Dossier: Human Factors in Big Data

Visualizing uncertainty
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TOOLBOX

Towards a better understandiung of weather forecasts

Uncertainty visualizations are increasingly used in communications to the general
public. A well-known example is the weather forecast. Rather than providing an
exact temperature value, weather forecasts often show the range in which the
temperature will lie. But uncertainty visualizations are also deployed in graphical
forecasts that are used for decision-making in many other different areas like
agriculture, flood management, health care, and finance. Visualization appears to be
an intuitive way to communicate uncertainty. In principle, uncertainty visualizations
enable users to make better decisions by enhancing their awareness of the
inherent uncertainty in the data. However, in practice many people (even experts)
frequently misunderstand both the concept of uncertainty and its visualizations.
We are currently investigating how the visual form and width of the graphical
representation of uncertainty ranges affect how people interpret the underlying

uncertainty distribution.

Alexander Toet, Susanne Tak en Jan van Erp

The need for uncertainty visualization

It is generally assumed that people appreciate
uncertainty visualizations and use them to make
their decisions. For weather forecasts, it has indeed
been observed that most people infer uncertainty
into forecasts anyway (even when it is not provided),
and prefer forecasts that explicitly express
uncertainty. Research has also shown that including
uncertainty estimates in weather (and hydrological)
forecasts increases trust and can in principle provide
a better understanding of the possible outcomes and
the amount of uncertainty in the given situation,
thereby allowing people to make better decisions
(Joslyn & LeClerc, 2013). Carefully designed visual
representations can indeed successfully convey
uncertainty information to both experts and non-
experts (Nadav-Greenberg, Joslyn & Taing, 2008).
However, the advantage of the availability of
uncertainty estimates depends critically on how they
are communicated (lbrekk & Morgan, 1987).
Communicating forecast uncertainty in an intuitive
way so that the information is easily perceived and
correctly interpreted still remains a challenge,
especially when the information is intended for the
general public (Tak, Toet & Van Erp, 2014; 2015). As a
part of our ongoing work on the optimization of
visualization techniques we are therefore
investigating how different aspects of uncertainty
visualizations affect the interpretations by non-
experts.

Ways to visualize uncertainty

Before explaining the challenges in this field we
first discus the different ways in which uncertainty
can be visualized. There are roughly three different
ways to visualize uncertainty: (1) by varying the
graphical properties of the visualization, (2) by
adding uncertainty information to the visualization,
and (3) by animating the visualization.

The first approach deploys techniques to vary the
graphical properties of depicted entities, such as
size, blur, color saturation, texture and transparency
(Figure 1). For example, blurring or degradation of
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Figure 1. Different graphical properties that can be used to
visualize uncertainty in data (from MacEachren, Roth, O'Brien et
al., 2012).
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the data has an intuitive relation with uncertainty:
the harder it is to see or recognize something, the
more uncertain it appears. However, blurring or
degradation can also be interpreted as poor
visualization quality.

The second approach is to explicitly add uncertainty
information to a visualization, such as glyphs
(graphical elements that can convey a number of
variables through variations in their size, shape,
orientation, texture, and color), geometry, labels,
numbers or icons. For example, positional
uncertainty can be indicated by overlaying a glyph,
the size of which becomes larger the more uncertain
the location is (e.g., Figure 2). Geometric techniques
include contour lines and isosurfaces (i.e., surfaces
of a constant value of e.g. pressure, temperature,
velocity, density). Also, textual or numerical
information about the magnitude of uncertainty
can be added to the visualization. Adding graphical
representations of uncertainty information to a
data visualization may result in data obscuration
(symbols may be plotted over and cover other
relevant information) and user distraction. This may
increase the user’s response time, as it may require
more cognitive effort to interpret the data.

Finally, animation of the visual data representation
(e.g., turning symbols on and off at a certain rate or
letting them jitter around a fixed position) can be
used to indicate uncertainty. However, flickering or
jittering symbols can significantly reduce the
visibility of other important image details. Also,
most users typically find the use of blinking and
flicker annoying.

(Mis)Understanding uncertainty visualizations

As stated before, many people (even experts) frequently
misunderstand visual representations of uncertainty. A
notorious example of the misunderstanding of a graphical
uncertainty representation is the deterministic (and not
probabilistic as intended) interpretation of the well-
known ‘Cone of Uncertainty’ graphic issued by both the
US National Hurricane Center (NHC) and the media to
communicate hurricane risk to the public prior to landfall
(Figure 3). The main elements of this graphic are a black
line representing the predicted path of the hurricane
center, centered on a white ‘cone’ representing the
potential geographic range of the track. Despite the
attempt of the forecast community to make a user-
friendly product this type of hurricane-warning graphics
is misinterpreted by a large part of the public. Although
the track line only represents the predicted (potential)
track of a hurricane center, the general public typically
fails to appreciate both the uncertainty about it or the
statistical meaning of the wider ‘cone’ of uncertainty
about its projected course. The black line leads many to
overestimate the certainty of the projected track. The
white cone is often incorrectly interpreted as the extent
of the hurricane, its intensity, or the potential swath of
destruction (Broad, Leiserowitz, Weinkle et al., 2007). As
aresult, people often fail to understand that the hurricane
will potentially affect a much larger area than just the
cone depicting the uncertainty about the track of the eye
of the storm. People wrongly assume that only areas
along the track line are at risk (over distances up to the
boundary of the cone), while areas outside the cone will
not be impacted. Thus, people often do not feel at risk
when they do not live near the track line or outside the
cone’s boundaries. Another source of confusion is the fact
that the white cone has been obtained by thresholding
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Figure 2. The red area represents the possible location of a person in a building based on previous sensor registrations. Less likely posi-
tions are plotted as more transparent and less saturated. The possibility to find the person at a given location decreases as the red area

increases.

10 Tijdschrift voor Human Factors - jaargang 41 - nr. 1 - april 2016



the actual overall spatial probability distribution,
resulting in a loss of information (the variance in
probabilities over the white area is no longer available). It
has been observed that this may cause an overestimation
of the probability along the centerline, even by experts
(Kirlik, 2007). Sometimes an ensemble of predictions
from different weather models (the data that is actually
used to construct the cone) is presented to the public as
a ‘spaghetti plot’ (Figure 4). Although this representation
intuitively conveys the notion of uncertainty (there is no
single ‘sure’ path) and thereby prevents overconfidence
in a single predicted path, it has been found to confuse
the public (‘I have no clue which one to believe’).

This example illustrates how uncertainty visualizations
can easily be confusing or lead to misunderstandings. An
important question is what causes the misinterpretation.
In practice uncertainty visualizations are often shown
without an explanation of the meaning of the uncertainty
range (e.g., Figure 3 and Figure 5). In that case people
need to rely on the visual form of the graphical
representation to deduce the inherent uncertainty in the
data. When no further information is given people
sometimes assume a uniform probability distribution,
both for graphical (Ibrekk & Morgan, 1987) and numerical
(Rinne & Mazzocco, 2013) uncertainty representations.
This means that people think that all values (including the
extremes) in an uncertainty range are just as likely to
occur as the mean value. It is evident that this will
typically not be the case for most applications.
Especially now data science is gaining in interest in
various sectors, there is a need for graphical conventions
that unambiguously and intuitively convey the notion of
probability as this will lead to data representations that
are better and more easily comprehended by the end
users. Research on visual uncertainty communication
typically focuses on the development of new graphical
uncertainty representations, with little attempt to
evaluate their effectiveness for the end users. Also, there
is still little empirical evidence to suggest that uncertainty
visualization influences decision making in a robust and
consistent manner (Deitrick & Edsall, 2006). It is often
simply taken for granted that visual depictions of
uncertainty will be useful for decision making. Until now
only few studies investigated to what extent the users’
interpretation of uncertainty visualizations matches the
actual uncertainty distribution of the underlying data. As
a result we still do not have a comprehensive
understanding of the parameters that influence successful
uncertainty visualization.

What model people exactly adopt to interpret different
visualizations of uncertainty is not completely clear.
Studies suggest that different visualizations (such as
glyphs, color or grayscales) may result in different
perceived models and may therefore induce a discrepancy
between the model intended by the designer and the
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Figure 3. The (in)famous ‘Cone of Uncertainty’ graphic represen-
ting the area in which the path of the hurricane may lie.
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Figure 4. Spaghetti plot showing an ensemble of predictions
from different hurricane forecast models.

Figure 5. A visual representation of temperature forecast uncer-
tainty in the news. Visualizations for the general public (e.g., on
TV or in newspapers) often provide no explicit information on
the uncertainty that is shown and the viewer needs to adopt a
model to interpret the underlying distribution.
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model that is actually applied by the viewer. Obviously,
such discrepancies lead to incorrect interpretations,
which may result in wrong decisions.

In a study on the perception of point probability (e.g., by
asking to judge the probability that a certain predicted
value will occur) in graphs with visual uncertainty bands
(Tak, Toet & Van Erp, 2014; see Figure 6) it was found that
observers (when given no further explanation of the
‘mathematical’ meaning of the uncertainty band)
intuitively assume that the mean of the band is the most
likely value to occur and that values further from the
mean are less likely to occur. We also observed that a
user’s numeracy (mathematical skills) affects this intuitive
model. We therefore performed an additional study to
investigate the effects of type and overall width of
ensemble prediction visualizations (again presented
without any additional information) on range probability
estimates (e.g., by asking to judge the probability that the
temperature will exceed a given value or be in the higher
ranges: Tak, Toet & Van Erp, 2015). More specifically, we
investigated (1) the nature of the model that people
assume for visual uncertainty ranges when given no
additional information, (2) whether the form of visual
uncertainty ranges affects this assumed model, and (3) to
what extent the assumed model depends on a participants’
numeracy.

Effects of graphical form and width on perceived
range probability

Visualizations like those depicted in Figure 3 and Figure 5
do not provide explicit information about, for example,
the (range) probability of exceeding a temperature of 5
degrees on a specific day. Taking into account the results
of the aforementioned studies, we performed an
experiment to investigate if users assume a consistent
model to translate visualizations like the ones used in
weather forecasts into probabilities. We asked
participants to estimate a range probability by judging
the probability that the afternoon temperature on a given
day would exceed the temperature indicated by a red dot
in a given uncertainty visualization (Figure 7).

Figure 8 shows the seven visualization forms that were
investigated in this study. All seven different visualization
types represented seven data points connected by a
continuous black line (the center line). The data points
represented the predicted temperature values for seven
days ahead. The visualizations differed in the graphical
representation of the uncertainty range, which was
always symmetrical around the center line. To prevent
stimulus familiarization the shape of the center line was
varied slightly across stimuli by randomly distributing the
seven predicted temperature values over the days of the
week while keeping the width of the uncertainty interval
fixed at each x-position (i.e., for any given day of the
week, the y-value or uncertainty width was fixed, but the
corresponding temperature value was randomly selected
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Figure 6. Stimulus from an experiment in which participants
were asked to judge the probability that a certain material (co-
als or sandstone) was present at the location indicated by the
red dot. The dashed lines represent the borders of the uncer-
tainty region (i.e., the transition area between both materials).

from the set of seven temperatures). This procedure
yielded temperature curves with slightly varying shapes
but similar and monotonously increasing uncertainty
ranges.

Results

It appears that, in the absence of information about the
uncertainty range, people apply a perceived model of the
uncertainty distribution that closely resembles a Bell-
shaped distribution, as was also found in our study about
interpretation of point probability (Tak, Toet & Van Erp,
2014). In addition, we found that people typically have a
bias for higher temperatures: they consistently estimate
the probability of higher temperatures to be larger. The
perceived probability of ‘extreme values’ (i.e., values far
outside the uncertainty range) is affected by the
visualization type, with denser fills leading to higher
perceived probability of values within that area. Perceived
probability also depends on the width of the uncertainty
range: people judge the probability of values with the
same relative distance to the centerline different for wide
and for narrow uncertainty ranges (Figure 9). This means
that observers take not only the relative but also the
absolute distance to the center line into account and
assume a model that does not simply scale with the width
of the uncertainty range. Finally, the assumed model of
the uncertainty distribution depends on a participant’s
numeracy: people with low numeracy adopt a ‘flatter’ (all
values are judged more or less equally probable)
interpretation than those with high numeracy. In addition,
those with low numeracy have a more pronounced bias
than those with high numeracy (i.e., they more
consistently judge higher values to be more likely). In
practice this means that people with high numeracy have
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Figure 7. Screen shot of an uncertainty rating experiment.

a more realistic interpretation of uncertainty
visualizations when they are presented without any
further explanation. The cause of this effect (which has
also been observed in several previous studies) still
remains unclear. Hence, it remains a challenge to design
uncertainty visualizations that will be correctly
interpreted by all users, independent of their numeracy.

Conclusion

We find that the width and density of graphical
representations of uncertainty ranges affect range
probability estimates, and differently so for estimates
relative to reference values in respectively the upper or
lower part of an uncertainty range. We suspect that the
effects found here are likely to hold for a wider range of
visualizations. This may have practical implications for
graphical forecasts used in different areas like agriculture,
flood management, health care, finance, and many other
decision-making contexts where incorrect inferences
from range estimates may lead to suboptimal decisions.
Our results suggest for instance that blurred or dashed
(versus sharp) borders (like the ones shown in respectively
Figure 10b and d) for the hurricane ‘Cone of Uncertainty’
may give the public a more realistic impression of the
uncertainty in the hurricane’s path, since we found that
these type of borders lead to people to judge values away
from the center line to be more likely (i.e., they lead to a
‘flatter’ interpretation of the underlying uncertainty
distribution).

Our results also imply that wide uncertainty intervals are
in most cases probably not be the best choice for
uncertainty visualizations, since people already interpret
the underlying uncertainty distributions as wider than
they actually are. In terms of the different visualization
types it is unclear what the ‘best’ choice is. However, the
effects of the density of the fill on the interpretation of
extreme values should be taken into account when
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Figure 8. The seven graphical uncertainty visualization types
used in our experiment to represent temperature predictions.
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Figure 9. The temperatures indicated by the red dots on Sunday
and Wednesday are at equal relative distances from the center-
line (the predicted mean temperature curve) but are judged to
have different probabilities.
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Figure 10. Graphs with different visualizations of uncertainty
bands representing for instance the boundary between two dif-
ferent earth layers (e.g., sandstone and coal).

choosing a particular visualization, especially when these
unlikely events are of the type ‘low probability, high
impact’. Finally, the different results on the narrow and
the wide uncertainty width show that perceived
uncertainty does not necessarily map linearly to visual
features, and that testing of the interpretation of
uncertainty visualizations prior to dissemination is
important, since the intentions of the designer do not
necessarily match the interpretation of the viewer.

In our previous research we used uncertainty graphs
without actual underlying data. Using these graphs we
established relations between the shape and width of the
perceived uncertainty and the characteristics of the
graphical uncertainty visualization. However, we also
need to know how well perceived uncertainty corresponds
to the actual uncertainty in data. We therefore started to
experiment with uncertainty visualizations based on
actual data for which the uncertainty is known, so that we
can compare the perceived uncertainty with the actual
uncertainty.

Further research can provide knowledge on the nature of
the effects found here, which may in turn lead to more
effective presentations of uncertainty ranges to diverse
populations in a variety of judgment and decision-making
contexts. This may be of crucial value in high-risk
environments where people have to decide quickly, or
when decisions have a high impact.
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