces claims and has no claims
on agents 2, 3 or 4. Furthermore, agent 2 has a claim on agent 1 but faces claims only
from agents 3 and 4. Agent 3 has a claim on agent 1 and faces a claim of only agent
4, while agent 4 faces no claims at all, but he has a claim on all other three agents. ��

Mutual liability problems can be seen as a generalization of bankruptcy problems.
Each bankruptcy problem (E, d) ∈ BN with N = {1, 2, . . . , n} corresponds to a
hierarchical mutual liability problem C(E, d) ∈ LN̄ with N̄ = N ∪ {0} given by

C(E, d) =

⎡

⎢
⎢
⎣

0 1 · · · n

0 E d1 · · · dn
1 0 0 · · · 0
...

...
...

. . .
...

n 0 0 · · · 0

⎤

⎥
⎥
⎦.

3 Transfer schemes and ϕ-transfer schemes

Before elaborating on transfer schemes, we provide some details on bankruptcy rules
and the Talmud rule in particular.
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3.1 Bankruptcy rules ϕ and the Talmud rule τ

A bankruptcy rule ϕ : BN → R
N assigns to every bankruptcy problem (E, d) ∈ BN

a vector ϕ(E, d) ∈ R
N , such that

∑

i∈N
ϕi (E, d) = min

⎧
⎨

⎩
E,

∑

j∈N
d j

⎫
⎬

⎭
, (1)

0 ≤ ϕ(E, d) ≤ d and such that estate monotonicity is satisfied: for all (E, d) ∈ BN

and all (E ′, d) ∈ BN with E ′ ≥ E , we have ϕ(E, d) ≤ ϕ(E ′, d). Note that the class
BN also contains bankruptcy problems (E, d) in which E is sufficient to fulfill the
claims d. For such problems, ϕ(E, d) = d for any bankruptcy rule ϕ. Please note that
we require estate monotonicity from the outset. The advantage of this assumption is
that any bankruptcy rule is continuous in the estate: for a sequence of nonnegative
estates E1, E2, . . . that converges to E and for any nonnegative claim vector d ∈ R

N ,
the sequence ϕ(E1, d), ϕ(E2, d), . . . converges to ϕ(E, d).

For a detailed overview on bankruptcy rules we refer to Thomson (2003, 2015).
Our focus will be mainly on the Talmud rule τ (Aumann and Maschler 1985), which
is based on the Constrained Equal Awards rule.

The Constrained Equal Awards rule CE A is, for all (E, d) ∈ BN and all i ∈ N ,
defined by

CE Ai (E, d) = min{λ, di },
where λ ∈ R is such that

∑
i∈N min{λ, di } = min{E,

∑
j∈N d j }.

The Talmud rule τ is, for all (E, d) ∈ BN , defined by

τ(E, d) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d if
∑

j∈N
d j ≤ E,

d − CE A

(
∑

j∈N
d j − E, 1

2d

)

if E <
∑

j∈N
d j < 2E,

CE A
(
E, 1

2d
)

if
∑

j∈N
d j ≥ 2E .

For bankruptcy problems involving two agents, τ satisfies the concede and divide-
principle c&d [cf. Thomson (2003)]. This means that for (E, d) ∈ BN with N =
{1, 2},

τ1(E, d) =
{

(E − d2)+ + E−(E−d1)+−(E−d2)+
2 if d1 + d2 ≥ E,

d1 if d1 + d2 < E,

where (x)+ = max{x, 0} for all x ∈ R. Here (E − d2)+ represents the part of the
estate conceded to agent 1 by agent 2, while E−(E−d1)+−(E−d2)+

2 indicates that the
total amount of the estate that is not conceded, is divided equally.

So far, bankruptcy rules are defined on a fixed but arbitrary finite agent set N .
Alternatively, bankruptcy rules can also be viewed as rules on the classB of bankruptcy
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problems with arbitrary but finite N . On the class B, τ can be characterized by means
of the c&d-principle and the property of consistency.
Here, a bankruptcy rule ϕ on B is called consistent if for each finite agent set N , each
(E, d) ∈ BN and all T ∈ 2N\{∅}, we have

ϕ(E, d)|T = ϕ

⎛

⎝
∑

j∈T
ϕ j (E, d), d|T

⎞

⎠ .

Here, the subscript |T to a vector x refers to its projection to the subspace RT : x|T =
y ∈ R

T for that y with yi = xi for all i ∈ T . Note that (
∑

j∈T ϕ j (E, d), d|T ) ∈ BT .
Consistency of a rule requires that a possible reallocation of the total amount which

has been allocated to a coalition T , on the basis of to the same bankruptcy rule, does
not change the initial individual allocations within this coalition.

3.2 Towards transfer schemes

Todevisemutual liability rules,wewill explicitly consider (bilateralmonetary) transfer
schemes on which the allocations prescribed by the rule are based.

Definition A Let C ∈ LN . Then, the matrix P = (pi j ) ∈ R
N×N is a transfer scheme

for C , if

(i) for all i ∈ N , pii = cii ,
(ii) for all i, j ∈ N with i �= j , 0 ≤ pi j ≤ ci j ,
(iii) for all i ∈ N ,

∑
j∈N\{i} pi j ≤ pii + ∑

j∈N\{i} p ji .

Let P(C) denote the set of all possible transfer schemes for C .

The interpretation of a transfer scheme P = (pi j ) ∈ R
N×N for the mutual liability

problem C ∈ LN is the following: pi j , i �= j , corresponds to the monetary transfer
from agent i to j . For technical reasons and for computational convenience we require
(i). Condition (ii) states that the payment pi j is nonnegative, but not higher than claim
ci j of agent j on i . Condition (iii) requires that the sum of outgoing payments of i
does not exceed his available cash plus incoming payments.

A transfer scheme directly leads to an allocation of the available cash.

Definition B Let C ∈ LN and let P ∈ P(C). Then αP ∈ R
N is called the transfer

allocation based on P if, for all i ∈ N ,

αP
i = pii +

∑

j∈N\{i}
(p ji − pi j ).

Note that transfer allocations αP are nonnegative because of (iii) in Definition A and
efficient due to the fact that

∑

i∈N
αP
i =

∑

i∈N

[
pii +

∑

j∈N\{i}
(p ji − pi j )

]
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=
∑

i∈N
pii +

∑

i∈N

∑

j∈N\{i}
p ji −

∑

i∈N

∑

j∈N\{i}
pi j

=
∑

i∈N
pii =

∑

i∈N
cii .

Example 3.1 Reconsider the mutual liability problem C ∈ LN of Example 2.1 with
N = {1, 2, 3} and C given by

C =
⎡

⎣
3 1 4
2 2 6
1 0 1

⎤

⎦ .

An example of a transfer scheme for C is

P =
⎡

⎣
3 1 4
1.5 2 1.5
1 0 1

⎤

⎦ .

Conditions (i) and (ii) of Definition A can easily be checked. To verify condition (iii)
of Definition A, observe that

p12 + p13 = 5 ≤ p11 + p21 + p31 = 5.5

p21 + p23 = 3 ≤ p22 + p12 + p32 = 3

p31 + p32 = 1 ≤ p33 + p13 + p23 = 6.5.

Note that P leads to the allocation αP = (0.5, 0, 5.5). ��
Let C ∈ LN represent a mutual liability problem. An allocation x is said to be

reasonable from below (with respect to C) if for all S ⊂ N

x(S) ≥
∑

i∈S

(
cii −

∑

j∈N\S
ci j

)
. (2)

This is a core type of inequality in the sense that it sounds reasonable that if coalition S
receives even less than the right hand side of (2), it better could forfeit the obligations
from N\S that members of S possess, pay its liabilities to N\S, and settle their interior
liabilities on their own.

An allocation x is said to be reasonable from above if for all T ⊂ N

x(T ) ≤
∑

j∈T

⎛

⎝c j j +
∑

i∈N\T
ci j

⎞

⎠ . (3)

An allocation is reasonable from below if and only if it is reasonable from above. In
order to show this, substitute S = N\T in (2). Hence, we simply call an allocation
reasonable if it is reasonable from below.
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Amutual liability rule f onLN is called reasonable if for allC ∈ LN , all x ∈ f (C)

are reasonable. Since reasonability is a desirable property, the theorem below shows
that it is not restrictive to only consider allocations that arise from transfer schemes.

Theorem 3.2 Let C ∈ LN be a mutual liability problem. Let x be an allocation.
Then there exists a transfer scheme P ∈ P(C) with αP (C) = x if and only if x is
reasonable.

Proof The ‘only if’-part is a direct consequence of condition (iii) in Definition A.
In order to prove the ‘if’-part, the well known Max-flow-min-cut theorem is applied.
Construct a directed network as follows. The set of vertices V consists of a source
So, a sink Si, and one node for each agent: V = {So,Si} ∪ N . The arc set A is the
complete digraph on V , without loops. Each arc has a capacity, given as follows:

cap(So,Si) = 0,
cap(So, i) = cii for all i ∈ N ,

cap(i, j) = ci j for all i, j ∈ N , i �= j,
cap( j,Si) = x j for all j ∈ N .

Let f ∈ R
A+ be a maximum flow from the source to the sink with value v. A cut

can be represented by a two-partition (S, T ) of N . The capacity of this cut equals
by definition

∑
i∈S∪{So}

∑
j∈T∪{Si} cap(i, j). This capacity exceeds x(N ), given the

reasonability of x , as expressed by (3):

∑

i∈S∪{So}

∑

j∈T∪{Si}
cap(i, j) =

∑

i∈S
xi +

∑

j∈T
c j j +

∑

i∈S

∑

j∈T
ci j ≥ x(S) + x(T ) = x(N ).

Ford and Fulkerson (1956) have shown that v equals theminimumof all cut capacities.
The capacity of the cut (N ,∅) equals x(N ), so v = x(N ). Define P ∈ R

N×N+ by
pi j = cii if i = j and pi j = f (i, j) if i �= j . It is easy to verify that P ∈ P(C) with
αP (C) = x . ��

Next, we introduce a specific type of transfer schemes.

Definition C Let C ∈ LN and let ϕ be a bankruptcy rule. For all i ∈ N , define
di (C) ∈ R

N by

dij (C) =
{
ci j if j �= i,

0 if j = i,
(4)

as the vector of claims on agent i . Then, P = (pi j ) ∈ R
N×N is called a ϕ-transfer

scheme for C if,

(i) for all i ∈ N , pii = cii ,
(ii) for all i, j ∈ N with i �= j ,

pi j = ϕ j

(
pii +

∑

k∈N\{i}
pki , d

i (C)
)
.
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We denote by Pϕ(C) the set of all ϕ-transfer schemes.

Example 3.3 Let N = {1, 2, 3} and consider the mutual liability problem C ∈ LN

given by

C =
⎡

⎣
2 100 0

100 4 12
0 0 0

⎤

⎦ .

A τ -transfer scheme is given by

P =
⎡

⎣
2 8 0
6 4 6
0 0 0

⎤

⎦ .

For this, observe e.g. that p23 = τ3(p22 + p12, d2(C)) = τ3(12, (100, 0, 12)) = 6.
Furthermore, αP = (0, 0, 6). One can check that also the matrix P̃ given by

P̃ =
⎡

⎣
2 22 0
20 4 6
0 0 0

⎤

⎦

belongs to Pτ (C). Note that α P̃ = αP . ��
The next lemma shows that a ϕ-transfer scheme is indeed a transfer scheme.

Lemma 3.4 Let C ∈ LN and let ϕ be a bankruptcy rule. Then, Pϕ(C) ⊆ P(C).

Proof Take P = (pi j ) ∈ Pϕ(C). It is sufficient to show that condition (ii) in Defi-
nition C of a ϕ-transfer scheme implies conditions (ii) and (iii) in Definition A of a
transfer scheme.

We start with showing (ii). Since ϕ is a general bankruptcy rule, we have that for
all i, j ∈ N with i �= j

0 ≤ ϕ j

(
pii +

∑

k∈N\{i}
pki , d

i (C)
)

≤ dij (C) = ci j ,

which implies that
0 ≤ pi j ≤ ci j .

Next we show condition (iii), using the basic properties of a bankruptcy rule. For all
i ∈ N ,

∑

j∈N\{i}
pi j =

∑

j∈N\{i}
ϕ j

(
pii +

∑

k∈N\{i}
pki , d

i (C)
)

=
∑

j∈N
ϕ j

(
pii +

∑

k∈N\{i}
pki , d

i (C)
)
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≤ pii +
∑

k∈N\{i}
pki .

��
A ϕ-transfer scheme P satisfies an attractive property: in the corresponding ϕ-

transfer allocation αP an agent can only receive a positive amount if he paid off all
his claimants.

Lemma 3.5 Let P ∈ Pϕ(C) for some C ∈ LN . Let i ∈ N. If αP
i > 0, then

pi j = ci j for all j ∈ N\{i}.

Proof Let αP
i > 0. Then, using Definition B,

pii +
∑

j∈N\{i}
(p ji − pi j ) > 0,

i.e. ∑

j∈N\{i}
pi j < pii +

∑

j∈N\{i}
p ji . (5)

Moreover, since P is a ϕ-transfer scheme, for all j ∈ N\{i}

pi j = ϕ j

⎛

⎝pii +
∑

k∈N\{i}
pki , d

i (C)

⎞

⎠

and consequently

∑

j∈N\{i}
pi j = min

⎧
⎨

⎩
pii +

∑

k∈N\{i}
p jk,

∑

j∈N\{i}
ci j

⎫
⎬

⎭
.

Using (5) it must be that ∑

j∈N\{i}
pi j =

∑

j∈N\{i}
ci j

and using condition (ii) in Definition C of ϕ-transfer schemes, it follows that pi j = ci j ,
for all j ∈ N\{i}. ��

The next theorem shows that one can always find at least one ϕ-transfer scheme.

Theorem 3.6 Let C ∈ LN and let ϕ be a bankruptcy rule. Then, Pϕ(C) �= ∅.
Proof Using the following iterative procedure we construct a ϕ-transfer scheme for
C .

For all i ∈ N , set di = di (C) and set Ei (0) = cii .
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Then, recursively define, for all i ∈ N and k = 1, 2, . . .,

Ei (k + 1) = cii +
∑

j∈N\{i}
ϕi (E

j (k), d j ). (6)

Note that
Ei (1) = cii +

∑

j∈N\{i}
ϕi (c j j , d

j ) ≥ cii = Ei (0).

Let k ≥ 1 and assume that Ei (k) ≥ Ei (k − 1). Then, by estate monotonicity of ϕ we
find that

Ei (k + 1) = cii +
∑

j∈N\{i}
ϕi (E

j (k), d j ) ≥ cii +
∑

j∈N\{i}
ϕi (E

j (k − 1), d j ) = Ei (k).

Hence, by induction, for all i ∈ N

Ei (0) ≤ Ei (1) ≤ Ei (2) ≤ . . . (7)

Consider P = (pi j ) ∈ R
N×N , given by

pi j =
{
cii for all i, j ∈ N with i = j,

lim
k→∞ ϕ j

(
Ei (k), di

)
for all i, j ∈ N with i �= j.

(8)

Note that the limit in (8) exists, because {Ei (k)}∞k=0 is an increasing sequence that is
bounded from above and ϕ is continuous in the estate.

Moreover, condition (ii) in Definition C of a ϕ-transfer scheme is satisfied since for
all i, j ∈ N with i �= j , we have that

pi j = lim
k→∞ ϕ j

(
Ei (k), di

)

=ϕ j

(

lim
k→∞ Ei (k), di

)

=ϕ j

⎛

⎝cii + lim
k→∞

∑

�∈N\{i}
ϕi (E

�(k), d�), di

⎞

⎠

=ϕ j

⎛

⎝cii +
∑

�∈N\{i}
p�i , d

i

⎞

⎠ .

The second equality follows from continuity of ϕ in the estate, the third equality
follows from (6) and the last equality follows from (8). ��
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4 Hierarchical mutual liability problems

As Example 3.3 shows, in general ϕ-transfer schemes need not to be unique. For
hierarchical mutual liability problems, however, there is a unique ϕ-transfer scheme.

Theorem 4.1 Let C ∈ LN ,� and let ϕ be a bankruptcy rule. Then, |Pϕ(C)| = 1.

Proof Let N = {1, . . . , n}. By the upper triangularity of C , we can assume, without
loss of generality, that ci j = 0 if i > j . Let P = (pi j ) and P̃ = ( p̃i j ) both be
ϕ-transfer schemes for C .

Clearly, if i > j ,
pi j = p̃i j = 0. (9)

Since
c11 +

∑

j∈N\{1}
p j1 = c11 +

∑

j∈N\{1}
p̃ j1 = c11,

the fact that P and P̃ are ϕ-transfer schemes implies for all j ∈ N\{1}

p1 j = p̃1 j = ϕ j (c11, d
1(C)).

Now consider i ∈ N an assume that for all g ∈ {1, . . . , i − 1} and h ∈ {1, . . . , n},

pgh = p̃gh .

By Eq. (9),

cii +
∑

g∈N\{i}
pgi = cii +

∑

g<i

pgi

= cii +
∑

g<i

p̃gi

= cii +
∑

g∈N\{i}
p̃gi

and thus for all j ∈ N\{i}

pi j = ϕ j

⎛

⎝cii +
∑

g∈N\{i}
pgi , d

i (C)

⎞

⎠

= ϕ j

⎛

⎝cii +
∑

g∈N\{i}
p̃gi , d

i (C)

⎞

⎠ = p̃i j .

��
This theorem implies that onLN ,� a ϕ-transfer allocation is uniquely defined for every
bankruptcy rule ϕ. Hence, we can extend each bankruptcy rule to a hierarchical mutual
liability rule.
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Definition D Let ϕ be a bankruptcy rule. The corresponding hierarchical ϕ-based
mutual liability rule ρϕ : LN ,� → R

N is for all C ∈ LN ,� defined by

ρϕ(C) = αP ,

where P is the unique ϕ-transfer scheme for C .

An alternative way of using a bankruptcy rule to solve hierarchical mutual liability
problems, is the following recursive procedure that we first illustrate by means of an
example.

Example 4.2 Let N = {1, . . . , 4} and consider C ∈ LN ,�, given by

C =

⎡

⎢
⎢
⎣

4 2 4 4
0 3 0 1
0 0 2 3
0 0 0 2

⎤

⎥
⎥
⎦ .

In the recursive procedure we start with agent 1, who has no claims on the other agents.
His cash, c11 = 4, is divided on the basis of a bankruptcy problem with estate 4 and
claims, 2, 4 and 4. Hence we treat this subproblem of the mutual liability problem
as a bankruptcy problem (4, (2, 4, 4)). Selecting the Talmud rule τ as an appropriate
bankruptcy rule, we find that τ(4, (2, 4, 4)) = (1, 1.5, 1.5). Thus agent 2 gets 1 from
agent 1’s cash and agents 3 and 4 both receive 1.5. Correspondingly we can update
our (partly) solved mutual liability problem into

C1 =

⎡

⎢
⎢
⎣

4 − 1 − 1.5 − 1.5 0 0 0
0 3 + 1 0 1
0 0 2 + 1.5 3
0 0 0 2 + 1.5

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 0 0
0 4 0 1
0 0 3.5 3
0 0 0 3.5

⎤

⎥
⎥
⎦ .

In C1 agent 2 has no claim on agent 1 anymore and we allocate c122 = 4 on the basis
of the bankruptcy problem (4, (0, 1)). Since τ(4, (0, 1)) = (0, 1), this means that 1 is
transferred to agent 4 while agent 2 keeps an amount of 3. Updating leads to

C2 =

⎡

⎢
⎢
⎣

0 0 0 0
0 3 0 0
0 0 3.5 3
0 0 0 4.5

⎤

⎥
⎥
⎦ .

In the next step an amount of 3 is transferred from 3 to 4, and updating gives

C3 =

⎡

⎢
⎢
⎣

0 0 0 0
0 3 0 0
0 0 0.5 0
0 0 0 7.5

⎤

⎥
⎥
⎦ .
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The diagonal, i.e (0, 3, 0.5, 7.5), of this matrix can be viewed as an allocation which
solves this hierarchical mutual liability problem based on a recursive application of
the Talmud rule τ .

Importantly, the recursion2 implicitly leads to transfer scheme P for C , where

P =

⎡

⎢
⎢
⎣

4 1 1.5 1.5
0 3 0 1
0 0 2 3
0 0 0 2

⎤

⎥
⎥
⎦ .

Note that this is the τ -transfer scheme and that αP = (0, 3, 0.5, 7.5). In principle, we
could have used a different bankruptcy rule in each step to obtain a transfer scheme.��

The formal definition of how to extend mutual liability rules in the recursive way
as described in the previous example is provided below.

Definition E Let C ∈ LN ,� and let ϕ be a bankruptcy rule. Set N = {1, . . . , n}
and assume that ci j = 0 for all i, j ∈ N with i > j . Set C0 = C . Recursively, for
j = 1, . . . , n − 1, define C j ∈ LN ,� by

c jii =
{
c j−1
i i if i < j

c j−1
i i + ϕi

(
c j−1
j j , (c jk)k∈{ j+1,...,n}

)
if i > j,

c jj j = c j−1
j j −

∑

k> j

ϕk
(
c j−1
j j , (c jk)k∈{ j+1,...,n}

)
,

c jik =
{
0 if i = j and k �= i,

c j−1
ik if i �= j and k �= i.

(10)

Finally set
Crec = Cn−1.

Correspondingly, the hierarchical recursive ϕ-based mutual liability rule ξϕ :
LN ,� → R

N is defined by
ξϕ(C) = diag(Crec)

for each C ∈ LN ,�. Here, diag(A) denotes the diagonal of a square matrix A.

Interestingly, for every bankruptcy ruleϕ, the hierarchical recursiveϕ-basedmutual
liability rule ξϕ and the hierarchical ϕ-based mutual liability rule ρϕ coincide.

Theorem 4.3 For all bankruptcy rules ϕ and all C ∈ LN ,�,

ρϕ(C) = ξϕ(C).

2 Via the steps

⎡

⎢
⎢
⎣

4 · · ·
0 3 · ·
0 0 2 ·
0 0 0 2

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

4 1 1.5 1.5
0 3 · ·
0 0 2 ·
0 0 0 2

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

4 1 1.5 1.5
0 3 0 1
0 0 2 ·
0 0 0 2

⎤

⎥
⎥
⎦ →

⎡

⎢
⎢
⎣

4 1 1.5 1.5
0 3 0 1
0 0 2 3
0 0 0 2

⎤

⎥
⎥
⎦.
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Proof Let C ∈ LN ,� and let ϕ be a bankruptcy rule. Set N = {1, . . . , n} and assume
that ci j = 0 for all i, j ∈ N with i > j . Let P = (pi j ) be the unique ϕ-transfer
scheme for C . Then, we have that for all i ∈ N

ρ
ϕ
i (C) = αP

i = cii +
∑

j∈N\{i}
p ji −

∑

j∈N\{i}
pi j

= cii +
i−1∑

j=1

p ji −
n∑

j=i+1

pi j .

Moreover, for all i ∈ N , ξ
ϕ
i (C) = ciii , where ciii is determined recursively

using (10). Thus it is sufficient to show that for all i ∈ N

ciii = cii +
i−1∑

j=1

p ji −
n∑

j=i+1

pi j . (11)

For i = 1, (11) is satisfied since

c111 = c11 −
n∑

j=2

ϕ j
(
c11, (c1k)k∈{2,...,n}

)

= c11 −
n∑

j=2

ϕ j
(
c11 +

∑

k∈N\{1}
pk1, d

1(C)
)

= c11 −
n∑

j=2

p1 j .

The first equality follows from (10), the second equality holds because pk1 = 0 for
all k ∈ N\{1} and the last equality follows from condition (ii) in Definition C of
ϕ-transfer schemes.

Note that, for all j ∈ N\{1}

c1j j = c j j + ϕ j
(
c11, (c1k)k∈{2,...,n}

)

= c j j + p1 j .

The proof continues by means of induction. Let i ≤ n − 1 and assume that

ci−1
j j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c j j +
i−1∑

k=1
pkj if j > i − 1

c j j +
j−1∑

k=1
pkj −

n∑

k= j+1
p jk if j ≤ i − 1.
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We will prove that

cij j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c j j +
i∑

k=1
pkj if j > i

c j j +
i−1∑

k=1
pkj −

n∑

k= j+1
p jk if j = i.

For j ∈ {i + 1, . . . , n}, we have that

cij j = ci−1
j j + ϕ j

(
ci−1
i i , (cik)k∈{i+1,...,n}

)

= c j j +
i−1∑

k=1

pkj + ϕ j

(
cii +

i−1∑

k=1

pki , (cik)k∈{i+1,...,n}
)

= c j j +
i−1∑

k=1

pkj + ϕ j

(
cii +

i−1∑

k=1

pki , d
i (C)

)

= c j j +
i−1∑

k=1

pkj + pi j

= c j j +
i∑

k=1

pkj ,

where the first equality follows from the definition of ξ and the second equality is
based on the induction assumption. Similarly one finds

ciii = ci−1
i i −

n∑

k=i+1

ϕk
(
ci−1
i i , (cik)k∈{i+1,...,n}

)

= cii +
i−1∑

k=1

pki −
n∑

k=i+1

ϕk

(
cii +

i−1∑

k=1

pki , d
i (C)

)

= cii +
i−1∑

k=1

pki −
n∑

k=i+1

pik .

��

5 General mutual liability problems

As seen in Example 3.3, the Talmud rule τ allows for multiple τ -transfer schemes
for a non-hierarchical mutual liability problem. For an arbitrary bankruptcy rule ϕ,
however, there is always a unique ϕ-transfer allocation.
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Theorem 5.1 Let C ∈ LN , let ϕ be a bankruptcy rule and let P, P̃ ∈ Pϕ(C). Then,

αP = α P̃ .

Proof On the contrary suppose that αP �= α P̃ . For notational convenience, set αP =
α, α P̃ = α̃, Ei = ∑

j∈N p ji and Ẽi = ∑
j∈N p̃ ji .

By estate monotonicity, for all i ∈ N : Ei ≤ Ẽi implies that for all j ∈ N we have
pi j ≤ p̃i j . As a consequence, for all i ∈ N we have

pi j < p̃i j for some j ∈ N �⇒ pi j ≤ p̃i j for all j ∈ N . (12)

Let N = {1, . . . , n}.Without loss of generalitywe assume that,α1 < α̃1. Then α̃1 > 0,
so Lemma 3.5 implies that for all j ∈ N ,

p̃1 j = c1 j . (13)

We will show by induction that for all i ≥ 2 we have:

αi = 0 and pi j ≤ p̃i j for all j ∈ N . (14)

For this, let j ∈ {2, . . . , n} and suppose that (14) is valid for all i ∈ {2, . . . , j − 1}.
Note that this is a void assumption in case j = 2. The agents in {1, . . . , j−1} together
possess less after performing transfer scheme P than after performing P̃ , i.e. α1 vs. at
least α̃1. Hence, there must be agents k ∈ {1, . . . , j − 1} and � ∈ { j, . . . , n} such that
the net payment from � to k is greater when P̃ is applied than when P is applied, i.e.,
such that p�k − pk� < p̃�k − p̃k�. Without loss of generality we assume that � = j .
If k = 1, we have pkj ≤ p̃k j because of (13). If k > 1, we have pkj ≤ p̃k j by the
induction hypothesis for i = k. In both cases we find that p jk < p̃ jk and hence α j = 0
(Lemma 3.5) and p jm ≤ p̃ jm for all m ∈ N [by (12)]. This proves the induction step
and completes the verification of (14).

Equation (14), however, leads to the contradiction

∑

j∈N
c j j =

∑

j∈N
α j = α1 < α̃1 ≤

∑

j∈N
α̃ j =

∑

j∈N
c j j ,

which finishes the proof. ��
Theorem 5.1 allows for the following definition.

Definition F Let ϕ be a bankruptcy rule. The corresponding ϕ-based mutual liability
rule ρϕ : LN → R

N is for all C ∈ LN defined by

ρϕ(C) = αP ,

where P is a ϕ-transfer scheme for C .

123



On solving mutual liability problems

The final part of this section will provide an axiomatic characterization of ρτ as a
ϕ-based mutual liability rule on the class L of all mutual liability problems with an
arbitrary but finite set of players by extending the concede and divide-principle and
consistency for bankruptcy rules to the setting of mutual liability.

In bankruptcy problems the principle of concede and divide is defined for problems
with twoclaimants.However, in amutual liability problemwith twoagents, every agent
faces only one (possible) claimant. For such mutual liability problems the allocation
prescribed by any ϕ-based mutual liability rule is unique, as the following lemma
states (the proof of this lemma is straightforward and therefore omitted).

Lemma 5.2 Let C ∈ LN with N = {1, 2}. Let ϕ I and ϕ I I be bankruptcy rules. Then,

ρϕ I
(C) = ρϕ I I

(C).

Three entities are involved in a classical bankruptcy situation with two agents, i.e.,
the bank and the two agents. Since in mutual liability situations agents have multiple
roles, it is natural to define a c&d type of axiom in the three agents setting.

Definition G Amutual liability rule f satisfies the concede & divide-principle (c&d)
if for each N with |N | = 3 and for each C ∈ LN , there exists an underlying transfer
scheme P ∈ P(C) such that f (C) = αP and for each player i ∈ N , his ‘estate’
ei = cii + ∑

� �=i p�i is allocated among the remaining two players, j, k, respecting
the bankruptcy concede and divide-principle, i.e.

pi j =
{
ci j if ei ≥ ci j + cik,

(ei − cik)+ + ei−(ei−cik )+−(ei−ci j )+
2 otherwise.

(15)

Example 5.3 Reconsider the mutual liability problem C ∈ LN of Example 2.1 with
N = {1, 2, 3} and C given by

C =
⎡

⎣
3 1 4
2 2 6
1 0 1

⎤

⎦ .

Take P ∈ Pτ (C) given by

P =
⎡

⎣
3 1 4
1 2 2
1 0 1

⎤

⎦

with ρτ (C) = αP = (0, 0, 6). We check that the entries in P satisfy (15). Here,
e1 = p11 + p21 + p31 = 5, e2 = 3 and e3 = 7. Both player 1’s and player 3’s estate
are sufficient to satisfy their claimants, hence p12 = c12 = 1, p13 = 4 and p31 = 1.
Player 2’s estate is not sufficient, therefore

p21 = (e2 − c23)
+ + e2 − (e2 − c21)+ − (e2 − c23)+

2
= 0 + 3 − 1 − 0

2
= 1

and p23 = 2. ��
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Next, we define the property of consistency for a mutual liability rule. This property
is defined on the class L of mutual liability problems with arbitrary but finite N . The
consistency property requires that a reallocation of the total amount which has been
allocated to a coalition T , on the basis of that rule and an underlying transfer scheme,
does not change the initial individual allocations within this coalition.

Definition H A mutual liability rule f for L is called consistent if for all N and for
all C ∈ LN there exists a P ∈ P(C) such that f (C) = αP and such that for all
T ∈ 2N\{∅} with CT,P ∈ LT ,

f (CT,P ) = f (C)|T , (16)

where CT,P ∈ R
T×T is defined, for all i, j ∈ T , by

cT,P
i j =

{
ci j if i �= j,

cii + ∑
k∈N\T (pki − pik) if i = j.

(17)

Note that there is only the consistency requirement (16) for T if CT,P ∈ LT . As is
seen in the following example, it can indeed happen that CT,P /∈ LT .

Example 5.4 Let N = {1, 2, 3, 4}. Reconsider the hierarchical mutual liability prob-
lem C ∈ LN of Example 2.2, given by

C =

⎡

⎢
⎢
⎣

4 2 4 4
0 3 0 1
0 0 2 3
0 0 0 2

⎤

⎥
⎥
⎦ .

As recursively determined in Example 4.2, the unique τ -transfer scheme P for C is
given by

P =

⎡

⎢
⎢
⎣

4 1 1.5 1.5
0 3 0 1
0 0 2 3
0 0 0 2

⎤

⎥
⎥
⎦

and ρτ = (0, 3, 0.5, 7.5).
With T = {1, 2, 4} we have

CT,P =
⎡

⎣
2.5 2 4
0 3 1
0 0 5

⎤

⎦ ,

which is a mutual liability problem and the unique τ -transfer scheme PT for CT,P is
given by

PT =
⎡

⎣
2.5 1 1.5
0 3 1
0 0 5

⎤

⎦ ,
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while ρτ (CT,P ) = (0, 3, 7.5). We see that the consistency requirement for this T is
satisfied. However, with T = {1, 2, 3}, we obtain

CT,P =
⎡

⎣
2.5 2 4
0 2 0
0 0 −1

⎤

⎦ .

Since CT,P contains negative entries, it is not a mutual liability problem and therefore
does not impose a consistency requirement. ��

The τ -based mutual liability rule ρτ satisfies consistency and c&d.

Theorem 5.5 ρτ is consistent and satisfies c&d on L.
Proof We start with proving c&d. Let C ∈ LN with |N | = 3. Let i ∈ N and set
N\{i} = { j, k}. Consider an arbitrary P ∈ Pτ (C). Obviously ρτ (C) = αP by
Theorem 5.1. Moreover,

pi j = τ j (pii + p ji + pki , d
i (C))

= τ j (e
i , (ci j , cik)).

Since the bankruptcy rule τ satisfies the c&d principle for bankruptcy problems, we
find that

pi j =
{
ci j if ei ≥ ci j + cik,

(ei − cik)+ + ei−(ei−cik )+−(ei−ci j )+
2 otherwise.

Next, we show consistency. For this, let C ∈ LN , consider an arbitrary P ∈ Pτ (C)

and let T ∈ 2N\{∅} be such that CT,P ∈ LT . It suffices to show that ρτ (C)|T =
ρτ (CT,P ).

Define PT = (pTi j ) ∈ R
T×T by

pTi j =
{
pi j if i �= j

pii + ∑
k∈N\T (pki − pik) if i = j.

(18)

We first show that PT ∈ Pτ (CT,P ), which implies that αPT = ρτ (CT,P ).
For this, note that cT,P

ii = pTii for all i ∈ T . It remains to prove that for all i ∈ T
and j ∈ T \{i},

pTi j = τ j

⎛

⎝pTii +
∑

k∈T \{i}
pTki , d

i (CT,P )

⎞

⎠ .

This is true because for each i ∈ T and j ∈ T \{i}

pTi j = pi j = τ j

⎛

⎝pii +
∑

k∈N\{i}
pki , d

i (C)

⎞

⎠

123



M. Groote Schaarsberg et al.

= τ j

⎛

⎝pii +
∑

k∈N\{i}
pki −

∑

k∈N\T
τk

(

pii +
∑

k∈N\{i}
pki , d

i (C)

)

, di (C)|T

⎞

⎠

= τ j

⎛

⎝pii +
∑

k∈N\{i}
pki −

∑

k∈N\T
pik, d

i (C)|T

⎞

⎠

= τ j

⎛

⎝pii +
∑

k∈N\T
(pki − pik) +

∑

k∈T \{i}
pki , d

i (C)|T

⎞

⎠

= τ j

⎛

⎝pTii +
∑

k∈T \{i}
pTki , d

i (CT,P )

⎞

⎠ ,

where the third equality follows from consistency of the Talmud rule, the fourth equal-
ity follows from the fact that P ∈ Pτ (C), while the last equality follows from (18).

The proof is finished if we show that αPT = ρτ (C)|T . For this, note that with i ∈ T

αPT

i = pTii +
∑

j∈T \{i}
(pTji − pTi j )

= pii +
∑

j∈N\T
(p ji − pi j ) +

∑

j∈T \{i}
(p ji − pi j )

= pii +
∑

j∈N\{i}
(p ji − pi j )

= αP
i = ρτ

i (C).

��
We conclude this section with a characterization of the τ -based mutual liability

rule.

Theorem 5.6 Let ϕ be a bankruptcy rule. Then, ρϕ(C) = ρτ (C) for all C ∈ L if and
only if ρϕ satisfies consistency and c&d.

Proof For the ‘only if’-part, we refer to Theorem 5.5. To prove the ‘if’-part, let ϕ be a
bankruptcy rule such that ρϕ satisfies consistency and c&d. As we have seen before,
the classB of bankruptcy problems is a subclass ofL by identifying each (E, d) ∈ BN

with N = {1, . . . , n}, with C(E, d) ∈ LN∪{0},� given by

C(E, d) =

⎡

⎢
⎢
⎣

0 1 · · · n

0 E d1 · · · dn
1 0 0 · · · 0
...

...
. . .

...

n 0 · · · 0

⎤

⎥
⎥
⎦.
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Let P be the unique ϕ-transfer scheme for C(E, d). Then,

P =

⎡

⎢
⎢
⎢
⎣

E p01 · · · p0n
0 0 · · · 0
...

. . .
...

0 · · · 0

⎤

⎥
⎥
⎥
⎦

,

with

αP
i =

{
p0i if i ∈ N ,

E − ∑
j∈N p0 j if i = 0.

Moreover, for all i ∈ N

ρ
ϕ
i (C(E, d)) = αP

i = p0i = ϕi (c00, d
0(C)) = ϕi (E, d). (19)

Thus ϕ(E, d) = ρϕ(C(E, d))|N .
If we can show that

(I) c&d of ρϕ on L implies c&d of ϕ on B,
(II) consistency of ρϕ on L implies consistency of ϕ on B,
then, ϕ = τ (cf. Aumann and Maschler 1985) and consequently ρϕ = ρτ .

For this, we first show that P is the unique transfer scheme for C(E, d) that leads
to the transfer allocation αP and for this reason c&d and consistency of ρϕ can only
have implications on P .

Let P̃ = ( p̃i j ) ∈ P(C(E, d)) be an arbitrary transfer scheme for C(E, d) with
P̃ �= P . Then,

P̃ =

⎡

⎢
⎢
⎢
⎣

E p̃01 · · · p̃0n
0 0 · · · 0
...

. . .
...

0 · · · 0

⎤

⎥
⎥
⎥
⎦

and there must be a player i ∈ N with p̃0i �= p0i . Hence, α P̃ �= αP .
With respect to (I), let N = {1, 2} and (E, d) ∈ BN . Let i ∈ N and { j} = N\{i}.

We need to show that

ϕi (E, d) =
{
di if E ≥ d1 + d2,

(E − d j )
+ + E−(E−di )+−(E−d j )

+
2 otherwise.

C&d on L and (19) imply that, with c0i = C0i (E, d) and c0 j = C0 j (E, d),

ϕi (E, d)=ρ
ϕ
i (C(E, d)) =

{
c0i if e0≥c01 + c02,

(e0 − c0 j )+ + e0−(e0−c0i )+−(e0−c0 j )+
2 otherwise,

=
{
di if E ≥ d1 + d2,

(E − d j )
+ + E−(E−di )+−(E−d j )

+
2 otherwise.
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With respect to (II), let (E, d) ∈ BN and T ∈ 2N\{∅}. We have to prove that

ϕ(E, d)|T = ϕ

⎛

⎝
∑

j∈T
ϕ j (E, d), d|T

⎞

⎠ .

Let T = {k1, . . . , kt }. Then, using (17) and (19),

CT∪{0},P (E, d) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 k1 · · · kt

0 E − ∑
j∈N\T ϕ j (E, d) dk1 · · · dkt

k1 0 0 · · · 0
...

...
. . .

...

kt 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Clearly, CT∪{0},P (E, d) ∈ LT∪{0},� and

CT∪{0},P (E, d) = C

⎛

⎝E −
∑

j∈N\T
ϕ j (E, d), d|T

⎞

⎠ .

Using consistency, we find for all i ∈ T that

ρ
ϕ
i (C(E, d))|T∪{0} = ρ

ϕ
i

⎛

⎝C

⎛

⎝E −
∑

j∈N\T
ϕ j (E, d), d|T

⎞

⎠

⎞

⎠ .

By Eq. (19), for all i ∈ T

{
ρ

ϕ
i (C(E, d)) = ϕi (E, d)

ρ
ϕ
i (C(E − ∑

j∈N\T ϕ j (E, d), d|T )) = ϕi (E − ∑
j∈N\T ϕ j (E, d), d|T )

and therefore,

ϕ((E, d))|T = ϕ

⎛

⎝E −
∑

j∈N\T
ϕ j (E, d), d|T

⎞

⎠ = ϕ

⎛

⎝
∑

j∈T
ϕ j (E, d), d|T

⎞

⎠ ,

where the last equality follows from (1). ��

6 On reducing mutual liability problems

In this paper we introduced and analyzed mutual liability problems with nonnegative
bilateral claims and nonnegative individual cash levels as an extension of bankruptcy
problems. Negative cash levels are assumed to be absent as this could be modeled
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as the result of a nonnegative claim by an extra party. Clearly, negative claims could
be modeled as positive claims by the other party involved. In our view however, the
possible reduction of cycles of possible mutual claims is something to be quite careful
about. As is illustrated below, this is not an innocent transformation.

The aim of a reduction approach is to transform a general mutual liability problem
to amore tractable hierarchical mutual liability problem. Themain difference between
hierarchical and non-hierarchical mutual liability problems is the (non-)existence of
cycles of claims.

In this section we show that, by eliminating these cycles, it is possible to reduce
a general mutual liability problem to a hierarchical mutual liability problem, but that
such a reduction is not possible without changing the nature of the mutual liability
problem. There are choices to be made. Different reduction choices can result in dif-
ferent reduced hierarchical mutual liability problems, as is illustrated in the following
example.

Example 6.1 Let N = {1, 2, 3, 4} and let C ∈ LN be given by

C =

⎡

⎢
⎢
⎣

4 5 8 7
1 8 3 12
9 6 6 2
1 1 5 7

⎤

⎥
⎥
⎦ ,

with ρτ (C) = (0, 21
3 , 3

1
3 , 19

1
3 ).

A natural first step in reducing a general mutual liability problem is to assume that
on a bilateral level the claims are already settled. Thus for all pairs i, j ∈ N with
i �= j , ci j c ji = 0. The bilaterally leveled claim matrix C̄ = (c̄i j ) ∈ LN is obtained
from C in the following way

c̄i j =
{

[ci j − c ji ]+ if j �= i

cii if j = i.

Thus, we eliminate cycles of length 2 and obtain

C̄ =

⎡

⎢
⎢
⎣

4 4 0 6
0 8 0 11
1 3 6 0
0 0 3 7

⎤

⎥
⎥
⎦ ,

which is still a non-hierarchical mutual liability problem.
Not only can we level claims bilaterally, we can also do this for longer cycles. In

the matrix C̄ we can find multiple cycles of claims. The longest one, with length 4,
goes from player 1 to player 2, then from player 2 to player 4, from player 4 to player
3 and from player 3 back to player 1, see the bold entries in C̄ below:
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C̄ =

⎡

⎢
⎢
⎣

4 4 0 6
0 8 0 11
1 3 6 0
0 0 3 7

⎤

⎥
⎥
⎦ .

Since the lowest claim in this cycle is 1 (c̄31 = 1), we can reduce the cycle by 1, which
results in the following non-hierarchical mutual liability problem C1:

C1 =

⎡

⎢
⎢
⎣

4 3 0 6
0 8 0 10
0 3 6 0
0 0 2 7

⎤

⎥
⎥
⎦ .

In C1 we detect another cycle: from 2 to 4, to 3 and back to 2. We can reduce the
claims by an amount of 2, with the hierarchical mutual liability problem C1,� as a
result. Here,

C1,� =

⎡

⎢
⎢
⎣

4 3 0 6
0 8 0 8
0 1 6 0
0 0 0 7

⎤

⎥
⎥
⎦

is a hierarchical mutual liability problem; if we rearrange the rows and columns
in the order (1, 3, 2, 4), the matrix is upper triangular. We have that ρτ (C1,�) =
(0, 2.5, 5, 17.5) �= ρτ (C).

In the mutual liability problem C̄ , we can also start with another cycle: from 2 to
4, then from 4 to 3 and from 3 back to 2 as shown by the bold entries in C̄ below:

C̄ =

⎡

⎢
⎢
⎣

4 4 0 6
0 8 0 11
1 3 6 0
0 0 3 7

⎤

⎥
⎥
⎦ .

In this case we can reduce all claims with an amount of 3 and we would immediately
end up with the hierarchical mutual liability problem C2,� given by

C2,� =

⎡

⎢
⎢
⎣

4 4 0 6
0 8 0 8
1 0 6 0
0 0 0 7

⎤

⎥
⎥
⎦ .

If we rearrange the players in the order (3, 1, 2, 4), then the matrix is upper triangular.
Note that ρτ (C2,�) = (0, 2, 5, 18) which is different from both ρτ (C) and from
ρτ (C1,�). ��

In the context of reduction, we would like to conclude with an interesting research
question: “Does there exist a liability rule f such that for all C ∈ LN we have
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f (C) = f (Cbil), in which Cbil is the reduction of C that precisely levels all bilateral
claims?”.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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