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Abstract. Reported sulfur dioxide (SO2) emissions from US
and Canadian sources have declined dramatically since the
1990s as a result of emission control measures. Observations
from the Ozone Monitoring Instrument (OMI) on NASA’s
Aura satellite and ground-based in situ measurements are ex-
amined to verify whether the observed changes from SO2
abundance measurements are quantitatively consistent with
the reported changes in emissions. To make this connection,
a new method to link SO2 emissions and satellite SO2 mea-
surements was developed. The method is based on fitting
satellite SO2 vertical column densities (VCDs) to a set of
functions of OMI pixel coordinates and wind speeds, where
each function represents a statistical model of a plume from
a single point source. The concept is first demonstrated using
sources in North America and then applied to Europe. The
correlation coefficient between OMI-measured VCDs (with
a local bias removed) and SO2 VCDs derived here using re-
ported emissions for 1◦ by 1◦ gridded data is 0.91 and the
best-fit line has a slope near unity, confirming a very good
agreement between observed SO2 VCDs and reported emis-
sions. Having demonstrated their consistency, seasonal and
annual mean SO2 VCD distributions are calculated, based on
reported point-source emissions for the period 1980–2015,
as would have been seen by OMI. This consistency is further
substantiated as the emission-derived VCDs also show a high
correlation with annual mean SO2 surface concentrations at
50 regional monitoring stations.

1 Introduction

Sulfur dioxide (SO2) is a designated criteria air pollutant that
enters the atmosphere through anthropogenic (e.g., combus-
tion of sulfur-containing fuels, oil refining processes, metal
ore smelting operations) and natural processes (e.g., volcanic
eruptions and degassing). Over the past 3 decades both the
US and Canada have taken measures to reduce atmospheric
emissions of SO2 in order to combat acidification of the
ecosystem (e.g., acid rain) and fine particulate matter. As a
result, between 1990 and 2012, reported emissions of SO2
declined by 78 % in the United States and 58 % in Canada
(IJC, 2014). In this study, we examined how well the changes
in the reported emissions agree with the SO2 changes in
North America observed by satellite and surface instruments.

Ground-based networks such as the US Clean Air Status
and Trends Network (CASTNet) and Canadian Air and Pre-
cipitation Monitoring Network (CAPMoN) are specifically
designed to monitor long-term trends of gaseous pollutants
in rural areas away from major pollution emission sources
(Baumgardner et al., 1999; Park et al., 2004; Schwede et al.,
2011). Their measurements show that over the eastern US,
reductions in regional SO2 emissions have led to significant
reductions in monitored SO2 concentrations (Sickles II and
Shadwick, 2015; Xing et al., 2013).

Satellites provide global measurements of SO2 vertical
column densities (VCDs): the total number of molecules
or total mass per unit area (Krotkov et al., 2008; Li et al.,
2013; Theys et al., 2015). They have been previously used
to study the evolution of SO2 VCDs over large regions
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such as Europe (Krotkov et al., 2016), China (Jiang et al.,
2012; Koukouli et al., 2016; Li et al., 2010; Witte et al.,
2009), India (Lu et al., 2013), and the US (Fioletov et al.,
2011). Satellite instruments can detect anthropogenic SO2
signals from large individual point sources such as copper
and nickel smelters, power plants, oil and gas refineries, and
other sources (Bauduin et al., 2014, 2016; Carn et al., 2004,
2007; Fioletov et al., 2013; de Foy et al., 2009; Lee et al.,
2009; McLinden et al., 2012, 2014; Nowlan et al., 2011;
Thomas et al., 2005). An 11-year-long record of satellite
SO2 data over different regions of the globe, including the
eastern US and southeastern Canada, was examined recently
(Krotkov et al., 2016). The analysis shows a substantial (up to
80 %) decline in the observed VCD values over that region.

These satellite measurements can also be used as an in-
dependent source to verify reported changes in emissions.
Methods for emission estimates from satellite measurements
have been recently reviewed by Streets et al. (2013). One
such method that does not require the use of atmospheric
chemistry models has been commonly used in recent years.
By first merging observations from the Ozone Monitoring In-
strument (OMI) with wind information, the downwind decay
of several pollutants can be analyzed, and in so doing esti-
mates of the total SO2 (or NO2) mass (α) near the source
and its lifetime or, more accurately, decay time (τ) can be
derived (Fioletov et al., 2011, 2015; de Foy et al., 2015; Lu
et al., 2013, 2015; Wang et al., 2015). The emission strength
(E) can be obtained using the expression E = α/τ if we as-
sume a steady state for these quantities. The mass can be
derived directly from satellite measurements, while the life-
time can be either prescribed using known emissions (Fiole-
tov et al., 2013) or estimated from the measurements based
on the rate of decay of VCD with distance downwind (Beirle
et al., 2014; Carn et al., 2013; de Foy et al., 2015). Model-
based comparisons of different methods to estimate E and
τ demonstrate that such methods can produce accurate esti-
mates of τ (de Foy et al., 2014). In our previous study (Fio-
letov et al., 2015), values of α and τ for anthropogenic point
sources were derived from OMI measurements by fitting a
3-D function of the geographic coordinates and wind speed.

These methods, however, are applicable to individual point
sources. When this condition is not met, as is the case for
multiple sources, either the sources can be combined together
if they are close (Fioletov et al., 2015) or the fitting domain
is split and the sources are fit separately (Wang et al., 2015).
Both approaches have their limitations. In this study, we de-
rive a general relationship between emissions and VCDs that
can be used for the estimation of emissions from multiple
sources. Moreover, the approach can be used in reverse: that
is, VCDs can be estimated directly from reported emission
data, thus making it possible to study the link between VCDs
and surface concentrations even for the period before satel-
lite measurements became available. This study is focused on
the eastern US and southeastern Canada, where the major-
ity of large North American SO2 emission sources (mainly

coal-burning power plants) are located, where the changes
in both reported emissions and measured VCDs are particu-
larly large, and where emissions are measured directly at the
stack for most sources. In this region, there is also a network
with long-term records of uniform SO2 surface concentration
measurements. All of this makes it possible to study consis-
tency between the measurements of emissions, VCDs, and
surface concentrations. Once the link between these mea-
surements is verified, it is possible to estimate one measured
quantity from another. As an illustration, we demonstrate
how European SO2 emissions can be estimated from OMI
VCD data.

2 Data sets

2.1 Satellite SO2 VCD data

OMI, a Dutch–Finnish UV–visible wide field-of-view nadir-
viewing spectrometer flying on NASA’s Aura spacecraft
(Schoeberl et al., 2006), provides daily global coverage at
high spatial resolution (Levelt et al., 2006). OMI has the
highest spatial resolution and is the most sensitive to SO2
sources among the satellite instruments of its class (Fioletov
et al., 2013). Operational OMI planetary boundary layer SO2
data produced with the principal component analysis (PCA)
algorithm (Li et al., 2013) for the period 2005–2015 were
used in this study. Retrieved SO2 VCD values are given in
Dobson units (DU; 1 DU= 2.69 × 1026 molec km−2).

OMI SO2 VCD data are retrieved for 60 cross-track po-
sitions (or rows). In order to use only data with the high-
est spatial resolution, we excluded data from the first 10 and
last 10 cross-track positions from the analysis to limit the
across-track pixel width from 24 km to about 40 km, while
the along-track pixel length was about 15 km (de Graaf et al.,
2016). In other words, a single OMI measurement represents
an SO2 VCD value averaged over a 350–500 km2 area.

Measurements with snow on the ground were excluded
from the analysis as the OMI PCA algorithm presently does
not account for the effects of snow albedo. Only clear-sky
data, defined as having a cloud radiance fraction (across each
pixel) less than 20 %, and only measurements taken at solar
zenith angles less than 70◦ were used. Beginning in 2007, up
to half of all rows were affected by field-of-view blockage
and stray light (the so-called “row anomaly”) and those af-
fected pixels were also excluded. Additional information on
the OMI PCA SO2 product can be found in other publica-
tions (Krotkov et al., 2016; McLinden et al., 2015).

SO2 VCD data from the Ozone Mapping Profiler Suite
(OMPS) Nadir Mapper on board the Suomi National Polar-
orbiting Partnership (or Suomi NPP) satellite operated by
NASA/NOAA and launched in October 2011 were also used
in the study to verify a potential bias in some OMI data (see
the Supplement, Sect. S1). OMPS data were processed with
the same PCA algorithm as OMI data (Li et al., 2013; Zhang
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et al., 2017). OMPS has a lower spatial resolution than OMI,
50 km by 50 km but better signal-to-noise characteristics.

To eliminate cases of transient volcanic SO2, periods when
SO2 values observed over the eastern US were affected by
volcanic emissions; we determined and excluded such cases
from the analysis. The range of analyzed SO2 VCD val-
ues was limited to a maximum of 3 DU. Since the average
SO2 value over the largest SO2 source in the US is about 1
DU and the standard deviation of individual measurements
is 0.5 DU, such a limit corresponds to the 4 standard devi-
ations level even over even the largest sources. Of the SO2
values over the eastern US and southern Canada considered
here, the years 2008 and 2009 are particularly problematic
due to the eruptions of Kasatochi (Aleutian Islands, Alaska,
August 2008, 52◦ N) and Sarychev (Kuril Islands, Eastern
Russia, June 2009, 48◦ N). High volcanic SO2 values were
also observed on several days in 2011. In addition to the fil-
tering based on SO2 values, five time intervals were explic-
itly removed from the analysis to avoid misinterpretation of
volcanic SO2 as anthropogenic pollution. The intervals are 7
–23 July 2008, 8 August –8 September 2008, 23 March–10
April 2009, 16 June–5 July 2009, and 22 May–9 June 2011.
To remove volcanic SO2 in the case of Europe, the analyzed
data were divided into 5◦ by 5◦ cells, and for each cell the
days with the 90th percentile above a 5 DU limit were ex-
cluded from the analysis. Only about 1.5 % of all data were
removed by this screening.

2.2 Wind data

As in several previous studies (Fioletov et al., 2015; McLin-
den et al., 2016), wind-speed and direction data for each
satellite pixel were required for the analysis methods ap-
plied. European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis data (Dee et al., 2011; http://apps.
ecmwf.int/datasets/) were merged with OMI measurements.
Wind profiles are available every 6 h on a 0.75◦ horizontal
grid and are interpolated in time and space to the location of
each OMI pixel centre. U and V (west–east and south–north,
respectively) wind-speed components were first averaged in
the vertical between 0 and 1 km where the majority of the
SO2 mass resides. The wind components were then interpo-
lated spatially and temporally to the location and overpass
time of each OMI pixel.

Note that to reconstruct annual mean VCD maps based
on annual emissions (Sect. 3.4), it is not necessary to have
the actual year-specific meteorological information, as an-
nual mean wind characteristics do not vary much from year
to year (see Sect. S6), and so for convenience we simply used
wind data from 2005 for all years prior to 2005.

2.3 SO2 emission inventories

Monthly or annual emissions from individual US point
sources available from the US Environmental Protection
Agency (EPA) National Emissions Inventory (https://www.
epa.gov/air-emissions-inventories) for the period 1980–2015
were examined in this study. US EPA national emission
inventories are available from 1980, although at that time
they contained just annual values and were updated only ev-
ery 5 years. Regular annual emission data for consecutive
years first became available in 1995 and US emission data
with higher temporal resolution (monthly, daily, and hourly)
are only available after 2004. Note that the inventory data
for these sources after the early 1990s were based on di-
rect stack measurements by Continuous Emissions Moni-
toring Systems as mandated by Title IV of the 1990 US
Clean Air Act Amendments (Public Law 101-549; e.g., https:
//www.epa.gov/clean-air-act-overview). The Canadian SO2
annual point-source emission data were obtained from the
National Pollutant Release Inventory (NPRI), http://open.
canada.ca/data/en/dataset/). Canadian annual point-source
emission data sets are available back to 2002 and we used
the 2002 emission data for the 1980–2001 period. For Cana-
dian sites, only annual emissions are available and seasonal
values were calculated by dividing annual emissions by 4.
This study is based on point-source emissions only, but point
sources have contributed a large majority (> 90 % in the early
2000s and > 70 % in the recent years) of North American SO2
emissions.

Information about point-source emissions from the Eu-
ropean Union (EU) countries from the European Pollutant
Release and Transfer Register (E-PRTR) for 2004–2014
is available from http://www.eea.europa.eu/data-and-maps/
data/lcp-1 and was used for the analysis for Europe. For
non-EU European countries, spatially distributed 2005–2014
TNO-MACC-III emission data for air pollutants from the
MACC project were used (Kuenen et al., 2014; Moni-
toring Atmospheric Composition and Climate; see http:
//www.gmes-atmosphere.eu/) prepared by TNO. When E-
PRTR data are not available, proxy data are used by
TNO, such as for power plants from the World Electric
Power Plants Database (WEPP; see http://www.platts.com/
products/world-electric-power-plants-database). WEPP pro-
vides no emission data, only listing unit characteristics, so
emissions are allocated to individual plant units based on
the reported thermal capacity, configuration and generic in-
terpretations of reported fuel type(s), and installed emission
control technologies. Site-specific parameters not provided
by WEPP, such as exact fuel sulfur content, achieved pollu-
tant removal efficiencies, and load fluctuations, are not taken
into account when emissions are allocated. Therefore, the
MACC-III point-source emission data should be regarded as
estimates that may differ considerably from the actual emis-
sions.
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Figure 1. Annual mean OMI SO2 VCDs from PCA algorithm (column I), mean OMI SO2 VCDs with a large-scale bias removed (column
II), results of the fitting of OMI data by the set of functions that represent VCDs near emission sources using estimated emissions (see text)
(column III), and SO2 VCDs calculated using the same set of functions but using reported emission values (column IV). Point sources that
emitted 20 kt yr−1 at least once in the period 2005–2015 were included in the fit (they are shown as the black dots). Results of the fitting of
OMI data by the set of functions that represent “sources” as 0.5◦ by 0.5◦ grid cells (shown as the black dots) using estimated emissions (see
text) are shown in column V. The maps are smoothed by the pixel averaging technique with a 30 km radius (Fioletov et al., 2011). Averages
for four multi-year periods – 2005–2006, 2007–2009, 2010–2012, and 2013–2015 – over the area 32.5 to 43◦ N and 75 to 89◦W are shown.

2.4 SO2 surface concentration data

In situ SO2 ground-level measurements from the US
Clean Air Status and Trend Network (CASTNet; Baum-
gardner et al., 1999; Park et al., 2004; Schwede et
al., 2011), operated by the US EPA (http://www.epa.gov/
castnet), and the Canadian Air and Precipitation Monitor-
ing Network (CAPMoN: http://www.ec.gc.ca/rs-mn/default.
asp?lang=En&n=752CE271-1; Schwede et al., 2011), oper-
ated by Environment and Climate Change Canada (ECCC),
were used in this study. Both networks were established to as-
sess regional trends in pollutant concentrations, atmospheric
deposition, and ecological effects due to changes in air pol-
lutant emissions. CASTNet started operations in 1987 and
CAPMoN started in the late 1970s. Both networks employ
filter packs to measure SO2, although CASTNet uses a 1-
week sampling period vs. a 1-day sampling period for CAP-

MoN. It is important to note that the monitoring sites belong-
ing to these networks are located in relatively remote areas,
so that direct impacts of local pollution sources on the mea-
surements are minimal. Annual mean SO2 values in µg m−3

were used in this study.

3 Linking satellite SO2 VCDs and SO2 emissions

The method for linking OMI SO2 VCDs to SO2 emissions
is based on a fit of OMI VCDs to an empirical plume model
developed to describe the SO2 spatial distribution (as seen by
OMI) near emission point sources (Fioletov et al., 2015), but
unlike the previous studies it is not limited to a single point
source. The plume model assumes that the SO2 concentra-
tions emitted from a point source decline exponentially with
time and that they are affected by turbulent diffusion that
can be described by a 2-D Gaussian function. The overall
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Figure 2. (a–c) Examples of reported and estimated seasonal emissions (in kt yr−1) for three 1◦ by 1◦ grid cells as labelled on the plots.
(d) Reported and estimated seasonal point-source emission rates for the entire eastern US and southeastern Canada (the region shown in
Fig. 1) for spring, summer, and autumn. Estimated emissions are shown for the statistical model based on the actual source location (blue
lines) and on a 0.5◦ by 0.5◦ regular grid (red lines). Note that the seasonal emission values are scaled to give annual emission rates. Winter
data are not shown due to high uncertainties of OMI measurements.

Figure 3. The scatter plots between the reconstructed from emission-based VCDs and the three OMI-based data sets shown in Fig. 1:
(a) mean OMI SO2 VCDs, (b) mean OMI SO2 VCDs with a large-scale bias removed, and (c) results of the fitting of OMI data by the set of
functions that represent VCDs near emission sources using estimated emissions (the first term of Eq. A2). Each symbol on the plot represents
the annual mean SO2 VCD value averaged over one 1◦ by 1◦ grid cell and all cells within the domain area shown in Fig. 1 are included in
the plot. Different colours represent different years. The correlation coefficients between the two data sets on each plot are also shown.

behaviour can be described as a combination of exponential
and Gaussian random variables, also known as an exponen-
tially modified Gaussian function (see the Appendix for de-
tails). Each satellite measurement (or pixel) is fit by a sum of
plumes from all point sources. The distribution of SO2 em-
anating from each source is described by the plume model

based on a known plume function �(θ,ϕ,ω,s,θi,ϕi) de-
pendent on the satellite pixel coordinates (θ,ϕ), pixel wind
direction and speed (ω,s), and source coordinates (θi,ϕi)
scaled by an unknown parameter (αi) representing the total
SO2 mass from the source i. These unknown parameters are
then estimated from the best fit of the OMI measurements.

www.atmos-chem-phys.net/17/12597/2017/ Atmos. Chem. Phys., 17, 12597–12616, 2017
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Figure 4. Left: mean OMI SO2 VCDs grouped by wind speed with
a large-scale bias removed. Right: results of the fitting of OMI
data by the set of functions that represent VCDs near emission
sources using estimated emissions. While the fitting was done us-
ing all data, the results of the fitting are grouped by wind speed.
Averages for 2005–2007 binned by the wind speed (0–5, 5–15, and
15–45 km h−1) are shown. Sources that emitted 20 kt yr−1 at least
once in 2005–2015 were included in the fit (they are shown as black
dots).

The emission rate for source i is E = αi/τ , where τ is a pre-
scribed SO2 decay time. In other words, the method finds
the emission rates that produce the best agreement with the
observed OMI SO2 VCD values. The detailed formulas and
prescribed seasonal decay times are given in the Appendix.

Thus, the fitting procedure allows for the isolation of the
emission-related “signal” in the data from known sources and
can be used to check existing point-source emission invento-
ries. If all sources are included in the fit, it can be expected
that the difference between the OMI data and the fit is within
the noise level and the estimated emission rates E should
agree with the reported emissions. We used OMI observa-
tions and emission data for the eastern US and southeastern
Canada to confirm this expectation. Sources that are not in-
cluded in the fit would appear as “hotspots” on the maps of
the difference between OMI VCDs that could be used for
source detection. Furthermore, emissions from such sources
could then be derived by adding their coordinates to the

source list in the fitting procedure. The suggested method can
thus be used as a source of independent emission estimates
in regions where emission values have large uncertainties.

The method requires information about the point-source
locations. We used source location data available from
the US and Canadian emission inventories mentioned in
Sect. 2.3. As discussed by Fioletov et al. (2015), sources that
emit 30 kt yr−1 or more can be detected by OMI. Since mul-
tiple smaller sources located in a close proximity can also be
seen as a hotspot in OMI data, we lowered the minimum limit
and included all SO2 point sources that reported emissions of
20 kt yr−1 or more at least once in the period 2005–2015. It
should be noted that while the method does not improve the
level of source detectability, it gives more accurate emission
estimates for clusters of small sources where the point-source
algorithm is not really applicable.

Earlier versions of the OMI SO2 data product have some
large-scale biases (Fioletov et al., 2011) that were largely re-
moved in the present PCA version. However, we found that
even the PCA version has some local biases that may inter-
fere with the regression fit. The local bias can be accounted
for by introducing functions that change slowly (compared
to signal from emission sources) with latitude and longitude.
We used Legendre polynomials of latitude and longitude and
their products that are orthogonal over the analyzed domain,
as discussed in the Appendix.

The OMI data with and without the bias and the fitting re-
sults for four multi-year intervals are shown in the columns
I and II of Fig. 1. The additional plots of the bias itself and
the residuals are available from the Supplement, Figs. S1–
S4. Figure 1 is based on the annual estimates averaged over
2- and 3-year periods. Figure 1 confirms that there was a
large decline in SO2 VCD over the eastern US and southeast-
ern Canada in the period 2005–2015 (Krotkov et al., 2016).
In contrast, the bias estimated from the fitting procedure ap-
pears to be fairly constant over time (Fig. S1), which suggests
that it may be an artifact from the retrieval. The lack of this
feature in OMPS observations further suggests it is a bias in
OMI PCA data as discussed in the Supplement (Sect. S1 and
Fig. S2).

It should be mentioned that the use of an empirical plume
model is appropriate when atmospheric advection/diffusion
can be considered to be the dominant process and meteoro-
logical conditions can be assumed to be quasi-steady. This
is a reasonable assumption for short time periods and trans-
port distances and when chemical transformation and sur-
face removal of SO2 can be well represented as simple first-
order loss. The consistent mid-day overpass time for OMI
means that the vast majority of the satellite measurements
will be associated with a well-developed quasi-steady plan-
etary boundary layer. A 3-D atmospheric chemistry model,
in contrast, would be more appropriate for longer time peri-
ods and transport distances and for emissions occurring at all
times of day, but that is not the case for this analysis.

Atmos. Chem. Phys., 17, 12597–12616, 2017 www.atmos-chem-phys.net/17/12597/2017/
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4 Analysis

4.1 SO2 emission estimates from OMI data

The functions �(θ,ϕ,ω,s,θi,ϕi) decline very rapidly with
distance from the source located at θi,ϕi . For an isolated
point source (θi,ϕi) where other sources are located 100 km
away or more, �(θ,ϕ,ω,s,θi,ϕi) is not correlated with any
other �(θ,ϕ,ω,s,θj ,ϕj,), where i 6= j , and the regression
model (1) or (2) can be simply split into two parts: a model
for point-source emission estimates for source i and a model
for all other point sources. Then the estimate of αi is indepen-
dent from estimates for all other sources. If, however, there
is another source j located at (θj ,ϕj ) that is closer to source
i than ∼ 100 km, then the functions �(θ,ϕ,ω,s,θi,ϕi) and
�(θ,ϕ,ω,s,θj ,ϕj,) become correlated, as do their estimates
of αi and αj . As the two � functions depend on the wind,
the correlation coefficients also depend on the wind distribu-
tion and the locations of the sources relative to the prevailing
wind direction and to each other, but the separation distance
is the dominant factor. Typical absolute values for the cor-
relation coefficients are about 0.2, 0.6, and 0.8 for distances
between sources of 100, 50, and 25 km, respectively. A high
correlation means that, in practice, emission estimates for
sources located in close proximity have large uncertainties
as we may have difficulty separating signals from the individ-
ual sources. However, if sources i and j are located in close
proximity to each other but far from all other sources, then
their combined emissions can still be estimated accurately.
Thus, such sources can be grouped into clusters, where the
member sources are located in close proximity (20–40 km)
but the clusters themselves are well separated and total emis-
sions from each cluster can be estimated from satellite data.

Another way of grouping sources into clusters is to estab-
lish a grid over the analysis region and then sum up estimated
emissions (Ei) from all sources within each grid cell. Of
course, this does not prevent situations in which two sources
are in close proximity but are located in adjacent grid cells.
Such cases would lead to larger uncertainties in the cell val-
ues, but they are uncommon. Figure 2a–c show examples of
such estimated total emissions for three 1◦ by 1◦ cells. Sea-
sonal emission estimates scaled to annual values were used
for this plot and winter data are not shown in this plot due to
much higher uncertainties of OMI data. The estimated emis-
sions agree reasonably well with the emissions calculated by
summing up reported SO2 emissions from the point sources
in each cell. The standard deviation of the difference between
the emission estimates for all 1◦ by 1◦ cells within the do-
main area shown in Fig. 1 and reported SO2 emissions for the
same cells are 112, 39, 28, and 41 kt yr−1 for winter, spring,
summer, and autumn, respectively. The standard deviations
of the difference are 25 and 37 kt yr−1 for annual emissions
without and with winter data (not shown), respectively. Fi-
nally, total point-source emissions for the entire region can
be estimated by summing over all individual point sources.

Such a plot is shown in Fig. 2d. The estimated SO2 emissions
in Fig. 2d follow the trend in the reported emissions well, and
the correlation coefficient between the two data sets is 0.98.
The agreement is particularly good in summer. Large dis-
crepancies are observed only in autumn months after 2007,
when relatively high measurement noise combined with the
reduction of data due to the row anomaly. In addition, the
2008 and 2009 satellite data were affected by SO2 emitted
from volcanic eruptions (McLinden et al., 2015). More infor-
mation on the autumn data is available from Sects. S2 and S3.

This grid-based approach can be potentially used for area
sources or when the locations of sources are not well known.
For illustration, we used VCD measurements over the same
area but assumed that it is an area source with no individual
point sources. If we set a regular grid and assume that each
grid point is a “source”, we can estimate emissions from such
“sources” as described above. VCD can then be calculated
using these estimated emissions. Such reconstruction for a
0.5◦ by 0.5◦ grid is also shown in Fig. 1 (column V) and
demonstrates a good agreement with the measured VCD val-
ues. Note that the grid spacing should not be too large or else
the areal emissions will be underestimated. Likewise, if it is
too fine adjacent grid cells will be highly correlated and may
result in artificial structure. As Fig. 1 (column IV) shows, the
fitting results based on emissions are very close to the OMI
fitted data (column II). We used the OMI data with local bias
removed because, with this approach, any instrumental local
bias will be interpreted as an area source, resulting in over-
estimation of emissions.

Emissions estimated by this gridded method are also
shown in Fig. 2. Their uncertainties are higher than for the
case of known source locations but are still reasonable. The
standard deviation of the difference between the emission es-
timates for all 1◦ by 1◦ cells within the domain area shown
in Fig. 1 and reported SO2 emissions for the same cells are
54, 37, and 56 kt yr−1 for spring, summer, and autumn, re-
spectively. High measurement errors and data gaps prevent
estimation of the emissions for winter.

The uncertainties of satellite-based emission estimates
have been discussed in our previous studies (Fioletov et al.,
2015, 2016). They can be as high as 50 %, but the two largest
contributors to this uncertainty, the air mass factor (AMF;
determined by the assumed vertical profile, surface reflectiv-
ity, and viewing geometry) and the prescribed lifetime, are
related to site-specific conditions and can be considered pri-
marily as systematic. They introduce a scaling factor in esti-
mated emissions that affects absolute values but not relative
year-to-year changes in emissions. Moreover, the constant,
effective AMF embedded in the OMI SO2 product is based
on measurements taken in the eastern US, and the lifetime es-
timates used here are based on data from the US power plants
as well, so these errors are minimal for this region. To further
support this claim, AMF values were recalculated for all SO2
observations used in Fioletov et al. (2016) and its impact on
these sources was found to minimal, typically less than 5 %.
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4.2 SO2 VCDs estimated from reported emissions

The equation that links emissions and VCDs (A1) can also be
used for forward calculations: if coefficients αi are known,
then SO2 VCDs can be calculated for any location for given
wind conditions and these daily VCDs can be averaged to
give annual or seasonal means for the analyzed area. Since
αi = Ei · τ , and τ is prescribed in our calculations, the avail-
able emission inventories that contain Ei can be used to cal-
culate αi . In this case, there is no need to do any fitting or to
use any OMI measurements to calculate VCDs. In practice,
we can simply use the reported emission data and available
OMI pixel locations merged with the wind information and
calculate VCDs for each OMI pixel based on its centre co-
ordinates. OMI provides daily near-global coverage, and of
course no pixel screening is required for such forward cal-
culations, so it would be essentially a reconstruction of daily
VCD maps with spatial resolution of about 15 by 35 km (ap-
proximately the average size of the OMI pixel used in this
study) assuming a constant emission rate.

Figure 1 (column IV) also shows the result of such an-
nual reconstructions averaged over 2- to 3-year periods. An-
nual point-source emissions from the EPA and NPRI invento-
ries were used as inputs. The agreement of the reconstructed
VCDs with OMI data (with the bias removed) is very good,
and the agreement with the OMI data fitting results is truly
remarkable. To characterize the overall agreement with the
OMI data, fitting results, and reconstructed emission-based
VCDs, a 1◦ by 1◦ grid was established and various statistical
characteristics were calculated for the gridded data. The stan-
dard deviation of the residuals ε for this grid is 0.025 DU, i.e.,
about 20 times less than the uncertainty of individual OMI
measurements. The standard deviation of the difference be-
tween the OMI-fitted and the reconstructed emission-based
VCDs is 0.016 DU.

Figure 3 shows the scatter plots between the annual VCDs
reconstructed from emissions and the three OMI-based data
sets shown in Fig. 1 for all years. The correlation between
the VCDs reconstructed from emissions with the actual OMI
data is 0.75, but it rises to 0.91 after the local bias is re-
moved and to 0.97 after the emission-related signal is ex-
tracted from the OMI data by the fitting procedure (the first
term of Eq. A4). Moreover, values of the latter correlation
coefficient are above 0.88 for all seasonal averages (exclud-
ing winter) and they are substantially higher than the corre-
lation coefficients with the actual seasonal OMI data. This
result could be used to extract an emission-related SO2 sig-
nal from the OMI data when the signal is weak compared to
the noise level but the source locations are known. Additional
information is available from Sect. S2, including a figure of
the difference between the fitted VCDs and the reconstructed
VCDs as well as seasonal and annual statistics.

Figure 1 shows the fitting results in geographical coordi-
nates; i.e., the first term of Eq. (A4) from the Appendix was
calculated for each OMI pixel without any stratification by

the wind speed and direction. However, the fitting itself is
done in a four-dimensional space where the wind speed and
direction are the other two coordinates. To illustrate the fit-
ting results for different wind speeds, Fig. 4 shows the orig-
inal mean OMI SO2 values (with the bias removed) and the
fitting results when the data are binned by the wind speed.
Note that the fitting parameter estimate was done using data
for all wind speeds and the binning applies only to the fit-
ting outputs. In other words, the first term of Eq. (A4) from
the Appendix was calculated using only OMI pixels where
the wind speed was within the selected range. The calcu-
lations were done for three wind-speed bins for the 2005–
2007 period when the SO2 emissions were the highest and
the measurements were not affected by the “row anomaly”.
The wind-speed modal value is about 10 km h−1, and the first
bin represent calm conditions, the second bin contains mea-
surements taken within ±5 km h−1 from the modal value,
and the last bin corresponds to relatively high wind speeds.
As Fig. 4 demonstrates the fitting results are able to capture
the changes in SO2 distribution at different wind-speed bins.
When the wind speed is low, SO2 values are high over the
sources, while the plume spreads out over a larger area when
the wind speed is high. The figure also shows that SO2 VCD
values measured over the sources, or integrated over a small
area around the source, are not good proxies for the emis-
sions because they depend on the wind speed.

4.3 Applications for other regions

Direct SO2 emission measurements are not available for
many regions of the globe. The described method can be used
to verify or even estimate SO2 emissions for other regions.
To test this method further, we applied it to the European
region using E-PRTR and TNO-MACC emission inventory
data (see Sect. 2.3). Figure 5 is similar to Fig. 1, but for a part
of Europe where the majority of the SO2 sources are located.
Sources that emitted more than 10 kt in any year between
2005 and 2014 are shown on the map as black dots. The limit
was lowered to 10 kt yr−1 from the 20 kt yr−1 value used for
North America since clusters of small sources are common in
Europe. When the coordinates of the sources were included
in the fitting procedure there appeared to be some large-scale
local biases particularly over Spain and the Balkan region.

Figure 5 also shows a good general agreement between the
OMI data and VCDs estimated from emissions. Both show a
substantial SO2 VCD decline over most regions, with SO2
values the highest at the beginning of the analyzed period
(Spain, Romania, Bulgaria, Greece). No major changes are
observed by OMI for power plants in Serbia and in Bosnia
and Herzegovina, and they are now producing the highest
SO2 VCD values over the domain shown. As their emissions
are not in the E-PRTR database, TNO-MACC emission in-
ventory data were used instead.

The method produces estimates for individual sources that
can be further grouped in different ways. Estimated and
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Figure 5. The same as Fig. 1, columns I–IV, but for the part of Europe where the majority of SO2 point sources are located. Point sources
that emitted 10 kt yr−1 at least once in the period 2005–2014 were included in the fit (they are shown as the black dots). High SO2 values
related to the Mt. Etna volcano in Sicily are excluded from the OMI plots. The area 35.6 to 56.6◦ N and 10◦W to 28.4◦ E is shown.

reported annual emissions for the period 2005–2014 were
grouped by nation for nine countries with large SO2 emis-
sions, as shown in Fig. 6. There is good agreement qualita-
tively between the reported and estimated emissions. Some
differences in absolute values are expected due to possible
multiplicative biases in OMI-based estimates (from the air
mass factor and potential errors in τ). In some cases, how-
ever, a possible deficiency in the reported emissions cannot
be ruled out. For example, OMI-based values for Romania
show nearly constant emissions up to 2012 and then a 50 %
drop, whereas the reported emissions suggest a steady de-
cline between 2005 and 2013. The uncertainty level of the
OMI-based emissions is illustrated in Fig. 6 by the panel for
Hungary: the total emissions from three sources there are be-
low the sensitivity of OMI-based estimates. Figure 6 also
shows OMI-based and inventory emissions for Serbia and
for Bosnia and Herzegovina. Their inventory emission data
are available as estimates based on reported thermal capac-
ity, configuration, and generic interpretations of reported fuel

type and may not be accurate. OMI-based estimates provide
an independent source for their verification. For example, the
inventory estimates for the copper smelter at Bor, Serbia, are
about 4.5 kt yr−1, i.e, well below the OMI sensitivity level.
However, OMI sees this source clearly and the OMI-based
mean emission estimate for 2005–2016 is about 70 kt yr−1, a
value in line with high SO2 levels observed there (Serbula et
al., 2014). See also Fig. S7.

Another clear benefit of the satellite-based method of
emission estimates is that such estimates are available with
almost no delay. At the time of this study (February 2017),
we were able to estimate OMI-based emission for the period
including 2016, while the E-PRTR inventory only reached
until 2014.

4.4 Reconstruction of the past VCD distribution

If detailed emission data are available, it is also possible to
calculate emission-based VCD maps using Eq. (A3) for years
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Figure 6. OMI-based (blue bars) and reported/estimated (black lines) emissions for different European countries. E-PRTR reported emissions
were used for all countries except Serbia and Bosnia and Herzegovina, where TNO-MACC estimates (Kuenen et al., 2014) were used (see
Supplement). The error bars represent 2 standard errors of the annual mean calculated by averaging three seasonal (spring, summer, autumn)
OMI-based emission estimates.

before the launch of OMI. Figure 7 shows the annual mean
VCD maps over the eastern US and southeastern Canada
reconstructed from the emission inventories available since
1980. All point sources (shown by black dots) that emitted
more than 1 kt of SO2 in at least 1 year during the 1980–2015
period were included in the calculations for a total about
380 sources. Note that we slightly expanded the domain area
in all directions to include sources that emitted large SO2
amounts prior to the OMI launch. There are two major pe-
riods of dramatic changes in SO2 VCD values: first, in the
early 1990s, corresponding to the implementation of the US
Acid Rain Program (ARP), established under Title IV of the
1990 Clean Air Act (CAA) Amendments (IJC, 2014). Then
beginning in 2009–2010 there are further large reductions at-
tributable to the installation of additional flue-gas desulfu-
rization units (or “scrubbers”) at many US power plants to
meet stricter emission limits introduced by the Clean Air In-
terstate Rule. The overall decline of total SO2 point-source
emissions from the domain area shown in Fig. 5 between
1980 and 2015 is 86 %.

4.5 SO2 surface concentrations and VCDs

Multi-year mean surface SO2 concentrations at stations
belonging to the CASTNet and CAPMoN networks (see
Sect. 2.4) were compared to the estimated VCD values. Maps
of multi-year mean surface SO2 concentrations at stations be-
longing to the CASTNet and CAPMoN networks are shown
in Fig. 8. The colour scheme of Fig. 8 was chosen to be com-
parable to that used in Fig. 1. The main features of the VCD
and surface concentration distributions are very similar. Both
sets of maps portray a strong decline from the 1980s to 2010s
with the highest values observed along the Ohio River, where
many coal-fired power plants are located. However, the spa-
tial gradients in the VCD distribution appear to be sharper
than in the surface concentration distribution and elevated
surface concentrations are spread out over larger areas. For
example, SO2 VCDs over Virginia were much lower com-
pared to West Virginia, while SO2 surface concentrations
were similar.

There are 50 network sites within the domain area shown
in Fig. 7 that have 15 or more years of observations in the pe-
riod 1980–2015. A scatter plot of annual mean SO2 surface
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Figure 7. Annual mean SO2 VCD calculated using the plume model applied to the reported emission data. Annual emission data from∼ 380
SO2 sources (black dots) that emitted 1 kt yr−1 at least once in 2005–2015 were included in the calculations. The area 30 to 48◦ N and 70 to
90◦W is shown.

concentration at all of these sites versus emission-based SO2
VCD values is shown in Fig. 9a for all available years. While
there is a clear correlation between the two quantities that
reflects similar spatial distributions and temporal trends, the
correlation coefficient is not very high (0.83). However, cor-
relation coefficients calculated separately for individual mea-
surement sites are higher, ranging between 0.87 and 0.99.
This is illustrated in Fig. 9b, where a subset of the scatter plot
from Fig. 9a for eight sites is shown using different colours
for each site.

Figure 9b also shows that the slopes of the regression lines
vary from site to site. If we calculate the slope of the individ-
ual regression line for each site (it is essentially the surface-
concentration-to-VCD ratio) and then multiply the emission-
based VCDs by that ratio, then we obtain a very good cor-
relation as illustrated by Fig. 9c (R = 0.986 for the eight

sites shown in Fig. 9b and R = 0.983 for all data points).
The regression-line y intercepts have also been analyzed. A
positive intercept means that the surface concentration could
be non-zero even in the absence of any regional point-source
emissions. The estimated intercepts are within ±1.5 µg m−3

for all sites except one where the intercepts is 3.5 µg m−3.
The exception is the CASTNet Horton Station site, located
in Virginia 18 km east of the Glen Lyn power plant, whose
emissions were about 10 in 2008 and 6.5 kt yr1 in 2011. How-
ever, its emission information was largely missing for the pe-
riod 2009–2015 and this affected our VCD calculations.

The surface-concentration-to-VCD ratio ultimately de-
pends on the shape of the SO2 vertical profile. The shape
could be affected by boundary layer height, site elevation,
and perhaps some local conditions. There are, however,
some common features in the ratio distribution. As shown

www.atmos-chem-phys.net/17/12597/2017/ Atmos. Chem. Phys., 17, 12597–12616, 2017



12608 V. Fioletov et al.: Multi-source SO2 emission retrievals and consistency of satellite

Figure 8. Annual mean surface SO2 concentrations in µg m−3 for different periods calculated using data from the CASTNet and CAPMoN
surface monitoring networks. The area 30 to 48◦ N and 70 to 90◦W is shown.

in Fig. 9d, the ratio is low in areas of high emission-based
VCDs and low in areas where emission-based VCDs are low.
Of course, it is not the mean VCD value itself that affects the
ratio but proximity to emission sources. Figure 9d is based
on VCDs derived from emissions, but the same analysis for
OMI-measured VCD demonstrates similar results (Sect. S5).

It may be possible to reconstruct surface concentration dis-
tribution from VCDs and additional information such as the
planetary boundary layer height (Knepp et al., 2015), but
such estimates are outside of the scope of this study.
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Figure 9. (a) A scatter plot of annual mean surface SO2 from CASTNet and CAPMoN vs. VCDs calculated from EPA and NPRI point-source
emission inventories. The correlation coefficient between the two data sets is 0.83. (b) A subset of the scatter plot from panel (a) for eight
sites (shown by different colours). The correlation coefficients for individual sites are between 0.96 and 0.99. (c) The same plot as (b), but for
mean SO2 VCDs multiplied by a site-specific surface-concentration-to-column ratio. The correlation coefficient is 0.98. (d) The site-specific
surface-concentration-to-column ratio as a function of the 1980–2015 mean SO2 VCD. Each dot represents one site. Only the 50 regional
surface SO2 sites with 15 or more years of data between 1980 and 2015 were used in this figure.

5 Summary and discussion

Fitting OMI SO2 VCD data by a linear combination of func-
tions, where each function represents the plume from an
individual source, makes it possible to estimate emission
from these sources or groups of sources. If the location of
all sources is known, it is expected that the fitting results
and the actual OMI data will agree within the noise level
as was found to be the case for the eastern US and south-
eastern Canada. The same agreement is also observed for
this region if the reported emissions are used to calculate
VCDs. This suggests a simple way of interpreting satellite
SO2 VCD data: they should agree with VCD estimates based
on available emission inventories or the fitting results based
on known source locations.

By applying a statistical plume model (developed from
satellite SO2 measurements) to US and Canadian annual
SO2 point-source emission inventories, we were able to re-
construct past annual mean VCDs for the period 1980–
2015. High correlation coefficients between the recon-
structed VCDs and the OMI-based values (0.91 for OMI data
with local bias removed) for the period 2005–2015 gives us
confidence in both data sets. It also demonstrates that the re-
ported changes in SO2 point-source emissions are reflected
by OMI measurements for the period 2005–2015. Moreover,
the annual surface SO2 concentrations at the CASTNet and
CAPMoN sites also show high correlation coefficients (0.87–
0.99) with SO2 VCDs reconstructed from reported emis-
sions. All of these comparisons suggest a high degree of con-
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sistency between the reported SO2 point-source emissions
and measured SO2 values over the entire 1980–2015 period.

The approach described in this study can be used in sev-
eral ways. The derived emissions can serve as an indepen-
dent data source for inventory verification (both point source
and gridded) by comparing OMI-estimated SO2 emissions
with the inventories or by comparing VCDs calculated from
emission inventories to the OMI VCD measurements. It can
also provide emission information for regions where there
are no other information sources available. Unreported point
and area sources can be detected and emissions from them
can be estimates by subtracting VCDs calculated from avail-
able emission inventories from satellite VCD measurements,
although emission inventories with good spatial resolution
would be required for such an analysis. While this study is
focused on SO2, the methods can be applied to other species
with relatively short lifetimes measured from space, particu-
larly to NO2 and NH3.

We have also applied the method to Europe. The results
strikingly illustrate the positive impact of EU legislation; the
countries where no decreasing trends are observed are non-
EU member states surrounded by EU countries with decreas-
ing emissions. In general, the satellite-based results confirm
the trends in reported SO2 emissions from EU member states
over the period 2004–2014, but some discrepancies were
found that deserve further attention. In one case, for exam-
ple, it seems that reported emissions already take into ac-
count certain planned or foreseen measures, but real-world
(satellite-observation) estimates suggest that implementation
of these measures was delayed by several years. Moreover,
although the trend is clearly followed, the absolute emission
levels suggested by the OMI SO2 VCD fitting method are
sometimes substantially above the reported emission levels
for recent years (Fig. 6). Whether these differences are due
to underreporting or to methodological issues requires fur-
ther study.

There are certain limitations to the suggested methods.
Satellite SO2 VCD data may still contain local biases that
will interfere with emission estimates or will themselves be
interpreted as a source. As the OMI and OMPS data show,
these biases could be different from instrument to instrument.
Moreover, data from the same OMI instrument could have
different biases if processed by different algorithms (Fiole-
tov et al., 2016; their Fig. 3). Although the biases could be
partially removed using, for example, a constant (for a small
fitting area) or polynomial (for larger areas) fit, further im-
provement of retrieval algorithms is required to eliminate the
bias problem. The biases could be particularly large over re-
gions of high SO2 VCD values such as the Persian Gulf and
China, so the method should be applied there with caution.
The method is also based on the assumption that all SO2 is lo-
cated near the surface, which determines the wind data used
for the fitting. This may not always be the case for very large
sources where SO2 can be lifted into the free troposphere.
Finally, the plume model itself may not be optimal in some
cases.

Data availability. OMI PCA SO2 data used in this study have been
publicly released as part of the Aura OMI Sulphur Dioxide Data
Product (OMSO2) and can be obtained free of charge from the God-
dard Earth Sciences (GES) Data and Information Services Center.
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Appendix A

This appendix contains a description of the fitting algorithm
used to estimate emissions from point and multiple sources.
The algorithm for point sources was previously published by
Fioletov et al. (2015), but we briefly repeated it for reader’s
convenience.

A1 Fitting algorithm, point source

The first step of the fitting algorithm involves a rotation of
the location of each OMI pixel about the source such that,
after rotation, all have a common wind direction. Then, the
method assumes that concentrations of SO2 emitted from a
point source decline exponentially (i.e., as exp(−λt)) with
time (t) with a constant “lifetime” (or decay rate) τ = 1/λ.
In the absence of diffusion and with a constant wind direction
and speed (s), SO2 is transported downwind (along the −y
axis in the chosen coordinate system) with a concentration
that declines exponentially with the distance from the source.
Since t =−y/s, this decay is simply exp(λy/s) or exp(λ1y)

where λ1 = λ/s. Likewise, if the wind speed is zero, the dis-
tribution of SO2 near the source is governed by diffusion or,
more generally, random fluctuations and can be described by
a two-dimensional Gaussian function of the distance from
the source that depends on one parameter σ . As both expo-
nential decay of the concentration along the y coordinate and
diffusion take place, the overall behaviour can be described
as a combination of exponential and Gaussian random vari-
ables, also known as an exponentially modified Gaussian
function. Therefore, the statistical model of the SO2 plume
employed near the point source has the form of a Gaus-
sian function f (x,y) multiplied by an exponentially modi-
fied Gaussian function g(y,s):�(x,y,s)= f (x,y) ·g(y,s),
where x and y (in kilometres) are the coordinates of the OMI
pixel centre across and along the wind direction, respectively,
and s (in km h−1) is the wind speed at the pixel centre. The
model depends on two parameters, the decay time (τ), and
the plume width (σ). It should be multiplied by a scaling
factor α that is proportional to the emission strength.

Thus, OMISO2 = α·�(x,y,s)= α·f (x,y)·g(y,s), where
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√
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e−t

2
dt . The Gaussian function

f (x,y) represents the distribution across the wind direction
line.

The function g(y,s) is essentially a convolution of Gaus-
sian (determined by the plume width σ) and exponential
functions (determined by λ1 related to the lifetime) and rep-
resents an exponential decay along the y axis smoothed by a
Gaussian function: when σ is close to 0, then g(y,s)≈ λ1
exp (λ1y), where y ≤ 0. The wind speed s is included in
Eq. (A1) only through λ1 = λ/s. Note that σ1 was used in
f (x,y) instead of σ . The value of σ1 increased with the dis-
tance from the source to reflect an additional spread of the
plume downwind (i.e., when y < 0).

Parameters σ , λ, and α can be derived from the fit of the
OMI observations by the function α�(x,y,s), i.e., from a
nonlinear regression model. However, if the values for σ and
τ = 1/λ are prescribed, then the remaining value, α, can be
determined from a simple linear regression model.

Since

∞∫
−∞

∞∫
−∞

f (x,y) · g(y,s)dxdy =

∞∫
−∞

 ∞∫
−∞

f (x,y)dx

 · g(y,s)dy = ∞∫
−∞

g(y,s)dy = 1,

the parameter α represents the total observed number of SO2
molecules (or the SO2 mass) near the source. If OMISO2 is in
DU, and σ is in kilometres, then a is in 2.6 × 1026 molec or
0.029 T (SO2). Furthermore, the emission strength (E) can
be calculated as E = α/τ , assuming a simple mass balance.

The function� depends on pixels coordinates in the Carte-
sian coordinate system related to the wind direction with the
centre at the analyzed source. These coordinates can be de-
rived from pixel latitude (θ) and longitude (ϕ), the wind di-
rection (ω), and the source latitude (θ0) and longitude (ϕ0),
i.e., �(x,y,s)=� (θ , ϕ, ω, s,θ0, ϕ0). As OMI measure-
ments were merged with the wind data, OMI SO2 VCD at
each pixel can therefore be interpreted as a four-dimensional
function OMISO2 (θ , ϕ, ω, s). The dependence of � on the
model parameters τ and σ is rather complex and we can sim-
plify this approach by assuming that τ and σ are identical for
all sources in the analyzed region and only the parameter α
differs from source to source (see sensitivity analysis in ref-
erence Fioletov et al., 2016). Values of τ and σ were selected
based on previous estimates for point sources in the eastern
US (Fioletov et al., 2015) with some seasonal adjustments: τ
values were= 5.6, 6.3, 7.7, and 6.3 h for winter, spring, sum-
mer, and autumn, respectively. The plume width σ = 18 km
is dependent on multiple factors, but mostly on the OMI pixel
size.

A2 Fitting algorithm, multiple sources

In case of multiple sources with prescribed τ and σ , OMI
SO2 VCD can be expressed as a sum of contributions αi · �i
from all individual sources (i). If (xi , yi) and (x′i , y′i ) are the
pixel’s Cartesian coordinates (kilometres) in the system with
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Table A1. Legendre polynomials.

n Pn(x)

0 1
1 x

2 (3x2
− 1)/2

3 (5x3
− 3x)/2

4 (35x4
− 30x2

+ 3)/8
5 (63x5

− 70x3
+ 15x)/8

6 (231x6
− 315x4

+ 105x2
− 5)/16

the origin at the source i before and after the wind rotation
respectively, then they can be calculated from the pixel and
source latitudes and longitudes as

xi = r · (ϕ−ϕi) · cos(θi),
yi = r · (θ − θi),

x′i = xi · cos(−ω)+ yi · sin(−ω),
y′i =−xi · sin(−ω)+ yi · cos(−ω),

where r = 111.3 km ·π/180, ϕ and θ are the pixel longitude
and latitude, ω is the pixel wind direction (0 for north), and ϕi
and θi are the source i longitude and latitude (all in radian).

Then, similarly to Eq. (A1), the contribution αi · �i from
the source i can be expressed as αi · �i = αi · f (x′i , y′i) ·
g(y′i , s), where

f (x′i,y
′
i)=

1

σ1
√

2π
exp

(
−
x′

2
i

2σ 2
1

)
,

g(y′i, s)=
λ1

2
exp

(
λ1(λ1σ

2
+ 2y′i)

2

)
· erfc

(
λ1σ

2
+ y′i
√

2σ

)
,

σ1 =

{ √
σ 2− 1.5y′i,y

′

i < 0
σ,y′i ≥ 0

λ1 = λ/s. (A2)

Thus, OMI SO2 VCD can be expressed as a sum of con-
tributions from all individual sources (i) plus noise (ε):

OMISO2(θ,ϕ,ω, s)=
∑
i

αi�(θ,ϕ,ω, s, θi,ϕi)+ ε, (A3)

where only parameters αi are unknown. Equation (A3)
represents a linear regression model where the unknown
parameters αi can be estimated from the measured vari-
able (OMISO2) at many pixels and known regressors
�(θ,ϕ,ω,s,θi,ϕi). Calculations can be done on an annual
or seasonal basis (i.e., using all data for a particular year or
for a particular season of a year respectively). Emission es-
timates for shorter time intervals, e.g., monthly emissions,

may be possible for large sources, but they appear to be too
noisy for the eastern US and southeastern Canada for practi-
cal applications.

Earlier versions of the OMI SO2 data product have some
large-scale biases (Fioletov et al., 2011) that were largely re-
moved in the present PCA version. However, we found that
even the PCA version has some biases that may interfere with
the regression fit if Eq. (A3) is used. If the fit is done for a
relatively small area, the bias can be accounted for by adding
a parameter α0 to the Eq. (A3) and estimating it from the fit:

OMISO2(θ,ϕ,ω, s)=
∑
i

αi�(θ,ϕ,ω, s, θi,ϕi)

+α0+ ε. (A4)

For a larger area, for example for the eastern US and south-
eastern Canada, geographic variations in the bias can be
accounted for by introducing functions that change slowly
with latitude and longitude. We used Legendre polynomials
(Pn(x)) that are orthogonal on the interval from −1 to +1.

To make the polynomials orthogonal on the analyzed do-
main, the following transformation was applied:

Lj (θ)= Pj (2 · (θ − θmin)/(θmax− θmin)− 1),
Lk(ϕ)= Pj (2 · (ϕ−ϕmin)/(ϕmax−ϕmin)− 1),

where ϕmin, ϕmax, θmin, and θmax are latitudes and longitudes
that define the domain area. Then Lj (θ) and Lk(ϕ), and their
products were added to the fit:

OMISO2(θ,ϕ,ω, s)=
∑
i

αi�(θ,ϕ,ω, s, θi,ϕi)

+

∑
j+k≤6

βj,kLj (θ)Lk(ϕ)+ ε, (A5)

where αi and βj,k are the estimated coefficients. The first
sum represents the emission-related fitting and the second
sum is the large-scale bias. Equation (A4) also represents a
linear regression model and the unknown coefficients can be
estimated from the available observations. Polynomials up
to the sixth degree were used for each 1-year or one-season
fit for the selected domain (the eastern US and southeastern
Canada), although a higher (or lower) degree may be more
suitable for a larger (smaller) area (see also Sect. S6). Note
that the biases are related to retrieval effects such as imper-
fection of account for the ozone absorption and therefore are
not related to SO2 abundances and not affected by the winds.
For this reason, no dependence of the bias on s is considered.

Figure A1 illustrates the method by using SO2 data from
2005 to 2007 near the Bowen power plant in Georgia, US.
There are 13 sources within the±200 km square area around
the Bowen facility. The fitting was done for every year; esti-
mated values ai ·� (θ , ϕ, ω, s,θi , ϕi)were calculated for each
satellite pixel, then summed up to obtain a SO2 VCD value
for the fit for that pixel. For Fig. A1, the actual OMI data and
the fitting results were averaged over the 2005–2007 period
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and smoothed by the pixel averaging technique with a 30 km
radius. The maps of estimated values for individual sources
smoothed in the same way are also shown. The map of the
residuals or the difference between the OMI data-based map
and the fitting results is also shown.

Figure A1. Fitting OMI data near the Bowen power plant in Georgia, US, 2005–2007. All sources with emissions> 20 kt yr−1 were included
in the fit.

www.atmos-chem-phys.net/17/12597/2017/ Atmos. Chem. Phys., 17, 12597–12616, 2017



12614 V. Fioletov et al.: Multi-source SO2 emission retrievals and consistency of satellite

The Supplement related to this article is available
online at https://doi.org/10.5194/acp-17-12597-2017-
supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We acknowledge the NASA Earth Science
Division for funding OMI SO2 product development and analysis.
The Dutch–Finnish-built OMI instrument is part of the NASA
EOS Aura satellite payload. The OMI project is managed by
the Netherlands Royal Meteorological Institute (KNMI) and the
Netherlands Agency for Aerospace Programs (NIVR). The US En-
vironmental Protection Agency National Emissions Inventory and
the Environment and Climate Change Canada National Pollutant
Release Inventory provided SO2 point-source emission data. OMI
PCA SO2 retrievals used in this study have been publicly released
as part of the OMSO2 product and can be obtained free of charge at
the Goddard Earth Sciences (GES) Data and Information Services
Center (DISC, http://daac.gsfc.nasa.gov).

Edited by: Qiang Zhang
Reviewed by: two anonymous referees

References

Bauduin, S., Clarisse, L., Clerbaux, C., Hurtmans, D., and Coheur,
P.-F.: IASI observations of sulfur dioxide (SO2) in the bound-
ary layer of Norilsk, J. Geophys. Res.-Atmos., 119, 4253–4263,
https://doi.org/10.1002/2013JD021405, 2014.

Bauduin, S., Clarisse, L., Hadji-Lazaro, J., Theys, N., Clerbaux, C.,
and Coheur, P. F.: Retrieval of near-surface sulfur dioxide (SO2)
concentrations at a global scale using IASI satellite observations,
Atmos. Meas. Tech., 9, 721–740, https://doi.org/10.5194/amt-9-
721-2016, 2016.

Baumgardner, R. E., Isil, S. S., Bowser, J. J., and Fitzgerald,
K. M.: Measurements of Rural Sulfur Dioxide and Par-
ticle Sulfate: Analysis of CASTNet Data, 1987 through
1996, J. Air Waste Manage. Assoc., 49, 1266–1279,
https://doi.org/10.1080/10473289.1999.10463966, 1999.

Beirle, S., Hörmann, C., Penning de Vries, M., Dörner, S., Kern,
C., and Wagner, T.: Estimating the volcanic emission rate and
atmospheric lifetime of SO2 from space: a case study for
Kı̄lauea volcano, Hawai‘i, Atmos. Chem. Phys., 14, 8309–8322,
https://doi.org/10.5194/acp-14-8309-2014, 2014.

Carn, S. A., Krueger, A. J., Krotkov, N. A., and Gray, M.
A.: Fire at Iraqi sulfur plant emits SO2 clouds detected
by Earth Probe TOMS, Geophys. Res. Lett., 31, L19105,
https://doi.org/10.1029/2004GL020719, 2004.

Carn, S. A., Krueger, A. J., Krotkov, N. A., Yang, K., and Levelt, P.
F.: Sulfur dioxide emissions from Peruvian copper smelters de-
tected by the Ozone Monitoring Instrument, Geophys. Res. Lett.,
34, L09801, https://doi.org/10.1029/2006GL029020, 2007

Carn, S. A., Krotkov, N. A., Yang, K., and Krueger, A. J.: Mea-
suring global volcanic degassing with the Ozone Monitoring In-

strument (OMI), Geol. Soc. London, Spec. Publ., 380, 229–257,
https://doi.org/10.1144/SP380.12, 2013.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., Rosnay, P. de, Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Fioletov, V. E., McLinden, C. A., Krotkov, N., Moran, M.
D., and Yang, K.: Estimation of SO2 emissions us-
ing OMI retrievals, Geophys. Res. Lett., 38, L21811,
https://doi.org/10.1029/2011GL049402, 2011.

Fioletov, V. E., McLinden, C. A., Krotkov, N., Yang, K., Loyola,
D. G., Valks, P., Theys, N., Van Roozendael, M., Nowlan, C. R.,
Chance, K., Liu, X., Lee, C., and Martin, R. V.: Application of
OMI, SCIAMACHY, and GOME-2 satellite SO2 retrievals for
detection of large emission sources, J. Geophys. Res.-Atmos.,
118, 11399–11418, https://doi.org/10.1002/jgrd.50826, 2013.

Fioletov, V. E., McLinden, C. A., Krotkov, N. A., and Li,
C.: Lifetimes and emissions of SO2 from point sources
estimated from OMI, Geophys. Res. Lett., 42, 1–8,
https://doi.org/10.1002/2015GL063148, 2015.

Fioletov, V. E., McLinden, C. A., Krotkov, N. A., Li, C., Joiner,
J., Theys, N., Carn, S., and Moran, M. D.: A global cata-
logue of large SO2 sources and emissions derived from Ozone
Monitoring Instrument, Atmos. Chem. Phys., 16, 11497–11519,
https://doi.org/10.5194/acp-16-11497-2016, 2016.

de Foy, B., Krotkov, N. A., Bei, N., Herndon, S. C., Huey, L. G.,
Martínez, A.-P., Ruiz-Suárez, L. G., Wood, E. C., Zavala, M.,
and Molina, L. T.: Hit from both sides: tracking industrial and
volcanic plumes in Mexico City with surface measurements and
OMI SO2 retrievals during the MILAGRO field campaign, At-
mos. Chem. Phys., 9, 9599–9617, https://doi.org/10.5194/acp-9-
9599-2009, 2009.

de Foy, B., Wilkins, J. L., Lu, Z., Streets, D. G., and Duncan, B. N.:
Model evaluation of methods for estimating surface emissions
and chemical lifetimes from satellite data, Atmos. Environ., 98,
66–77, https://doi.org/10.1016/j.atmosenv.2014.08.051, 2014.

de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan,
B. N.: Estimates of power plant NOx emissions and lifetimes
from OMI NO2 satellite retrievals, Atmos. Environ., 116, 1–11,
https://doi.org/10.1016/j.atmosenv.2015.05.056, 2015.

de Graaf, M., Sihler, H., Tilstra, L. G., and Stammes, P.: How
big is an OMI pixel?, Atmos. Meas. Tech., 9, 3607–3618,
https://doi.org/10.5194/amt-9-3607-2016, 2016.

IJC: The International Joint Commission (IJC) Canada-United
States Air Quality Agreement Progress Report, 2014.

Jiang, J., Zha, Y., Gao, J., and Jiang, J.: Monitoring of
SO2 column concentration change over China from
Aura OMI data, Int. J. Remote Sens., 33, 1934–1942,
https://doi.org/10.1080/01431161.2011.603380, 2012.

Knepp, T., Pippin, M., Crawford, J., Chen, G., Szykman, J., Long,
R., Cowen, L., Cede, A., Abuhassan, N., Herman, J., Delgado,
R., Compton, J., Berkoff, T., Fishman, J., Martins, D., Stauffer,

Atmos. Chem. Phys., 17, 12597–12616, 2017 www.atmos-chem-phys.net/17/12597/2017/

https://doi.org/10.5194/acp-17-12597-2017-supplement
https://doi.org/10.5194/acp-17-12597-2017-supplement
http://daac.gsfc.nasa.gov
https://doi.org/10.1002/2013JD021405
https://doi.org/10.5194/amt-9-721-2016
https://doi.org/10.5194/amt-9-721-2016
https://doi.org/10.1080/10473289.1999.10463966
https://doi.org/10.5194/acp-14-8309-2014
https://doi.org/10.1029/2004GL020719
https://doi.org/10.1029/2006GL029020
https://doi.org/10.1144/SP380.12
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2011GL049402
https://doi.org/10.1002/jgrd.50826
https://doi.org/10.1002/2015GL063148
https://doi.org/10.5194/acp-16-11497-2016
https://doi.org/10.5194/acp-9-9599-2009
https://doi.org/10.5194/acp-9-9599-2009
https://doi.org/10.1016/j.atmosenv.2014.08.051
https://doi.org/10.1016/j.atmosenv.2015.05.056
https://doi.org/10.5194/amt-9-3607-2016
https://doi.org/10.1080/01431161.2011.603380


V. Fioletov et al.: Multi-source SO2 emission retrievals and consistency of satellite 12615

R., Thompson, A. M., Weinheimer, A., Knapp, D., Montzka, D.,
Lenschow, D., and Neil, D.: Estimating surface NO2 and SO2
mixing ratios from fast-response total column observations and
potential application to geostationary missions, J. Atmos. Chem.,
72, 261–286, https://doi.org/10.1007/s10874-013-9257-6, 2015.

Koukouli, M. E., Balis, D. S., van der A, R. J., Theys, N.,
Hedelt, P., Richter, A., Krotkov, N., Li, C., and Taylor, M.:
Anthropogenic sulphur dioxide load over China as observed
from different satellite sensors, Atmos. Environ., 145, 45–59,
https://doi.org/10.1016/j.atmosenv.2016.09.007, 2016.

Krotkov, N. A., McClure, B., Dickerson, R. R., Carn, S. a., Li, C.,
Bhartia, P. K., Yang, K., Krueger, A. J., Li, Z., Levelt, P. F., Chen,
H., Wang, P., and Lu, D.: Validation of SO2 retrievals from the
Ozone Monitoring Instrument over NE China, J. Geophys. Res.,
113, D16S40, https://doi.org/10.1029/2007JD008818, 2008.

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier,
E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner,
J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F.,
Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets,
D. G.: Aura OMI observations of regional SO2 and NO2 pollu-
tion changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–
4629, https://doi.org/10.5194/acp-16-4605-2016, 2016.

Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and De-
nier Van Der Gon, H. A. C.: TNO-MACC-II emission inven-
tory; A multi-year (2003-2009) consistent high-resolution Euro-
pean emission inventory for air quality modelling, Atmos. Chem.
Phys., 14, 10963–10976, https://doi.org/10.5194/acp-14-10963-
2014, 2014.

Lee, C., Martin, R. V., van Donkelaar, A., O’Byrne, G., Krotkov,
N., Richter, A., Huey, L. G., and Holloway, J. S.: Retrieval
of vertical columns of sulfur dioxide from SCIAMACHY
and OMI: Air mass factor algorithm development, valida-
tion, and error analysis, J. Geophys. Res., 114, D22303,
https://doi.org/10.1029/2009JD012123, 2009.

Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Malkki, A.,
Stammes, P., Lundell, J. O. V., and Saari, H.: The Ozone Mon-
itoring Instrument, IEEE T. Geosci. Remote, 44, 1093–1101,
https://doi.org/10.1109/TGRS.2006.872333, 2006.

Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A fast
and sensitive new satellite SO2 retrieval algorithm based
on principal component analysis: Application to the ozone
monitoring instrument, Geophys. Res. Lett., 40, 6314–6318,
https://doi.org/10.1002/2013GL058134, 2013.

Li, C., Zhang, Q., Krotkov, N. A., Streets, D. G., He, K., Tsay,
S.-C., and Gleason, J. F.: Recent large reduction in sulfur
dioxide emissions from Chinese power plants observed by the
Ozone Monitoring Instrument, Geophys. Res. Lett., 37, L08807,
https://doi.org/10.1029/2010GL042594, 2010.

Lu, Z., Streets, D. G., De Foy, B., and Krotkov, N. A.: Ozone
monitoring instrument observations of interannual increases
in SO2 emissions from Indian coal-fired power plants dur-
ing 2005-2012, Environ. Sci. Technol., 47, 13993–14000,
https://doi.org/10.1021/es4039648, 2013.

Lu, Z., Streets, D. G., de Foy, B., Lamsal, L. N., Duncan, B.
N., and Xing, J.: Emissions of nitrogen oxides from US ur-
ban areas: estimation from Ozone Monitoring Instrument re-
trievals for 2005–2014, Atmos. Chem. Phys., 15, 10367–10383,
https://doi.org/10.5194/acp-15-10367-2015, 2015.

McLinden, C. A., Fioletov, V., Boersma, K. F., Krotkov, N.,
Sioris, C. E., Veefkind, J. P., and Yang, K.: Air qual-
ity over the Canadian oil sands: A first assessment us-
ing satellite observations, Geophys. Res. Lett., 39, 1–8,
https://doi.org/10.1029/2011GL050273, 2012.

McLinden, C. A., Fioletov, V., Boersma, K. F., Kharol, S. K.,
Krotkov, N., Lamsal, L., Makar, P. A., Martin, R. V., Veefkind,
J. P., and Yang, K.: Improved satellite retrievals of NO2
and SO2 over the Canadian oil sands and comparisons with
surface measurements, Atmos. Chem. Phys., 14, 3637–3656,
https://doi.org/10.5194/acp-14-3637-2014, 2014.

McLinden, C., Fioletov, V., Krotkov, N. A., Li, C., Boersma, K. F.,
and Adams, C.: A decade of change in NO2 and SO2 over the
Canadian oil sands as seen from space, Environ. Sci. Technol.,
50, 331–337, https://doi.org/10.1021/acs.est.5b04985, 2015.

McLinden, C. A., Fioletov, V., Shephard, M. W., Krotkov, N., Li, C.,
Martin, R. V., Moran, M. D., and Joiner, J.: Space-based detec-
tion of missing sulfur dioxide sources of global air pollution, Nat.
Geosci., 9, 496–500, https://doi.org/10.1038/ngeo2724, 2016.

Nowlan, C. R., Liu, X., Chance, K., Cai, Z., Kurosu, T. P., Lee, C.,
and Martin, R. V.: Retrievals of sulfur dioxide from the Global
Ozone Monitoring Experiment 2 (GOME-2) using an optimal es-
timation approach: Algorithm and initial validation, J. Geophys.
Res., 116, D18301, https://doi.org/10.1029/2011JD015808,
2011.

Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and
Chin, M.: Natural and transboundary pollution influences on
sulfate-nitrate-ammonium aerosols in the United States: Im-
plications for policy, J. Geophys. Res.-Atmos., 109, D15204,
https://doi.org/10.1029/2003JD004473, 2004.

Schoeberl, M. R., Douglass, A. R., Hilsenrath, E., Bhartia, P. K.,
Beer, R., Waters, J. W., Gunson, M. R., Froidevaux, L., Gille, J.
C., Barnett, J. J., Levelt, P. F., and DeCola, P.: Overview of the
EOS Aura mission, IEEE T. Geosci. Remote, 44, 1066–1074,
https://doi.org/10.1109/TGRS.2005.861950, 2006.

Schwede, D., Zhang, L., Vet, R., and Lear, G.: An intercom-
parison of the deposition models used in the CASTNET
and CAPMoN networks, Atmos. Environ., 45, 1337–1346,
https://doi.org/10.1016/j.atmosenv.2010.11.050, 2011.

Serbula, S. M., Ilic, A. A., Kalinovic, J. V., Kalinovic, T. S., and
Petrovic, N. B.: Assessment of air pollution originating from
copper smelter in Bor (Serbia), Environ. Earth Sci., 71, 1651–
1661, https://doi.org/10.1007/s12665-013-2569-7, 2014.

Sickles II, J. E. and Shadwick, D. S.: Air quality and atmo-
spheric deposition in the eastern US: 20 years of change, At-
mos. Chem. Phys, 15, 173–197, https://doi.org/10.5194/acp-15-
173-2015, 2015.

Streets, D. G., Canty, T., Carmichael, G. R., De Foy, B., Dickerson,
R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., Henze, D.
K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N.,
Liu, Y., Lu, Z., Martin, R. V., Pfister, G. G., Pinder, R. W., Salaw-
itch, R. J., and Wecht, K. J.: Emissions estimation from satel-
lite retrievals: A review of current capability, Atmos. Environ.,
77, 1011–1042, https://doi.org/10.1016/j.atmosenv.2013.05.051,
2013.

Theys, N., Smedt, I. De, Gent, J. Van, Danckaert, T., Wang, T.,
Hendrick, F., Stavrakou, T., Bauduin, S., Clarisse, L., Li, C.,
Krotkov, N., Yu, H., Brenot, H., and Roozendael, M. Van: Sul-
fur dioxide vertical column DOAS retrievals from the Ozone

www.atmos-chem-phys.net/17/12597/2017/ Atmos. Chem. Phys., 17, 12597–12616, 2017

https://doi.org/10.1007/s10874-013-9257-6
https://doi.org/10.1016/j.atmosenv.2016.09.007
https://doi.org/10.1029/2007JD008818
https://doi.org/10.5194/acp-16-4605-2016
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.5194/acp-14-10963-2014
https://doi.org/10.1029/2009JD012123
https://doi.org/10.1109/TGRS.2006.872333
https://doi.org/10.1002/2013GL058134
https://doi.org/10.1029/2010GL042594
https://doi.org/10.1021/es4039648
https://doi.org/10.5194/acp-15-10367-2015
https://doi.org/10.1029/2011GL050273
https://doi.org/10.5194/acp-14-3637-2014
https://doi.org/10.1021/acs.est.5b04985
https://doi.org/10.1038/ngeo2724
https://doi.org/10.1029/2011JD015808
https://doi.org/10.1029/2003JD004473
https://doi.org/10.1109/TGRS.2005.861950
https://doi.org/10.1016/j.atmosenv.2010.11.050
https://doi.org/10.1007/s12665-013-2569-7
https://doi.org/10.5194/acp-15-173-2015
https://doi.org/10.5194/acp-15-173-2015
https://doi.org/10.1016/j.atmosenv.2013.05.051


12616 V. Fioletov et al.: Multi-source SO2 emission retrievals and consistency of satellite

Monitoring Instrument: Global observations and comparison to
ground-based and satellite data, J. Geophys. Res., 120, 2470–
2491, https://doi.org/10.1002/2014JD022657, 2015.

Thomas, W., Erbertseder, T., Ruppert, T., Roozendael, M. Van,
Verdebout, J., Balis, D., Meleti, C., and Zerefos, C.: On the
retrieval of volcanic sulfur dioxide emissions from GOME
backscatter measurements, J. Atmos. Chem., 50, 295–320,
https://doi.org/10.1007/s10874-005-5544-1, 2005.

Wang, S., Zhang, Q., Martin, R. V, Philip, S., Liu, F., Li, M.,
Jiang, X., and He, K.: Satellite measurements oversee China’s
sulfur dioxide emission reductions from coal-fired power plants,
Environ. Res. Lett., 10, 114015, https://doi.org/10.1088/1748-
9326/10/11/114015, 2015.

Witte, J. C., Schoeberl, M. R., Douglass, A. R., Gleason, J. F.,
Krotkov, N. A., Gille, J. C., Pickering, K. E., and Livesey, N.:
Satellite observations of changes in air quality during the 2008
Beijing Olympics and Paralympics, Geophys. Res. Lett., 36,
L17803, https://doi.org/10.1029/2009GL039236, 2009.

Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C. M.,
and Wei, C.: Historical gaseous and primary aerosol emissions in
the United States from 1990 to 2010, Atmos. Chem. Phys., 13,
7531–7549, https://doi.org/10.5194/acp-13-7531-2013, 2013.

Zhang, Y., Li, C., Krotkov, N. A., Joiner, J., Fioletov, V., and McLin-
den, C.: Continuation of long-term global SO2 pollution moni-
toring from OMI to OMPS, Atmos. Meas. Tech., 10, 1495–1509,
https://doi.org/10.5194/amt-10-1495-2017, 2017.

Atmos. Chem. Phys., 17, 12597–12616, 2017 www.atmos-chem-phys.net/17/12597/2017/

https://doi.org/10.1002/2014JD022657
https://doi.org/10.1007/s10874-005-5544-1
https://doi.org/10.1088/1748-9326/10/11/114015
https://doi.org/10.1088/1748-9326/10/11/114015
https://doi.org/10.1029/2009GL039236
https://doi.org/10.5194/acp-13-7531-2013
https://doi.org/10.5194/amt-10-1495-2017

	Abstract
	Introduction
	Data sets
	Satellite SO2 VCD data
	Wind data
	SO2 emission inventories
	SO2 surface concentration data

	Linking satellite SO2 VCDs and SO2 emissions
	Analysis
	SO2 emission estimates from OMI data
	SO2 VCDs estimated from reported emissions
	Applications for other regions
	Reconstruction of the past VCD distribution
	SO2 surface concentrations and VCDs

	Summary and discussion
	Data availability
	Appendix A
	Appendix A1: Fitting algorithm, point source
	Appendix A2: Fitting algorithm, multiple sources

	Competing interests
	Acknowledgements
	References

