

STELLINGEN

11 h

- 1. Het verdient aanbeveling meer onderzoek te verrichten naar de effecten van stikstof monoxide op de luchtwegen.
- 2. Bij kortdurende pieken in de luchtverontreiniging dient men erop bedacht te zijn dat respiratoire symptomen pas na één of meerdere dagen kunnen optreden.
- 3. The chief problems of preventive medicine are two:

 (i) to prove beyond doubt that such modalities as exercise, low-fat diets, and a 55-mile-an-hour speed limit are cost-effective, and (ii) to persuade a pleasure-loving, affluent, and undisciplined society to accept the necessary warnings.

 (Science 193: 837, 1976).
- 4. De termen prospectief en retrospectief duiden onvoldoende het karakter van een epidemiologisch onderzoek aan en kunnen derhalve beter vermeden worden.
- 5. Het verdient aanbeveling bij patiënten met diffuse longaandoeningen van onbekende aard een thoracospie met een longbiopsie à vue te verrichten.
- 6. De oorzaak van het ziektebeeld van de primaire pulmonale hypertensie dient niet in de longarteriolen gezocht te worden, maar in het longparenchym zelf.
- 7. In de gezondheidszorg verdienen nazorgprogramma's voor patiënten met chronische obstructieve longaandoeningen meer aandacht.
- 8. Het is momenteel onmogelijk de ontwikkeling van ernstige longfunctiestoornissen vroegtijdig te voorspellen.

- 9. Bij de preventie van kinderastma dienen atopische ouders geadviseerd te worden omtrent het meest gewenste tijdstip van de conceptie.
- 10. De in de kliniek gehanteerde normaalwaarden zijn slecht gefundeerd.
- 11. De feitelijke psychosociale begeleiding van de ziekenhuispatiënt en de opvattingen en verwachtingen die de patiënt hierover heeft, komen niet overeen. (T. Soc. Geneesk. 54: 810, 1976).
- 12. Een vaste verzorgster in de eerste 18 levensmaanden van een kind is van kardinaal belang voor zijn psychische en sociale ontplooiing.
- 13. In het "Repertorium Verpakte Geneesmiddelen" dienen zowel de prijzen van de genoemde geneesmiddelen vermeld als ook de generische namen in het register opgenomen te worden.
- 14. De veiligheid van de zebra-oversteekplaats kan vergroot worden door de "zebra" negentig graden te draaien en met reflecterende verf te beschilderen.

A.M.J. Wever

2 maart 1977

SULPHUR DIOXIDE

0.05	ррт	=	0.145	mg/m^3
0.1	ррт	=	0.290	mg/m^3
0.2	ppm	=	0.580	mg/m^3
0.3	ppm	=	0.870	mg/m ³
0.4	ppm	Ξ	1.16	mg/m^3
0.5	ppm	=	1.45	mg/m^3
1	ppm	Ξ	2.9	mg/m^3
2.5	ppm	=	7.2	mg/m ³
5	ppm	=	14.5	mg/m^3
10	ppm	=	29	mg/m ³
50	ppm	=	145	mg/m^3
100	ppm	=	290	mg/m^3

NITROGEN DIOXIDE

0.1	ppm	=	0.188	mg/m^3
0.5	ppm	=	0.94	mg/m^3
1	ppm	=	1.88	mg/m^3
2	ppm	=	3.76	mg/m^3
5	ppm	Ξ	9.4	mg/m^3
10	ppm	=	18.8	mg/m^3
25	ppm	=	47	mg/m^3
50	ppm	=	94	mg/m^3
100	ppm	=	188	mg/m^3

OZONE

		OZOI	NE.	
0.05	ppm	=	0.098	mg/m^3
0.10	ppm	=	0.196	mg/m^3
0.25	ppm	Ξ	0.490	mg/m^3
0.37	ppm	=	0.725	mg/m^3
0.50	ppm	=	0.980	mg/m^3
0.75	ppm	=	1.47	mg/m^3
1	ррт	=	1.96	mg/m^3
2.5	ppm	=	4.9	mg/m^3
5	ppm	=	9.8	mg/m^3

SULPHUR DIOXIDE

0.100	mg/m^3	=	0.034	ppm
0.250	mg/m^3	=	0.085	ppm
0.500	mg/m^3	=	0.170	ppm
0.750	mg/m^3	=	0.255	ppm
1	mg/m^3	Ξ	0.340	ppm
1.5	mg/m^3		0.510	ppm
5	mg/m^3		1.7	ppm
10	mg/m^3		3.4	ppm
50	mg/m^3	=	17	ppm
00	mg/m^3	=	34	ppm
00	mg/m^3	=	68	ppm
00	mg/m^3	=	102	ppm

NITROGEN DIOXIDE

2
 3

0.100	mg/m^3	-	0.05	ppm
0.500	mg/m^3	=	0.27	ppm
1	mg/m^3	-	0.53	ppm
5	mg/m^3		2.66	ppm
10	mg/m^3		5.32	ppm
20	mg/m^3	Ξ	10.6	ppm
50	mg/m^3	=	26.6	ppm
100	mg/m^3	Ξ	53.2	ppm
200	mg/m^3	=	106.4	ppm

OZONE

0.100	mg/m^3	=	0.051	ррт
0.250	mg/m^3	=	0.128	ppm
0.500	mg/m^3	=	0.255	ppm
0.750	mg/m ³	Ξ	0.382	ppm
1	mg/m^3	=	0.510	ppm
1.5	mg/m^3	=	0.765	ppm
2	mg/m^3	=	1.02	ppm
5	mg/m^3	=	2.55	ррт
10	mg/m^3		5.1	ррт

AIRWAYS AND URBAN AIR POLLUTION

An epidemiological study in matched pairs in the Rijnmond area

COVER DESIGN: KEES PUTMAN

© A. M. J. WEVER

RIJKSUNIVERSITEIT TE GRONINGEN

AIRWAYS AND URBAN AIR POLLUTION

An epidemiological study in matched pairs in the Rijnmond area

PROEFSCHRIFT

TER VERKRIJGING VAN HET DOCTORAAT

IN DE GENEESKUNDE

AAN DE RIJKSUNIVERSITEIT TE GRONINGEN

OP GEZAG VAN DE RECTOR MAGNIFICUS

DR. M.J. JANSSEN IN HET OPENBAAR TE VERDEDIGEN OP

WOENSDAG 2 MAART 1977

DES NAMIDDAGS TE 4 UUR

DOOR

ANTONIUS MATTHEUS JOHANNES WEVER geboren te Tilburg

PROMOTOR

PROF. DR. N.G.M. ORIE

CO-PROMOTORES

PROF, P.J. LAWTHER, MB, DSc, FRCP

DR. R. VAN DER LENDE

This investigation was supported by a grant from the Ministry of Public Health and Environment. It was carried out as project "Waterweg Noord" under the auspices of the TNO Research Unit for Epidemiology of CNSLD (Head Dr. R. Van der Lende).

To ALL who contributed with word and deed thought and feat

Advice was received from an Advisory Committee prior to and during this investigation (Members: Mrs. M.A. Baas, Prof. Dr. K. Biersteker, Dr. M.A. Bleiker, Ir. C. Huygen, Prof. Dr. E.H. Jancik, Dr. C. de Lange, Mr. G. Ragay, Dr. F. de Stoppelaar, Dr. R. Van der Lende, Mr. L. Th. Van der Weele, Dr. W. Vasbinder, and Mr. E.H.E. Wolfs).

The following official bodies had a substantial share in the different stages of this investigation (in alphabetical order):

the Local Authorities of Vlaardingen,

- the Local Health Authorities of Vlaardingen (Director E.H.E. Wolfs),
- the Lung Function Laboratory (Head Dr. R. Peset) of the Department of Pulmonary Diseases of the University Hospital, Groningen,
- the Mass Chest X-ray Service of Rotterdam (Director Dr. H. van Geuns),
- the MRC Environmental Hazards Unit (Director Prof. P.J. Lawther), the Ommoord Group Practice of general practioners (Dr. H. Lamberts),
- the Organization for Health Research TNO (President Prof. Dr.
- the "Rekencentrum der Rijksuniversiteit Groningen" (Head Dr. D.W. Smits),
- the Research Institute for Environmental Hygiene, afdeling buitenlucht (Head Ir. L.J. Brasser),
- the Royal Dutch Meteorological Institute (Director Dr. H.C. Bijvoet),
- the TNO Research Unit for Epidemiology of Chronic Non-Specific Lung Disease (Head Dr. R. Van der Lende),
- the Universities of Groningen and Leiden.

E.M. Cohen),

I am most grateful

To those who contributed in the preparation of the investigation To those who were the subjects

To those who carried out the investigation

To those who were helpful in the processing and analyzing of the data

To those who made the presentation of this thesis possible

The cooperation, enthusiasm, and interest I met so often during the investigation was highly appreciated!

CONTENTS

INTRODUCTION	1
CHAPTER I AIR POLLUTION	
	3
1. DEFINITION	
2. CRITERIA FOR AIR QUALITY	4
3. HISTORY	5
4. NATURE OF AIR POLLUTANTS	8
4.1. ACCORDING TO THE ORIGIN	8
4.2. ACCORDING TO THE PHYSICAL AND CHEMICAL	
CHARACTERISTICS	8
5. SOURCES OF AIR POLLUTION	9
5.1. MAIN SOURCES OF AIR POLLUTION	9
5.2. EMISSION SOURCES OF INDIVIDUAL AIR	
POLLUTANTS	10
6. AIR POLLUTION AND THE ATMOSPHERE	12
6.1. METEOROLOGICAL CONDITIONS AND AIR POLLUTIO	N 12
6.2. CHEMICAL AND PHYSICAL REACTIONS OF AIR	
POLLUTANTS IN THE ATMOSPHERE	13
CHAPTER II EFFECTS OF AIR POLLUTION ON THE AIRWA	YS
1. INTRODUCTION	15
2. DEFENSE MECHANISMS OF THE AIRWAYS TO INHALED	13
AIR POLLUTANTS	16
	17
2.1. INHALED GASES	
2.2. INHALED PARTICLES	17
2.2.1. aerodynamic filtration of particles	17
2 2 2 physical removal of particles	19

3.	EXPE	RIMENTAL STUDIES IN ANIMALS AND MAN ON THE	
	EFFE	CTS OF AIR POLLUTANTS ON THE AIRWAYS	20
	3.1.	INTRODUCTION	20
	3.2.	PARTICULATE MATTER	21
		3.2.1. introduction	21
		3.2.2. studies in animals	21
		3.2.3. studies in man	22
		3.2.4. summary	22
	3.3.	SULPHUR DIOXIDE	23
		3.3.1. studies in animals	23
		3.3.2. studies in man	25
		3.3.3. summary	27
	3.4.	COMBINATIONS OF SULPHUR DIOXIDE AND	
		PARTICULATE MATTER	27
		3.4.1. studies in animals	27
		3.4.2. studies in man	28
		3.4.3. summary	28
	3.5.	NITROGEN OXIDES	28
		3.5.1. introduction	28
		3.5.2. nitrogen monoxide	29
		3.5.3. nitrogen dioxide	29
		3.5.3.1. studies in animals	29
		3.5.3.2. studies in man	33
		3.5.4. summary	34
	3.6.	HYDROCARBONS	34
	3.7.	ALDEHYDES	35
	3.8.	OZONE	35
		3.8.1. studies in animals	35
		3.8.2. studies in man	40
		3.8.3. summary	42
	3.9.	CARBON MONOXIDE	42

	3.10.	. PHOTOCHEMICAL SMOG	43
		3.10.1. introduction	43
		3.10.2. studies in animals	43
		3.10.3. studies in man	44
		3.10.4. summary	44
	3.11.	. SUMMARY OF THE EXPERIMENTAL STUDIES	44
4.	EPIDE	EMIOLOGICAL STUDIES ON THE EFFECTS OF AIR	
	POLLU	UTION ON THE AIRWAYS	45
	4.1.	INTRODUCTION	45
	4.2.	STUDIES ON THE EFFECTS OF SHORT-TERM	
		EXPOSURE TO HIGH LEVELS OF URBAN	
		AIR POLLUTION	47
		4.2.1. Acute episodes of high pollution:	
		acute effects	47
		4.2.1.1. Europe	47
		4.2.1.2. United States of America	49
		4.2.2. Intermittent subacute episodes of	
		high pollution: subacute effects	50
		4.2.2.1. Europe	50
		4.2.2.2. United States of America	51
		4.2.2.3. Japan	52
		4.2.3. Summary	53
	4.3.	STUDIES ON THE EFFECTS OF LONG-TERM EXPO-	
		SURE TO URBAN AIR POLLUTION: CHRONIC	
		EFFECTS	53
		4.3.1. National comparative studies	53
		4.3.1.1. Europe	53
		4.3.1.2. United States of America	55
		4.3.1.3. Canada	56
		4.3.1.4. Japan	57
		4.3.2. International comparative studies	57
		4.3.2.1. Great Britain/Norway	57
		4.3.2.2. Great Britain/United	- 7
		States of America	57
	3 3	4.3.3. Summary	57 58
	4.4.	SUMMARY OF THE EPIDEMIOLOGICAL STUDIES	20

CHAPTER	ΙΙΙ	GENERA	L A	ASPEC	CTS	OF	THE	EPIDE	MIOL	OGICA	٩L
		STUDY	ΙN	THE	RI	JNMC	ND A	AREA			
l. INTRO	DUCT	ION									

1.	INTRODUCTION	59
2.	ASPECTS OF THE AIR POLLUTION SITUATION IN	
	THE RIJNMOND AREA	61
3.	GENERAL OUTLINE OF THIS EPIDEMIOLOGICAL	
	STUDY IN RELATION TO CHRONIC NON-SPECIFIC	
	LUNG DISEASE (CNSLD)	62
	3.1. INTRODUCTION	62
	3.2. OBJECTIVES OF THE STUDY	62
	3.3. GENERAL ASPECTS OF CNSLD	63
	3.3.1. Definition of CNSLD	63
	3.3.2. Aetiology of CNSLD	63
	3.4. DISTURBING FACTORS IN THE STUDY ON THE	
	EFFECTS OF AIR POLLUTION ON THE AIRWAYS	64
CHA	APTER IV METHODS OF INVESTIGATION	
1.	INTRODUCTION	66
2.	QUESTIONNAIRE ON RESPIRATORY SYMPTOMS	66
3.	SPIROMETRY	67
4.	POPULATION	68
	4.1. POPULATION IN VLAARDINGEN	68
	4.2. POPULATION IN OMMOORD	69
	4.3. MATCHING	72
5.	CONDUCT OF THE SURVEY	73
	5.1. DIARY TECHNIQUE	73
	5.2. HOME VISITS	74
	5.3 LUNG FUNCTION MEASUREMENTS	76
	5.4. SPUTUM COLLECTION	77
6.	AIR POLLUTION DATA	78
7.	METEOROLOGICAL DATA	81

CHAPTER V PRESENTATION OF THE DATA AND METHODS OF STATISTICAL ANALYSIS

1.	INTRODUCTION	82
2.	PRESENTATION OF THE DATA	83
	2.1. DIARIES	83
	2.2. LUNG FUNCTION MEASUREMENTS	83
	2.3. AIR POLLUTION DATA	84
	2.4. METEOROLOGICAL DATA	84
3.	METHODS OF STATISTICAL ANALYSIS	86
	3.1. INTRODUCTION	86
	3.2. THE SELECTION OF THE DAYS FOR THE	
	ANALYSIS	87
	3.3. TESTING THE INFLUENCE OF AIR POLLUTION	
	ON RESPIRATORY SYMPTOMS AND IRRITATION	
	OF THE EYES	88
	3.4. TESTING THE INFLUENCE OF AIR POLLUTION	
	ON THE PEAK FLOW	90
СН	APTER VI RESULTS	
1.	THE POPULATION	96
2.	DIARY DATA AND PEAK FLOW MEASUREMENTS	98
	2.1. RESPIRATORY SYMPTOMS	98
	2.2. IRRITATION OF THE EYES	98
	2.3. PEAK FLOW MEASUREMENTS	99
3.	SPUTUM COLLECTION	99
4.	AIR POLLUTION DATA	100
5.	METEOROLOGICAL DATA	102
6.	THE SELECTED DAYS FOR THE ANALYSIS	102
7.	RESULTS OF THE ANALYSIS	106
	7.1. INTRODUCTION	106
	7.2. SYMPTOMS	107
	7.2.1. High pollution levels	107
	7.2.2. Peak pollution levels	108
	7.3. PEAK FLOW	108
	7.4. SUMMARY	115

CHAPTE	ER VII	DISCUSSION		116
SUMMAF	RY			125
SAMEN	/ATTING			129
GENER <i>A</i>	AL LITER	ATURE ON AIR POLLUT	ION	134
REFERE	ENCES			136
APPENI	DICES			
Α.	Convers	ion tables		149
B-1.	The T.N	.O. questionnaire o	n respiratory	
	symptom	S		152
B-2.	Diagnos	tic criteria for th	e different	
	grades	of CNSLD		156
С.	Graphs	presenting the diar	y data	157
D.	Graphs	presenting the air	pollution data	165
E.	Graphs	presenting the mete	orological data	177
TABLES	S			
The ac	ctual va	lues plotted in the	graphs in the	
append	dices C,	D, and E		182
List	of abbre	viations		215

INTRODUCTION

In the autumn of 1971 a severe air pollution episode occurred in the Rijnmond area which is the most polluted area in the Netherlands because of an established large complex of petrochemical industries. This episode led to many complaints of malodour and irritation of the airways. Public opinion reacted intensely against the pollution of the environment and many official and unofficial voices were heard demanding that responsible industries should be forced to stop their production processes temporarily and that more forced control on industries should be exerted. However, before any far-reaching measures could be taken it was felt that research should be devoted to the special air pollution situation in the Rijnmond area. In order to assess and objectify the medical complaints raised the Local Authorities of Vlaardingen, which town experiences the heaviest air pollution in this area, invited the TNO Research Unit for Epidemiology of Chronic Non-Specific Lung Disease to organize an epidemiological study with financial aid from the Central Government, which invitation was kindly accepted. This present study, which took place in 1973, is a day by day follow-up study during one year by means of a diary technique in order to examine a possible association between air pollution levels and respiratory symptoms and lung function values. Changes in the severity of the manifestations of the chosen respiratory parameters can be considered mainly in relation to a hyperreactivity of the airways to exogenous non-specific stimuli (in this case air pollutants) which is one of the basic mechanisms of causing the obstructive syndrome of Chronic Non-Specific Lung Disease (CNSLD).

It was decided to take as population in Vlaardingen only women. Most of them being housewives the disturbing effects of expo-

sure to occupational air pollution are less than in men. Furthermore, women are more often non-smokers or less severe smokers than men. The disadvantage of a female population is, however, the lower prevalence rate of CNSLD in females as compared with males, and allergic factors being more pronounced than bronchial hyperreactivity in females with CNSLD.

To find out whether the respiratory reactions to air pollution differed according to degree of CNSLD the sample taken was divided into four subgroups from no CNSLD up to severe CNSLD. To eliminate as far as possible the concomitant effects of meteorological conditions a female control population was chosen in a relatively low polluted district of Rotterdam only 15 kilometers away from Vlaardingen. Matched pairs were formed with regard to age, smoking habit, and degree of CNSLD.

The following possible disturbing factors could not be accounted for satisfactorily in this epidemiological study:

Exposure to indoor air pollution which varies according to type of housing and smoking habits of the residents (Biersteker et al., 1965);

Exposure to biological air pollution which is very difficult to measure qualitatively and quantitatively;

Intercurrent viral respiratory infections which are difficult to objectify in a large scale diary study;

A possible *self-selection* for medical reasons of the population living at present in the Rijnmond area.

With this epidemiological study, however, it is hoped to supply useful information on the medical aspects of the air pollution situation in the Rijnmond area and to contribute a piece of a stepping stone.

CHAPTER I

AIR POLLUTION

1. DEFINITION.

According to a WHO Expert Committee on Environmental Sanitation (WHO, 1958) air pollution can be defined as follows: "Air pollution is limited to the situations in which the outdoor ambient atmosphere contains material in concentrations which are harmful to man or to his environment". In this definition, however, only outdoor ambient atmosphere is considered as being of importance, but later it has been shown that the indoor ambient atmosphere is also of importance in air pollution problems (Biersteker et al., 1965; Lefcoe and Inculet, 1971, 1975). A broad definition of air pollutants has been given by Chambers: "Those substances added in sufficient concentrations to the air to produce a measurable effect on man or other animals, on vegetation or on material. These substances may therefore include almost any natural or artificial composition of matter capable of being airborne" (Chambers, 1968). In this sense two discrete types of air pollution can be distinguished:

- 1. Chemical air pollution which is made up of inorganic and organic material, and occurs mainly as a result of industrialization and urbanization. Therefore the term "urban air pollution" will be used in this thesis. However, also natural phenomena such as vulcanic eruptions, sandstorms, and forest fires can cause chemical air pollution.
- 2. Biological air pollution which is formed by organic material such as house dust mites, pollen, fungi, actinomycete spores, animal proteins, and viruses. As the biological air pollution is beyond the scope of this thesis it will not be dealt with any further.

2. CRITERIA FOR AIR QUALITY.

Attempts have been made to set out criteria for air quality in order to determine which levels of air pollution may be accepted or to what extent levels of air pollution should be reduced in order to prevent any adverse effect on health.

In 1963 a WHO Inter-regional Symposium on "Criteria for Air Quality and Methods of Measurement" set out such criteria for air quality to be presented as four "Levels" of concentrations, exposure times, and corresponding effects (WHO, 1964). These "Levels" are defined as follows:

- Level I: Concentrations and exposure times at or below which, according to the present knowledge, neither direct nor indirect effects (including alteration of reflexes or of adaptive or protective reactions) have been observed.
- Level II: Concentrations and exposure times at and above which there is likely to be irritation of the sensory organs, harmful effects on vegetation, visibility reduction, or other adverse effects on the environment.
- Level III: Concentrations and exposure times at and above which there is likely to be impairment of vital physiological functions or changes that may lead to chronic diseases or shortening of life.
- Level IV: Concentrations and exposure times at and above which there is likely to be acute illness or death in susceptible groups of the population.

In the United States of America the 1967 Amendments to the Clean Air Act required "the development of such criteria of air quality as may be requisite for the protection of the public health and welfare. Such criteria shall reflect the latest scientific knowledge useful in indicating the kind and extent of all identifiable effects on health and welfare which may be expected from the presence of an air pollution agent".

Under this Act "Air Quality Criteria" have been issued by the U.S. Department of Health, Education and Welfare for: particulate matter, sulphur oxides, nitrogen oxides, carbon monoxide, hydrocarbons, and photochemical oxidants.

For industrial purposes Threshold Limit Values (TLV) -or Maximum Allowable Concentrations (MAC) - have been established, which indicate an "approximate empirical level of concentration of a potentially hazardous airborne aerosol which will cause no lung disease -or very little- in workers exposed to it over a period of a working life" (Parkes, 1974). These threshold limit values refer to time-weighted concentrations during a 7 or 8 hour working day and a 40 hour working week. However, one must not extrapolate TLV's to ambient air. The TLV's should be divided by a safety factor, a "guesstimate", in order to arrive to ambient air quality standards or Maximum Immissable Concentrations (MIC). A few examples of TLV's and derived MIC values are given in table 1.1.

3. HISTORY.

Smoke was the first pollutant attention was drawn to in publications when in the $13^{\rm th}$ century coal was introduced for heating as a substitute for wood fuel. In its early introduction the use of coal was prohibited in London by an Act which was passed by Parliament in 1273. In the $16^{\rm th}$ century this law had apparently been relaxed and the use of coal became more widely used.

By 1600 sulphur was the second pollutant identified in the burning process of coal and it was thought to cause irritation of the throat and nose.

In the late 19th and early 20th century the rising chemical and metallurgic industries contributed to a large extent to the increase of sulphur dioxide and other pollutants (e.g. nitrogen dioxide, hydrogen sulphide, fluorides, and heavy metals) in the atmosphere.

In 1863 the first "Alkali Act" was established in Great

Table 1.1. Examples of TLV's and derived MIC's for some air pollutants.

	${ t TLV}$	MIC^{1}
	in mg/m^3	in μg/m ³
aldehydes:		
acetaldehyde	180	1800
acrolein	0.25	1.25
formaldehyde	3	15
carbon black	3.5	17.5
hydrocarbons:		
benzene	30	150
styrene	420	4200
xylene	0.1	0.5
nitrogen monoxide	30	300
nitrogen dioxide	9	45
ozone	0.2	1
sulphur dioxide	13	65

 $^{^{1)}}$ Maximum Immissable Concentrations given as maximum yearly averages.

(Source: Nota Milieunormen deel 1+2, Gedeputeerde Staten van de provincie Groningen).

Britain, and it required that "specific trade processes giving off noxious and offensive gases may not be used or operated unless the owner has obtained a certificate of Registration and renewed it annually. Even then the best practical means must be used so as to prevent pollution". This first Alkali Act covered about 80 works and this number was raised gradually to 2200 with about 3500 separate processes in 1962.

After the Second World War new sources of pollution appeared when motor traffic in conurbations increased gradually especially causing the release of nitrogen oxides and hydrocarbons, which gave rise to a particular type of smog called "photochemical smog", first described in Los Angeles in 1943. This photochemical smog occurs only under certain conditions (see section 5.2.7.).

Although much work and much concern was devoted to the air pollution problem it took several acute air pollution disasters (the Meuse Valley in 1930, Donora in 1948, London in 1952) to accelerate both the research on the effects of air pollution and the efforts in its control. One of the early results that emerged from all these efforts was the "Clean Air Act" passed in Great Britain in 1956.

The main objectives of the Clean Air Act were:

- The prohibition of "dark smoke" from any chimney subject to certain concessions.
- The control of new furnace installations by compulsory notification to the Local Authority with a system of "prior approval" where appropriate.
- The control of the heights of all new chimneys.
- The restriction of the emission of grit and dust.
- The empowering of Local Authorities to make smoke control areas.

Since the Clean Air Act became effective air pollution in the major cities of Great Britain has decreased considerably and no major smog episodes have occurred.

In the United States of America air pollution control was authorized mainly at State level, but in 1967 a federal "Clean Air Act" for all the States was enforced.

In the Netherlands two Acts deal with air pollution control, namely:

- 1. Hinderwet (Nuisance Act) of 1952. Under this Act conditions can be made to industries by the Local Authorities to prevent danger, damage or nuisance of the environment.
- 2. Wet inzake de Luchtverontreiniging (Air pollution Act) of 1970. Under this Act measures can be taken to restrain the pollution of the air. For example licences are required for industries which produce air pollution (to be granted by the Provincial Administration), and maximum immissable concentrations can be set by the Central Government.

In spite of all the efforts - both by Governments and Industries - in reducing the concentrations of pollutants in the atmosphere urban air pollution still remains a problem as industrialization expands and motor traffic continues to increase. Although the measures taken nowadays may be sufficient to prevent acute episodes of high pollution one should also take into consideration the possible effects of long-term exposure to ordinary levels of urban air pollution which may become manifest only after many years.

4. NATURE OF AIR POLLUTANTS.

4.1. ACCORDING TO THE ORIGIN.

The air pollutants can be divided according to their origin into two main groups:

- "Primary pollutants": Substances emitted from identifiable sources, such as: particles, and compounds of carbon, sulphur, nitrogen, and organic material.
- 2. "Secondary pollutants": Substances produced in the air by interaction among two or more primary pollutants, or by reaction with normal atmospheric constituents, such as: acid mists, sulphuric acid in droplets, and substances formed by photochemical reactions.
- 4.2. ACCORDING TO THE PHYSICAL AND CHEMICAL CHARACTERISTICS.

A classification of air pollutants according to their physical and chemical characteristics is as follows (Katz, 1961):

- 1. Particulates or particulate matter:
 - They make up 10% of all air pollutants. The following distinctions can be made:
 - a. Solid particles: usually irregular in shape; they exist either individually or as aggregations.
 - b. Liquid particles (or droplets): usually spherical in shape.

Often the term <code>aerosol</code> is used which refers to a solid or liquid particle of about 0.01-10 μ in diameter, dispersed in a gaseous medium (e.g. sulphur trioxide aerosol, sulphuric acid aerosol). Particular types of aerosols are: smoke, fog, dust, haze, mist, and vapours.

The particulates can also be classified according to the measurement technique used:

- a. Deposited particulate matter or dustfall: particles greater than 10 μ in diameter and not respirable. This gives a valuable indication of the amount of fly ash and dust deposited.
- b. Suspended particulate matter: particles of 0.1-10 μ in diameter, usually suspended as an aerosol. The measurement of suspended particulate matter is a most valuable indicator of clinical relevant particulate matter.

2. Gases:

They make up 90% of all air pollutants. The most important gases are: sulphur dioxide, oxides of nitrogen, aldehydes, carbon monoxide, hydrocarbons, and photochemical oxidants.

- 5. SOURCES OF AIR POLLUTION.
- 5.1. MAIN SOURCES OF AIR POLLUTION.

The main sources of air pollution are the domestic heating (specially in former days), the industries, and the traffic. The "Beaver Committee" in their report (Committee on Air Pol-

lution, 1953) decided "to concentrate in the first place on air pollution arising from the combustion of fuels, as being the main cause of "smog" of the kind which did so much damage in London in December 1952 and which is recurring evil in many large towns". In this report they pointed out that domestic smoke, being discharged at low level and at low temperature, has the greatest effect on forming smog.

As the burning of coal for domestic heating has diminished considerably with the introduction of oil and natural gas, the main sources of air pollution now come from the industries and the traffic in densily populated western communities.

5.2. EMISSION SOURCES OF INDIVIDUAL AIR POLLUTANTS.

1. Particulate matter:

The particles greater than 10 μ originate from burning coal or incineration processes which are poorly controlled. The particles less than 10 μ originate from burning oil, petrol, and diesel. Metallurgical processes in industries often cause these smaller particles. The particles may contain metallic elements (e.g. lead, iron, tin, asbestos) and non-metallic elements (e.g. carbon, sulphur).

2. Sulphur dioxide:

Sulphur dioxide (SO_2) originates from combustion processes of fuels containing sulphur, such as burning of coal and oil, and smelting of ores.

3. Nitrogen oxides:

Nitrogen monoxide or nitric oxide (NO) and nitrogen dioxide (NO $_2$) are the most important oxides of nitrogen as regards air pollutants. They emanate from all fuel combustion processes that take place at very high temperature (i.e. more than 2000° F, that is 1093° C). About one third of nitrogen oxides in the air is produced by motor vehicles. Most of the nitrogen oxides produced is in the form of NO which is subsequently oxidized in the atmosphere to NO $_2$. When NO levels are low (about 1 ppm or 1.2 mg/m 3) this oxidation process is slow, but it is accelerated enormously by photochemical

processes. Although man-made nitrogen oxides are greatly exceeded by natural occurring nitrogen oxides formed by bacterial processes, the man-made emissions of nitrogen oxides are all concentrated in urban areas.

4. Hydrocarbons:

These pollutants are produced primarily by motor vehicles by incomplete combustion of petrol.

Many of the hydrocarbons may enter into photochemical reaction processes yielding oxidants and reducing agents. The hydrocarbons do not react primarily with sunlight but with oxygen atoms, excited oxygen, and with ozone.

Hydrocarbons are compounds whose molecules consist of atoms of hydrogen and carbon only, and the following groups can be distinguished:

- a. Aliphatic or acyclic hydrocarbons: carbon atoms arranged in chains only, such as methane $(\mathrm{CH_4})$. The paraffin, olephin, and acetylene hydrocarbons are classified in this group.
- b. Alicyclic hydrocarbons: carbon atoms arranged in rings other than benzene rings, such as cyclohexane.
- c. Aromatic hydrocarbons: carbon atoms arranged in benzene rings (six-membered carbon ring), such as benzene, styrene, and xylene.

5. Aldehydes:

In the photochemical oxidation of hydrocarbons and in the individual reactions of hydrocarbons with ozone and oxygen atoms aldehydes are formed which are in fact oxygenated hydrocarbon derivatives.

The main aldehydes are: formaldehyde (CH $_2$ O), acrolein (CH $_2$ = CHCHO), acetaldehyde (CH $_2$ CHO).

In their turn the aldehydes also play a part in photochemical processes.

6. Carbon monoxide:

The principal source of carbon monoxide (CO) is the petrol engine which produces two third of all CO emissions. Other sources are all other incomplete combustions of carbonaceous

fuels, cigarette smoke (mainstream smoke contains up to 4% CO), and poorly flued domestic heating.

7. Photochemical oxidants:

A composition of secondary pollutants formed by photo-oxidation of hydrocarbons in the presence of nitrogen dioxide and aldehydes. This photo-oxidation process takes place under the influence of ultra-violet rays and gives rise to the formation of ozone and other oxidants such as peroxyacetyl-nitrate (PAN). The term "oxidants" is used because these products will oxidize certain reagents not readily oxidized by oxygen.

The formation of "photochemical smog" was first noticed in Los Angeles where the dense traffic, the situation of the city, and the meteorological conditions which often prevail in that area favour the formation of this particular type of smog.

Special conditions which are required in the photochemical smog formation are: high levels of nitrogen oxides and hydrocarbons, low wind speed, temperature inversion, and sufficient sunlight.

6. AIR POLLUTION AND THE ATMOSPHERE.

6.1. METEOROLOGICAL CONDITIONS AND AIR POLLUTION.

The levels of air pollution that will eventually be reached in ambient air depend not only on emissions from sources, but also for a great deal on the atmospheric conditions present. In fact, the atmosphere plays an important part in cleansing the air from the air pollutants (Neiburger, 1967). The two most important factors in this cleansing mechanism are:

- 1. Wind velocity: the wind is a transport factor of the air pollutants. The stronger its velocity, the more turbulent fluctuations will occur -both horizontally and vertically-which results in a dispersion of the pollutants.
- 2. Vertical temperature gradient: with increasing altitude the temperature declines and this gives rise to vertical con-

vection currents resulting in a vertical diffusion of the pollutants.

In a situation when cold air is near the ground and warm air is aloft, there will be no vertical air movements and the pollutants will not be diffused vertically. This situation is usually referred to as "inversion".

At high latitude inversions occur mainly when an anticyclone is present (winds being light or absent), particularly during colder parts of the year. In an anticyclone the air sinks and gets warmer by compression, and air near the ground cools by radiative heat loss especially at clear sky.

At low latitude inversions occur mainly in summer when a semi-permanent anticyclone is present over the oceans with air descending on its eastern side, so that the western continental coastal regions are mainly affected by inversions (e.g. Los Angeles, San Francisco).

After being diffused into the atmosphere the pollutants are removed from it by the following mechanisms (Wexler, 1961): Gravitational settling (mainly large particles); Impaction on surfaces on the earth (particles); Precipitation after being accumulated in raindrops (particles, gases);

6.2. CHEMICAL AND PHYSICAL REACTIONS OF AIR POLLUTANTS IN THE ATMOSPHERE.

Absorption in the oceans, seas, and lakes (gases).

This problem has been studied for many years and still not everything yet is known about the innumerable processes which take place in the atmosphere, not only between air pollutants and the ambient air but also between the air pollutants themselves.

Some examples of known reactions in the atmosphere are:

a. $\mathrm{SO}_2\colon$ During incineration processes this gas is partly oxidized to $\mathrm{SO}_3\colon$

$$2 SO_2 + O_2 \rightarrow 2 SO_3$$

when emitted this compound is converted to sulphuric acid:

$$SO_3 + H_2O \rightarrow H_2SO_4$$
.

The sulphuric acid in aerosol form gives rise to bluish

coloured smoke.

In the atmosphere the remainder of the ${\rm SO}_2$ is slowly oxidized to sulphuric acid or sulphates.

- b. NO: By various processes this gas is oxidized to $\mbox{NO}_2,$ sometimes slowly, sometimes more rapidly.
- c. NO_2 : This brownish gas is gradually converted to nitric acid (HNO_3) :

 $4 \text{ NO}_2 + \text{ O}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ HNO}_3$.

Nitric acid will eventually be removed from the atmosphere in rain droplets.

Also, NO_2 is dissociated into NO and atomic oxygen under the influence of ultra-violet rays.

d. Hydrocarbons: The main reaction of these pollutants is photo-oxidation yielding aldehydes and peroxycompounds.

CHAPTER II

FFFFCTS OF AIR POLLUTION ON THE AIRWAYS

1. INTRODUCTION.

To evaluate the effects of air pollution on the airways two main types of investigation can be distinguished: experimental (laboratory) studies on the pathological and physiological effects of air pollutants in animals and man, and epidemiological studies on the effects of air pollution in populations.

Experimental studies have been carried out to investigate the effects of individual air pollutants as well as combinations of air pollutants when inhaled by animals and man. Though animal studies may provide us with basic information on effects of air pollutants on airways, one should be very cautious in applying the results to human beings because of the anatomical and physiological differences between animals and man. Furthermore, in these animals such concentrations of pollutants were frequently used in combination with such exposure times as are likely never to be experienced by human beings in the ambient urban atmosphere.

Therefore, to get better and more useful information on possible effects of air pollutants on the human airways, exposures in man are much more important. However, ethical considerations have put a limitation to the actual studies carried out and most of the human data available are a result of experiments in volunteers.

The review of the animal studies will be restricted to more general conclusions because of the different exposure times, the different concentrations of pollutants, and also the dif-

ferent species of animals used such as mice, rats, guinea pigs, rabbits, dogs.

The experimental studies will be reviewed according to the type of air pollutant.

Epidemiological studies on the effects of air pollution have been carried out in populations in several parts of the world and have provided most useful information on the possible effects of air pollution on the airways, and the possible relationship between air pollution and respiratory disease. However, when comparing different epidemiological studies, it must be borne in mind that there are international differences in populations, in pollution composition, in length of exposure, and in level of exposure, while the composition of urban air pollution is so complex that it is almost impossible to denominate a specific air pollutant as being the cause of the effects found.

The epidemiological studies will be reviewed according to the type of air pollution exposure, i.e.: short-term exposure to high levels of urban air pollution, and long-term exposure to a general level of urban air pollution.

The review of the literature on experimental and epidemiological studies on effects of air pollution on the airways will be restricted to studies which can serve as background information to the present study. For further details and other studies the reader is referred to the General Literature on Air Pollution.

All concentrations will be expressed in $\mu g/m^3$ or mg/m^3 (1 mg = 1000 μg).

Conversion tables from mg/m^3 to ppm and from ppm to mg/m^3 are given in Appendix A for sulphur dioxide, nitrogen dioxide, and ozone.

2. DEFENSE MECHANISMS OF THE AIRWAYS TO INHALED AIR POLLUTANTS.

This subject has been reviewed by Green (1970) who considered the defense mechanisms of the airways as forming a protective

umbrella against a hostile environment while every man may be characterized by his own individual umbrella.

The defense mechanisms to inhaled gases and particles will be discussed successively.

2.1. INHALED GASES.

The defense possibilities of the airways to inhaled gases are small and consist of either absorption of the gas on the moist surface of the upper respiratory tract, or a detoxification process. The latter can take place either by chemical combination with pre-existing lung substance, or by an antagonist or inhibitor.

2.2. INHALED PARTICLES.

The defense possibilities of the airways to inhaled particles are more extensive and adequate than those to gases and they consist of either an aerodynamic filtration or a physical removal of the particles.

2.2.1. AERODYNAMIC FILTRATION OF PARTICLES.

Many particles even as small as 1 μ are deposited in the nose during normal breathing (Proctor et al., 1969) which demonstrates that nose-breathing is a very efficient mechanism for filtering particles.

In general the deposition of particles in the airways depends on the sedimentation, impaction, and diffusion of the individual particles which are functions of their aerodynamic diameters $^{1)}$ (Muir, 1972), while the amount of particles inhaled is proportional to the minute ventilation (Muir and Davies, 1967). Particles greater than 10 μ are mainly deposited in the nasopharynx, particles of 2-10 μ are mainly deposited in the tra-

¹⁾ The aerodynamic diameter (or size) of a particle expressed in microns (μ) is equivalent to the diameter of a sphere of Unit Density (1 g/ml) which falls in air with the same terminal setting velocity as the particle.

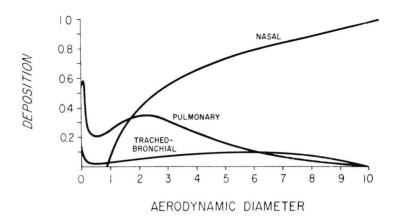


Fig. 2.1. Deposition as a function of particle size for 15 respirations/min, 750 cm³ tidal volume. (Reproduced from Health Physics, vol. 12, page 179, 1966, by permission of the Health Physics Society)

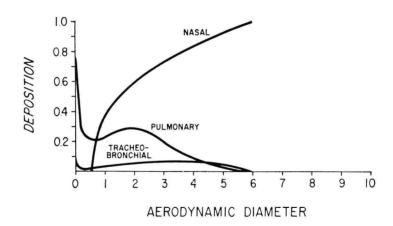


Fig. 2.2. Deposition as a function of particle size for 15 respirations/min, 2150 cm³ tidal volume. (Reproduced from Health Physics, vol. 12, page 179, 1966, by permission of the Health Physics Society)

cheobronchial tree, and particles of 0.5-2 μ and less than 0.25 μ are mainly deposited in the terminal airways. Particles of 0.25-0.5 μ are mainly exhaled and their probability of being deposited is about 25%.

Two examples of theoretical calculations of the regional deposition of inhaled particles made by the Task Group on Lung Dynamics (1966) are shown in the figures 2.1. and 2.2.

2.2.2. PHYSICAL REMOVAL OF PARTICLES.

The physical removal is by mechanical clearance and by detoxification processes.

The mechanical clearance of particles from the airways is believed to consist of two phases: a rapid phase, representing the removal of particles from the ciliated regions by means of the mucociliary transport mechanism, and a slow phase, representing the removal of particles from non-ciliated regions, i.e. the terminal bronchioles and alveoli (Albert et al., 1967; Morrow et al., 1967).

In the rapid phase a half life 1) of particles from about 19 minutes up to 4 hours in normal subjects has been observed (Albert and Arnett, 1955; Toigo et al., 1963; Albert et al., 1967; Morrow et al., 1967; Luchsinger et al., 1968; Thomson and Short, 1969; Pavia et al., 1970; Thomson and Pavia, 1973). The differences in the half life of particles found is likely to be due to the differences in nature and size of the particles used. The mucociliary transport mechanism is thought to be affected in patients with obstructive pulmonary disease and Toigo et al. (1963) found slower clearance rates in patients with chronic lung disease (half life more than 4 hours). However, Luchsinger et al. (1968) and Thomson and Short (1969) could not confirm this and later Thomson and Pavia (1974) found even faster clearance rates in patients with chronic bronchitis compared with a group of normal subjects which may be due to impairment of deep penetration of particles into the lungs of bronchitics.

¹⁾ Half life: 50% of the particles cleared.

Another factor that may act upon the mucociliary transport mechanism is the smoking of cigarettes. The effect of smoking a few cigarettes seems to be a stimulation of the clearance rate (Albert et al., 1975). Also, a slowing of the mucociliary clearance rate was observed in smokers when they abstain from smoking (Camner and Philipson, 1972; Albert et al., 1973) and resuming smoking after abstaining caused an increase in clearance rate (Albert et al., 1975). As a chronic effect of smoking cigarettes a general decrease in the clearance rate has been reported by Albert et al. (1969), Lourenço et al. (1971), and Bohning et al. (1975), while Luchsinger et al. (1968) and Thomson and Pavia (1973) found no differences in the clearance rate between smokers and non-smokers.

The mechanical clearance of particles from the non-ciliated regions - the $slow\ phase$ - is believed to take place after phagocytosis by alveolar macrophages at three different levels:

- an alveolar fluid flow (half life of particles about 24 hours);
- an interstitial fluid flow (half life of particles about 100 hours);
- a perivascular clearance of particles by cell breakdown (half life of particles about 60 to 100 days).

The in situ *detoxification* of particles may take place by the following mechanisms: phagocytosis, non-phagocytic processes¹⁾, immunological processes, and the formation of granulomata (Green, 1970).

3. EXPERIMENTAL STUDIES IN ANIMALS AND MAN ON THE EFFECTS OF AIR POLLUTANTS ON THE AIRWAYS.

3.1. INTRODUCTION.

Studies on the following air pollutants will be reviewed: particulate matter, sulphur dioxide, nitrogen oxides, hydrocarbons, aldehydes, ozone, carbon monoxide, and photochemical oxidants.

¹⁾ Wetting of particles, action of surface enzymes and interferon.

As a reference to the possible concentrations of some air pollutants in the ambient atmosphere the reader is referred to table 6.4.,p. 101.

3.2. PARTICULATE MATTER: carbon particles and smoke.

3.2.1. INTRODUCTION.

In general particulate matter may be effective in the following ways (Air Ouality Criteria for Particulate Matter, 1969):

- the particle may interfere with the clearance of other inhaled toxic materials;
- the particle may act as a carrier of an adsorbed toxic substance, and hence produce a potentiating effect or occasionally reduce the toxicity of a second pollutant;
- the particle may give rise to a pathological or physiological response;
- the particle may be intrinsically toxic, due to its inherent chemical and/or physical characteristics, for example beryllium and asbestos leading to Berylliosis respectively Asbestosis, and sulphuric acid aerosols.

Studies on the effects of the intrinsically toxic particles will be excluded from the review.

3.2.2. STUDIES IN ANIMALS.

Pathological effects.

In exposures for short periods (up to about 3 days) pulmonary oedema and blocking of the airways were observed when animals were exposed to high concentrations of smoke (over 700 mg/m³) (Pattle et al., 1959). Lower concentrations of smoke showed no toxic effects and after three months only phagocytosis and clearance from the lung were seen (Pattle and Burgess, 1957; Salem and Cullumbine, 1961).

In exposures for prolonged periods Schnurer and Haythorn (1937) found fibrous reactions around carbon particles (smoke concentrations of 4410 particles/ m^3). However, Nau et al. (1962) could not demonstrate any toxic effects using concentrations of 1.6-2.4 mg/m^3 , and Vintinner and Baetjer (1951) observed

no increase in susceptibility to infections.

Physiological effects.

An increase in flow resistance¹⁾ was observed in several experiments in which aerosols were used (Amdur, 1958; Amdur and Corn, 1963; Amdur and Underhill, 1968). The effects were dependent on the particle size, the aerosol concentration, and on the number of particles (Amdur and Corn, 1963). The increase in resistance after inhalation of particulate matter is thought to be a vagal reflex bronchoconstriction via lung irritant receptors with vagal afferent fibres (Widdicombe et al., 1962).

3.2.3. STUDIES IN MAN.

Dubois and Dautrebande (1958) found an increase in airway resistance in healthy persons after inhalation of dust particles, with no effect on the total lung capacity and the vital capacity; however, in patients with pulmonary disease a decrease in vital capacity was observed. An increase in airway resistance was also observed by Mc Dermott (1962) when coal dust clouds were inhaled in concentrations of 19 mg/m 3 or more for 4 hours, lower concentrations showed no effects on the airway resistance.

This increase in airway resistance in man reflects a bronchoconstriction presumably due to a reflex (Widdicombe et al., 1962; Simonsson et al., 1967).

3.2.4. SUMMARY.

Both in animal and human experiments an increase in lung resistance $^{3)}$ was found which is thought to be due to a reflex bronchoconstriction via parasympathetic pathways. The effects

¹⁾ Flow resistance: total lung resistance, measured by means of the pressure flow method.

²⁾ Airway resistance: total lung resistance minus tissue resistance, measured by means of a body-plethysmograph.

^{3) (}Total) lung resistance: airway resistance plus tissue resistance.

were dependent on the concentration, the size, and the number of particles. As the response in man showed a great variation there may exist an individual sensitivity to inhaled particulate matter.

- 3.3. SULPHUR DIOXIDE (SO_2) .
- 3.3.1. STUDIES IN ANIMALS.

Pathological effects.

When animals were exposed to such concentrations of SO_2 (ranging from about 1700-14.000 mg/m³) that death occurred the main pathological changes seen were occlusion of bronchioles and venous congestion in animals with a short survival, and pulmonary oedema in animals with a long survival (Leong et al., 1961).

Changes in the mucosa of the trachea and bronchi with increasing number of mucus secreting cells and thickening of the mucus blanket were observed by Dalhamn and Rhodin (1956) and by Reid (1963) in long-term exposures to $\rm SO_2$ (concentrations ranging from about 30-1160 mg/m³). From later experiments Dalhamn (1961) reported reversible cessation of ciliary beat.

Physiological effects.

Several observers reported an increase in flow resistance of the lungs, using concentrations of $\rm SO_2$ ranging from 460 $\rm \mu g/m^3$ to 2400 mg/m³ (Amdur, 1957; Salem and Aviado, 1961; Amdur, 1966). An increase in nasal resistance was observed by Frank and Speizer (1965), using concentrations of 20-660 mg/m³. The increase in resistance after exposure to $\rm SO_2$ is thought to be caused by a reflex bronchoconstriction via parasympathetic pathways in both upper and lower respiratory tract. Strandberg (1964) found that the absorption of $\rm SO_2$ by the nasal mucosa was less efficient at low than at high concentrations of $\rm SO_2$, and Amdur (1966) obtained a straight line dose-response relationship when the absorption data obtained by Strandberg were applied, relating the increase in pulmonary flow resistance to the concentration of $\rm SO_2$. The data obtained by Strand-

 $^{\sim}$ Table 2.1. Summary of experimental studies in animals exposed to sulphur dioxide.

SPECIES	CONCENTRATION		LENGTH OF	EFFECT	REFERENCE
	mg/m^3	ppm	EXPOSURE		
				PATHOLOGICAL EFFECTS	
rats	29	10	6 hours/day for 10 weeks	reduced mucus flow; amount of secretion greatly increased; morphological changes in epithelium of trachea	Dalhamn and Rhodin, 1956
rabbits	870	300		cessation of ciliary beat within 45 min.	Dalhamn, 196
mice, rats, guinea pigs	1700-14000	600-5000	until death occurred (up to 4 hours)	occlusion of bronchioles and venous congestion; pulmonary oedema	Leong et al. 1961
rats	870-1160	300-400	more than 3 months	increase in number of mucus-secreting cells; thickening of mucus blanket; excessive mucus in bronchial lumen	Reid, 1963
				PHYSIOLOGICAL EFFECTS	
guinea pigs	up to 720	up to 250	1 hour	increase in pulmonary flow resistance	Amdur, 1957
dogs	580-2450	200-850	1-4 minutes	bronchoconstriction	Salem and Aviado, 1961
dogs	20-665	7-230	15 minutes	increase in nasal resistance	Frank and Speizer, 196
guinea pigs	0.460-2420	0.16-835	1 hour	increase in resistance; dose-response curve	Amdur, 1966

berg (1964) and Frank et al. (1967) show that at high concentrations SO_2 is absorbed for 90% or more by the nasal mucosa. A summary of the experimental studies is given in table 2.1. 3.3.2. STUDIES IN MAN.

After inhalation of SO₂ an increase in respiratory frequency was found by Amdur et al. (1953) using concentrations of 3-23 mg/m³, which could not be confirmed by Lawther (1955). An increase in lung resistance -either measured as pulmonary flow resistance or as airway resistance- was observed at concentrations ranging from about $3-87 \text{ mg/m}^3$ of SO_2 in exposures of short duration (Frank et al., 1962; Speizer and Frank, 1966). These experiments showed an individual sensitivity to SO2, and the increase in resistance seems to be related to the concentration of SO2 used and not so much to the duration of exposure. When SO₂ was administered by the nose the increase in lung resistance was less than when administered by the mouth (Speizer and Frank, 1966) which observation was thought to be due to a greater absorption of the SO2 by the nasal mucosa (Frank and Speizer, 1964; Speizer and Frank, 1966). This latter phenomenon was also observed in animal studies.

Lawther and Waller (1973) showed that in quiet breathing SO_2 is largely absorbed in the upper respiratory tract and that deep breathing is necessary to elicit effects (i.e. an increase in airway resistance). Their experiments in man showed that there is a wide range of individual sensitivity to SO_2 . Andersen et al. (1974) found a decrease in $\mathrm{FEV}_{1.0}$ at concentrations of SO_2 as low as 2.9 mg/m³ and suggested an existence of a nasobronchial reflex.

Gökemeijer et al. (1973) found marked bronchoconstriction in patients with CNSLD after inhalation of 29 mg/m 3 of SO $_2$ for three minutes which effect could largely be blocked by a beta-2 receptor stimulating drug. Later Gökemeijer (1976) reported a dose-response relation using concentrations of 14.5, 29, and 43.5 mg/m 3 of SO $_2$ in patients with CNSLD, while at these concentrations subjects without any signs of CNSLD showed no bron-

Table 2.2. Summary of experimental studies in man exposed to sulphur dioxide.

CONCE	NTRATION	LENGTH OF	EFFECT	REFERENCE
mg/m^3	ppm	EXPOSURE		
2.9-23	1-8	10 minutes	shallower and more rapid respiration	Amdur, 1953
2.9, 14.5, and 37	1, 5, and 13	10-30 minutes	increase in airway resistance at 2.9 $\rm{mg/m}^3$ in 1 subject, at 14.5 $\rm{mg/m}^3$ in 9 subjects, at 37 $\rm{mg/m}^3$ in all 11 subjects	Frank et al., 1962
43.5 and 81	15 and 28	10 minutes	increase in pulmonary flow resistance	Speizer and Frank, 1966
29	10	3 minutes	increase in viscous work of breathing in patients with CNSLD	Gökemeijer et al., 1973
2.9	1	25 deep breaths	3 out of 12 subjects showed significant increase in airway resistance	Lawther and Waller 1973
14.5, 29, 43.5, 58, and 87	5, 10, 15, 20, and 30	10 minutes	sulphur dioxide largely absorbed in the upper respiratory tract	Lawther and Waller 1973
2.9, 14.5, and 72.5	1, 5, and 25	6 hours	decrease in FEV $_{\mbox{\scriptsize 1.0}}$ and increase in nasal airflow resistance	Andersen et al., 1974
14.5, 29, and 43.5	5, 10, and 15	3 minutes	decrease in $^{\text{FEV}}_{\text{1.0}}$ in patients with CNSLD	Gökemeijer, 1976

choconstriction.

However, no effects were reported by Burton et al. (1969) after inhalation of about 3-9 $\rm mg/m^3$ of $\rm SO_2$ for thirty minutes, and by Gökemeijer (1976) after inhalation of $\rm SO_2$ of less than 7 $\rm mg/m^3$ for three minutes.

A summary of the experimental studies is given in table 2.2.

3.3.3. SUMMARY.

In animal studies pathological changes were observed, the duration of exposure and the concentration of ${\rm SO}_2$ - which was in general very high - playing an important part.

As a physiological effect an increase in lung resistance in animals and in man was observed, which is believed to be caused by a bronchoconstriction due to a reflex (Nadel et al., 1965; Simonsson et al., 1967). Gökemeijer et al. (1973) observed in patients with CNSLD effects indicating an interaction of $\rm SO_2$ with either alpha- or beta-receptor enzyme systems. The physiological effects seem to be related to the concentration of $\rm SO_2$ used, and besides there are strong indications of an individual sensitivity to $\rm SO_2$.

3.4. COMBINATIONS OF SULPHUR DIOXIDE AND PARTICULATE MATTER.

3.4.1. STUDIES IN ANIMALS.

Pathological effects.

An increased mortality in mice and guinea pigs was found by Pattle and Burgess (1957) when SO_2 was administered in combination with particulate matter. Salem and Cullumbine (1961) found a variable effect of smoke on the toxicity of SO_2 depending on the animal species used. Gross et al. (1967) found cellular thickening of the alveolar wall, which was not observed when smoke alone was administered.

No increased susceptibility to pulmonary infections could be demonstrated when using a combination of particulate matter and SO_2 (Vintinner and Baetjer, 1951).

Physiological effects.

In the experiments in guinea pigs by Amdur (1957; 1963; 1968)

it was demonstrated that some aerosols could potentiate the effect of SO₂ as measured by pulmonary flow resistance. The particle size (the smaller particles possibly have a greater synergistic effect than the bigger particles because of a deeper penetration into the lungs), the particle concentration, the sulphur dioxide concentration, and the humidity of the respiratory tract (McJilton et al., 1973) were found to be important factors.

The aerosols that seem to have a potentiating effect on sulphur dioxide are those aerosols of soluable salts which dissolve SO_2 and also possibly catalyze the oxidation of sulphur dioxide to sulphuric acid which is more irritant to the respiratory tract than SO_2 (Amdur, 1958; Amdur, 1968). However, Corn et al. (1972) could not confirm Amdur's findings in cats using sodium chloride aerosols.

3.4.2. STUDIES IN MAN.

Snell and Luchsinger (1969) reported a slight potentiating effect of a distilled water aerosol on the response to sulphur dioxide while a saline aerosol exerted no effect. Other investigators also found no potentiating effects of saline aerosols on the response to sulphur dioxide (Frank et al., 1964; Burton et al., 1969).

3.4.3. SUMMARY.

In some animal species a potentiating effect of certain aerosols on the response to sulphur dioxide could be demonstrated, but studies on man failed to demonstrate a conclusive effect possibly due to the lower concentrations of sulphur dioxide used in these experiments.

3.5. NITROGEN OXIDES (NO $_{x}$).

3.5.1. INTRODUCTION.

The nitrogen oxides to be discussed are nitrogen monoxide (NO) and nitrogen dioxide (NO $_2$). When NO is present in high concentrations in the atmosphere it is rapidly converted to NO $_2$, so it is difficult to control concentrations of NO in experimental

studies. Therefore, many more studies are carried out on the effects of NO_2 . A review of the effects of the nitrogen oxides will be given with regard to the respiratory system only.

3.5.2. NITROGEN MONOXIDE (NO).

In animals no adverse effects on the respiratory function were observed at concentrations up to $94~\text{mg/m}^3$ of NO (Murphy et al., 1964).

As far as known no studies of experimental exposure to nitrogen monoxide on man have been reported.

3.5.3. NITROGEN DIOXIDE (NO_2) .

3.5.3.1. STUDIES IN ANIMALS.

Pathological effects.

Concentrations greater than 190 $\mathrm{mg/m}^3$ of NO_2 are lethal to most animal species. In most cases pulmonary oedema was found (La Towsky et al., 1941).

Acute - reversible - pathological changes of the pulmonary tissue have been observed after short-term exposures to nitrogen dioxide using concentrations ranging from 940 $\mu g/m^3-190~mg/m^3$. The severity of the changes tends to increase with increasing concentration of NO $_2$ and seems to depend less on the duration of exposure. The following changes were observed:

- mast cell degeneration (Thomas et al., 1967);
- hyperplasia of bronchial epithelium (Kleinerman and Cowdrey, 1968);
- removal of cilia from the terminal bronchiolar epithelium (Bils, 1974);
- acute inflammatory reaction of bronchial epithelium (Kleinerman and Wright, 1961);
- basal membrane damage and intra-alveolar oedema (Dowell et al., 1971).

Chronic pathological changes of the pulmonary tissue have been observed after long-term exposures to nitrogen dioxide, either continuously or intermittently, using concentrations ranging from 940 $\mu g/m^3-47$ mg/m 3 . The severity of the changes seems to be a function of the product of concentration and exposure time

Table 2.3. Summary of experimental studies in animals exposed to nitrogen dioxide with respect to pathological effects.

SPECIES	CONCENTI	RATION	LENGTH OF	EFFECT	REFERENCE
	mg/m^3	ppm	EXPOSURE		
rats, guinea pigs, rabbits	141-188	75-100	2 hours	acute inflammatory reaction	Kleinerman and Wright, 1961
mice	6.6	3.5	2 hours	increased susceptibility to experimentally induced bacterial infections	Purvis and Ehrlich, 1963
rats	47	25	40 days	emphysema like lesions	Freeman and Haydon, 1964
mice	9.4	5	2 hours	<pre>increased susceptibility to ex- perimentally induced bacterial infections</pre>	Ehrlich, 1966
rats	0.940	0.5	4 hours	mast cell degeneration	Thomas et al., 1967
rats	1.9	1	1 hour	mast cell degeneration	Thomas et al., 1967
mice	0.940	0.5	6-24 hours per day up to 12 months	increased susceptibility to experimentally induced bacterial infections	Ehrlich and Henry, 1968
rats	3.8	2	continuously	lesions of the terminal bronchiolar $\ensuremath{\text{epithelium}}$	Freeman et al., 1968 ^a
rats	18.8-47	10-25	continuously	emphysema like lesions	Freeman et al., 1968

Table 2.3. (continued)

hamsters	84.6-103		10 weeks	hyperplasia bronchial epithelium	Kleinerman and Lowdry, 1968
mice	0.940	0.5	6-24 hours, and 3-12 months	"pneumonitis" and early focal emphysematous lesions	Blair et al., 1969
squirrel monkeys	18.8 9.4	10 5	1 month 2 months	increased susceptibility to experimentally induced bacterial infections	Henry et al., 1970
beagle dogs	5.6-30	3-16	1 hour	intra-alveolar oedema at concentrations of 7 ppm or higher; membrane damage without oedema at lower concentrations	Dowell et al., 1971
squirrel monkeys	1.9	1	continuously for 16 months	slight emphysema and thickened bronchial and bronchiolar epi- thelium only in animals exposed to NO ₂ and challenged with in- fluenza virus	Fenters et al., 1973
mice	14	7	4 hours	increased susceptibility to experimentally induced bacterial	Goldstein, 1973
	4.3	2.3	17 hours	infections	
squirrel monkeys	56	30	3 hours	removal of cilia from terminal bronchiolar epithelium	Bils, 1974

 $^{\omega}_{\rm N}$ Table 2.4. Summary of experimental studies in animals exposed to nitrogen dioxide with respect to physiological effects.

	and the second of the second o	F7 3			
SPECIES	CONCENTRAT	ION	LENGTH OF	EFFECT	REFERENCE
	mg/m^3	ppm	EXPOSURE		
guinea pigs	10-24.5	5.2-13	2-4 hours	increase in respiratory rate and a decrease in tidal volume	Murphy et al., 1964
rats	1.5	0.8	continuously	increase in respiratory rate	Freeman et al., 1966
rabbits	15-22.5	8-12	continuously	increase in pulmonary flow resistance	Davidson et al. 1967
squirrel monkeys	65.8 and 94	35 and 50	2 hours	increase in respiratory rate and a decrease in tidal volume	Henry et al., 1969
squirrel monkeys	9.4	5	2 months	increase in respiratory rate	Henry et al.,
	18.8	10	1 month	and a decrease in tidal volume	1970
beagle dogs	1.21 NO ₂ + 0.31 NO ²	0.63 NO ₂ + 0.25 NO ²		reduced peak expiratory flow and reduced diffusion capacity	Lewis et al., 1974

(Freeman et al., 1969). The following changes were observed:

- lesions of the terminal bronchiolar epithelium (Freeman et al., 1968^a);
- pneumonitis and early focal emphysematous lesions (Blair et al., 1969);
- emphysema like lesions (Freeman and Haydon, 1964; Freeman et al., 1968^b; Fenters et al., 1973).

Increased susceptibility to experimentally induced bacterial infections was observed in both short-term exposures to NO_2 (Purvis and Ehrlich, 1963; Ehrlich, 1966; Goldstein et al., 1973) and long-term exposures to NO_2 (Ehrlich and Henry, 1968; Henry et al., 1970). The impairment of the pulmonary antibacterial defense mechanism by nitrogen dioxide is thought to be due to alveolar macrophage dysfunction (Gardner et al., 1969), and occurs when a certain threshold limit of NO_2 is reached (Goldstein et al., 1973).

Physiological effects.

An increase in the respiratory frequency and a decrease in the tidal volume was observed after short-term exposures to about 10-95 mg/m³ of NO $_2$ (Murphy et al., 1964; Henry et al., 1969) and long-term exposures to about 1.5-17 mg/m³ of NO $_2$ (Freeman et al., 1966; Henry et al., 1970). Exposures to NO $_2$ in concentrations of 15-22.5 mg/m³ resulted in an increase in pulmonary flow resistance (Davidson et al., 1967). A reduced peak expiratory flow rate and a reduced diffusion capacity was observed after exposure to 1.21 mg/m³ of NO $_2$ (in combination with 0.31 mg/m³ of NO), while exposure to 0.27 mg/m³ of NO $_2$ (in combination with 2.05 mg/m³ of NO) yielded no effect on the respiratory function (Lewis et al., 1974).

A summary of the experimental studies is given in the tables $2.3.\ \mathrm{and}\ 2.4.$

3.5.3.2. STUDIES IN MAN.

Accidental exposures to very high concentrations of NO_2 have been reported in silo-fillers and in welders causing pneumonia and pulmonary oedema with subsequent bronchiolitis fibrosa

obliterans (Grayson, 1956; Lowry and Schuman, 1956; Norwood et al., 1966).

In volunteers an increase in airway resistance was observed after inhalation of 9.4 $\rm{mg/m}^3$ of \rm{NO}_2 for 10 minutes (Abe, 1967).

It has been shown that ${\rm NO}_2$ is probably the most important compound of the nitrogen oxides.

Acute pathological changes of the bronchial epithelium and of the alveolar membrane, and chronic pathological changes at the level of the terminal bronchiolus with emphysematous lesions were found in animals as a result of exposure to NO_2 , depending on concentration and exposure time. Besides, an increased susceptibility to experimentally induced bacterial infections was observed. Both in animals and in man effects of exposure to NO_2 -in excessively high concentrations- on the pulmonary function were observed.

3.6. HYDROCARBONS.

The most important property of the hydrocarbons is the possibility to enter into photochemical processes forming products such as aldehydes (see section 3.7.) and ozone (see section 3.8.) which are more toxic to the respiratory tract than the hydrocarbons themselves. As for the toxicity of the hydrocarbons the reader is referred to the Air Quality Criteria for Hydrocarbons (1970) in which the animal and human experimental studies on hydrocarbons are extensively reviewed.

As a summary of these studies one can state that:

- the aromatic hydrocarbons are the most important group of hydrocarbons as regards adverse health effects;
- the hydrocarbons exert a toxic effect in man at concentrations from about 80 mg/m^3 ;
- the main toxic effects of the hydrocarbons are irritation of the mucous membranes of the eyes and the nose, and irritation of the upper respiratory tract; at high concentrations the central nervous system in animals was also found to be affected;

- exposure to hydrocarbons in animals can give rise to an increase in pulmonary flow resistance and in tidal volume, and to a decrease in respiratory frequency.

3.7. ALDEHYDES.

As the experimental studies in animals and man are also extensively reviewed in the Air Quality Criteria for Hydrocarbons (1970) only the main points will be presented here, the more so because the first importance of the aldehydes lies in their participation in photochemical processes:

- the main aldehydes with regard to adverse health effects are formaldehyde, acetaldehyde, and acrolein;
- the main toxic effects of the aldehydes are irritation of the mucous membranes of the eyes and the nose, and irritation of the upper respiratory tract;
- an increase in pulmonary flow resistance and in tidal volume, and a decrease in respiratory frequency can be found in animals as a result of exposure to acrolein at concentrations from 1615 $\mu g/m^3$ (0.6 ppm);
- in man a toxic effect can be expected with exposures to formaldehyde at concentrations from about 2460 $\mu g/m^3$ (2 ppm), to acrolein at concentrations from about 675 $\mu g/m^3$ (0.25 ppm), and to acetaldehyde at concentrations from about 90 mg/m 3 (50 ppm);
- exposure to formaldehyde at high concentrations can cause pulmonary haemorrhage and oedema in animals, and serious inflammation of the upper and lower respiratory tract and bronchopneumonia in man.

3.8. OZONE.

3.8.1. STUDIES IN ANIMALS.

Pathological effects.

Short-term exposures to ozone at concentrations from 1960 $\mu g/m^3$ gave rise to desquamative and degenerative epithelial changes in bronchi and bronchioli and acute pulmonary oedema (Scheel et al., 1959), and to degeneration of alveolar epithelial lining

Table 2.5. Summary of experimental studies in animals exposed to ozone with respect to pathological effects.

SPECIES CONCENTRATION		'ION	LENGTH OF	EFFECT	REFERENCE
	mg/m^3	ppm	EXPOSURE		
mice,	2.55	1.30	3 hours	increased susceptibility to experi-	Miller and Ehrlich,
hamsters	hamsters 1.65 0.84	0.84	4 hours 5 days per week for 2 weeks	mentally induced bacterial infection 1	1958
mice	1.96	1	4 hours	superficial desquamation of epithelium and mild degree of acute oedema	Scheel et al., 1959
mice	6.27	3.2	4 hours	acute pulmonary oedema, and degenerative and desquamative changes of epithelium	Scheel et al., 1959
rabbits	16.25 up to 89.35	8.3 up to 45.6	1 hour every week for 49 weeks	fibrotic proliferation in the walls of the bronchiolar and alveolar ducts	Scheel et al., 1959
guinea pigs	1.96-9.8	1-5	2 hours	increased mortality as a result of an increased susceptibility to intravenously administered histamine	Easton and Murphy, 1967
rabbits	0.59	0.3	3 hours	impairment of phagocytic properties of alveolar macrophages	Coffin et al., 1968
mice	8.8	4.5	2 hours every third day for 75 days	acute inflammatory and epithelial changes	Werthamer et al., 1970

Table 2.5. (continued)

mice	1.29-8.33	0.66-4.25	4 hours	decrease in pulmonary bactericidal activity	Goldstein et al., 1971
rabbits	9.8	5	3 hours	morphological alterations in the pulmonary alveolar macrophages	Huber et al., 1971
dogs	1.96-5.88	1-3	8-24 hours daily for 18 months	changes of the terminal and respi- ratory bronchiolar walls and epithelium	Freeman et al., 1973
squirrel monkeys	5.88	3	3 hours	degeneration of alveolar epithelial lining	Bils, 1974
rats	1.07-1.76	0.55-0.90	continuous, up to 6 months	fibroblastic activity at the junction of respiratory bronchioli and alveolar ducts	Freeman et al., 1974
mice	4.9	2.5	2 hours daily for 120 days	epithelial changes of trachea, bronchi, and bronchioli (metaplasia and hyperplasia)	Penha and Werthamer, 1974
rats	0.980- 176	0.5-0.9	up to 48 hours	epithelial changes of terminal bron- chioli and proximal alveoli	Stephens et al., 1974

Table 2.6. Summary of experimental studies in animals exposed to ozone with respect to physiological effects.

SPECIES	CONCENTRAT	PPm	LENGTH OF EXPOSURE	EFFECT	REFERENCE
rats	3.9	2	3 hours	decrease in tidal volume; increase in respiratory frequency	Scheel et al., 1959
guinea pigs	0.67	0.34	2 hours	decrease in tidal volume; increase in respiratory frequency	Murphy et al., 1964
guinea pigs	2.12	1.08	2 hours	increase in flow resistance	Murphy et al., 1964
guinea pigs	9.8-13.7	5-7	2 hours	increase in flow resistance; decrease in lung compliance	Easton and Murphy, 1967
rats	1.96	1	6 hours	increased mortality due to exercise	Stokinger, 1965

(Bils, 1974). At lower concentrations epithelial changes in the terminal bronchioles and proximal alveoli were found (Stephens et al., 1974).

After intermittent long-term exposures to ozone at concentrations from 4900 $\mu g/m^3$ morphological changes of the tracheal, bronchial, and bronchiolar epithelium were found (Scheel et al., 1959; Werthamer et al., 1970; Penha and Werthamer, 1974). Long-term exposures to ozone at concentrations from 1960 $\mu g/m^3$ resulted in morphological changes of the terminal and respiratory bronchiolar walls and epithelium (Freeman et al., 1973). A characteristic fibroblastic activity at the level of the junction of the respiratory bronchiole and the alveolar duct was noted by Freeman et al. (1974).

An increased susceptibility to experimentally induced bacterial infections was observed in both short-term and long-term exposures to ozone which gave rise to an increased mortality (Miller and Ehrlich, 1958). This increased susceptibility to infections is thought to be caused by an impairment of the phagocytic activity of alveolar macrophages resulting in an inhibition of the bactericidal activity of the lungs (Coffin et al., 1968; Goldstein et al., 1971; Huber et al., 1971; Goldstein et al., 1974), and probably occurs when a certain threshold limit of ozone is reached (Goldstein et al., 1974).

Easton and Murphy (1967) found an increased mortality as a result of an increased susceptibility to histamine after short-term exposure to ozone.

Physiological effects.

The following physiological effects were observed after short-term exposures to ozone at concentrations ranging from 670-13700 ug/m³:

- a decrease in tidal volume and an increase in respiratory frequency (Scheel et al., 1959; Murphy et al., 1964);
- an increase in flow resistance (Murphy et al., 1964; Easton and Murphy, 1967);
- a decrease in lung compliance (Easton and Murphy, 1967);
- an increased mortality due to the performance of exercise during the exposure to ozone (Stokinger, 1965).

A summary of the experimental studies is given in the tables 2.5. and 2.6.

3.8.2. STUDIES IN MAN.

The effect of exposure to ozone on the respiratory tract manifests itself in respiratory symptoms and changes in respiratory function.

Several investigators reported one or more of the following symptoms as a result of exposure to ozone at concentrations from 500 $\mu g/m^3$: substernal discomfort, cough, wheezing, dyspnoea, and irritation of the upper respiratory tract (Young et al., 1964; Bates et al., 1972; Hackney et al., 1975). The severity of the symptoms tended to increase with increasing concentration of ozone.

The following changes in respiratory function were observed after exposure to ozone at concentrations from 725 $\mu g/m^3$:

- a reduction in forced vital capacity and timed forced expiratory volume (Young et al., 1964; Hazucha et al., 1973; Hackney et al., 1975; Kerr et al., 1975);
- a reduction in maximum flow at 50% of the vital capacity (Bates et al., 1972; Hazucha et al., 1973; Hackney et al., 1975);
- a reduction in maximum mid-expiratory flow rate (Hazucha et al., 1973);
- an increase in airway resistance (Goldsmith and Nadel, 1969; Bates et al., 1972; Kagawa and Toyama, 1975; Kerr et al., 1975);
- an increase in residual volume and in closing capacity (Hazucha et al., 1973).

Kerr et al. (1975) reported that a group of non-smokers had a greater response to exposure to ozone with regard to respiratory symptoms and respiratory function than a group of smokers.

Closing capacity: sum of closing volume and residual volume, expressed as percentage of total lung capacity

Closing volume: volume of the lungs at which the airways at the bottom of the lung start to close, expressed as percentage of the vital capacity.

Table 2.7. Summary of experimental studies in man exposed to ozone.

CONCENTRA mg/m ³	TION ppm	LENGTH OF EXPOSURE	EFFECT	REFERENCE
1.18-1.57	0.6-0.8	2 hours	reduction in forced vital capacity, forced expiratory volume, and diffusion capacity for carbon monoxide	Young et al., 1964
1.96	1	1 hour	increase in airway resistance in all 4 subjects	Goldsmith and Nadel, 1969
1.47	0.75	2 hours	reduction of \dot{V} max at 50% VC; increase in airway resistance	Bates et al., 1972
0.725 and 1.47	0.37 and 0.75	2 hours	reduction of Vmax at 50% VC, FVC, FEV 1.0 , and MMFR; increase in residual volume and in closing capacity	Hazucha et al., 1973
0.725	0.37	2 hours	reduction in FVC and FEV _{1.0}	Hackney et al., 1975
0.980	0.50	4 hours	reduction in FVC and FEV $_{1 \: \hbox{\scriptsize .} 0}$ and in \dot{v}_{max} at 50% VC	Hackney et al., 1975 ^b
1.76	0.9	5 minutes	marked decrease in airway conductance when subjects undertook exercise	Kagawa and Toyama, 1975
0.980	0.5	6 hours	increase in airway resistance; decrease in FVC and $\ensuremath{\mbox{FEV}}\xspace_3.0$	Kerr et al., 1975

A great individual variation in the response to exposure to ozone was seen in most studies pointing to an individual threshold limit (Goldsmith and Nadel, 1969; Bates et al., 1972; Hackney et al., 1975). Subjects with a history of respiratory symptoms tended to respond to exposure to ozone at lower concentrations than subjects without such a history (Hackney et al., 1975). However, Gökemeijer (1976) found no effect on the viscous work of breathing in patients with CNSLD after exposure to up to 29.4 mg/m³ of ozone for 3 minutes.

There is an indication that successive exposures to ozone have a cumulative effect (Hackney et al., 1975).

A summary of the experimental studies is given in table 2.7. 3.8.3. SUMMARY.

In animals exposure to ozone resulted in morphological changes of the epithelium of the respiratory tract up to the level of the proximal alveoli, and in physiological changes.

An increased susceptibility to bacterial infections was found, probably due to the observed impairment of the phagocytic activity of the alveolar macrophages as a result of exposure to

In man exposure to ozone can give rise to a variety of respiratory symptoms and to a decrement in respiratory function. There is an indication of an individual threshold limit. Moreover, persons with a history of respiratory symptoms and nonsmokers seem to be more sensitive to exposure to ozone.

3.9. CARBON MONOXIDE.

In the experimental studies in animals and man carbon monoxide has been found to be inert to the respiratory tract at relatively low concentrations; its main toxicity lies in the reaction with heamoglobin to form carboxy-haemoglobin (Air Quality Criteria for Carbon monoxide, 1970). As the affinity of haemoglobin for carbon monoxide is about 200 times greater than for oxygen carboxy-haemoglobin is easily formed when carbon mon-

oxide is present in the inhaled air, affecting particularly the central nervous system and the cardiovascular system.

In man exposure to high concentrations of carbon monoxide - which may occur accidentally (e.g. in gas poisoning) or occupationally (e.g. in fire fighters) - can cause pulmonary oedema (Kittredge, 1971; Ogawa et al., 1974), but it is not clear whether this is due to a direct effect of carbon monoxide on the pulmonary tissue.

3.10. PHOTOCHEMICAL SMOG (PHOTOCHEMICAL OXIDANTS).

3.10.1. INTRODUCTION.

Photochemical smog is a naturally occurring complex mixture of air pollutants in which oxidants (ozone, nitrogen dioxide, and organic peroxides) are present as main compounds together with hydrocarbons and carbon monoxide in high concentrations. See for details on photochemical smog Chapter I, section 5.2.(7). For experimental purposes photochemical smog can be obtained either naturally from photochemical ambient air, or artificially by irridation of exhaust or by mixing fixed concentrations of some of these pollutants.

3.10.2. STUDIES IN ANIMALS.

The following observations in animals were made after exposure to photochemical smog (at concentrations of "total oxidants" from $240-1960 \, \mu g/m^3$):

- pathological changes of the alveolar cells and in the alveolar walls in mice (Bils, 1966; Bils and Romanovsky, 1967);
- an increase in pulmonary flow resistance (Murphy et al., 1963; Swann and Balchum, 1966; Wayne and Chambers, 1968; Lewis et al., 1974);
- an increased susceptibility to pulmonary infection in the latter half of the animal's lifetime (Hueter et al., 1966), and an increased mortality from bacterial pulmonary infection (Coffin and Blommer, 1967).

3.10.3. STUDIES IN MAN.

After exposures to a mixture of ozone, nitrogen dioxide, and carbon monoxide (at respective concentrations of up to 980 $\mu g/m^3$, 565 $\mu g/m^3$, and 35 $m g/m^3)$ minor physiological changes were observed. These changes, however, did not occur consistently throughout all exposures (Hackney et al., 1975 a , 1975 $^b)$.

3.10.4. SUMMARY.

Exposures to photochemical smog resulted in only minor pathological and physiological changes in animals, while in man no consistent changes of the pulmonary function were observed.

In the experimental studies on photochemical smog concentrations were used as measured in the ambient atmosphere. Therefore, the effects were presumably less than after exposures to the individual photochemical pollutants used in artificially high concentrations.

3.11. SUMMARY OF THE EXPERIMENTAL STUDIES.

The experimental studies on animals have demonstrated that most of the reviewed urban air pollutants can exert adverse effects on the airways which manifest in pathological changes of the upper and lower respiratory tract, in physiological changes, and in disturbances of the pulmonary defense mechanism. The effects found were dependent on the concentration of the pollutants, the duration of the exposure, and on the animal species used in the experiments.

The animal studies can serve as a guide for experimental and epidemiological studies on man, and they suggest a real possibility that exposure to urban concentrations of air pollutants may damage the human airways.

The experimental studies on man have demonstrated that exposure to most of the reviewed urban air pollutants can result in respiratory symptoms and in a decrement in pulmonary function. Although most of the exposures were carried out at concentrations much higher than occur in acute episodes of air pollution, some investigators reported also effects on the airways using

concentrations of pollutants which are occasionally encountered in an urban environment.

The great variation in response which was often found forms a strong indication that there exists an individual sensitivity to particulate matter, sulphur dioxide, and ozone. Furthermore, there is some evidence that persons with (a history of) chronic obstructive pulmonary disease have a greater sensitivity to air pollutants than persons without such a history.

Except one study on ozone, no differences between smokers and non-smokers in response to exposures to air pollutants have been described.

Noteworthy is that the smoke from cigarettes contains a high concentration of nitrogen oxides (Haagen-Smit et al., 1959; Bokhoven and Niessen, 1961), of which nitrogen monoxide is the principal component at concentrations ranging from about 24-54 $\mu g/m^3$ per puff (450-1000 ppm) (Norman and Keith, 1965). About 10% of the nitrogen monoxide is probably converted in the airways to nitrogen dioxide (Freeman, 1975), which pollutant has been shown to be very toxic in experimental animal studies causing amongst other things emphysematous lesions. Indeed, in man some investigators have found evidence of an association between a history of smoking and the presence of emphysema in necropsy material (Ryder et al., 1971; Auerbach et al., 1972).

4. EPIDEMIOLOGICAL STUDIES ON THE EFFECTS OF AIR POLLUTION ON THE AIRWAYS.

4.1. INTRODUCTION.

In the epidemiological approach to the effects of urban air pollution on the airways mortality and morbidity data are used. Mortality data are obtained from death certificates which are tabulated in the vital records $^{1)}$ collected in most industrialized countries in the world.

¹⁾ Vital records: records of vital events, i.e. birth, death, marriage, and divorce.

Morbidity data can be obtained from several sources, the most important of which are in this context:

- general practitioner's records;
- hospital records;
- health and disease records of special populations, such as occupational groups, the armed forces, insured groups, old people's homes;
- morbidity studies: prevalence studies¹⁾ and longitudinal studies²⁾

In a prevalence study the objective is to define the level of disease in a population at one point in time, i.e. the prevalence of disease.

In a *longitudinal study* the objective is to determine the frequency of disease over a period of time. The incidence of a disease can be measured which is the number of new cases of the disease in a specified period of time.

(MacMahon and Pugh, 1970).

When making national or international comparisons one should bear in mind the possibility of inaccuracy and incompleteness of the data, differences in definition and classification of diseases, and lack of standardization of the methods. This applies to mortality data as well as to morbidity data (Heasman, 1962; Reid, 1962; Mork, 1964; Reid and Rose, 1964; Alderson and Meade, 1967; MacMahon and Pugh, 1970; Reid, 1975).

The review of epidemiological studies on the effects of air pollution on the airways will be classified as follows:

- 1. Studies on the effects of short-term exposure to high levels of air pollution, to be subdivided in:
 - a. studies of acute episodes of high pollution: acute effects;
 - b. studies of intermittent subacute episodes of high pollution: subacute effects.

¹⁾ Prevalence study = point prevalence study = cross-sectional study.

²⁾ Longitudinal study = cohort study = follow-up study.

2. Studies on the effects of long-term exposure to air pollution: chronic effects.

The levels of the major air pollutants found in a given epidemiological study will be expressed in micrograms per cubic meter $(\mu g/m^3)$ as 24-hour averages, unless otherwise stated. As a reference to the possible concentrations of some air pollutants in the ambient atmosphere the reader is referred to table 6.4., p. 101.

- 4.2. STUDIES ON THE EFFECTS OF SHORT-TERM EXPOSURE TO HIGH LEVELS OF URBAN AIR POLLUTION.
- 4.2.1. ACUTE EPISODES OF HIGH POLLUTION: ACUTE EFFECTS.

4.2.1.1. EUROPE.

THE MEUSE VALLEY, December 1930.

During a severe fog in this valley which lasted five days 63 people died from a relatively small community and many more were affected with respiratory symptoms. Estimated maximum concentration of sulphur compounds was about 25,000 $\mu g/m^3$ (Firket, 1931).

LONDON, November 1948.

During an episode of severe fog the maximum smoke level was 2780 $\mu g/m^3$ and the maximum SO₂ level 2150 $\mu g/m^3$.

Mortality: A substantial increase in mortality from all causes was observed during this period (Logan, 1949).

LONDON, December 1952.

During this episode smoke levels reached 4460 $\mu g/m^3$ and sulphur dioxide levels 3830 $\mu g/m^3$ (48-hour average).

Mortality: An excess number of deaths (4000) was observed in this period, especially in people over the age of 45 and in infants (Ministry of Health, 1954).

Morbidity: An excess number of claims for sickness benefits and an excess of hospital admissions especially for respiratory disease was observed (Ministry of Health, 1954). In a general practice the number of new cases of upper respiratory infections doubled and the number of lower respiratory infections trebled, which occurred mainly in people with known chronic respiratory

disease (Fry, 1953).

LONDON, January 1956.

Mortality: An increase in mortality (about 1000 excess deaths) from all causes in a fog episode, when the maximum level of smoke was 3250 $\mu g/m^3$ and of SO₂ 1500 $\mu g/m^3$, was reported (Logan, 1956).

LONDON, December 1957.

Morbidity: During a fog episode, when the maximum concentration of smoke was 2300 $\mu g/m^3$ and of SO₂ 1600 $\mu g/m^3$, an excess of applications to the Emergency Bed Service was observed (Bradley et al., 1958).

LONDON, December 1962.

The maximum concentration of smoke was 2000 $\mu g/m^3$ and of SO₂ 3300 $\mu g/m^3$.

Mortality: Martin (1966) reported an excess mortality of about 700 people particularly due to "bronchitis" and cardiovascular disease.

Morbidity: A 50% increase in new claims for sickness benefits was observed (Scott, 1963). A sudden appearance of "acute wheezy chests" was reported in a general practice (Fry et al., 1962).

ROTTERDAM (The Netherlands), January 1959, December 1962.

Mortality: An excess total mortality was found in the Rotterdam area during these fog episodes, when the maximum of the smoke levels reached 500 μ g/m³ and of the SO₂ levels 1150 μ g/m³ (Biersteker, 1966).

Morbidity: During the heavy fog in December 1962 an excess of applications to the Rotterdam City Emergency Bed Service was noted (Tesch, 1964; Biersteker, 1966), and a significant increase in the number of absentees from work because of respiratory illness was observed in Rotterdam's municipial employees (Biersteker, 1966).

VLAARDINGEN (the Netherlands), Autumn 1969.

The daily SO_2 values reached up to 400 $\mu g/m^3$.

Morbidity: In a follow-up study, Van der Lende et al. (1975^a) found that in the majority of the persons lung function values were lower in the autumn of 1969 than in the autumn of 1972,

possibly as a result of a severe air pollution episode that happened to occur when the survey in 1969 took place.

4.2.1.2. UNITED STATES OF AMERICA.

DONORA, October 1948.

Mortality: A slight excess of deaths was found in the older age groups. Most of the deaths occurred on the third day of a 5-day episode of high pollution (Schrenk et al., 1949).

NEW YORK CITY, November 1953.

The maximum SO_2 level was 2460 $\mu g/m^3$.

Mortality: A small increase in mortality distributed over all age groups was found (Greenburg et al., 1962).

Morbidity: An increase in attendances for respiratory disease to the out-patient department was observed in three out of four hospitals (Greenburg et al., 1962).

NEW YORK CITY, November, December 1962.

The maximum SO_2 level was 2145 $\mu g/m^3$.

Mortality: An association between mortality in the ages of over 45 and SO_2 levels was found (MaCarroll and Bradley, 1966).

Morbidity: A significant increase in the number of respiratory infections was observed in people living in old people's homes (Greenburg et al., 1965).

NEW YORK CITY, November 1966.

The maximum SO_2 level was 1460 $\mu g/m^3$.

Mortality: An excess number of deaths was noted (Glasser et al., 1967).

Morbidity: An increase in emergency visits for "bronchitis" and "asthma" was observed in three out of seven hospitals (Glasser et al., 1967). Data obtained with a questionnaire applied within 24 hours of the air pollution episode in white-collar workers in the New York Metropolitan Area showed an effect on the prevalence of respiratory symptoms, especially in workers with present or past history of respiratory disease (Becker et al., 1968).

NEW YORK CITY, Summer 1970.

Morbidity: During episodes of high pollution in the summer of 1970 data from telephone interviews showed significant in-

creases in "irritative" symptoms (eye irritation, throat irritation, chest discomfort, shortness of breath), when the levels of SO₂ respectively suspended particulate matter exceeded 320 μ g/m³ and 145 μ g/m³ (Cohen et al., 1974).

4.2.2. INTERMITTENT SUBACUTE EPISODES OF HIGH POLLUTION: SUBACUTE EFFECTS.

4.2.2.1. EUROPE.

LONDON.

Mortality: An increase in daily mortality was found during periods of heavy fogs between 1954 and 1957 when smoke levels were above about 2000 $\mu g/m^3$ and SO_2 levels above about 1140 $\mu g/m^3$ (Gore and Shaddick, 1958).

During the winter of 1958-1959 marked changes in mortality occurred above about 750 $\mu g/m^3$ of smoke with about 710 $\mu g/m^3$ of SO₂. An increase in the death rate occurred with each abrupt rise in pollution within 24 hours (Martin and Bradley, 1960). This positive correlation, though weaker, was still found during the less polluted winter of 1959-1960 (Martin, 1964).

Morbidity: During several winters between 1954 and 1960 a consistent relationship was found between the degree of illness in bronchitic patients, as assessed by a diary technique, and the concentrations of smoke and SO_2 . The lowest concentration of smoke or SO_2 associated with any definite change in the patient's condition was about 600 $\mu g/m^3$. No relationship was found with temperature or humidity (Waller and Lawther, 1955; 1957; Lawther et al., 1970). Lawther et al. (1970) found in the winter of 1964-1965 and again in the winter of 1967-1968 a lower correlation coefficient between the respiratory condition of their bronchitic patients and the concentrations of smoke and SO_2 as compared with their previous diary studies, admittedly because of reduced levels of air pollution during these winters. In their studies the minimum air pollution level leading to any significant response was found to be about 500 $\mu g/m^3$ of SO₂ in combination with about 250 $\mu g/m^3$ of

ROTTERDAM (the Netherlands).

Mortality: During the winter months of 1962 and 1963 a very weak correlation was found between ${\rm SO}_2$ levels and daily mortality figures (Biersteker, 1966).

Morbidity: During the winter months of 1962 and 1963 no correlation could be demonstrated between air pollution and hospital admissions for respiratory disease (Biersteker, 1966).

4.2.2.2. UNITED STATES OF AMERICA.

NEW YORK CITY, 1960-1965.

Mortality: Glasser and Greenburg (1971) found an association between the mean number of daily deaths and the daily levels of SO_2 during the years 1960-1964 independent of weather conditions, although McCarroll and Bradley (1966) could only demonstrate such an association for some periods of high pollution during the years 1962-1964.

Morbidity: In a follow-up study in City residents between 1962 and 1965 an immediate effect of ${\rm SO}_2$ with regard to eye symptoms and a delayed effect of ${\rm SO}_2$ and particulate matter with regard to the symptom cough was found by McCarroll et al. (1967). NEW YORK CITY, 1962-1965; PHILADELPHIA, 1963-1964; LOS ANGELES, 1962-1965.

Mortality: In a comparative study Lebowitz (1973) could demonstrate a relationship between daily mortality, and air pollution — weather.

LOS ANGELES.

Mortality: No relationship could be found between mortality from respiratory disease and episodes of high air pollution levels (Hechter and Goldsmith, 1961; Breslow, 1964).

Morbidity: Heimann (1964) reported as main complaints during smog episodes: eye irritation, excessive tear formation, and cough, occurring about midday. A significant increase in the mean number of attacks of asthma could be demonstrated in asthmatic patients when oxidant levels exceeded 250 μ g/m³ (Schoettlin and Landau, 1961). A strong general effect of pollution on hospitalization (length of stay, frequency of admission) was observed for respiratory infections and allergic disorders

(Sterling et al., 1969). In a diary study in student nurses from 1961-1964 the average daily symptom rates for cough, chest discomfort, and eye irritation all increased with increasing maximum hourly oxidant pollution levels: from about 200 $\mu g/m^3$ for eye irritation, from about 390 $\mu g/m^3$ for chest discomfort, and from about 600 $\mu g/m^3$ for cough (Hammer et al., 1974). In a study in schoolchildren in 1966-1967 no significant changes in peak expiratory flow rate which correlated with changes in pollution level were found (McMillan et al., 1969). In a study in cross-country track runners an association was found between oxidant levels and athletic performance (Wayne et al., 1967). *CALIFORNIA*, 1970-1971.

Morbidity: In student populations of seven universities an association was found between the incidence of upper respiratory symptoms and air pollutants in particular oxidants, sulphur dioxide, and nitrogen dioxide. There was an indication that men and smokers of both sexes were more susceptible than others (Durham, 1974).

4.2.2.3. JAPAN:

TOKYO-YOKOHAMA AREA.

Mortality: Lebowitz et al. (1973) found a relationship between daily mortality and air pollution - weather in Tokyo in an analysis over a 3-yr. period.

Morbidity: The so called "Tokyo-Yokohama Asthma", described in American Military Personnel and occurring especially in the heavily polluted autumn and winter months (Huber et al., 1954), could not be demonstrated as being caused by episodes of high pollution only, but past history of bronchitis and smoking in combination with air pollution seems to be of importance (Phelps and Koike, 1962; Phelps, 1965). Moreover, no evidence of typical Tokyo-Yokohama Asthma was found in Japanese people (Oshima et al., 1964).

In Japanese schoolchildren Toyama (1964) found that peak flow rates varied according to the level of monthly air pollution measurements in a polluted area.

4.2.3. SUMMARY.

Short-term exposure to high levels of urban air pollution can give rise to an increase in mortality, particularly from respiratory disease, an increase in respiratory symptoms, and a decrement in pulmonary function. A certain level of air pollution must probably be reached before any effect - immediate or delayed - can be measured in a population.

Persons with a history of chronic pulmonary disease and persons in the older age groups seem to be most susceptible. As most morbidity studies were concerned with special groups one should be careful to generalize the results.

- 4.3. STUDIES ON THE EFFECTS OF LONG-TERM EXPOSURE TO URBAN AIR POLLUTION: CHRONIC EFFECTS.
- 4.3.1. NATIONAL COMPARATIVE STUDIES.

4.3.1.1. EUROPE.

GREAT BRITAIN.

Mortality: A relationship between mortality from chronic respiratory disease and some direct and indirect (e.g. fog frequency, urbanization) indices of air pollution was found. This relationship was shown in London (Hewitt, 1956; Burgess and Shaddick, 1959), in Salford near Manchester (Burn and Pemberton, 1963), in different areas in Great Britain (Pemberton and Goldberg, 1954; Daly, 1959; Stocks, 1959; Buck and Brown, 1964; Dean, 1966; Ashley, 1969; Gardner et al., 1969), and also in postmen (Fairbairn and Reid, 1958).

In a study in children a correlation was found between mortality from respiratory disease and some air pollution indices, particularly in the age group of less than one year (Collins et al., 1971).

Morbidity: Comparative studies of different areas varying in air pollution levels revealed higher prevalence rates for chronic respiratory disease in the more polluted areas (Fairbairn and Reid, 1958; Reid, 1962). After allowing for differences in smoking habits the same finding could be demonstrated

in a study in postoffice workers in London and three county towns (Holland and Reid, 1965), and in a postal survey in urban and rural areas (Lambert and Reid, 1970).

In a study of more than 2000 families in a suburb of London, Colley and Holland (1967) showed in the mothers and the children an effect of area of residence on the prevalence of winter cough, while in the fathers the prevalence of winter cough was related to smoking and social class.

In children several studies have demonstrated associations between long-term exposure to urban air pollution and the prevalence of non-specific respiratory disease and respiratory infections (Wahdan, 1964; Douglas and Waller, 1966; Lunn et al., 1967; Lunn et al., 1970). Colley and Reid (1970) found a consistent rise in the frequency of chest conditions with increasing local levels of air pollution clearly only among the children of semi-skilled and unskilled workers. A consistent and significant effect of area of residence on the prevalence of respiratory symptoms and on the peak expiratory flow rate was found by Holland et al. (1969, 1970) in schoolchildren in Kent. In a cohort study of children born in the last week of March 1946, Colley et al. (1973) found that at the age of 20 the prevalence of chronic cough was most affected by smoking cigarettes, while air pollution and social class had only little effect.

THE NETHERLANDS .

Mortality: Biersteker (1966) reported a higher mortality from chronic bronchitis in the Rotterdam born than in the Rotterdam import male population, possibly as a result of a longer exposure to air pollution.

Morbidity: Biersteker (1969) found no differences between male Municipal Employees in Rotterdam with symptoms of "bronchitis" and a group without these symptoms with regard to the number of years of residence in Rotterdam and in non-urban environments, and with regard to postal district address in Rotterdam. In a study comparing random samples of the population of the heavily polluted town of Vlaardingen and of the rural area of

Vlagtwedde, Van der Lende (1969) found in subjects aged 40-64 a relation between living in Vlaardingen and the prevalence of persistent cough and persistent phlegm, but not of dyspnoea. In men aged 15-39, Van der Lende et al. (1973^a) reported a relation between living in Vlaardingen and the prevalence of dyspnoea, especially in the cigarette smokers. This discrepancy in findings was contributed to a self-selection of the older agegroups in Vlaardingen. No effect of smoking or living in the polluted area on the lung function could be demonstrated. In comparative studies in children living in high and low polluted areas in the Netherlands a higher prevalence of respiratory symptoms was found in the more polluted areas (Kerrebijn et al., 1975; Biersteker et al., 1976). Biersteker et al. (1976) found also lower lung function values in the polluted area in their study, however previous studies by Biersteker and Van Leeuwen (1970) and by Kerrebijn (1975) did not reveal differences in lung function values.

4.3.1.2. UNITED STATES OF AMERICA.

Mortality: A relationship between long-term exposure to suspended particulate matter and mortality from chronic pulmonary disease among men aged 59-69 was demonstrated in a study comparing different parts of Buffalo and environs (Erie County); a relationship between long-term exposure to sulphates and mortality from chronic pulmonary disease was found only in the lowest two of the five economic levels used (Winkelstein et al., 1967, 1968).

Morbidity: In a study of a random sample of white women in Buffalo an association was shown between long-term exposure to suspended particulate matter and the prevalence of chronic cough and phlegm in non-smokers, and in smokers who had lived at the same place for at least five years (Winkelstein and Kantor, 1969).

No significant differences in school absenteeism from respiratory illnesses were found between schools located in different areas of Berlin, New Hampshire, with different pollution levels. However, differences were found in lung function values between

these schools which could be attributed to differences in air pollution exposure (Ferris, 1970).

In a longitudinal study in Berlin (New Hampshire), Ferris et al. (1971, 1973) found after standardizing for smoking habits lower prevalence rates of chronic respiratory disease and slightly higher lung function values in the second survey in 1967 as compared with the first survey in 1961, which could have been the result of reduced air pollution levels. However, this trend could not be confirmed in their survey in 1973 (Ferris et al., 1976).

In a comparative study in schoolchildren living in high and low polluted areas in Cincinatti, Chattanooga, and New York City, Shy et al. (1973) found a consistent relationship between impaired ventilatory function and exposure to ${\rm SO}_2$ plus particulate matter.

Other comparative studies revealed a higher prevalence of respiratory symptoms (Chapman et al., 1973) and lower lung function values (Mostardie and Leonard, 1974) in the more polluted areas. Speizer and Ferris (1973^a, 1973^b) found in policemen that exposure to traffic pollution, but more so smoking, is a factor in the development of chronic respiratory disease; no effect of traffic pollution on the pulmonary function was found. From a study in children and adults French et al. (1973) observed that exposure to air pollution of three years or longer was an important component in the increased risk for acute re-

In contrast to the findings of the above mentioned studies Hrubec et al. (1973) found in twin pairs no effect of differences in exposure level to air pollution on the prevalence of respiratory symptoms, but they did find a strong effect of smoking. Also, Comstock et al. (1973) could not demonstrate differences in symptom prevalence and lung function values between telephone employees in urban and rural areas.

4.3.1.3. CANADA.

spiratory disease.

Morbidity: Bates (1967) reported fewer chest illnesses, less severe dyspnoea, and better lung function values in bronchitic

patients in Winnipeg as compared with similar patients in three other more polluted towns.

4.3.1.4. JAPAN.

Morbidity: Oshima et al. (1964) found in residents of the Tokyo-Yokohama area higher prevalence rates of chronic cough and phlegm, especially in the smokers, and lower lung function values as compared with a control group in a low polluted area.

4.3.2. INTERNATIONAL COMPARATIVE STUDIES.

4.3.2.1. GREAT BRITAIN / NORWAY.

Morbidity: In a study in male transport workers in Bergen, a non-polluted town in Norway, and in London, Mork (1962) found differences in the prevalence of chronic cough and phlegm that could be attributed to differences in smoking habits, but the differences in the prevalence of more serious symptoms of chronic non-specific lung disease and in ventilatory function could not be eliminated by standardizing for smoking habits, suggesting an additional effect of air pollution.

4.3.2.2. GREAT BRITAIN / UNITED STATES OF AMERICA.

gression of chronic non-specific lung disease.

Morbidity: In a study in post office and telephone workers in Great Britain and the USA, Holland et al. (1965) found higher prevalence rates of respiratory symptoms and lower lung function values in the British subjects, which could be attributed to the exposure to higher levels of air pollution.

In a migrant study Reid et al. (1966) found no differences in the prevalence of respiratory symptoms between British male migrants to America and native born Americans, which led to their hypothesis that removal to the USA was followed by a reduction in symptoms and resulted in an arrest in the pro-

4.3.3. SUMMARY.

From the few national mortality studies an association between mortality from chronic respiratory disease and some air pollution indices comes forward.

The national and international morbidity studies have demonstrated an effect of area of residence respectively air pollution on the prevalence of respiratory symptoms and lung function. This effect was most marked in smokers, particularly cigarette smokers. There is an indication that also social class plays a role.

It is not clear from these studies to what extent duration of exposure to urban air pollution is of importance.

4.4. SUMMARY OF THE EPIDEMIOLOGICAL STUDIES.

Studies on the effects of short-term exposure to high levels of urban air pollution have demonstrated an association between acute and subacute episodes of high pollution on the one hand and mortality and morbidity from respiratory disease on the other hand. One must keep in mind that it may be difficult to isolate the effect of air pollution from that of weather conditions.

No light has been shed on whether other factors, such as smoking habit and social class are of importance in this association.

Studies on the effects of *long-term exposure* to urban air pollution have shown an association between air pollution and morbidity from chronic respiratory disease, especially in cigarette smokers, in which other factors, such as socio-economical, may play a role. There is an indication of an association between air pollution and mortality from chronic respiratory disease.

CHAPTER III

GENERAL ASPECTS OF THE EPIDEMIOLOGICAL STUDY IN THE RIJNMOND AREA

1. INTRODUCTION.

The Rijnmond area is an area of 614 square kilometers at the mouth of the rivers Rijn and Maas with a population of just over one million in 1970. The geographical situation is shown in figure 3.1. This area is heavily polluted because of big oil refineries and other petrochemical industries along the south bank of the "Rotterdamse Waterweg", which runs from Rotterdam into the North Sea over a length of 30 kilometers and is formed by the "Nieuwe Maas", the "Scheur", and the "Nieuwe Waterweg". For many years the oil-fired central heating systems of the greenhouses in the "Westland" contributed also to the air pollution in this area but since a few years ago more and more of these central heating systems have changed from oil to natural gas which gives off far less pollution in its burning process.

One of the most polluted towns in this area is Vlaardingen situated to the west of Rotterdam on the north bank of the "Nieuwe Waterweg" opposite the petrochemical industrial complex. As the prevailing winds in the Netherlands are south and west Vlaardingen is frequently hit by polluted air from this complex.

Therefore, the population of Vlaardingen seemed to be very appropriate to study effects of air pollution on the airways in the Rijnmond area, and a severe air pollution episode occurring in the autumn of 1971 was the immediate cause to organize this present study which took place in 1973.

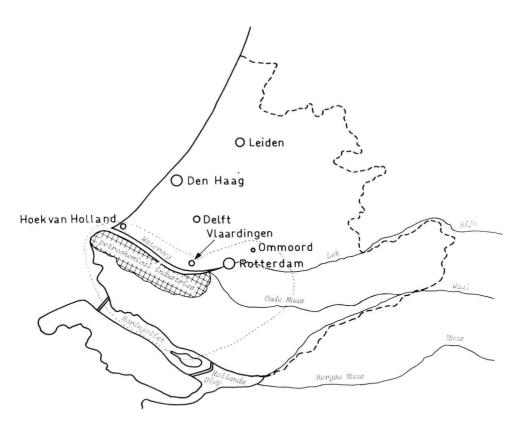


Fig. 3.1. The geographical situation of the Rijnmond area (shown by the dotted line).

2. ASPECTS OF THE AIR POLLUTION SITUATION IN THE RIJNMOND AREA.

As already mentioned the petrochemical industries on the south bank of the "Rotterdamse Waterweg" are the main source of air pollution in the Rijnmond area to which motor traffic and to a lesser extent the heating systems of the greenhouses also contribute.

To give an idea of the emissions by the petrochemical industries, it was estimated that per day about 680 tons of sulphur dioxide, 80 tons of nitrogen oxides, and 120 tons of hydrocarbons were emitted in the first three months of 1973 (Biersteker, 1975). However, the average pollution levels at ground level are relatively low in the Rijnmond area because of the very large chimneys used by the industries for their emissions. Some examples of the maximum daily air pollution levels measured in the Rijnmond area by the "Keuringsdienst van Waren" (Food Inspection Department), Rotterdam, in each quarter of the year 1973 are given in table 3.1.

Table 3.1. Maximum daily air pollution level of standard smoke, sulphur dioxide, nitrogen dioxide, and ozone, expressed in $\mu g/m^3$, measured at any measuring site in the Rijnmond area by the "Keuringsdienst van Waren", Rotterdam, in each quarter of the year 1973.

QUARTER	AIR POLLUTANT					
OF THE YEAR						
2	standard smoke ¹⁾	sulphur dioxide ¹⁾	nitrogen dioxide ²⁾	ozone ³⁾		
first	138	564	143	133		
second	142	277	114	286		
third	109	263	109	107		
fourth	84	270	137	240		

^{1) 24-}hour samples; 28 measuring sites

^{3) 3-}hour samples; 3 measuring sites 1-hour samples; 2 measuring sites, but 1 in first quarter

⁽Source: Kwartaalverslagen, Laboratorium Luchtverontreiniging, Keuringsdienst van Waren, Rotterdam)

The severe air pollution episode that occurred in the Netherlands in the autumn of 1971 resulted in high air pollution levels in the Rijnmond area as well as in big cities elsewhere. However, only the population in the Rijnmond area complained of malodour and irritation of the airways, possibly as a result of the more complex mixture of hydrocarbons locally available, possibly as a result of coincidence of fumigations and smog formation on the same day now and then, possibly as a result of new chemical hazards due to mixing of sulphur dioxide and ozone (Biersteker, 1975). This latter hazard has recently been studied experimentally by Hazucha and Bates (1975).

3. GENERAL OUTLINE OF THIS EPIDEMIOLOGICAL STUDY IN RELATION TO CHRONIC NON-SPECIFIC LUNG DISEASE (CNSLD).

3.1. INTRODUCTION.

In designing this epidemiological study the following hypothesis on the basic mechanism involved in the effects of air pollution on the airways was considered: effects of air pollution on the airways can be assumed as being a consequence of having some degree of CNSLD. That is to say, air pollution is one of the non-specific exogenous stimuli which can cause respiratory symptoms and bronchial obstruction as a result of an existing hyperreactivity of the bronchus, which is one of the basic mechanisms in the aetiology of CNSLD (see figure 3.2.). In view of this hypothesis the general objectives of the study could be drawn.

3.2. OBJECTIVES OF THE STUDY.

The objectives of the study were as follows:

- a. to study whether there is an association between high levels of air pollution of short duration and an excess in respiratory morbidity, using respiratory symptoms and spirometric values as indices,
- b. to study whether persons with CNSLD differ from persons

without CNSLD as regards a,

- c. to study which air pollutant might be responsible for the effects found.
- 3.3. GENERAL ASPECTS OF CNSLD.
- 3.3.1. DEFINITION OF CNSLD.

In order to improve the national and international comparability of the term CNSLD covering the clinical pictures of bronchial asthma, asthmatic bronchitis, chronic bronchitis, and emphysema strict diagnostic criteria have been developed gradually via various international conferences and symposia (CIBA, 1959; Orie and Sluiter, 1961; WHO, 1963; Orie and Sluiter, 1964; Orie and Van der Lende, 1970).

At present the term CNSLD is accepted as being applicable when at least one of the following symptoms is found: chronic or recurrent cough with expectoration, and paroxysmal or persistent excessive breathlessness, which are not solely attributable to a number of specified diseases (Fletcher, 1961). This description of CNSLD is based upon a standard questionnaire. However, in order to qualify and compare the prevalence of CNSLD in populations it is preferable to apply a more detailed description of the respiratory symptoms and lung function impairments to take into account the severity of CNSLD (Van der Lende et al., 1973^b).

3.3.2. AETIOLOGY OF CNSLD.

Clinical and epidemiological studies have shown that exogenous factors such as smoking and various types of air pollution are of great importance in the development of CNSLD. From clinical studies (Orie et al., 1961), and later from epidemiological findings (Van der Lende, 1969; Van der Lende et al., 1970) it gradually emerged that also endogenous factors, such as age, sex, tendency to allergy, and bronchial hyperreactivity, could have a substantial share in the aetiology of CNSLD. The development of the final clinical manifestation of CNSLD can be hypothesized as is shown in figure 3.2.

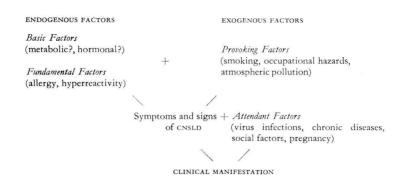


Fig. 3.2. The role of various factors in the development of CNSLD.

(Reproduced from Bronchitis III, p. 55, edited by Orie, N.G.M. and Van der Lende, R., 1970, by permission of the publishers, Royal VanGorcum, Assen)

3.4. DISTURBING FACTORS IN THE STUDY ON THE EFFECTS OF AIR POLLUTION ON THE AIRWAYS.

As the present epidemiological study is concerned with the effects of air pollution on the airways it is of importance in view of the aetiological hypothesis to minimize as far as possible disturbing influences of other exogenous factors, and of endogenous and attendant factors.

In order to achieve this the population under investigation was matched to a control population living under the same meteorological conditions as could be assumed. The matching variables were sex, age, smoking habit, and degree of CNSLD, on which information was gained by using the TNO questionnaire on respiratory symptoms. By studying only women it was tried to avoid occupational hazards and to reduce smoking influences.

No conclusive information on the attendant factors was gained, firstly because some of these factors would be fairly constant throughout the period of observation, secondly because others would be very difficult to objectify in this type of study.

CHAPTER IV

METHODS OF INVESTIGATION

1. INTRODUCTION.

The study was carried out in a sample of the female population in Vlaardingen aged 18-42 years, which was divided into four groups according to the degree of CNSLD. This grouping was based upon the answers to a standard questionnaire on respiratory symptoms and upon spirometric values. As control population women in Ommoord - a relatively low polluted district of Rotterdam - were chosen who were sampled by individual matching. During the year of investigation a day by day follow-up of respiratory symptoms was assessed by using a diary technique. Lung function measurements were done weekly during home visits by trained staff. Air pollution and meteorological data were collected in both areas.

In this Chapter the subsequent methods will be discussed.

2. OUESTIONNAIRE ON RESPIRATORY SYMPTOMS.

For obtaining and comparing anamnestic data in epidemiological studies on respiratory disease (as well as on other diseases) the use of a standard questionnaire by trained interviewers is one of the essentials (Holland et al., 1966; Van der Lende, 1969; Van der Lende and Orie, 1972). For this purpose the first standard questionnaire on respiratory symptoms was devised by the Medical Research Council (MRC) in Great Britain in 1960. After practical experience this prototype was slightly revised in 1966. A special working group of the European Coal and Steel Community (ECSC) brought out a questionnaire in 1961 and in

1967. Both questionnaires were mainly based upon the MRC-questionnaire (Minette et al., 1967).

The TNO Research Unit for Epidemiology of CNSLD of the Dutch Organization for Health Research TNO use in their investigations the TNO-questionnaire on respiratory symptoms which is as comparable with the MRC- and ECSC-questionnaire as could be achieved. A copy of the complete questionnaire is given in Appendix B-1.

The population in this study was subdivided into four groups according to the degree of CNSLD based upon the answers to the TNO-questionnaire and upon the ${\rm FEV}_{1.0}$ expressed as percentage of the VC as follows:

- grade 0: no indication of CNSLD: no respiratory symptoms and no impairment of the lung function, i.e. ${\rm FEV}_{1.0}$ %VC not more than 10% below the predicted value;
- grade 2: moderate degree of CNSLD: moderate respiratory symptoms and/or slight to moderate impairment of the lung function, i.e. $FEV_{1.0}$ %VC 10-20% below the predicted value;
- grade 3: severe degree of CNSLD: severe respiratory symptoms and/or moderate to severe impairment of the lung function, i.e. FEV $_{\rm 1.0}$ %VC more than 20% below the predicted value.

The diagnostic criteria of the different grades of CNSLD were made specially for the requirements of this study. Full details on these criteria are given in Appendix B-2. Later Van der Lende et al. (1975^b) published a further refinement of these criteria for general use in epidemiology of CNSLD.

3. SPIROMETRY.

The vital capacity and the forced expiratory volume in one second were obtained in both populations by means of the LODE Spirograph D 53, which is a water-sealed spirometer and which

meets the standards set by the ECSC (Cara et al., 1961). The inspiratory vital capacity was recorded and immediately after this manoeuvre a forced expiratory volume in one second was recorded. The best values for VC and $\text{FEV}_{1.0}$ of at least three manoeuvres were registered at ambient temperature and pressure saturated with water vapour (ATPS). The advantage of this type of spirometer is that it has a low inertia and resistance of the measuring system, that the inspiratory and expiratory manoeuvres are written on a chart and that the curves can be checked immediately for correctness.

4. POPULATION.

4.1. POPULATION IN VLAARDINGEN.

In 1969 the TNO Research Unit for Epidemiology of CNSLD conducted a survey in a random sample of the population in Vlaardingen aged 15-39 years taken from the Civil Registry. Of the 1590 persons who took part in the survey 795 were women. In 1972 a follow-up study was carried out. Between 1969 and 1972 135 women were lost (134 women moved and 1 woman died) leaving 660 women to take part in this second survey. According to the mentioned diagnostic criteria these women were subdivided into the four grades of CNSLD. Of these 660 women 536 (81.2%) were willing to take part in this study, the age range now being 18-42 years. Table 4.1. shows that there is only a slight difference between the percentages of women who were willing to take part in the different grades of CNSLD, which proved not to be significant using a chi-square test on a 2 x 4 contingency table (0.1 < P < 0.2). So there is no indication that the willingness to take part in the study has been influenced by degree of CNSLD.

As the data of the 1972-survey were not available in time to be used in the organization of this study, the subdivision of the women into the four groups according to the degree of CNSLD was based upon the answers to the questionnaire taken in 1969 and upon the spirometric values from that survey.

Table 4.1. Percentage of women who were willing to take part in the study according to degree of CNSLD.

DEGREE	NUMBER OF WOMEN	NUMBER OF WO	MEN
OF	IN 1972 LEFT FROM	WILLING TO T	AKE PART
CNSLD	THE SURVEY IN 1969	IN THIS STUD	Y
	N	Nt	8
grade 0	316	252	79.4
grade l	193	163	84.5
grade 2	141	115	81.6
grade 3	10	6	60.0
Total	660	536	81.2

The total number of 536 women who were willing to take part outnumbered the number of about 400 women that was set as a total that could be included in the study with regard to manpower and finances. Consequently, a reduction had to be made and that only in the subgroups grade 0 and 1 because of their numbers. This was done by drawing lots. After drawing lots the numbers were as follows: 150 women in grade 0, 155 women in grade 1, 115 women in grade 2, and 6 women in grade 3, making up a total of 426 women. However, in the matching procedure 30 women had to be left out (see section 4.3.) so the definitive Vlaardingen population that entered the study consisted of 396 women and was subdivided as follows:

grade 0: 150 women, grade 1: 128 women, grade 2: 112 women, grade 3: 6 women.

4.2. POPULATION IN OMMOORD.

In Ommoord the vast majority of the inhabitants of this district of Rotterdam are registered with the Health Centre's group practice of six general practitioners. In 1972 it was found that the registers of this group practice had 3020 women in the age group 18-42 years. All of these women were sent a letter out-

lining the study very briefly and asking whether they were willing to take part.

Enclosed was a very short questionnaire containing the major six questions on respiratory symptoms of the TNO-questionnaire in order to obtain an estimate of the number of women in each grade of CNSLD.

The short questionnaire was as follows:

- Question 1. Do you usually cough during the day -or at night-for as much as three months each year?
 - 2. Do you usually bring up phlegm during the day -or at night- for as much as three months each year?
 - 3. In the past three years have you had a period of cough and phlegm lasting for three weeks or more?
 - 4. Are you troubled by shortness of breath when walking up a staircase?
 - 5. Does your chest ever sound wheezing?
 - 6. Have you ever had attacks of shortness of breath with wheezing (asthmatic attacks)?

The criteria for a provisional grading were:

grade 0: negative answers to all questions,

grade 1: one or two positive answers to the questions 1-5, and a negative answer to question 6,

grade 2: three to five positive answers to the questions 1-6, grade 3: positive answers to all questions.

Of the 1169 women who replied 1048 women were willing to take part in the study. The provisional grading of these 1048 women was as follows: 604 women in grade 0, 332 women in grade 1, 102 women in grade 2, and 10 women in grade 3.

In the provisional grade 0 group in Ommoord the age distribution differed from that in the original sample in grade 0 in Vlaardingen. In view of the future matching it was decided to take a sample per age group by drawing lots in order to equalize as far as possible the numbers in the different age-groups in both subgroups grade 0. (See table 4.2.).

Table 4.2. Age distribution of the women in subgroup grade 0 according to area of residence.

AGE		MBER OF	WOMEN IN G		MOORD		
	in orig	jinal	willi	ng to	after	draw-	
	sample		take	part	ing 1	lots	
	$N_{t} = 3$	316	$N_{t} =$	601 ¹⁾	$N_{t} =$	309	
	n	90	n	0/0	n	90	
18-24 yrs	122	38.6	115	19.2	115	37.2	
25-30 yrs	65	20.6	210	34.9	65	21.0	
31-36 yrs	63	19.9	143	23.8	63	20.4	
37-42 yrs	66	20.9	133	22.1	66	21.4	

¹⁾ age unknown in 3 of the 604 women.

Still only a provisional grading was known in the Ommoord population consisting now of a total of 753 women. In order to arrive at a definitive grading according to the grading criteria used in Vlaardingen additional investigation was needed. Of the 753 women called for further investigation 626 women turned up. Apart from lung function tests and X-ray examination, the women were asked a few personal questions particularly on having a job. This revealed that 488 women were living and staying most days of the week in Ommoord. Then it was tried to visit these 488 women at home in order to take the TNO- questionnaire on respiratory symptoms. This was done by two trained health visitors. In total 463 women could be interviewed and according to the mentioned diagnostic criteria they could be subdivided as follows: 184 women in grade 0, 137 women in grade 1, 131 women in grade 2, 11 women in grade 3. When matched pairs were formed some of the women had to be left out and the definitive numbers in each grade of CNSLD were consequently equal to those in Vlaardingen, namely:

grade 0: 150 women, grade 1: 128 women,

grade 2: 112 women, grade 3: 6 women.

4.3. MATCHING.

To eliminate the effects of factors that may confound the analysis of study variables the method of individual matching (Mac-Mahon and Pugh, 1970) was applied.

The factor CNSLD - apart from being a study variable - was considered to be also a confounding factor, because different prevalences of CNSLD in the populations under investigation as well as a possible different reaction pattern of the subjects in the different grades of CNSLD to exposure to air pollution could influence the results.

The other confounding factors in this study were thought to be smoking habit and age.

The criteria used for the classification of the subjects in the grades of CNSLD are already described above. The smoking habit was categorized as follows: present smoker, non-smoker, and exsmoker (i.e. stopped smoking for at least one month) using the data from the questionnaires taken in 1972. With regard to age it was tried to match on the years of age per the first of October 1972, or, if this could not be achieved, as close as possible with a maximum age-difference of five years.

To each individual of the study population a control was selected with respect to degree of CNSLD, smoking habit, and age. The matching procedure is tabulated in table 4.3.

As can be seen from this table 30 women in Vlaardingen were lost because no suitable control could be found either because of a shortage of controls in the subgroups or because no matching on age could be achieved.

Consequently 396 pairs of women entered the study.

It should be mentioned here that a disadvantage of applying this method is that when data of a control are missing during one or more periods of the investigation the data of the partner are also of no value during that time.

Table 4.3. Schematized matching procedure of the women in Vlaardingen and Ommoord on degree of CNSLD, smoking habit, and age.

DEGREE	SMOKING	NUMBER OF WOMEN				NUMBER	
OF	HABIT	AVAILABLE		LOST IN		OF	
CNSLD		FOR MA	ATCHING	PROCEDURE		MATCHED	
		V1.	Om.	Vl.	Om.	PAIRS	
grade 0	non-smoker	69	81	0	12	69	
	smoker	65	69	0	4	65	
	ex-smoker	16	34	0	18	16	
grade 1	non-smoker	52	51	3	2	49	
	smoker	86	63	24	1	62	
	ex-smoker	17	23	0	6	17	
grade 2	non-smoker	31	40	0	9	31	
	smoker	72	71	3	2	69	
	ex-smoker	12	20	0	8	12	
grade 3	non-smoker	3	4	0	1	3	
	smoker	3	7	0	4	3	
	ex-smoker	0	0	0	0	0	
Total		426	463	30	67	396	

5. CONDUCT OF THE SURVEY.

5.1. DIARY TECHNIQUE.

In order to assess the daily prevalence of respiratory symptoms a diary technique was applied. The diary was specially designed for this study, and in figure 4.1. a copy of a diary page is shown.

For each day of the week questions were asked about the absence or presence of respiratory symptoms i.e. coughing, phlegm, dyspnoea, and wheezing, and of eye-irritation. Although this latter symptom is not a respiratory one it was introduced because it is often encountered in periods of photochemical smog.

The questions had to be answered by ticking either the NO-column or the YES-column. The YES-column was subdivided into the following five possibilities represented in a code:

- -- = much less than usual
 - = less than usual
 - $0 = as usual^{1}$
 - + = more than usual
- ++ = much more than usual
- as usual referred to the presence of a symptom for at least five days of the week.

The home visitors handed out the diaries to the women and instructed them personally. Besides, in each diary was a separate sheet with directions for use and a few examples. Every three months new diaries were handed out to minimize the risk of loosing data. To make a change for the women, the diaries had a special coloured cover for each season.

The subjective data gained in this way were thought to be very valuable with respect to the objectives of this study, because Lawther et al. (1970) reported that the results of their diary studies proved useful in assessing the relative importance of pollution and weather in producing exacerbations of "bronchitis".

5.2. HOME VISITS.

In addition to the subjective data collected by means of diaries, the lung function - as an objective parameter - was measured weekly at the women's homes (see section 5.3.). The home visits were made by trained female staff and organized in such a way that each person was visited weekly on the same time of the same day by the same home visitor, and that the members of a matched pair were visited on the same day of the week. A scheme for the visits was made at random in Vlaardingen. If for some reason a person wished to be visited on another day of the week, the home visit of her partner switched also to that day of the week. An added advantage of these home visits was the possibility to check whether the diary was filled in properly during the previous week and to collect phlegm that was

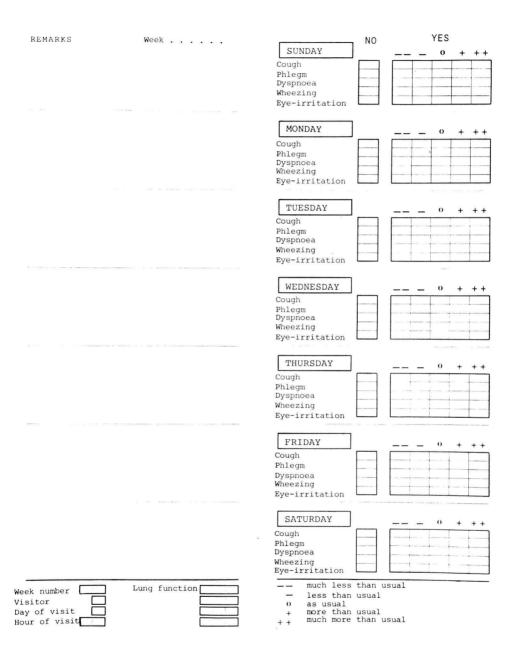


Fig. 4.1. Copy of a diary page.

brought up in the first hour after getting up on the day of the visit (see section 5.4.).

Apart from gaining data the home visits were considered to be very important as a stimulus to arrive at an optimum cooperation of the women, especially because Lawther et al. (1970) found that people loose interest in keeping a day by day record of their symptoms, particularly when they do not have complaints.

5.3. LUNG FUNCTION MEASUREMENTS.

Lung function measurements were carried out with a portable spirometer. For this purpose the Monaghan Pulmonary Function Analyzer Model M403 was chosen as it appeared at first instance very reliable and suitable. This electronic spirometer has a thermistor wire in its mouthpiece which is held at a constant temperature of $200\text{-}220^{\circ}$ centigrades. When an airflow goes across this thermistor the temperature tends to decrease and the voltage needed to keep the thermistor at constant temperature is proportional to the flow rate. The flow is integrated over time to give volume. The device is calibrated for air saturated with water vapour at 37° centigrades.

A clinical evaluation of this spirometer showed no significant difference in FVC and $\text{FEV}_{1.0}$ as compared with a Collins 13.5 liter water-sealed spirometer (Cox et al., 1973).

A total of six Monaghan spirometers were made available for this study by SANDOZ, Uden, the Netherlands (the representatives of The Monaghan Company, Denver, Colorado), so that each member of the visiting team had one Monaghan spirometer and the serial weekly lung function tests were done with the same instrument in the same individuals.

The instruments were used as calibrated by the factory. However, the instruments were gauged at intervals to allow for differences between instruments. This gauging was done on the peak expiratory flow rate connecting the inflow side of the mouthpiece to the Godard rotameter, using calibrated flows from 135 to 600 liters per minute. After performing a forced expiratory manoeuvre the FVC, FEV_{1.0}, and PEF (Peak Expiratory Flow) can be read immediately by pressing the respective push-

button. In this study at least three forced expiratory manoeuvres were done. The values for FVC and $FEV_{1..0}$ were taken from the reading with the best FEV_{1} and noted in the diary. At the end of each day the mouthpiece was cleaned as deposits of particles on the thermistor affects its proper functioning. However, during the first months of the survey the instruments proved to be liable to electrical disturbances and failures presumably because they were carried around and switched on and off very often. Therefore, after three months the Wright Peak Flow meter was also introduced because this instrument was proven to be suitable and reliable in epidemiological studies (Tammeling et al., 1969). Each home visitor had one Peak Flow meter and these meters were also gauged at intervals for flow as described with respect to the Monaghan spirometer. It was hoped that weekly lung function measurements could attribute to the objectives of the study as it was organizationally impossible to do measurements more frequently during the week. It is however possible that the weekly lung function values would not shed a light on an association between lung function and air pollution.

5.4. SPUTUM COLLECTION.

The home visits being organized gave a good opportunity to collect phlegm as well, if any. At the start of the survey the women were handed out little sterile sputum jars which could contain up to 50 ml., and were asked to collect phlegm that was brought up in the first hour after getting up on the day of the home visit. In case any phlegm was brought up the respective women received clean jars.

The home visitors estimated the volume, made a judgement on the macroscopic aspect i.e. mucous, muco-purulent, or purulent, and noted the results in the diary.

In this way it was attempted to check whether an agreement existed between the answer on the question on phlegm production and the handing in of sputum on the day of the home visit, and to determine to what degree intercurrent bacterial respiratory infections occurred.

6. AIR POLLUTION DATA.

In Vlaardingen - being one of the most polluted towns in the Rijnmond area - four official bodies had air pollution monitoring stations in operation in 1973, namely the "Dienst Centraal Milieubeheer Rijnmond", the "Keuringsdienst van Waren", the "Rijksinstituut voor de Volksgezondheid", and "TNO". Most of the Vlaardingen data needed were kindly supplied by these bodies to the TNO Research Institute for Environmental Hygiene. The few remaining lacking data were additionally measured by this Institute.

In Ommoord there was only one station measuring sulphur dioxide and standard smoke (by the "Keuringsdienst van Waren"). Therefore, the "Rijksinstituut voor de Volksgezondheid" specially set up a monitoring station in the top floor of the Health Centre in Ommoord to supplement the lacking information.

All data collection and data reduction for ozone and nitrogen oxides was done by "TNO".

The following air pollutants were measured and used as indicators of the general level of pollution in the area in order to try and find an association between air pollution and respiratory symptoms and lung function values: sulphur dioxide, standard smoke, nitrogen oxides, ozone, and aldehydes. Initially sulphuric acid and hydrocarbons were also intended to be included, but measurements on these pollutants could not be carried out because of technical reasons.

The air pollution data of special interest for this study were daily average and daily maximum values, with the essential requirement that the data in Vlaardingen and Ommoord would be comparable.

Sulphur dioxide was measured 24-hourly and 1-hourly. The 24-hourly method of measuring SO_2 was based on absorption in a dilute hydrogen peroxide solution, followed by acid titration, which is a standard OECD (Organization for Economic Cooperation and Development) method (OECD, 1964). The 1-hourly measurements of SO_2 were done by an SO_2 measuring instrument made by Philips, Eindhoven, the Netherlands, and the method was based upon a

coulometric 1) principle.

In Vlaardingen the 1-hourly values were produced automatically and the mean value of the data received from seven measuring stations was calculated. If at a particular station more than seven 1-hourly values were missing, then the day's data from that station were considered as missing. If data from more than one station were missing, no values for that day were given. In Ommoord SO₂ 1-hourly values had to be read manually from the graph on a strip chart recorder. Unfortunately failures in registration on the strip chart recorder occurred and consequently all these data had to be considered as inaccurate. Standard smoke was measured 24-hourly. This was done by means of reflectometry²) on standard filter paper (standard OECD method).

Nitrogen oxides and ozone were measured 1-hourly. The concentrations of these pollutants were measured by means of automatic measuring instruments made by Enraf Nonius, Delft, the Netherlands, based on colorimetric 3 principles. Whether day's data were missing was decided by the same procedure as was used for the 1-hourly SO_2 values.

Aldehydes were measured 24-hourly and 8-hourly separately by the MBTH method (methyl benzothiazolone hydrazone) (Hauser and Cummins, 1964).

The concentrations of aldehydes as found in Ommoord in the first six months of the survey were thought to be caused by - as it later appeared - the recently tarred roof of the Health Centre from which aldehydes were liberated especially during warm and

¹⁾ Coulometry: chemical analysis performed by determining the amount of a substance released in an electrolysis by measuring the number of coulombs used. The coulomb is the practical SI unit of electric charge equal to the quantity of electricity transferred by a current of one ampère in one second.

SI: Système International d'Unités.

 $^{^{2)}\}operatorname{Reflectometry:}$ method of measuring the reflectance of radiant energy.

³⁾ Colorimetry: chemical analysis by comparison of a liquid's colour with standard colours.

Table 4.4. The air pollution data collected in Vlaardingen and Ommoord which were used in the analysis.

AIR POLLUTANT	DURATION OF	DATA USED IN	OFFICIAL BODY WHO'S MONITORING
	SAMPLING	THE ANALYSIS	STATION SUPPLIED THE DATA
Sulphur dioxide	24 hours	24-hour average	Keuringsdienst van Waren (Food Inspection Department)
Standard smoke	24 hours	24-hour average	Keuringsdienst van Waren (Food Inspection Department)
Nitrogen monoxide	1 hour	daily average daily maximum	Rijksinstituut voor de Volksgezondheid (National Institute of Public Health)
Nitrogen dioxide	1 hour	daily average daily maximum	Rijksinstituut voor de Volksgezondheid (National Institute of Public Health)
Ozone	1 hour	daily average daily maximum	Rijksinstituut voor de Volksgezondheid (National Institute of Public Health)
Aldehydes	24 hours	24-hour average	TNO Instituut voor Milieuhygiene en Gezondheidstechniek (TNO Research Institute for Environ- mental Hygiene)
Aldehydes	8 hours (8.00 a.m 4.00 p.m.)	8-hour average	TNO Instituut voor Milieuhygiene en Gezondheidstechniek (TNO Research Institute for Environ- mental Hygiene)

sunny spells. Consequently, the data on ozone were probably also unreliable. Therefore, during the second half of the survey air was sampled from another spot of the building to measure aldehydes and ozone.

In table 4.4. the air pollution data collected in Vlaardingen and Ommoord which were used in the analysis are summarized.

7. METEOROLOGICAL DATA.

As it was assumed that Vlaardingen and Ommoord were exposed to similar meteorological conditions an attempt was made to objectify this. In both areas daily maximum and minimum values were collected on temperature and relative humidity i.e. the ratio of quantity of water vapour present in the atmosphere to the quantity of water vapour which would saturate at the existing temperature. The measurements on temperature and on relative humidity were carried out in cooperation with the KNMI (Royal Dutch Meteorological Institute) which kindly lent the TNO Research Institute for Environmental Hygiene two thermographs and two hygrographs to be placed in Vlaardingen and Ommoord.

CHAPTER V

PRESENTATION OF THE DATA AND METHODS OF STATISTICAL ANALYSIS

1. INTRODUCTION.

The way this study was set up - a study population matched to a control population - constrains an analysis of differences in daily symptom prevalence and weekly peak flow values between the population in Vlaardingen and Ommoord. The subjects in the groups CNSLD grade 0 (no CNSLD) and grade 1 (slight degree of CNSLD) in Vlaardingen were subsampled from the original sample (see Chapter IV, section 4.1.), so that the final sample should be considered as a stratified sample from the Vlaardingen women aged 18-42 years. Because the group CNSLD grade 3 consisted of only three pairs of women, it was decided to combine the categories CNSLD grade 2 and grade 3 (moderate and severe degree of CNSLD) in the analysis as no reductions were made in their original samples.

To look for a possible association between high air pollution levels and affection of the airways, the differences in symptom prevalence and lung function values between the Vlaardingen and Ommoord members of the pairs on days when the air pollution levels were high in Vlaardingen and low in Ommoord were compared with the differences on days when the reverse occurred. To take into account a possible manifestation of effects shortly after a high pollution level had occurred, the analysis was also carried out using a time lag of one day and two days. The methods which were applied in selecting these days of which the data obtained in the population were analyzed are described

in section 3.2. of this Chapter.

2. PRESENTATION OF THE DATA.

2.1. DIARIES.

For each question in the diary a scoring system was made ranging from 0 to 5 as follows:

Answer					Score
NO					0
YES:	much	less	than	usual	1
	less	than	usual		2
	as us	sual			3
	more	than	usua	L	4
	much	more	than	usual	5

In using this scoring system the answers in the diary were given a weight which will reflect the severity of a symptom present on that particular day.

For each day the difference in score of the Vlaardingen member minus the Ommoord member of each pair was taken for each symptom. Next, for each day the mean of these score-differences in all pairs within each CNSLD category was calculated for each symptom. These daily means are plotted in the figures C 1 to 5 in Appendix C. In the TABLES C-1.1. to C-5.3. the actual values of the data presented in these figures are given, and also the number of pairs from which the data were obtained.

2.2. LUNG FUNCTION MEASUREMENTS.

As has already been mentioned in Chapter IV, section 5.3., the Monaghan electronic spirometer M403 is probably not the most suitable instrument for this type of investigation. The lung function values obtained in a person on a number of successive weeks with the same Monaghan spirometer and by the same observer showed rather large fluctuations. In a comparison of the

peak flow values 1) measured with the Monaghan spirometer and the Wright Peak Flow meter large differences were also observed. Based upon 1834 pairs of values obtained during 22 weeks by the same observer and with the same Monaghan spirometer and Wright Peak Flow meter, an estimated correlation coefficient of 0.69 was derived, which was thought to be very low for parallel measurements. If, based upon these 1834 pairs of observations, a linear prediction formula is derived (using the Wright peak flow value to predict the Monaghan peak flow value) the estimated standard deviation of the error is as high as 59.7 l/min. Consequently, the Monaghan measurements were found insufficiently reliable and it was thought best to abstain from the data obtained with the Monaghan spirometer and to analyze only the data obtained with the Wright Peak Flow meter. The following method of analyzing the peak flow values was ap-

The following method of analyzing the peak flow values was applied to relativize the absolute differences, which are for example influenced by the individual's height.

For each member of a pair the mean of all weekly peak flow values was calculated. Next, the difference between each single observation and the calculated mean in a person was formed, and finally, the ratio of this difference and the calculated mean was determined ("relative deviation from the mean", or "percentage difference from the mean"). Then for each pair the difference in this percentage of the Vlaardingen member minus the Ommoord member was taken for each day of the year that peak flow values were obtained in both members. Of the pairs who performed a lung function test on a same day the mean of the differences in "percentage difference from the mean" was determined for that day, according to degree of CNSLD.

In figure C 6 in Appendix C these daily means are plotted, of

which the actual values are given in the TABLES C-6.1. to C-6.3. It should be mentioned that no lung function tests were carried out on Saturdays and Sundays, and that by the circumstances the

Normal peak flow values in healthy adult females range from about 300 to 500 liters/min., depending on height.

peak flow values measured by means of the Wright Peak Flow meter were only available from day 92 onwards, providing data on in total 165 days.

2.3. AIR POLLUTION DATA.

The following air pollution data -which were available both in Vlaardingen and Ommoord- were used in the analysis: concentrations of sulphur dioxide (24-hour averages), standard smoke 1) (24-hour averages), nitrogen monoxide (daily averages and maxima), nitrogen dioxide (daily averages and maxima), ozone (daily averages and maxima), and aldehydes (8-hour and 24-hour averages). In the figures D 1 to 10 in Appendix D these data expressed as micrograms per cubic meter are plotted according to area of residence for each air pollutant separately. The actual values which correspond with the graphs are given in the TABLES D-1. to D-10.

As mentioned in Chapter IV, section 6., the daily maximum values of sulphur dioxide during the whole year, and the data on ozone and aldehydes during the first six months in Ommoord were too unreliable to take into account in the analysis. Consequently, these data obtained in Vlaardingen had also to be left out in the analysis.

2.4. METEOROLOGICAL DATA.

The data on temperature (daily maxima and minima) and on relative humidity (daily maxima and minima) that were collected in Vlaardingen and Ommoord are plotted for the year of investigation according to area of residence in the figures E l to 4 in Appendix E. The actual values which correspond with the graphs are given in the TABLES E-1. to E-4.

The method of measuring smoke by means of standard paper filters gives lower readings than when using fibreglass filters.

3. METHODS OF STATISTICAL ANALYSIS.

3.1. INTRODUCTION.

The matched pairs in each category of CNSLD are considered as being a random sample of the total population of possible pairs of women in the age-group 18-42 years in that category of which the one member lives in Vlaardingen and the other in Ommoord. Because of the applied method of individual matching no allowance had to be made for differences in age and smoking habit between the members of a pair.

It was tested whether or not the prevalence (severity) of the symptoms was higher and whether or not the peak flow values were lower on days with high air pollution levels than on days with low air pollution levels. This was done in each CNSLD category (grade 0, 1, and 2+3) for each smoking category (smokers, non-smokers, and ex-smokers), so for nine "CNSLD - smoking cells" separately. Within each CNSLD category the same test was applied to all smoking categories combined, and within each smoking category to all CNSLD categories combined. Finally, the same test was applied to all nine CNSLD - smoking cells combined. A test on a combination of categories was applied since it may reveal an "effect" which is present in all composing categories but not strong enough to yield a significant result when tested in the categories separately. If in any combined problem a significant result was found, it was tested whether the "effects" differed between separate categories.

3.2. THE SELECTION OF THE DAYS FOR THE ANALYSIS.

As already mentioned in the Introduction of this Chapter, one or more days had to be selected when levels of air pollution were high in Vlaardingen and low in Ommoord, and analogously one or more days when levels of air pollution were low in Vlaardingen and high in Ommoord.

As the levels of the individual air pollutants are used as indicators of the general level of air pollution, days were

selected for each air pollutant separately. Three methods (A, B, and C) were used in the selection procedure, yielding for each air pollutant a set of selected days in category A, B, or C depending on the method. The categories A and B served for the analysis of the data on the symptoms. Category B was introduced, because - according to method A - some extremely polluted days in Vlaardingen would otherwise have been excluded from the analysis. Category C served for the analysis of the data on the peak flow measurements.

The selection was carried out by means of percentiles 1) of concentration values measured during the year of 1973, computed for the individual air pollutants in Vlaardingen and Ommoord separately.

The methods of selecting days were for each air pollutant: Method A, selecting days with "high pollution levels" (Category A):

- 1. the concentration in Vlaardingen being above the $95^{\rm th}$ percentile of Vlaardingen and the concentration in Ommoord equal to or below the $70^{\rm th}$ percentile of Ommoord being at least 25% below the concentration in Vlaardingen;
- 2. the concentration in Ommoord being above the $95^{\rm th}$ percentile of Ommoord and the concentration in Vlaardingen equal to or below the $70^{\rm th}$ percentile of Vlaardingen being at least 25% below the concentration in Ommoord.

Method B, selecting days with "peak pollution levels"
(Category B):

- 1. the concentration in Vlaardingen being above the 99th percentile of Vlaardingen and the concentration in Ommoord at least 25% below the concentration in Vlaardingen;
- 2. the concentration in Ommoord being above the 99th percentile of Ommoord and the concentration in Vlaardingen at least 25% below the concentration in Ommoord.

¹⁾Percentile: a value which is taken such that a certain percentage of a set of values is below or equal to it.

Thus, for example, the 95th percentile means 95 percent of the observations is below or equal to the 95th percentile.

Method C, selecting two days (see section 3.4.) from category A or B (Category C):

- 1. the concentration in Vlaardingen being highest;
- 2. the concentration in Ommoord being highest.

The days in category C were selected from day 92 onwards, excluding Saturdays and Sundays, as otherwise no peak flow values were available.

In addition to these criteria it was required that in each category a time interval of at least three days existed between the days in group 1. and the days in group 2., in view of a possible ebbing or lagging of "effects".

Because of this possibility the analysis described in the sections 3.3. and 3.4. was also carried out for the days that are one day later than those in category A, B, and C, and for the days that are two days later than those in these categories.

3.3. TESTING THE INFLUENCE OF AIR POLLUTION ON RESPIRATORY SYMPTOMS AND IRRITATION OF THE EYES.

The analysis described in this section was performed for the selected days in category A as well as for the selected days in category B. Whenever "selected days" are mentioned in this section, either those in category A or in category B are meant. Because matched pairs were used in the investigation, only differences in scores of a respiratory symptom or irritation of the eyes between the members of a pair are considered, disregarding the scores of the separate members of a pair. The score of the Vlaardingen member minus the score of the Ommoord member of one pair on a particular day will in the following be denoted by the "score-difference".

In testing the influence of a high level of an air pollutant on a certain respiratory symptom or on the irritation of the eyes, for each pair the mean score-difference was calculated over the selected days with a high level in Vlaardingen. The same was done over the selected days with a relatively low level in Vlaardingen (a high level in Ommoord). If the former mean score-difference in a pair was larger than the latter it was said that this pair acted in a positive way. If, however the latter

mean score-difference was larger, this pair was said to have acted in a negative way.

Now in each CNSLD category (grade 0, 1, and 2+3) for each smoking category separately (smokers, non-smokers, and exsmokers) the number of "positive" and "negative" pairs was counted. By means of the sign test the null-hypothesis of no "effect" of air pollution (i.e. equal probabilities for a random pair to act in a positive or in a negative way) was tested against a positive "effect" (i.e. a larger probability to act in a positive way).

Combining categories.

Because it was found desirable to make one statement for each CNSLD category concerning the influence of an air pollutant on the respiratory symptoms or on the irritation of the eyes, the smoking categories within a CNSLD category were combined (numbers in different smoking categories were added) and a sign test was performed for each of the three CNSLD categories separately. Analogously, the CNSLD categories within one smoking category were combined (by adding the numbers in the different CNSLD categories) and a sign test was performed for each of the three smoking categories separately.

Finally all nine CNSLD — smoking cells were combined (by adding the corresponding numbers) and the influence of an air pollutant on a particular respiratory symptom or on the irritation of the eyes was tested again by means of the sign test.

Testing differences in "effect" between categories.

If an association was found between an air pollution variable and a particular symptom when all nine CNSLD — smoking cells were combined, it was tested whether the "effect" differed between CNSLD categories or between smoking categories. Let us denote by \mathbf{p}_{hi} the probability of a "positive effect" for a random pair in CNSLD category i (i=0,1,2, the latter including category 3) and smoking category h (h=1 means smokers, h=2: non-smokers, h=3: ex-smokers).

The hypothesis of no difference between the CNSLD categories:

$$p_{ho} = p_{h1} = p_{h2}$$
 (h=1,2,3)

was tested against the alternative:

$$p_{ho} \le p_{h1} \le p_{h2}$$
 (h=1,2,3)

with at least one inequality strict, according to Schaafsma (1966), Chapter 5.6, formulae (5.20), (5.8), and (5.6). The hypothesis of no difference between the smokers and non-smokers:

$$p_{1i} = p_{2i} \quad (i=0,1,2)$$

was tested against the alternative:

$$p_{1i} \le p_{2i}$$
 (i=0,1,2) or $p_{1i} \ge p_{2i}$ (i=0,1,2)

with at least one inequality strict, by using a two-sided version of the test described in Schaafsma (1966), Chapter 5.6, formulae (5.20), (5.8) and (5.6).

If a significant "effect" was found only in smoking category h (in which the CNSLD categories were combined), it was tested whether the "effect" differed between the CNSLD categories within this smoking category. The hypothesis and the alternative are similar to the above case, but restricted to smoking category h. The performance of the test is also similar.

If a significant "effect" was found only in CNSLD category i (in which the smoking categories were combined), it was tested whether the "effect" differed between the smokers and non-smokers. The numbers of "positive" and "negative" pairs in these two smoking categories were arranged in a 2 x 2 contingency table and testing was performed by means of Fisher's exact test.

3.4. TESTING THE INFLUENCE OF AIR POLLUTION ON THE PEAK FLOW.

The peak flow measurements were carried out once a week, on the same day in both members of a pair. No measurements were carried out on Saterdays and Sundays.

To compare the fluctuations in the peak flow values of one person with those of another person, it was thought best to use the relative deviation of a peak flow value from a person's average and not the absolute values. Therefore, for each person

for each day the relative deviation (in the following called "the score") from the person's average was calculated. Having matched pairs, only score-differences were considered. By the score-difference is meant: the score of the Vlaardingen member minus the score of the Ommoord member of a pair on a particular day.

Comparing "effects" on several days with high levels of air pollution in Vlaardingen with "effects" on several days with relatively low levels of air pollution in Vlaardingen could lead to the comparison of score-differences between days, in which partly the same pairs and partly different pairs participated. Because a statistical analysis would then become extremely difficult, if not impossible, it was decided to select only two days, one with a very high level of air pollution in Vlaardingen, and another one with a relatively low level of air pollution in Vlaardingen (see section 3.2., Category C).

Now, two cases have to be distinghuished: the one case in which both selected days are on the same day of the week, and the other case in which both days are on different days of the week. In the first case the same pairs are involved on both days, whereas in the second case different pairs are involved.

Case I: both selected days are on the same day of the week. For each pair participating on both days the score-difference on the polluted day in Vlaardingen minus the score-difference on the relatively low polluted day in Vlaardingen was calculated. It is assumed that with each participating pair a random variable is associated of which this value is an outcome. The random variables are considered mutually independent and normally distributed, with equal but unknown variance. Let us denote the expected value by $\mu_{\mbox{\scriptsize hi}}$ if the pair belongs to CNSLD category i (i=0,1,2, the latter including category 3) and smoking category h (h=1,2,3, h=1 means smokers, h=2: non-smokers, h=3: ex-smokers). In each CNSLD and smoking category the hypothesis of no effect:

was tested against the alternative of a negative effect on the peak flow:

$$\mu_{h,i} < 0$$

by means of Student's one-sample t test.

The score-difference of a pair on one of the selected days is considered as the outcome of a normally distributed random variable. The random variables associated with different pairs are considered mutually independent with a variance which is equal for all pairs and for both days. The expected value is denoted by $\mu_{\rm hi}^{~(1)}$ if the score-difference is considered of a pair belonging to CNSLD category i and smoking category h (i and h as in case I) on the polluted day in Vlaardingen, and by $\mu_{\rm hi}^{~(2)}$ on the relatively low polluted day in Vlaardingen. In each CNSLD and smoking category the hypothesis of no effect:

$$\mu_{hi}^{(1)} = \mu_{hi}^{(2)}$$

is tested against the alternative of a negative effect:

$$\mu_{hi}^{(1)} < \mu_{hi}^{(2)}$$

by means of Student's two-sample t test.

Combining categories.

Case I.

It was found desirable to combine the different smoking categories within a CNSLD category. In each CNSLD category i the hypothesis of no effect:

$$\mu_{hi} = 0 \quad (h=1,2,3)$$

was tested against the alternative:

$$\mu_{hi} \leq 0 \ (h=1,2,3)$$

with at least one inequality strict. The test was performed by means of the theory of Schaafsma (1966), Chapter 4.2, theorem 2. Analogously, the CNSLD categories within a smoking category were combined. In each smoking category h the hypothesis of no effect:

$$\mu_{bi} = 0 \quad (i=0,1,2)$$

was tested against the alternative:

$$\mu_{h,i} < 0 \quad (i=0,1,2)$$

with at least one inequality strict. The test was performed by means of the above mentioned theory of Schaafsma. Finally, all nine CNSLD — smoking cells were combined and the hypothesis:

$$\mu_{h,i} = 0$$
 (i=0,1,2; h=1,2,3)

was tested against the alternative:

$$\mu_{h,i} \leq 0$$
 (i=0,1,2; h=1,2,3)

with at least one inequality strict, by means of the above mentioned theory of Schaafsma.

Case II.

The combination of different smoking categories within CNSLD category i, now leads to the hypothesis:

$$\mu_{hi}^{(1)} = \mu_{hi}^{(2)} \quad (h=1,2,3)$$

and the alternative:

$$\mu_{hi}^{(1)} \leq \mu_{hi}^{(2)} \quad (h=1,2,3)$$

with at least one inequality strict. Here the theory of Schaafsma (1966), Chapter 5.2, theorem 2, was applied. Combining different CNSLD categories within a particular smoking category h leads to the hypothesis:

$$\mu_{hi}^{(1)} = \mu_{hi}^{(2)} \quad (i=0,1,2)$$

and the alternative:

$$\mu_{hi}^{(1)} \leq \mu_{hi}^{(2)} \quad (i=0,1,2)$$

with at least one inequality strict. Again the theory of Schaafsma (1966), Chapter 5.2, theorem 2, was applied. Finally, all nine CNSLD — smoking cells were combined and the hypothesis:

$$\mu_{hi}^{(1)} = \mu_{hi}^{(2)}$$
 (i=0,1,2; h=1,2,3)

was tested against the alternative:

$$\mu_{hi} \stackrel{(1)}{\leq} \mu_{hi} \stackrel{(2)}{=} (i=0,1,2; h=1,2,3)$$

with at least one inequality strict, by applying the same theory of Schaafsma.

Testing differences in "effect" between categories.

If a negative "effect" was found significant in the combined test on a smoking category h, or in the combined test on all nine cells, it was tested whether the "effect" increased with degree of CNSLD.

Case I: in this case the hypothesis of no difference is formulated as:

$$\mu_{h0}$$
 = μ_{h1} = μ_{h2} (only for smoking category h or for h=1,2,3 respectively)

and the alternative of an increasing effect:

$$\mu_{h2} \stackrel{<}{=} \mu_{h1} \stackrel{<}{=} \mu_{h0}$$
 (only for smoking category h or for h=1,2,3 respectively)

with at least one inequality strict. A test for this situation is again given by Schaafsma (1966) Chapter 5.2, theorem 2.

Case II: here the hypothesis of no difference is formulated as:

$$\mu_{h0}^{(1)} = \mu_{h1}^{(1)} = \mu_{h2}^{(1)}, \; \mu_{h0}^{(2)} = \mu_{h1}^{(2)} = \mu_{h2}^{(2)} \; \text{(only for smoking category h or for h=1,2,3 respectively)}$$

and the alternative of an increasing effect on both days:

$$\mu_{h\,2} \stackrel{(1)}{\leq} \mu_{h\,1} \stackrel{(1)}{\leq} \mu_{h\,0} \stackrel{(1)}{,} \mu_{h\,0} \stackrel{(2)}{\leq} \mu_{h\,1} \stackrel{(2)}{\leq} \mu_{h\,2} \stackrel{(2)}{\leq} (\text{only for smoking category h}$$
 or for h=1,2,3 respectively)

with at least one inequality strict. This test was also performed according to Schaafsma (1966) Chapter 5.2, theorem 2.

If a negative "effect" was found significant in the combined test on a CNSLD category i, or in the combined test on all nine

cells, it was tested whether the "effect" differed between smokers and non-smokers.

Case I: in this case the hypothesis of no difference is formulated as:

$$\mu_{1i} = \mu_{2i}$$
 (only for CNSLD category i or for i=0.1.2 respectively)

and the alternative as:

$$\mu_{1i} \leq \mu_{2i}$$
 or $\mu_{1i} \geq \mu_{2i}$ (only for CNSLD category i or for i=0,1,2 respectively)

with at least one inequality strict. For the performance of this test the two-sided version of the test described in Schaafsma (1966), Chapter 5.2, theorem 2, was used.

Case II: here the hypothesis of no difference in "effect" between smokers and non-smokers is formulated as:

$$\mu_{1i}^{(1)} = \mu_{2i}^{(1)}$$
, $\mu_{1i}^{(2)} = \mu_{2i}^{(2)}$ (only for CNSLD category i or for i=0,1,2 respectively)

and the alternative of a certain difference as:

$$\mu_{1i} \stackrel{(1)}{\leq} \mu_{2i} \stackrel{(1)}{,} \mu_{2i} \stackrel{(2)}{\leq} \mu_{1i} \stackrel{(2)}{\text{or}} \mu_{2i} \stackrel{(1)}{\leq} \mu_{1i} \stackrel{(1)}{,} \mu_{1i} \stackrel{(2)}{\leq} \mu_{2i} \stackrel{(2)}{\text{only for CNSLD}}$$
 category i or for i=0,1,2 respectively)

with at least one inequality strict. For this situation the two-sided version of the test described in Schaafsma (1966), Chapter 5.2, theorem 2, was also used.

Special thanks are due to Mr. S. Knijpstra, statistician, TNO Research Unit for Epidemiology of CNSLD.

Note: For details on the statistical tests used the reader is referred to:

- P. Armitage, Statistical Methods in Medical Research, Blackwell Scientific Publications.
- H. de Jonge, Inleiding tot de Medische Statistiek, deel I en II, Verhandeling XLI en XVLIII van het Nederlands Instituut voor Praeventieve Geneeskunde, Leiden.

CHAPTER VI

RESULTS

1. THE POPULATION.

The actual survey started in the second week of January 1973 when the women were visited at home for instructions and the diaries were handed out, and consequently the number of women participating rose steeply in the first few weeks. The women were asked not to fill in their diaries when going on holidays, so in the summer months (from the end of June until the middle of August) there was a temporarily drop in the participation. Moreover, no home visits were made in July because of holidays by the staff. The survey ended in the last weeks of December 1973.

During the year of investigation 105 individuals were lost, which is 13,3% of the initial total population of 792 individuals. Of the 105 individuals 53 moved to another area of residence and the other 52 withdrew from participation for various reasons (no interest, illness, et cetera). As can be seen from table 6.1., there are only slight and not consistent differences in the number of women lost between Vlaardingen and Ommoord within each CNSLD category. There is a slight excess of women lost in the first quarter, mainly because of retracting the initial promise to participate. The 105 individuals included 12 pairs, so at the end of the year not 105 pairs were lost, but only 93 pairs. Table 6.2. shows that there are only slight differences in the percentages of pairs under investigation between the different CNSLD categories at the end of each quarter, adding grade 3 because of the small numbers to grade 2. These differ-

Table 6.1. Number of individuals lost during each quarter of the year according to degree of CNSLD and area of residence, and in addition the number of pairs lost as a consequence.

	COIL	requein										
DÉGREE				QUA	RTER OF	THE Y	EAR				TOTAL	NUMBER
OF CNSLD	fir Vl.	om.	sec	ond Om.	thi Vl.	rd Om.	fou Vl.	orth	Tot Vl.	al Om.	LO indiv.	
grade 0 grade 1 grade 2 grade 3	10 7 7 0	8 6 3 1	4 1 1	1 1 2 0	6 4 1 0	8 6 4 1	4 2 3 0	4 6 3 0	24 14 12 1	2 1 1 9 1 2 2	45 33 24 3	39 30 21 3
Total	24	18	7	4	11	19	9	13	5 1	5 4	105	93
TOTAL indiv. NUMBER pairs		12 10	-	1		0 5		22.7	10	3		

Table 6.2. Number of pairs under investigation at the end of each quarter of the year according to degree of CNSLD.

DEGREE				QUARTE	R OF THE	EAR			
OF		firs	st	seco	ond	thi	rd	fou	rth
CNSLD	Nt	n	%	n	%	n	%	n	96
grade 0	150	133	88,6	128	85,3	116	77,3	111	74,0
grade 1	128	116	90,6	114	89,1	106	82,8	98	76,6
grade 2	112	102	91,1	99	88,4	95	84,8	91	81,2
grade 3	6	5	83,3	4	66,7	3	50,0	3	50,0
Total	396	356	89,9	345	87,1	320	80,0	303	76,5

ences proved not to be significant with a chi-square test on 2x3 contingency tables.

As only those data could be analyzed that were obtained in both members of a pair on the same days, it was very fortunate that the women cooperated extremely well.

2. DIARY DATA AND PEAK FLOW MEASUREMENTS.

2.1. RESPIRATORY SYMPTOMS.

The figures C 1 to 4 (Appendix C) show the daily mean score-differences between Vlaardingen and Ommoord for the respiratory symptoms according to degree of CNSLD. In the group CNSLD grade 0 the daily mean score-differences fluctuate only slightly and are generally about zero. The greatest fluctuations of the daily mean score-differences can be seen in the group CNSLD grade 2+3. In this group there is on the whole a positive daily mean score-difference for the symptoms dyspnoea and wheezing, and on the contrary a negative one for the symptoms cough and phlegm. The group CNSLD grade 1 is intermediate as regards the extent of the fluctuations and the position of the curve representing the daily mean score-differences, except for the symptom cough. For this symptom the position of the curve is above the other two grades, and furthermore the daily mean score-difference is nearly always positive.

Comparing the graphs of the respiratory symptoms to the graphs of the air pollutants (figures D 1 to 10), it can be seen that only for the symptoms dyspnoea and wheezing in the group CNSLD grade 2+3 there is a trend that some of the periods of great daily mean score-differences correspond with periods of high levels of some air pollutants.

2.2. IRRITATION OF THE EYES.

The daily mean score-differences fluctuate to about the same extent in the three CNSLD groups, and are on the whole slightly positive (see figure C 5). In general, no parallelism can be seen between the fluctuations of the daily mean score-differ-

ences in the CNSLD groups, except in a few periods. These periods tend to correspond with periods of high pollution levels of ozone in Vlaardingen (figures D 7 and 8).

2.3. PEAK FLOW MEASUREMENTS.

From figure C 6, presenting the daily mean of the differences in "percentage difference from the mean" between Vlaardingen and Ommoord according to degree of CNSLD, no distinctive patterns can be traced.

3. SPUTUM COLLECTION.

Table 6.3. shows the number of times sputum was collected in Vlaardingen and Ommoord in relation to the answer on the production of phlegm ticked in the diary on the day of the home visit, having added together all the available data of all individuals.

Table 6.3. Sputum collection in relation to the answer on the production of phlegm.

ANSWER TICKED		SPUTUM CO	OLLECTED		
IN THE DIARY	VLAAR	DINGEN	OM	MOORD	
	YES	NO	YES	NO	
YES	254	1431	355	1665	
NO	15	12939	27	12394	

In general, the answer and the collection correspond well. Only a very few times sputum was handed in while the answer on phlegm in the diary was NO. However, relatively frequently no sputum was handed in while the answer on phlegm in the diary was positive. A reasonable explanation for this disagreement is that only sputum brought up in the first hour after getting up on the day of the home visit had to be handed in.

It appeared that in Vlaardingen 56 women, and in Ommoord 57 women, contributed to the number of times sputum was handed in.

Furthermore, of these women 24 in Vlaardingen and 40 in Ommoord ever handed in mucopurulent or purulent sputum, while in total during the year of investigation 51 times in Vlaardingen and 172 times in Ommoord (muco)purulent sputum was handed in. This points to the possibility that bacterial respiratory infections occurred more frequently in Ommoord than in Vlaardingen. However, because of the relatively small numbers involved, it is not likely that intercurrent bacterial respiratory infections would have been a disturbing factor in this study.

4. AIR POLLUTION DATA.

From the graphs in the figures D 1 to 10 (Appendix D) it can be seen that the air pollution levels in Vlaardingen are generally above those in Ommoord with the exception of the levels of the aldehydes. In general, the fluctuations of the air pollution levels in Vlaardingen and Ommoord run parallel. During days of very high pollution the levels in Vlaardingen are well above those in Ommoord, particularly those of SO_2 and NO_2 . However, in general the differences in air pollution levels between Vlaardingen and Ommoord are less than was expected before the start of the study.

As an explanation one can propose that the site of Ommoord - northeast of the petrochemical complex along the "Rotterdamse Waterweg" - and the winds prevailing west and south can give rise to a substantial air pollution level in Ommoord, particularly of aldehydes which are formed in the process of photochemical oxidation taking place in the atmosphere some time after the primary pollutants have been emitted.

By means of applying a statistical method of analyzing the data obtained on those days that the air pollution levels in Vlaardingen and Ommoord were contrastive, it was tried to provide the best opportunity to detect differences with respect to the respiratory parameters.

TABLE 6.4. The percentiles of the individual air pollutants in Vlaardingen (Vl.) and Ommoord (Om.) expressed in $\mu g/m^3$.

AIR POLLUTANT	AREA	10 PERC.	20 PERC.	30 PERC.	40 PERC.	50 PERC.	60 PERC.	70 PERC.	80 PERC.	90 PERC.	95 PERC.	99 PERC.
Sulphur dioxide	Vl.	22	35	44	55	68	83	103	126	164	187	327
24-hour average	Om.	10	19	24	30	40	48	65	79	100	127	178
Standard smoke	Vl.	5	6	8	10	13	17	23	28	38	50	75
24-hour average	Om.	4	5	7	10	12	16	20	24	38	52	70
Nitrogen monoxide daily average	Vl.	6	10	14	17	21	27	37	51	65	79	163
	Om.	4	6	7	9	11	13	16	23	39	50	86
Nitrogen monoxide daily maximum	Vl.	11	18	26	40	49	65	86	112	168	265	610
	Om.	8	11	16	22	26	33	45	64	104	142	248
Nitrogen dioxide daily average	V1.	19	24	28	33	37	42	49	58	70	87	100
	Om.	17	21	25	28	31	34	37	43	51	58	76
Nitrogen dioxide daily maximum	V1.	31	42	52	58	67	76	83	93	119	137	180
	Om.	31	38	44	50	56	60	64	72	83	103	150
Ozone	V1.	16	24	29	34	38	43	48	55	70	90	117
daily average	Om. 1)	20	20	20	20	25	25	30	38	50	55	65
Ozone	V1.	25	36	47	55	64	69	75	95	135	160	230
daily maximum	Om. 1)	25	25	25	25	35	35	45	55	65	85	95
Aldehydes	V1.	16	24	29	33	38	46	54	64	75	89	139
24-hour average	Om. 1)	23	26	34	45	56	72	84	99	134	151	176
Aldehydes	Vl.	23	36	45	57	67	83	95	113	144	174	320
8-hour average	Om. 1)	25	31	38	49	64	83	126	171	246	318	367

 $^{^{1)}}$ percentiles in Ommoord computed only from day 213 (see Chapter IV, section 6).

5. METEOROLOGICAL DATA.

The graphs in the figures E 1 to 4 (Appendix E) show that the temperature and the relative humidity in Vlaardingen and Ommoord correspond so well that the assumption of similar meteorological conditions in both areas was warranted.

So it is also justifiable to assume similar wind characteristics in both areas as well and consequently, although wind has a great influence on the air pollution levels, they could possibly not have affected the actual results of this comparative study.

6. THE SELECTED DAYS FOR THE ANALYSIS.

Table 6.4. shows the percentiles computed for each pollutant in Vlaardingen and Ommoord by means of which days were selected for the analysis.

The days were numbered according to the order of sequence in the year, starting from the first of January (day 1.). In the tables 6.5., 6.6., and 6.7. the numbers of the selected days according to the criteria as set in Chapter V, section 3.2., are shown respectively for category A (days with high pollution levels), category B (days with peak pollution levels), and category C (days from the categories A and B for the analysis of the peak flow data).

In category A a few alternative days had to be selected, as it was not always possible to fulfil the criteria. In category A-1 the numbers 294 and 329 indicate days when the air pollution levels in Ommoord for standard smoke and aldehydes 8-hour average were the lowest recorded during the year of investigation. In category A-2 the numbers 320 and 27 indicate days when the air pollution levels in Vlaardingen for nitrogen monoxide daily average and ozone daily maximum were the lowest recorded during the year of investigation.

In category B-1 no days could be selected for nitrogen monoxide daily average and aldehydes 24-hour average, and in category B-2 for nitrogen monoxide daily average, as the set criteria could

Table 6.5. The numbers of the selected days in category A.

	NUMBERS OF TH	E DAYS
AIR POLLUTANT	CATEGORY A-1	CATEGORY A-2
Sulphur dioxide 24-hour average	217 and 218	43, 54, 60, 61, and 79
Standard smoke 24-hour average	294 ¹⁾	84
Nitrogen monoxide daily average daily maximum	165, 256, and 302 248, 302, and 323	320 ²⁾ 61 and 82
Nitrogen dioxide daily average	107, 239, 278, and 279	64, 87, and 331 87 and 89
daily maximum	107, 182, 185, and 278	6/ and 69
Ozone daily average daily maximum	232, 236, and 239 236, 239, 247, 250, and 251	254 27 ²⁾
Aldehydes 24-hour average 8-hour average	278 and 307 329 ¹⁾	274 224, 259, 260, 263, 274, and 275

 $^{^{1)}}$ Alternative day: the day of lowest concentration in Ommoord.

 $^{^{2})}_{\mbox{Alternative day: the day of lowest concentration in Vlaardingen.}}$

Table 6.6. The numbers of the selected days in category B.

	NUMBERS OF T	HE DAYS
AIR POLLUTANT	CATEGORY B-1	CATEGORY B-2
Sulphur dioxide		
24-hour average	33, 34, 35, and 82	60 and 64
Standard smoke		
24-hour average	278 and 279	32, 33, and 84
Nitrogen monoxide		
daily average	no day	no day
daily maximum	297	82
Nitrogen dioxide		
daily average	107, 278, and 299	80
daily maximum	107, 250, 258, and 278	166 and 247
Ozone		
daily average	239 and 248	254
daily maximum	247 and 248	254
Aldehydes		
24-hour average	no day	227 and 274
8-hour average	248	226, 229, 260, and 263

Table 6.7. The numbers of the selected days in category C.

	NUMBERS OF T	THE DAYS
AIR POLLUTANT	CATEGORY C-1	CATEGORY C-2
Sulphur dioxide 24-hour average	218	253 ³⁾
Standard smoke 24-hour average	278	130 ³).
Nitrogen monoxide daily average daily maximum	302 297	320 ³⁾ 320 ³⁾
Nitrogen dioxide daily average daily maximum	278 107	331 247
Ozone daily average daily maximum	239 ¹⁾ 247 ¹⁾	254 254
Aldehydes 24-hour average 8-hour average	278 295 ²⁾	274 226

¹⁾Alternative day: the day of highest ozone concentration in Vlaardingen on which peak flow values were available

Alternative day: the day of lowest aldehydes 8-hour average concentration in Ommoord, and on which peak flow values were available.

Alternative day: the day of lowest concentration in Vlaardingen, and on which peak flow values were available.

not be fulfilled and in this category a suitable alternative approach did not emerge.

In category C a few alternative days were selected as mentioned in the footnotes in the table 6.7.

7. RESULTS OF THE ANALYSIS.

7.1. INTRODUCTION.

As described extensively in Chapter V, section 3., the testing on the influence of air pollution on the symptoms and the peak flow was carried out for separate categories as well as for combinations of categories. Consequently, four classes can be distinguished: "cell", "CNSLD category", "smoking category", and "total population". These classes are specified as follows:

"Cell": nine cells were composed by combining CNSLD and smoking categories in the following way:

CELL	CNSLD category	smoking category
1	grade 0	smoker
2	grade 0	non-smoker
3	grade 0	ex-smoker
4	grade l	smoker
5	grade l	non-smoker
6	grade l	ex-smoker
7	grade 2+3	smoker
8	grade 2+3	non-smoker
9	grade 2+3	ex-smoker

[&]quot;CNSLD category": the CNSLD categories grade 0, grade 1, and grade 2+3, in which categories the smoking categories are combined.

[&]quot;Smoking category": the smoking categories of smokers, nonsmokers, and ex-smokers, in which categories the CNSLD categories are combined.

[&]quot;Total population": in which all CNSLD categories and all smoking categories are combined (all nine cells combined).

The last three classes can be considered as being combined cells. If in any of the cells or combinations of cells a significant result was found by testing the influence of a particular air pollutant on a particular symptom, this means that there is an association between high levels of that air pollutant and the prevalence—severity of that symptom in that cell or combination of cells. In the following such an association will be denoted simply as "association", "association between air pollutant and symptom", or "effect".

7.2. SYMPTOMS.

7.2.1. HIGH POLLUTION LEVELS.

The tables 6.8, 6.9, and 6.10. show the significant associations found by testing the influence of air pollutants on the symptoms in the four classes, using the data of the selected days in category A with a time lag respectively of 0 day, 1 day, and 2 days.

To illustrate the results an example will be given from table 6.8. with respect to standard smoke. An association is found between this pollutant and the symptom irritation of the eyes only. This association is found in the pairs who smoke, and in the total population in which case all pairs are involved. The testing on the separate cells and on the CNSLD categories did not yield any significant results.

Time lag of 0 day:

From table 6.8. it can be seen that associations are found between particularly nitrogen monoxide, ozone, and aldehydes and the symptoms. The associations within a CNSLD category are found with regard to the respiratory symptoms in grade 1 and grade 2+3 and with regard to irritation of the eyes in grade 0 and grade 1. The associations with this latter symptom occur also always in the total population. The associations between aldehydes and the symptoms are seen particularly in the category of the non-smokers.

Time lag of 1 day:

Table 6.9. shows that associations are found between especially nitrogen monoxide and ozone, and the symptoms, but also standard smoke, nitrogen dioxide, and aldehydes show some "effect". The associations within the CNSLD categories are again found in grade 1 and grade 2+3, while with respect to the smoking categories the associations are mainly seen in the categories of non-smokers and ex-smokers. The associations between air pollutants and irritation of the eyes are somewhat less pronounced than with a time lag of 0 day.

Time lag of 2 days:

The associations between air pollutants and the symptoms when applying a time lag of 2 days (table 6.10.) correspond in general lines with the associations found when applying a time lag of 1 day. However, there seems to be a slight change in the manifestation of the "effects", cough becoming more prevalent and irritation of the eyes less.

7.2.2. PEAK POLLUTION LEVELS.

Table 6.11. shows the significant associations found by testing the influence of air pollutants on the symptoms in the four classes according to time lag, using the data of the selected days in category B.

From this table it can be seen that specially ozone is involved in the association between the air pollutants and the symptoms. With a time lag of 0 day an association is found with irritation of the eyes, and with a time lag of 1 day and 2 days associations with the respiratory symptoms are more manifest, specially with cough and phlegm.

It appears that within the CNSLD categories the associations with the respiratory symptoms are rather frequently found in CNSLD grade 2+3.

7.3. PEAK FLOW.

The significant associations found between the air pollutants and the peak flow are presented in table 6.12.

Table 6.8. The associations found between air pollutants and symptoms for the selected days in Category A, with a time lag of 0 day. $^{1)}$

AIR POLLUTANT	SYMPTOM	CELL	CNSLD CATEGORY (smoking categories combined)	SMOKING CATEGORY (CNSLD categories combined)	TOTAL POPULATION (CNSLD and smoking categories combined)
Standard smoke	irritation of the eyes	_	-	smokers	+
Nitrogen monoxide daily average daily maximum	phlegm phlegm dyspnoea irritation of the eyes	- - - 2	grade 1 ^x , and 2+3 grade 1 grade 0 ^x	smokers - - -	+ xxx + - - xx
Ozone daily maximum	cough phlegm dyspnoea irritation of the eyes	7 ^{xx} - 7 2	grade 2+3 ^x grade 2+3 grade 1 grade 0, and 1 ^x	- smokers ex-smokers	- - +xx +xx
Aldehydes 24-hour average	phlegm dyspnoea wheezing irritation of the eyes	5 ^{xx} , 8 - - -	grade 1 ^X	non-smokers xxx non-smokers non-smokers non-smokers	+xx 2) - - - +xx

 $^{^{1)}}$ Significant at the 5 per cent level, except x P < 0.025, xx P < 0.010, xxx P < 0.005.

 $^{^{2)}}$ Significant difference in "effect" between the smokers and non-smokers (P < 0.05).

Table 6.9. The associations found between air pollutants and symptoms for the selected days in Category A, with a time lag of 1 day. $^{1)}$

AIR POLLUTANT	SYMPTOM	CELL	CNSLD CATEGORY (smoking categories combined)	SMOKING CATEGORY (CNSLD categories combined)	TOTAL POPULATION (CNSLD and smoking categories combined)
Standard smoke	dyspnoea	5	-	non-smokers	-
Nitrogen monoxide daily average daily maximum	phlegm dyspnoea wheezing irritation of the eyes	7 ^x - - -	grade 1 ^x , and 2+3 grade 1 ^x grade 2+3	ex-smokers ex-smokers smokers	+ xxx + xx + xx
Nitrogen dioxide daily maximum	phlegm	-	~	non-smokers	-
Ozone daily maximum	cough phlegm dyspnoea irritation of the eyes	7 6 - 2 ^x	grade 2+3 ^{xx} grade 2+3 ^x grade 0 ^{xx}	smokers ex-smokers ex-smokers non-smokers	- 2) - + xxx
Aldehydes 24-hour average	phlegm irritation of the eyes	5, 8 -	- -	non-smokers ^{XXX}	+x 3)

¹⁾ Significant at the 5 per cent level, except x P < 0.025, xx P < 0.010, xxx P < 0.005.

 $^{^{2)}}$ Significant difference in "effect" between the CNSLD categories (P < 0.025).

³⁾ Significant difference in "effect" between the smokers and non-smokers (P < 0.025).

Table 6.10. The associations found between air pollutants and symptoms for the selected days in Category A, with a time lag of 2 days. $^{1)}$

AIR	SYMPTOM	CELL	CNSLD CATEGORY	SMOKING CATEGORY	TOTAL POPULATION
POLLUTANT			<pre>(smoking categories combined)</pre>	(CNSLD categories combined)	(CNSLD and smoking categories combined)
Standard smoke	cough	2	_	non-smokers ^{XXX}	=
	dyspnoea	-	-	non-smokers	=
Nitrogen monoxide				V	×
daily average	cough	-	grade 1	smokers ^x	+ X
	phlegm	-	grade 1 , and $2+3$	smokers and non-smokers	+XX
daily maximum	dyspnoea	5	_	non-smokers ^{XX}	-
dally maximum	wheezing	_	_	ex-smokers	+
	irritation	7 ^X	_	smokers	+ X
	of the eyes				
Nitrogen dioxide					
daily maximum	phlegm	_	grade 2+3	-	~
Ozone		37	VVV	~	YYY
daily maximum	cough	7 ^x	grade 2+3 ^{xxx} grade 2+3 ^{xxx}	smokers ^X	+XXX
	phlegm	- 2×	grade 2+3	ex-smokers	_
	irritation of the eyes	2*	grade 0 ^{xx}	-	+
Aldehydes					
24-hour average	dyspnoea	2	_	non-smokers	-

Significant at 5 per cent level, except x P < 0.025, xx P < 0.010, xxx P < 0.005.

Table 6.11. The associations found between air pollutants and symptoms for the selected days in Category ${\rm B.}^{1)}$

AIR POLLUTANT	SYMPTOM	CELL	CNSLD CATEGORY (smoking categories combined)	SMOKING CATEGORY (CNSLD categories combined)	TOTAL POPULATION (CNSLD and smoking categories combined
			Time lag of	0 day	
Nitrogen monoxide					
daily maximum	irritation of the eyes	7	-	-	_
Ozone					VVV
daily average	irritation	2^{xx}	grade 0 ^x	non-smokers XX	+xxx
	of the eyes				+
daily maximum	irritation of the eyes	-	-	non-smokers	+
Aldehydes					075.00
8-hour average	cough		-	=	+ ^X
average	irritation				
	of the eyes		grade 1 ^{xxx} , and 2+3	smokers, non-smokers ^x , and ex-smokers ^x	+xxx
			Time lag of	1 day	
Nitrogen monoxide					
daily maximum	cough	1	-	Ξ.	_
-	dyspnoea	5	grade 1 ^x	non-smokers	_
	irritation of the eyes	-	, - 1	smokers ^x	_
Nitrogen dioxide					
daily maximum	cough	6	_	-	_

Table 6.11. (continued)

Ozone daily average	cough irritation of the eyes	7 ^x	grade 2+3 -	- non-smokers ^x	- +x
daily maximum	cough dyspnoea irritation of the eyes	- 7 2	grade 2+3 grade 2+3 grade 0 ^X , 1 ^X , and 2+3	smokers ^x , non-smokers xxx	- +xxx +
			Time lag of 2	days	
Standard smoke	phlegm dyspnoea	5 -	- grade 1	-	_
Nitrogen monoxide daily maximum		_	grade 1	- ex-smokers	=
Nitrogen dioxide daily average	phlegm	5	-	-	_
Ozone daily average daily maximum	cough irritation of the eyes cough	7 -	grade 2+3 - grade 2+3 ^x	non-smokers	-
	phlegm dyspnoea	-	grade 2+3	-	- +XX
Aldehydes 8-hour average	phlegm irritation of the eyes	- 8xxx	grade 2+3 ^{xxx}	non-smokers x	+ 2) -

 $^{^{1)}} significant at 5 per cent level, except x P < 0.025, xx P < 0.010, xxx P < 0.005.$

Significant difference in "effect" between the CNSLD categories (P < 0.005), and between the smokers and non-smokers (P < 0.010).

Table 6.12. The associations found between air pollutants and the peak flow for the selected days in Category ${\tt C.}^{1)}$

	1	2 · · · · · · · · · · · · · · · · · · ·		
AIR POLLUTANT	CELL	CNSLD CATEGORY (smoking categories combined)	SMOKING CATEGORY (CNSLD categories combined)	TOTAL POPULATION (CNSLD and smoking categories combined
		Time lag of 0	day	
Sulphur dioxide	7	_j u	-	-
Standard smoke	6, 8 ^{xxx}	-	-	+
Nitrogen monoxide daily maximum	<u>-</u>	-	smokers	-
Ozone daily average	4	-	-	-
Aldehydes 8-hour average	6 ^x	-	-	~
		Time lag of 1	day	
-	-	-	-	-
		Time lag of 2	days	
Sulphur dioxide	2^{xx}	-	-	_
Ozone daily average daily maximum	- 8xx	_ grade 0	-	= = = = = = = = = = = = = = = = = = = =
Aldehydes 8-hour average	4 ^{xxx}	grade 1 ^{xx}	smokers	-

¹⁾ Significant at 5 per cent level, except x P < 0.025, xx P < 0.010, xxx P < 0.005.

The few associations found when applying a time lag of 0 day and 2 days do not show any distinct pattern, while no association at all is found with a time lag of 1 day.

7.4. SUMMARY.

Associations were mainly found between the air pollutants nitrogen monoxide, ozone, and aldehydes on the one hand, and both respiratory symptoms and irritation of the eyes on the other hand.

The respiratory symptoms cough, phlegm, and dysphoea were frequently involved in the associations found, and wheezing only very occasionally.

There is an indication of an immediate "effect" (time lag of 0 day) especially on irritation of the eyes, and of a more delayed effect (time lag 1 day and 2 days) on the respiratory symptoms, particularly on cough.

The associations found within the CNSLD categories are seen particularly in the subjects with moderate to severe degree of CNSLD (grade 2+3).

The associations between aldehydes and the symptoms are seen above all in the non-smokers. Furthermore, there is a slight indication that non-smokers and ex-smokers are more affected than smokers by high levels of air pollution with a time lag of 1 day and 2 days.

Hardly any associations between air pollutants and the peak flow are found.

It is noticeable that sulphur dioxide did not yield any associations, and standard smoke and nitrogen dioxide only a very few.

CHAPTER VII

DISCUSSION

Study design.

This epidemiological investigation was set up to find out whether there existed an association between high levels of air pollution of short duration in the Rijnmond area and an excess respiratory morbidity.

Special features of the study were, that only a female population was studied, that a control population was individually matched to the study population with respect to age, degree of CNSLD, and smoking habit, and that attention was paid to whether persons with CNSLD differed "in reaction" from persons without CNSLD. Furthermore, weekly home visits were carried out to obtain optimum cooperation of the women, and gave the opportunity to perform a simple lung function test at the women's homes. A female population was studied because women are less exposed to the occupational hazards of pollution than men, are often less severe smokers than men, and can usually be visited at home easily.

The method of using matched pairs in an attempt to eliminate certain confounding factors proved to be successful as only relatively few people were lost during the year of investigation. In this respect the personal contacts during the weekly home visits were extremely useful and essential in stimulating the subjects to carry on participating.

For obtaining data on the symptoms a diary technique was used as was successfully applied by Lawther et al. (1970) previously. However, the questions in the diary used in this study were more extensive and a total of five questions had to be answered each

day. Because of this, it was felt essential to keep the filling in of the diary as simple as possible. So a diary, specially designed for this study, was printed in which the women had simply to tick the respective spaces. The home visits played a significant part in the achievement of the proper filling in of the diaries when checked once a week.

During the home visits a lung function test was carried out initially only with the Monaghan spirometer, later also with the Wright Peak Flow meter. In this study it was felt that there is a definite need for well established simple lung function instruments reliable and suitable in field surveys, and if possible with automatic recording. Such instruments are now being developed (Derrett and Brown, 1975).

The lung function measurements were carried out once a week in all subjects, but likely more useful data would have been obtained by at least one daily measurement and ideally by more frequent daily measurements, even if only in a subsample of the population. However, this could organizationally not be achieved.

For the purpose of this study criteria were designed to be able to allocate the subjects to different grades of CNSLD, from no CNSLD (grade 0) to severe degree of CNSLD (grade 3). Although the criteria were identical to subdivide the population in Vlaardingen and Ommoord into the four grades of CNSLD, it is still possible that the members of a pair being matched on degree of CNSLD had different manifestations of CNSLD possibly leading to a different reaction pattern to air pollution. Moreover, - if the hypothesis is true that air pollution is one of the exogenous aetiological factors in the development of CNSLD it might have been possible that, for example, a person with CNSLD grade 1 in Ommoord would have been classified as having CNSLD grade 2 if that person would have lived in Vlaardingen because of additional symptoms leading to a higher grading. But it is not likely that these factors would have influenced the results.

It is worth mentioning that both in Vlaardingen and Ommoord in the CNSLD categories grade 2 and 3 quite a considerable number

of non-smoking individuals are found (see Chapter IV, table 4.3.). This supports the hypothesis that smoking is only *one* of the major factors in the development of CNSLD.

It would have been preferable to have had a larger study population, because in this study it proved to be difficult to acquire a reasonably large number of women aged 18-42 years in the CNSLD categories grade 2, and especially grade 3. This was not beyond expectation (Van der Lende, 1969).

Later Van der Lende et al. (1975^C) found from a prevalence study on chronic non-specific lung disease carried out in Vlaardingen in 1972 in the same sample of women aged 18-42 years that 3.4% had a moderate degree of CNSLD and 1.4% a severe degree of CNSLD. In men aged 18-42 years 4.1% had a moderate degree of CNSLD and 2.5% a severe degree of CNSLD. Although the prevalence of CNSLD in subjects in the older age-groups is somewhat higher (Zuiderweg, 1962; Van der Lende et al., 1975^C) it was thought better to study people in a younger age-group because their airways have been less exposed to various exogenous stimuli during their lifetime.

Moreover, Lawther and Waller (personal communication) found that groups of about 1,000 people were needed to isolate environmental factors from the background "noise" of random illnesses. However, organizationally a limit was imposed on the extent of the study.

Data analysis.

Because matched pairs were used in the study, only those data could be analyzed that were available in both members of a pair. The data in the diary were given a score in an attempt to add weight to the answer of the respective question, which did not refer to the previous day but to the "as usual" situation. In this way, only differences in scores between the Vlaardingen and the Ommoord member of a pair could be taken into account in the analysis. For each symptom mean daily score-differences were computed to which both the height of the scores and the number of participating pairs on that day contributed. In this

study, it was felt that the use of a scoring system would be more adequate to reveal possible associations between high daily air pollution levels and symptoms, rather than the use of a no-yes answer system which would yield a mere daily prevalence of the symptoms, obscuring the severity or the change in severity of the symptoms.

As described in Chapter V, section 2.1., there is in general a positive mean score-difference between Vlaardingen and Ommoord in the group CNSLD grade 2+3 (moderate to severe degree of CNSLD) for the symptoms dyspnoea and wheezing, and a negative one for the symptoms cough and phlegm. This may mean a higher prevalence of the symptoms dyspnoea and wheezing in the Vlaardingen members in comparison to the Ommoord members with CNSLD grade 2+3, and accordingly a lower prevalence of cough and phlegm.

The former findings are in accordance with the findings by Van der Lende et al. (1973^a) who found a higher prevalence of the symptom dyspnoea in Vlaardingen in the age-group of 15-39 years as compared with a rural district. The data on the sputum collection in this study (see Chapter VI, section 3.) are in accordance with the latter findings.

In spite of the fact that Ommoord was in a way an ideal district to acquire a control population, it was unfortunate that the air pollution levels in Ommoord were higher than expected, limiting the analysis of the data to a relatively small number of days making the results possibly less conclusive. It was thought best to analyze the data of days with contrastive air pollution levels in Vlaardingen and Ommoord implicating that only days could be involved in the analysis on which air pollution data were available both in Vlaardingen and Ommoord. As a result, it happened that some highly polluted days and sometimes longer periods had to be left out for a particular pollutant in the analysis, because either no data were available or the data were unreliable as regards that pollutant. In view of the possibility of ebbing and lagging of effects a time interval had to exist for each pollutant of at least three

days between the selected days of high pollution in Vlaardingen and the selected days of relatively low pollution in Vlaardingen. A longer time interval would have been preferable, but unfortunately days of high pollution levels in Vlaardingen and Ommoord were often very close together, as can be seen from the graphs in Appendix D. Therefore, a time lag of not more than two days was used in the analysis of the data. It occurred that selected days for one pollutant coincided with selected days for another pollutant making it difficult to isolate effects of the pollutants involved. Occasionally coincidence occurred within a set of selected days for a particular pollutant which might have increased the effects found at one or more of the time lags. However, all days that complied with the set criteria were selected hoping for a stronger evidence - if any - from the analysis rather than selecting only two contrastive polluted days. In this latter case "effects" might be present but not strong enough to yield a significant result in the testing procedure.

Results.

From the analysis of the data a few interesting findings have emerged.

It was found that mainly the photochemical pollutants, in particular nitrogen monoxide, ozone, and aldehydes, were related to the symptoms, which indicates that photochemical air pollution may play an important part in the Rijnmond area, as was recently also suggested by Biersteker (1975). In this respect it is noteworthy that of the nitrogen oxides nitrogen monoxide produced the most "effects" and nitrogen dioxide only a very few. This finding needs further investigation because nitrogen monoxide is a major product of fuel combustion processes at very high temperatures (especially from motor vehicles) and a major component of the smoke from cigarettes. The more so because the experimental studies on nitrogen oxides were mainly carried out with nitrogen dioxide because the concentration of nitrogen monoxide is very difficult to control as nitrogen monoxide at high concentrations is readily oxidized to nitrogen dioxide

(see Chapter I, section 5.2.).

In this study no associations at all were found between high levels of sulphur dioxide and the prevalence - severity of symptoms, possibly because the levels of sulphur dioxide have not been high enough during the year of investigation to produce any effects. In fact, this is not so surprising as the levels of sulphur dioxide and also of standard smoke have decreased considerably in the last decade (Biersteker, 1972), and were well below the minimum pollution leading to any significant response as was found to be about $500 \, \mu g/m^3$ of sulphur dioxide together with about 250 $\mu q/m^3$ of smoke (24-hour averages) by Lawther et al. (1970). Another factor possibly is that in experimental studies on effects of sulphur dioxide in patients with CNSLD, effects were particularly seen in individuals with "asthma" (allergic patients) (Gökemeijer, 1976), whereas in the study population only a limited number of individuals with "allergy" can be assumed. This is based on the findings from an epidemiological study in 1969 in a random sample of the population in Vlaardingen that only 6.7% of the women of corresponding age as in the study population had both eosinophilia in the blood (more than 330 eosinophils/ mm^3) and at least one skintest positive out of four (house dust, mixed pollen, mixed moulds, mixed epidermal products) (Wever-Hess and Van der Lende, 1971). In view of the findings by Biersteker (1972) and Lawther et al. (1970) it is conceivable that only a few associations were found between standard smoke and the symptoms as the levels of standard smoke proved to be relatively low in the Rijnmond area.

The respiratory symptoms cough, phlegm, and dyspnoea were frequently involved in the associations found, and wheezing only very occasionally. There is an indication that high levels of air pollution have a more immediate effect on irritation of the eyes, and a more delayed effect on the respiratory symptoms, in particular cough. This finding is in accordance with other observations indicating an immediate effect on irritation of the eyes and of a delayed effect on the symptom cough by in particular sulphur dioxide (e.g. McCarroll et al., 1967).

There is some difference between the results of the analysis of the data of the selected days with high pollution levels (category A) and peak pollution levels (category B). The methods for the selection of the days are described in

Chapter V, section 3.2. The days with peak pollution levels reveal fewer associations between air pollutants and symptoms, while fewer respiratory symptoms are involved in these associations (see the tables 6.8. to 6.11., p. 109 to p. 113). The criteria for selecting the days in category B were such that the peak pollution levels in Vlaardingen could go with also high pollution levels in Ommoord (and vice versa) which proved often to be the case, possibly obscuring associations between air pollutants and symptoms as a result of consequent small score-differences between the members of the pairs. As associations were still found between air pollutants and particularly the symptoms cough and irritation of the eyes it is suggested that these symptoms might be sensitive indicators in assessing the influence of air pollution on human well-being.

As, within the CNSLD categories, the associations found between air pollutants and respiratory symptoms are seen in grade 1 and more so in grade 2+3, the theory is supported that air pollutants - as exogenous stimuli - exert an effect via bronchial hyperreactivity (corresponding with a histamine hyperreactivity). Apart from the histamine hyperreactivity, there is the possibility of an existence of an individual sensitivity to air pollutants by a different mechanism. From experimental studies there is some evidence that an individual sensitivity exists to particulate matter, sulphur dioxide, and ozone. Thirdly, also a pulmonary reaction pattern might be possible via preexisting pulmonary tissue damage, to which a predisposition of the individual is probably less important.

With regard to smoking there is only a slight indication that non-smokers and ex-smokers are more affected than smokers by high levels of air pollution with a time lag of 1 day and 2 days. It is noticeable that the associations between high levels of aldehydes and the symptoms are above all seen in the non-

smokers. An explanation for these findings might be: a self-selection of non-smokers as a result of being hyperreactive to exogenous stimuli, non-smokers producing less phlegm and having therefore a less sufficient defense mechanism, and smokers having adapted themselves more or less to exogenous stimuli. However, the results from experimental studies do not shed a conclusive light on this matter.

No appreciable relations of air pollutants to the peak flow have been found. This supports the initial query of whether lung function measurements once a week would be sufficient to reveal a possible association between changes in lung function and air pollution levels. In this context it is worth mentioning that Lawther et al. (1974^a, 1974^b, 1974^c) reported that day-to-day changes in ventilatory function measured by spirometry and peak flow were not so much related to environmental factors, but were affected more by respiratory infections, whose frequency is probably affected by exposure to air pollution (Douglas and Waller, 1966; Colley and Reid, 1970). In this study, however, this could not be confirmed.

Once more it should be stressed that an association found between a particular air pollutant and a symptom does not necessarily implicate a cause — effect relationship, because of the possibility that other unidentified factors - both in the environment and in the subjects - could have contributed to this association.

Desiderata.

The following items are worth considering and could be processed from this work.

- To apply a time series analysis to the data to detect associations between level of air pollution and symptoms, and using different time lags to this analysis.
- To study which individuals contributed most to the results, and to carry out further investigation in these individuals as regards the existence of an individual hyperreactivity or sensitivity.

- To analyze the data according to a no-yes answer system which will yield daily prevalences of the respiratory symptoms to compare with the point-prevalence data obtained in the (follow-up) studies that are carried out in Vlaardingen by the TNO Research Unit for Epidemiology.
- To study seasonal fluctuations of the prevalence of respiratory symptoms when having daily prevalence data available.
- To evaluate whether possible differences between Vlaardingen and Ommoord in health care, medical treatment, and socio-economic class could have influenced the results.

It is felt that sufficient data can be obtained from this work to instigate and advance further lines of study and investigation, in various directions.

SUMMARY

An epidemiological study was carried out in the Rijnmond area during one year (1973) in order to examine whether there is an association between high levels of urban air pollution and respiratory morbidity in this area.

The study population consisted of a random sample of women in the age-group 18-42 years in Vlaardingen, which town is polluted especially by the petrochemical industries in the Rijnmond area. To eliminate as far as possible the concomitant effects of meteorological conditions a control population was chosen in Ommoord, a relatively low polluted district of Rotterdam and situated close to Vlaardingen.

In Chapter I general aspects are given on air pollution, its nature and sources, and on the main air pollutants found in the urban atmosphere.

Chapter II gives a review of the literature on the effects of air pollution on the airways which served as background information for this study.

The experimental studies on animals have shown that most of the air pollutants commonly found in the urban atmosphere can exert adverse effects on the airways resulting in pathological changes and effects on the lung function. However, in most experiments such concentrations of air pollutants in combination with such exposure times were used as are likely never to be experienced by man in the urban environment.

The experimental studies on man have demonstrated that exposure to air pollutants can give rise to respiratory symptoms and to a decrement in the pulmonary function. The existence of an individual sensitivity to particulate matter, sulphur dioxide, and ozone is suggested. Especially persons with some degree of Chronic Non-Specific Lung Disease (CNSLD) seem to be sensitive to exposure to air pollutants. From the experimental studies

no consistent differences in reaction between smokers and nonsmokers emerged.

The epidemiological studies on the effects of short-term exposures to high levels of urban air pollution have demonstrated that there is an association between acute and subacute episodes of high pollution, and both respiratory mortality and morbidity. With regard to the respiratory morbidity, both an increase in respiratory symptoms and a decrement in the pulmonary function have been found, especially in persons with a history of chronic obstructive pulmonary disease. It has been shown that long-term exposure to urban air pollution even more so together with other environmental factors can result in an increased prevalence of chronic obstructive pulmonary disease, especially in cigarette smokers.

In Chapter III the general aspects of the present epidemiological study in the Rijnmond area are discussed and the objectives of the study are presented.

The objectives were:

- a. To study whether there is an association between high levels of air pollution of short duration and an excess in respiratory morbidity, using respiratory symptoms and spirometric values as indices.
- b. To study whether persons with CNSLD differ from persons without CNSLD as regards the objective a.
- c. To study which air pollutant might be responsible for the effects found.

In this respect special reference is given to the definition and aetiology of Chronic Non-Specific Lung Disease, because the hypothesis has been postulated that air pollution is one of the non-specific exogenous stimuli that can cause bronchial obstruction and/or respiratory symptoms as a result of an existing hyperreactivity of the bronchus, which is one of the basic mechanisms in the aetiology of CNSLD.

In Chapter IV the methods of investigation are considered. Before the start of the investigation both the study population in Vlaardingen and the control population in Ommoord were sub-

divided into four groups according to degree of CNSLD (no CNSLD to severe CNSLD). The subdivision was based upon the answers to the TNO questionnaire on respiratory symptoms and upon spirometric values. Matched pairs were formed by the method of individual matching with respect to degree of CNSLD, smoking habit, and age. In this way, the effects of these confounding factors could be removed between the members of a pair. In total 396 pairs entered the study: 150 pairs in CNSLD grade 0 (no CNSLD), 128 pairs in CNSLD grade 1 (slight degree of CNSLD), 112 pairs in CNSLD grade 2 (moderate degree of CNSLD), and 6 pairs in CNSLD grade 3 (severe degree of CNSLD).

The day by day follow-up of respiratory symptoms was assessed by using a diary technique, and once a week a simple lung function test was carried out during a home visit. The home visits formed an essential part in arriving at an optimum cooperation of the women. The lung function test was done initially only with the Monaghan electronic spirometer, but later the Wright Peak Flow meter was also introduced.

Both in Vlaardingen and in Ommoord daily air pollution measurements were carried out for the purpose of this study on the following pollutants: standard smoke, sulphur dioxide, nitrogen monoxide, nitrogen dioxide, ozone, and aldehydes.

Chapter V deals with the presentation of the data and the method of statistical analysis. Because matched pairs were used, the analysis was carried out on the differences found between the Vlaardingen and Ommoord members of the pairs with respect to each of the symptoms and the lung function values. The data on the symptoms and the peak flow are shown as graphs in Appendix C. The air pollution data and the meteorological data are presented as graphs in the Appendices D and E. The actual values corresponding with the graphs are given in the TABLES.

Chapter VI presents the results of the investigation. During the whole year of investigation 105 individuals from the initial 792 individuals were lost. This caused a loss of 93 pairs which proved to be independent of degree of CNSLD. The cooperation of the women was extremely good.

The assumption which was made that the meteorological conditions in Vlaardingen and Ommoord were similar proved to be true as judged by the data on temperature and relative humidity in both places.

For the analysis a set of days were selected with contrastive air pollution levels in Vlaardingen and Ommoord for each pollutant separately (p. 102-106).

The significant associations found are presented in the tables 6.8. to 6.12. (p. 109-114).

In Chapter VII a general discussion is given of the study design, the analysis of the data, and the results. The discussion concludes with a summing-up of items remaining unsolved.

From this study the following conclusions can be drawn:

- 1. The diary technique during a whole year can be well applied provided that home visits are made regularly.
- 2. There is an association between high levels of air pollution of short duration and respiratory morbidity.
- 3. Mainly the photochemical pollutants nitrogen monoxide, ozone, and aldehydes are related to the symptoms.
- 4. Individuals with moderate to severe degree of CNSLD seem to be affected most.
- 5. High levels of air pollution of short duration exert an immediate "effect" mainly on the symptom irritation of the eyes, and a delayed "effect" mainly on the respiratory symptom cough.
- 6. There is a slight indication that non-smokers are more affected by high levels of air pollution of short duration than smokers.
- 7. Weekly peak flow values showed to be insufficient in demonstrating any associations with high levels of air pollution of short duration.

SAMENVATTING

Een epidemiologisch onderzoek werd uitgevoerd in het Rijnmond gebied gedurende het jaar 1973 om een mogelijk verband na te gaan tussen kortdurende pieken in de luchtverontreiniging en respiratoire morbiditeit in dit gebied.

De onderzoekpopulatie bestond uit een aselecte steekproef van vrouwen in de leeftijd van 18-42 jaar in Vlaardingen. Deze stad ondervindt veel hinder van luchtverontreiniging, voornamelijk veroorzaakt door de petrochemische industrieën in het Rijnmond gebied. Om de invloed van de weersomstandigheden zo veel mogelijk uit te kunnen schakelen werd een controlepopulatie van vrouwen geformeerd in Ommoord, een nieuwe buitenwijk van Rotterdam. Ommoord is in mindere mate aan luchtverontreiniging blootgesteld, terwijl de weersomstandigheden gelijk aan die in Vlaardingen kunnen worden beschouwd.

In Hoofdstuk I wordt een algemene beschouwing gegeven over luchtverontreiniging. De belangrijkste luchtverontreinigers die een rol spelen in de stedelijke luchtverontreiniging worden besproken.

Hoofdstuk II geeft een literatuuroverzicht met betrekking tot de effecten van luchtverontreiniging op de luchtwegen, dat diende als achtergrondinformatie voor dit onderzoek.

De experimentele onderzoekingen bij dieren hebben aangetoond dat de meeste luchtverontreinigers, die gewoonlijk in de stedelijke buitenlucht worden aangetroffen, pathologische veranderingen van de luchtwegen teweeg kunnen brengen en effecten op de longfunctie. In de meeste dierexperimenten werden echter zeer hoge concentraties van luchtverontreinigers gebruikt met een zodanige lange expositieduur, dat het niet waarschijnlijk is dat de mens ooit aan zulke omstandigheden zal worden blootgesteld in het stedelijke milieu.

De experimentele onderzoekingen bij mensen hebben aangetoond dat de luchtverontreinigers aanleiding kunnen geven tot klachten van de luchtwegen en tot een vermindering van de longfunctie. Er zijn aanwijzingen dat er een individuele gevoeligheid bestaat voor gewogen stof, zwaveldioxide en ozon. Vooral personen met Chronische Aspecifieke Respiratoire Aandoeningen (CARA) lijken gevoelig te zijn bij blootstelling aan luchtverontreinigers. Uit de experimentele onderzoekingen komen geen consistente verschillen naar voren in reactie op de blootstelling aan luchtverontreinigers tussen personen die roken en personen die niet roken.

De epidemiologische onderzoekingen naar de effecten van kortdurende pieken in de luchtverontreiniging hebben aangetoond dat
er een verband bestaat tussen acute en subacute episoden van
luchtverontreiniging aan de ene kant en respiratoire mortaliteit
en morbiditeit aan de andere kant. Wat betreft de respiratoire
morbiditeit, wordt zowel een toename van de respiratoire symptomen gevonden als ook een vermindering van de longfunctie,
vooral bij personen met CARA. Bij langdurige blootstelling aan
stedelijke luchtverontreiniging, vooral in combinatie met andere milieu factoren, blijkt dat er een toename kan optreden
van de prevalentie van CARA, vooral bij personen die sigaretten
roken.

In Hoofdstuk III worden de algemene aspecten besproken van het epidemiologische onderzoek in het Rijnmond gebied. De vraagstellingen van het onderzoek waren:

- a. Bestaat er een verband tussen pieken in de luchtverontreiniging en een toename van de respiratoire morbiditeit, waarbij gekeken werd naar respiratoire cymptomen en longfunctie waarden.
- b. Verschillen personen met CARA van personen zonder CARA met betrekking tot dit verband.
- c. Kan er een bepaalde luchtverontreiniger verantwoordelijk gesteld worden voor de effecten die gevonden zijn.

Speciale aandacht wordt besteed aan de definitie en aetiologie van CARA, daar de hypothese aangenomen is, dat luchtverontrei-

niging één van de niet specifieke exogene prikkels is die aanleiding kan geven tot bronchusobstructie en/of respiratoire symptomen als gevolg van het bestaan van een overgevoeligheid van de bronchiaalboom, welke één van de basis mechanismen is in de aetiologie van CARA.

In Hoofdstuk IV worden de methoden van onderzoek besproken. De onderzoekpopulatie en de controlepopulatie werden, voor het onderzoek begon, ingedeeld in vier groepen naar ernst van CARA (geen CARA tot ernstige CARA). Deze indeling werd gebaseerd op de antwoorden op een aantal vragen van de gestandaardiseerde TNO questionnaire naar chronische longaandoeningen en op longfunctie waarden. Gebruik werd gemaakt van de methode der gepaarde controles, waarbij als relevante kenmerken graad van CARA, rookgewoonte en leeftijd werden beschouwd, teneinde de invloed van deze kenmerken binnen het paar uit te kunnen schakelen. In totaal startten 396 paren in het onderzoek: 150 paren in CARA graad 0 (geen CARA), 128 paren in CARA graad 1 (lichte CARA), 112 paren in CARA graad 2 (matige CARA) en 6 paren in CARA graad 3 (ernstige CARA).

Het dagelijks vervolgen van de respiratoire symptomen werd gedaan met behulp van dagboekjes, en eens per week werd een eenvoudige longfunctie test uitgevoerd tijdens huisbezoek. Het bezoeken van de vrouwen thuis was van wezenlijk belang om te komen tot een optimale medewerking van de vrouwen. Het longfunctie onderzoek werd aanvankelijk alleen met de Monaghan electronische spirometer verricht, maar later ook met de Wright Peak Flow meter.

Zowel in Vlaardingen als in Ommoord werden speciaal voor dit onderzoek dagelijks de volgende luchtverontreinigers gemeten: standaard rook, zwaveldioxide, stikstofmonoxide, stikstofdioxide, ozon en aldehyden.

Hoofdstuk V betreft de presentatie van de gegevens en de methode van statistische analyse. Daar de methode der gepaarde controles was toegepast, werd de analyse uitgevoerd op de verschillen tussen de Vlaardingen en Ommoord leden van de paren met betrekking tot ieder symptoom afzonderlijk en de longfunctie waarden. De gegevens van de symptomen en de peak flow worden als grafieken weergegeven in Appendix C. De gegevens van de luchtverontreiniging en de meteorologische gegevens worden als grafieken weergegeven in de Appendices D en E. De werkelijke waarden die corresponderen met deze gegevens worden getoond in de "TABLES".

Hoofdstuk VI beschrijft de resultaten van het onderzoek. Gedurende het jaar van onderzoek werden 105 personen verloren van de oorspronkelijke 792 personen. Dit veroorzaakte een verlies van 93 paren, op welk verlies de graad van CARA niet van invloed is geweest. De medewerking van de vrouwen was uitstekend. De veronderstelling dat de weersomstandigheden in Vlaardingen en Ommoord dezelfde zouden zijn, bleek gerechtvaardigd gezien de gegevens betreffende de temperatuur en relatieve vochtigheid, die van beide plaatsen verkregen werd.

Voor de analyse werd een groep dagen geselecteerd met tegengestelde luchtverontreinigingsniveaus in Vlaardingen en Ommoord, voor iedere luchtverontreiniger afzonderlijk (p. 102-106). De significante associaties die gevonden werden, worden weergegeven in tabel 6.8. tot en met tabel 6.12. (p. 109-114).

In Hoofdstuk VII wordt een algehele discussie gegeven betreffende de opzet van het onderzoek, de analyse van de gegevens en de resultaten. De discussie besluit met een opsomming van items die voor verdere analyse in aanmerking kunnen komen. Uit dit onderzoek kunnen de volgende conclusies getrokken worden:

- Een dagboekjesonderzoek gedurende een geheel jaar kan met succes worden toegepast, mits regelmatig huisbezoek plaatsvindt.
- 2. Er is een verband tussen pieken in de luchtverontreiniging en respiratoire morbiditeit.
- 3. Voornamelijk de photochemische luchtverontreinigers stikstofmonoxide, ozon en aldehyden tonen een verband met de respiratoire symptomen en prikkeling van de ogen.
- 4. Personen met een matige tot ernstige graad van CARA lijken het meest gevoelig te zijn bij blootstelling aan luchtveront-

- reiniging met betrekking tot de respiratoire symptomen.
- 5. Pieken in de luchtverontreiniging geven een onmiddellijk "effect" met name op het symptoom prikkeling van de ogen, en een vertraagd "effect" met name op het symptoom hoesten.
- 6. Er is een lichte aanwijzing dat personen die niet roken meer worden aangedaan door pieken in de luchtverontreiniging dan personen die roken.
- 7. De wekelijkse peak flow waarden bleken niet geschikt om enige associatie aan te tonen tussen pieken in de luchtverontreiniging en een vermindering van de longfunctie.

GENERAL LITERATURE ON AIR POLLUTION

Air Pollution. Stern, A.C. (editor), 3 Volumes, Second Edition, Academic Press, New York and London, 1968.

Air Pollution. World Health Organization, Monograph Series No. 46, 1961.

Air Pollution and Health. A report for the Royal College of Physicians, Pitman Medical and Scientific Publishing Company Ltd., London, 1970.

Air Pollution and Respiratory Disease. Holland, W.W. (editor), Technomic Publishing Co., Inc., Westport, Conn., U.S.A., 1972.

Air Quality Criteria for carbon monoxide. National Air Pollution Control Administration, U.S. Public Health Service. Publication No. AP-62, 1970.

Air Quality Criteria for hydrocarbons. National Air Pollution Control Administration, U.S. Public Health Service, Publication No. AP-64, 1970.

Air Quality Criteria for nitrogen oxides. U.S. Environmental Protection Agency, Air Pollution Control Office, Publication No. AP-84, 1971.

Air Quality Criteria for particulate matter. National Air Pollution Control Administration, U.S. Public Health Service, Publication No. AP-49, 1969.

Air Quality Criteria for photochemical oxidants. National Air Pollution Control Administration, U.S. Public Health Service, Publication No. AP-63, 1970.

Air Quality Criteria for sulfur oxides. National Air Pollution Control Administration, U.S. Public Health Service, Publication No. AP-50, 1969.

Atmospheric Pollution: its origin and prevention. Meetham, A.R., Bottom, D.W., and Cayton, S. (editors), Pergamon Press, 1964.

Fumifugium: Or the Inconvenience of the Aer and Smoake of London Dissipated. National Society for Clean Air, Second Reprint, 1972.

Luchtverontreiniging en Weer. Koninklijk Nederlands Meteorologisch Instituut, De Bilt, Staatsuitgeverij, 's-Gravenhage, 1974. Verontreinigde Lucht. K. Biersteker, Royal VanGorcum, Assen, 1966.

REFERENCES

- ALBERT, R.E., and ARNETT, L.C. (1955) Clearance of radioactive dust from the lung. Arch. Industr. Health 12: 99.
- ALBERT, R.E., LIPPMANN, M., SPIEGELMAN, J.R., LIUZZI, A., and NELSON, M. (1967) The deposition and clearance of radioactive particles in the human lung. Arch. Environ. Health 14: 10.
- ALBERT, R.E., LIPPMANN, M., and BRISCOE, W. (1969) The characteristics of bronchial clearance in humans and the effects of cigarette smoking. Arch. Environ. Health 18: 738.
- ALBERT, R.E., LIPPMANN, M., PETERSON, H.T., BERGER, J., SANBORN, K., and BOHNING, D. (1973) Bronchial deposition and clearance of aerosols. Arch. Intern. Med. 131: 115.
- ALBERT, R.E., PETERSON, H.T., BOHNING, D.E., and LIPPMANN, M. (1975) Short-term effects of cigarette smoking on bronchial clearance in humans. Arch. Environ. Health 30: 361.
- ALDERSON, M.R., and MEADE, T.W. (1967) Accuracy of diagnosis on death certificates compared with that in hospital records. Brit. J. Prev. Soc. Med. $21\colon 22\colon$
- AMDUR, M.O., MELVIN, W.W., and DRINKER, P. (1953) Effects of inhalation of sulphur dioxide by man. Lancet 2: 758.
- AMDUR, M.O. (1957) The influence of aerosols upon the respiratory response of guinea pigs to sulfur dioxide. Am. Ind. Hyg. Assoc. Quart. 18: 149.
- AMDUR, M.O. (1958) The respiratory responses of guinea pigs to sulfuric acid mist. Arch. Industr. Health $18\colon$ 407.
- AMDUR, M.O., and CORN, M. (1963) The irritant potency of zinc ammonium sulfate of different particle sizes. Am. Ind. Hyg. Assoc. J. 24: 326.
- AMDUR, M.O. (1966) Respiratory absorption data and SO $_2$ dose-response curves. Arch. Environ. Health $\it 12\colon 729\:$
- AMDUR, M.O., and UNDERHILL, D.W. (1968) The effect of various aerosols on the response of guinea pigs to sulfur dioxide. Arch. Environ. Health 16: 460.
- ANDERSEN, I., LUNDQVIST, G.R., JENSEN, P.L., and PROCTOR, D.F. (1974) Human response to controlled levels of sulfur dioxide. Arch. Environ. Health 28:31.
- ASHLEY, D.J.B. (1969) Environmental factors in the aetiology of lung cancer and bronchitis. Brit. J. Prev. Soc. Med. 23: 258.
- AUERBACH, O., HAMMOND, E.C., GARFINKEL, L., and BENANTE, C. (1972) Relation of smoking and age to emphysema. N. Engl. J. Med. 286: 853.
- BATES, D.V. (1967) Air pollution and chronic bronchitis. Arch. Environ. Health $14\colon 220$.
- BATES, D.V., BELL, G.M., BURNHAM, C.D., HAZUCHA, M., MANTHA, J., PENGELLY, L.D., and SILVERMAN, F. (1972) Short-term effects of ozone on the lung. J. Appl. Physiol. 32: 176.
- BECKER, W.H., SCHILLING, F.J., and VERMA, M.P. (1968) The effect on health of the 1966 Eastern Seaboard air pollution episode. Arch. Environ. Health 16: 414.
- BIERSTEKER, K., DE GRAAF, H., and NASS, Ch.A.G. (1965) Indoor air pollution in Rotterdam homes. Intern. J. Air Water Poll. θ : 343.

- BIERSTEKER, K. (1966) Verontreinigde lucht. Thesis, Amsterdam. Royal Van-Gorcum, Assen.
- BIERSTEKER, K. (1969) Air pollution and smoking as cause of bronchitis among 1,000 male municipal employees in Rotterdam, Netherlands. Arch. Environ. Health 18: 531.
- BIERSTEKER, K., and VAN LEEUWEN, P. (1970) Air pollution and peak flow rates of schoolchildren in two districts of Rotterdam. Arch. Environ. Health 20: 382.
- BIERSTEKER, K. (1972) Air pollution control in The Netherlands. T. Soc. Geneesk. 50: 17.
- BIERSTEKER, K. (1975) Air pollution incident in Rotterdam, 1971. Environmental Research $10\colon 348$.
- BIERSTEKER, K., KERREBIJN, K.F., and VAN LEEUWEN, P. (1976) Luchtveront-reiniging en CARA bij schoolkinderen in twee Nederlandse gebieden met duidelijk verschillende zwaveldioxide-belasting. Ned. Tijdschr. Geneesk. 120: 464.
- BILS, R.F. (1966) Ultrastructural alterations of alveolar tissue of mice. I. Due to heavy Los Angeles Smog. Arch. Environ. Health $12\colon 689$.
- BILS, R.F., and ROMANOVSKY, J.C. (1967) Ultrastructural alterations of alveolar tissue of mice. II. Synthetic photochemical smog. Arch. Environ. Health 14: 844.
- BILS, R.F. (1974) Effects of nitrogen dioxide and ozone on monkey lung ultrastructure. Pneumonologie $150\colon 99$.
- BLAIR, W.H., HENRY, M.C., and EHRLICH, R. (1969) Chronic toxicity of nitrogen dioxide: II. Effects on histopathology of lung tissue. Arch. Environ. Health 18: 186.
- BOHNING, D.E., ALBERT, R.E., LIPPMANN, M., and FOSTER, W.M. (1975) Tracheobronchial particle deposition and clearance. Arch. Environ. Health 30:457.
- BOKHOVEN, C., and NIESSEN, H.J. (1961) Amounts of oxides of nitrogen and carbon monoxide in cigarette smoke, with and without inhalation. Nature 192: 458.
- BRADLEY, W.H., LOGAN, W.P.D., and MARTIN, A.E. (1958) The London fog of 2nd-5th December 1957. Mon. Bull. Min. Hlth. 17: 156.
- BRESLOW, L. (1964) Trends in air pollution health effects. Arch. Environ. Health $8\colon 24$.
- BUCK, S.F., and BROWN, D.A. (1964) Mortality from lung cancer and bronchitis in relation to smoke and sulphur dioxide concentration, population density and social index. Research paper, no. 7. Tobacco Research Council, London.
- BURGESS, S.G., and SHADDICK, C.W. (1959) Bronchitis and air pollution. Roy. Soc. Hlth. J. $79:\ 10.$
- BURN, J.L., and PEMBERTON, J. (1963) Air pollution, bronchitis and lung cancer in Salford Int. J. Air Water Poll. 7: 5.
- BURTON, G.G., CORN, M., GEE, J.B.L., VASALLO, C., and THOMAS, A.P. (1969) Response of healthy men to inhaled low concentrations of gas-aerosol mixtures. Arch. Environ. Health 18: 681.
- CAMNER, P., PHILIPSON, K., and ARVIDSSON, T. (1971) Cigarette smoking in man. Arch. Environ. Health 23: 421.
- CAMNER, P., and PHILIPSON, K. (1972) Tracheobronchial clearance in smoking-discordant twins. Arch. Environ. Health 25: 60.
- CARA, M., BOLT, W., COPPÉE, G., HOUBERECHTS, A., LAVENNE, F., SADOUL, P., SARTORELLI, E., ZORN, O., et JOUASSET, D. (1961) Aide-memoire pour la practique de l'examen de la fonction ventilatoire par la spirographie. Collection d'hygiène et de médicine du travail no. 2, CECA, Luxembourg.

- CHAMBERS, L.A. (1968) I: Classification and extent of air pollution problems. In Stern, A.C. (editor) Air Pollution, Academic Press, New York and London, 2nd Edition, p. 1-21.
- CHAPMAN, R.S., SHY, C.M., FINKLEA, J.F., HOUSE, D.E., GOLDBERG, H.E., and HAYES, C.G. (1973) Chronic respiratory disease in military inductees and parents of schoolchildren. Arch. Environ. Health 27: 138.
- CIBA (1959) Terminology, definition and classification of chronic pulmonary emphysema and related conditions. A report of the conclusions of a CIBA Guest Symposium. Thorax 14: 286.
- COFFIN, D.L., and BLOMMER, E.J. (1967) Acute toxicity of irradiated auto exhaust. Its indication by enhancement of mortality from streptococcal pneumoniae. Arch. Environ. Health 15: 36.
- COFFIN, D.L., GARDNER, D.E., HOLZMAN, R.S., and WOLOCK, F.J. (1968) Influence of ozone on pulmonary cells. Arch. Environ. Health 16: 633.
- COHEN, A.A., NELSON, C.J., BROMBERG, S.M., PRAVDA, M., FERRAND, E.F., and LEONE, G. (1974) Symptom reporting during recent publicized and unpublicized air pollution episodes. Am. J. Publ. Health 64: 442.
- COLLEY, J.R.T., and HOLLAND, W.W. (1967) Social and environmental factors in respiratory disease. Arch. Environ. Health 14: 157.
- COLLEY, J.R.T., and REID, D.D. (1970) Urban and social origins of childhood bronchitis in England and Wales. Brit. Med. J. 2: 213.
- COLLEY, J.R.T., DOUGLAS, J.W.B., and REID, D.D. (1973) Respiratory disease in young adults: influence of early childhood lower respiratory tract illness, social class, air pollution, and smoking. Brit. Med. J. 3: 195.
- COLLINS, J.J., KASAP, H.S., and HOLLAND, W.W. (1971) Environmental factors in child mortality in England and Wales. Am. J. Epid. 93: 10.
- COMMITTEE ON AIR POLLUTION (1953) H.M.S.O., London.
- COMSTOCK, G.W., STONE, R.W., SAKAI, Y., MATSUYA, T., and TONASCIA, J.A. (1973)
 Respiratory findings and urban living. Arch. Environ. Health 27: 143.
- CORN, M., KOTSKO, N., STANTON, D., BELL, W., and THOMAS, A.P. (1972) Response of cats to inhaled mixtures of ${\rm SO_2}$ and ${\rm SO_2}$ -NaCl aerosol in air. Arch. Environ. Health 24: 248.
- COX, P., MILLER, L., and PETTY, T.L. (1973) Clinical evaluation of a new electronic spirometer. Chest 63:517.
- DALHAMN, T., and RHODIN, J. (1956) Mucous flow in trachea of rats after exposure to irritant gases. Brit. J. Industr. Med. 13: 110.
- DALHAMN, T. (1961) Studies on the effect of sulfur dioxide on ciliary activity in rabbit trachea in vivo and in vitro and on the resorptional capacity of the nasal cavity. Am. Rev. Resp. Dis. 83: 566.
- DALY, C. (1959) Air pollution and causes of death. Brit. J. Prev. Soc. Med. 13: 14.
- DAVIDSON, J.T., LILLINGTON, G.A., HAYDON, G.B., and WASSERMAN, K. (1967) Physiological changes in the lungs of rabbits continuously exposed to nitrogen dioxide. Am. Rev. Resp. Dis. 95: 790.
- DEAN, G. (1966) Lung cancer and bronchitis in Northern Ireland. Brit. Med. J. 1: 1506.
- DERRETT, C.J., and BROWN, C. (1975) A system for processing by digital computer spirograms acquired in field surveys. Thorax 30: 674.
- DOUGLAS, J.W.B., and WALLER, R.E. (1966) Air pollution and respiratory infection in children. Brit. J. Prev. Soc. Med. 20: 1.
- DOWELL, A.R., KILBURN, K.H., and PRATT, Ph.C. (1971) Short-term exposure to nitrogen dioxide. Effects on pulmonary ultrastructure, compliance and surfactant system. Arch. Intern. Med. 128: 74.
- DU BOIS, A.D., and DAUTREBANDE, L. (1958) Acute effects of breathing inert dust particles and of carbachol aerosol on the mechanical characteristics of the lungs in man. J. Clin. Invest. 37: 1746.

- DURHAM, W.H. (1974) Air pollution and student health. Arch. Environ. Health 28: 241.
- EASTON, R.E., and MURPHY, S.D. (1967) Experimental ozone preexposure and histamine. Effect on the acute toxicity and respiratory function effects of histamine in quinea pigs. Arch. Environ. Health 15: 160.
- EHRLICH, R. (1966) Effect of nitrogen dioxide on resistance to respiratory infection. Bact. Rev. 30:604.
- EHRLICH, R., and HENRY, M.C. (1968) Chronic toxicity of nitrogen dioxide:

 I. Effects on resistance to bacterial pneumonia. Arch. Environ. Health
 17: 860.
- FAIRBAIRN, A.S., and REID, D.D. (1958) Air pollution and other local factors in respiratory disease. Brit. J. Prev. Soc. Med. 12: 94.
- FENTERS, J.D., FINDLAY, J.C., PORT, C.D., EHRLICH, R., and COFFIN, D.L. (1973) Chronic exposure to nitrogen dioxide. Arch. Environ. Health 27: 85.
- FERRIS, B.G. (1970) Effects of air pollution on school absences and differences in lung function in first and second graders in Berlin, New Hampshire, January 1966 to June 1967. Am. Rev. Resp. Dis. 102: 591.
- FERRIS, B.G., Jr., HIGGINS, I.T.T., HIGGINS, M.W., PETERS, J.M., VAN GANSE, W.F., and GOLDMAN, M.D. (1971) Chronic nonspecific respiratory disease, Berlin, New Hampshire, 1961-1967: a cross-sectional study. Am. Rev. Resp. Dis. 104: 232.
- FERRIS, B.G., Jr., HIGGINS, I.T.T., HIGGINS, M.W., and PETERS, J.M. (1973) Chronic nonspecific respiratory disease in Berlin, New Hampshire, 1961 to 1967: a follow-up study. Am. Rev. Resp. Dis. 107: 110.
- FERRIS, B.G., Jr., CHEN, H., PULEO, S., and MURPHY, R.L.H. (1976) Chronic nonspecific respiratory disease in Berlin, New Hampshire, 1967 to 1973. A further follow-up study. Am. Rev. Resp. Dis. 113: 475.
- FIRKET, J. (1931) Sur les causes des accidents survenus dans la vallée de la Meuse, lors des brouillards de décembre 1930. Bull. Acad. Méd. Belg. 11: 683.
- FLETCHER, C.M. (1961) Definition and classification of bronchitis, asthma and emphysema. In: Orie N.G.M., and Sluiter H.J. (editors) Bronchitis, Royal VanGorcum, Assen, p. 273-282.
- FRANK, N.R., AMDUR, M.O., WORCESTER, J., and WHITTENBERGER, J.L. (1962)
 Effects of acute controlled exposure to SO₂ on respiratory mechanics
 in healthy male adults. J. Appl. Physiol. 77: 252.
- FRANK, N.R., AMDUR, M.O., and WITTENBERGER, J.L. (1964) A comparison of the acute effects of SO $_2$ administered alone or in combination with NaCl particles on the respiratory mechanics of healthy adults. Intern. J. Air Water Poll. θ : 125.
- FRANK, N.R., and SPEIZER, F.E. (1964) Uptake and release of SO_2 by the human nose. Physiol. 7: 132.
- FRANK, N.R., and SPEIZER, F.E. (1965) SO₂ effects on the respiratory system in dogs. Arch. Environ. Health 11: 624.
- FRANK, N.R., YODER, R.E., YOKOYAMA, E., and SPEIZER, F.E. (1967) The diffusion of SO_2 from tissue fluids into the lungs following exposure of dogs to SO_2 . Health Physics 13: 31.
- FREEMAN, G., and HAYDON, G.B. (1964) Emphysema after low-level exposure to NO2. Arch. Environ. Health $\theta\colon$ 125.
- FREEMAN, G., FURIOSI, N.J., and HAYDON, G.B. (1966) Effects of continuous exposure of 0.8 ppm $\rm NO_2$ on respiration of rats. Arch. Environ. Health 13: 454.
- FREEMAN, G., STEPHENS, R.J., CRANE, S.C., and FURIOSI, N.J. (1968^a) Lesions of the lung in rats continuously exposed to 2 ppm of NO $_2$. Arch. Environ. Health 17: 181.

- FREEMAN, G., CRANE, S.C., STEPHENS, R.J., and FURIOSI, N.J. $(1968^{\rm b})$ Pathogenesis of the nitrogen dioxide-induced lesion in the rat lung: a review and presentation of new observations. Am. Rev. Resp. Dis. 98: 429.
- FREEMAN, G., STEPHENS, R.J., COFFIN, D., and STARA, J.F. (1973) Changes in dogs' lungs after long-term exposure to ozone. Arch. Environ. Health $26\colon 209$.
- FREEMAN, G., JUHOS, L.T., FURIOSI, N.J., MUSSENDEN, R., STEPHENS, R.J., and EVANS, M.J. (1974) Pathology of pulmonary disease from exposure to interdependent ambient gases (nitrogen dioxide and ozone). Arch. Environ. Health $2\theta\colon 203$.
- FRENCH, J.G., LOWRIMORE, G., NELSON, W.C., FINKLEA, J.F., ENGLISH, T., and HERTZ, M. (1973) The effect of sulfur dioxide and suspended sulfates on acute respiratory disease. Arch. Environ. Health 27: 129.
- FRY, J. (1953) Effects of fog on general practice Lancet 1: 235.
- FRY, J., DILLANE, J.P., and FRY, L. (1962) Smog: 1962 v. 1952. Lancet 2: 1326.
- GARDNER, M.J., CRAWFORD, M.D., and MORRIS, J.N. (1969) Patterns of mortality in middle age in the county boroughs of England and Wales. Brit. J. Prev. Soc. Med. 23: 133.
- GARDNER, D.E., HOLZMAN, R.S., and COFFIN, D.L. (1969) Effects of nitrogen dioxide on pulmonary cell population. J. Bact. 98: 1041.
- GLASSER, M., GREENBURG, L., and FIELD, F. (1967) Mortality and morbidity during a period of high levels of air pollution, New York. Arch. Environ. Health $15\colon 684$.
- GLASSER, M., and GREENBURG, L. (1971) Air pollution, mortality and weather. New York City, 1960-1964. Arch. Environ. Health 22: 334.
- GÖKEMEIJER, J.D.M., DE VRIES, K., and ORIE, N.G.M. (1973) Response of the bronchial tree to chemical stimuli. Rev. Inst. Hyg. Mines (Hasselt) 28: 195.
- GÖKEMEIJER, J.D.M. (1976) Hyperreactiviteit van de luchtwegen. Thesis, Groningen.
- GOLDSMITH, J.R., and NADEL, J.A. (1969) Experimental exposure of human subjects to ozone. J. Air Poll. Contr. Assoc. 19: 329.
- GOLDSTEIN, E., TYLER, W.S., HOEPRICH, P.D., and EAGLE, C. (1971) Ozone and the antibacterial defense mechanisms of the murine lung. Arch. Intern. Med. 127: 1099.
- GOLDSTEIN, E., EAGLE, M.C., and HOEPRICH, P.D. (1973) Effect of nitrogen dioxide on pulmonary bacterial defense mechanisms. Arch. Environ. Health 26: 202.
- GOLDSTEIN, E., WARSHAUER, D., LIPPERT, W., and TARKINGTON, B. (1974) Ozone and nitrogen dioxide exposure. Murine pulmonary defense mechanisms. Arch. Environ. Health $28\colon 85$.
- GORE, A.T., and SHADDICK, C.W. (1958) Atmospheric pollution and mortality in the county of London. Brit. J. Prev. Soc. Med. 12: 104.
- GRAYSON, R.R. (1956) Silage gas poisoning: nitrogen dioxide pneumonia, a new disease in agricultural workers. Ann. Intern. Med. 45: 393.
- GREEN, G.M. (1970) In defense of the lung. The J. Burns Amberson Lecture. Am. Rev. Resp. Dis. 102: 691.
- GREENBURG, L., JACOBS, M., DROLETTE, B., FIELD, F., and BAVERMAN, M. (1962)
 Report on air pollution incident in New York City, November, 1953.
 Publ. Hlth. Rep. 77: 7.
- GREENBURG, L., ERHARDT, C.L., FIELD, F., and REED, J.I. (1965) Air pollution incidents and morbidity studies. Arch. Environ. Health 10: 351.
- GROSS, P., RINEHART, W.E., and DE TREVILLE, R.T. (1967) The pulmonary reactions to toxic gases. Am. Ind. Hyg. Assoc. J. 27: 315.

- HAAGEN-SMIT, A.J., BRUNELLE, M.F., and HARA, J. (1959) Nitrogen oxide content of smokes from different types of tobacco. Arch. Industr. Health 20: 339.
- HACKNEY, J.D., LINN, W.S., MOHLER, J.G., PEDERSEN, E.E., BREISACHER, P., and RUSSO, A. $(1975^{\rm a})$ Experimental studies on human health effects of air pollutants. II. Four-hour exposure to ozone alone and in combination with other pollutant gases. Arch. Environ. Health 30:379.
- HACKNEY, J.D., LINN, W.S., LAW, D.C., KARUZA, S.K., GREENBERG, H., BUCKLEY, R.D., and PEDERSEN, E.E. $(1975^{\rm b})$ Experimental studies on human health effects of air pollutants. III. Two-hour exposure to ozone alone and in combination with other pollutant gases. Arch. Environ. Health 30: 385.
- HAMMER, D.I., HASSELBLAD, V., PORTNOY, B., and WEHRLE, P.F. (1974) Los Angeles student nurse study. Daily symptom reporting and photochemical oxidants. Arch. Environ. Health 28: 255.
- HAUSER, T.R., and CUMMINS, R.L. (1964) Increasing sensitivity of 3-methyl-2 benzothiazolone hydrazone test for aliphatic aldehydes in air. Anal. Chem. 36:679.
- HAZUCHA, M., SILVERMAN, F., PARENT, C., FIELD, S., and BATES, D.V. (1973)

 Pulmonary function in man after short-term exposure to ozone. Arch.

 Environ. Health 27: 183.
- HAZUCHA, M., and BATES, D.V. (1975) Combined effect of ozone and sulfur dioxide on human pulmonary function. Nature 257: 50.
- HEASMAN, M.A. (1962) Accuracy of death certification. Proc. Roy. Soc. Med. $55\colon 733$.
- HECHTER, H.H., and GOLDSMITH, J.R. (1961) Air pollution and daily mortality. Am. J. Med. Sci. $241\colon 581.$
- HEIMANN, H. (1964) The air pollution problem in the United States. Proc. Rov. Soc. Med. 57: 1000.
- HENRY, M.C., EHRLICH, R., and BLAIR, W.H. (1969) Effect of nitrogen dioxide on resistance of squirrel monkeys to Klebsiella pneumoniae infection. Arch. Environ. Health $18\colon 580$.
- HENRY, M.C., FINDLAY, J., SPANGLER, J., and EHRLICH, R. (1970) Chronic toxicity of NO $_2$ in squirrel monkeys. III. Effect on resistance to bacterial and viral infection. Arch. Environ. Health 20: 566.
- HEWITT, D. (1956) Mortality in the London Boroughs, 1950-1952, with special reference to respiratory disease. Brit.J. Prev. Soc. Med. 10: 45.
- HOLLAND, W.W., and REID, D.D. (1965) The urban factor in chronic bronchitis. Lancet $1\colon 445$.
- HOLLAND, W.W., REID, D.D., SELTSER, R., and STONE, R.W. (1965) Respiratory disease in England and the United States. Arch. Environ. Health $10\colon 338$.
- HOLLAND, W.W., ASHFORD, J.R., COLLEY, J.R.T., CROOKE MORGAN, D., and PEARSON, N.J. (1966) A comparison of two respiratory symptoms questionnaires. Brit. J. Prev. Soc. Med. 20: 76.
- HOLLAND, W.W., HALIL, T., BENNETT, A.E., and ELLIOTT, A. (1969) Factors influencing the onset of chronic respiratory disease. Brit. Med. J. 1:
- HOLLAND, W.W., HALIL, T., BENNETT, A.E., and ELLIOTT, A. (1970) Estimating the influence of personal and environmental factors on ventilatory function and respiratory symptoms in children. In: Orie, N.G.M., and Van der Lende, R. (editors), Bronchitis III, Royal VanGorcum, Assen, p. 20-30.
- HRUBEC, Z., CEDERLOF, R., FRIBERG, L., HORTON, R., and OZOLINS, G. (1973)
 Respiratory symptoms in twins. Arch. Environ. Health 27: 189.

- HUBER, T.E., JOSEPH, S.W., KNOBLOCK, E., REDFEARN, P.L., and KARAHAWA, J.A. (1954) New environment respiratory disease (Yokohama asthma). Arch. Industr. Hyg. and Occ. Med. 10: 295.
- HUBER, G.L., MASON, R.J., LA FORCE, M., SPENCER, N.J., GARDNER, D.E., and COFFIN, D.L. (1971) Alterations in the lung following the administration of ozone. Arch. Intern. Med. $128\colon 81$.
- HUETER, F.G., CONTNER, G.L., BUSCH, K.A., and HINNERS, R.G. (1966) Biological effects of atmospheres contaminated by auto exhaust. Arch. Environ. Health 12: 553.
- KAGAWA, J., and TOYAMA, T. (1975) Effects of ozone and brief exercise on specific airway conductance in man. Arch. Environ. Health 30: 36.
- KATZ, M. (1961) Some aspects of the physical and chemical nature of air pollution. WHO Monograph Series no. 46, p. 97-158.
- KERR, H.D., KULLE, T.J., McILHANY, M.L., and SWIDERSKY, P. (1975) Effects of ozone on pulmonary function in normal subjects. Am. Rev. Resp. Dis. 111: 763.
- KERREBIJN, K.F., MOURMANS, A.R.M., and BIERSTEKER, K. (1975) Study on the relationship of air pollution to respiratory disease in schoolchildren. Environmental Research 10: 14.
- KLEINERMAN, J., and WRIGHT, G.W. (1961) The reparative capacity of animal lungs after exposure to various single and multiple doses of nitrite. Am. Rev. Resp. Dis. 83: 423.
- KLEINERMAN. J., and COWDREY, C.R. (1968) The effects of continuous high level nitrogen dioxide on hamsters. Yale J. Biol. Med. 40: 579.
- LAMBERT, P.M., and REID, D.D. (1970) Smoking, air pollution, and bronchitis in Britain. Lancet $1:\ 853.$
- LA TOWSKY, L.W., MacQUIDDY, E.L., and TOLLMAN, J.P. (1941) Toxicology of oxides of nitrogen. I. Toxic concentrations. J. Industr. Hyg. and Toxicol. 23: 129.
- LAWTHER, P.J. (1955) Effects of inhalation of sulphur dioxide on respiration and pulse rate in normal subjects. Lancet 2: 745.
- LAWTHER, P.J., WALLER, R.E., and HENDERSON, M. (1970) Air pollution and exacerbations of bronchitis. Thorax $25\colon 525$.
- LAWTHER, P.J., and WALLER, R.E. (1973) Measurement of respiratory function in relation to the effects of air pollution. Rev. Inst. Hyg. Mines (Hasselt) 28: 198.
- LAWTHER, P.J., BROOKS, A.G.F., LORD, P.W., and WALLER, R.E. (1974^a) Day-to-day changes in ventilatory function in relation to the environment.

 Part I. Spirometric values. Environmental Research 7: 27.
- LAWTHER, P.J., BROOKS, A.G.F., LORD, P.W., and WALLER, R.E. (1974^b) Day-to-day changes in ventilatory function in relation to the environment. Part II. Peak expiratory flow values. Environmental Research 7: 41.
- LAWTHER, P.J., BROOKS, A.G.F., LORD, P.W., and WALLER, R.E. (1974 Dayto-day changes in ventilatory function in relation to the environment. Part III. Frequent measurements of peak flow. Environmental Reseach θ : 119.
- LEBOWITZ, M.D. (1973) A comparative analysis of the stimulus-response relationship between mortality and air pollution-weather. Environmental Research θ : 106.
- LEBOWITZ, M.D., TOYAMA, T., and McCARROLL, J. (1973) The relationship between air pollution and weather as stimuli and daily mortality as responses in Tokyo, Japan, with comparisons with other cities. Environmental Research 6: 327.

- LEFCOE, N.M., and INCULET, I.I. (1971) Particulates in domestic premises.

 I. Ambient levels and central air filtration. Arch. Environ. Health
 22: 230.
- LEFCOE, N.M., and INCULET, I.I. (1975) Particulates in domestic premises. II. Ambient levels and indoor-outdoor relationships. Arch. Environ. Health 30: 565.
- LEONG, K.J., MacFARLAND, H.N., and SELLERS, E.A. (1961) Acute SO₂ toxicity: effects of histamine and histamine liberation. Arch. Environ. Health 3: 668.
- LEWIS, T.R., MOORMAN, W.J., YANG, Y., and STARA, J.F. (1974) Long-term exposure to auto exhaust and other pollutant mixtures. Effects on pulmonary function in the beagle. Arch. Environ. Health 2θ : 102.
- LOGAN, W.P.D. (1949) Fog and mortality. Lancet 1: 78.
- LOGAN, W.P.D. (1956) Mortality from fog in London, 4-6 January, 1956. Brit. Med. J. 1: 722.
- LOURENÇO, R.V., KLIMEK, M.F., and BOROWSKI, C.J. (1971) Deposition and clearance of 2 μ particles in the tracheobronchial tree of normal subjects smokers and nonsmokers J. Clin. Invest. $50\colon$ 1411.
- LOWRY, Th., and SCHUMAN, L.M. (1956) Silo-Fillers Disease A syndrome caused by nitrogen dioxide. J. Am. Med. Ass. 162: 153.
- LUCHSINGER, P.C., LAGARDE, B., and KILFEATHER, J.E. (1968) Particle clearance from the human tracheobronchial tree. Am. Rev. Resp. Dis. 97: 1046.
- LUNN, J.E., KNOWLDEN, J., and HANDYSIDE, A.J. (1967) Patterns of respiratory illness in Sheffield infant schoolchildren. Brit. J. Prev. Soc. Med. 21: 7.
- LUNN, J.E., KNOWLDEN, J., and ROE, J.W., (1970) Patterns of respiratory illness in Sheffield junior schoolchildren. A follow-up study. Brit. J. Prev. Soc. Med. 24: 223.
- MacMAHON, B., and PUGH, T.F. (1970) Epidemiology. Principles and Methods. Little, Brown and Company, Boston, 1970.
- MARTIN, A.E., and BRADLEY, W.H. (1960) Mortality, fog and atmospheric pollution. Mon. Bull. Min. Hlth. $19\colon 56$.
- MARTIN, A.E. (1964) Mortality and morbidity statistics and air pollution. Proc. Roy. Soc. Med. $57\colon 969$.
- McCarroll, J., and Bradley, W. (1966) Excess mortality as an indicator of health effects of air pollution. Am. J. Publ. Hlth. 56: 1933.
- McCarroll, J., Cassell, E.J., Wolter, D.W., Mountain, J.D., Diamond, J.R., and Mountain, I.M. (1967) Health and the urban environment. Arch. Environ. Health $14\colon 178.$
- McDERMOTT, M. (1962) Acute respiratory effects of the inhalation of coal dust particles. J. Physiol. $162\colon 53$.
- McJILTON, Ch., FRANK, R., and CHARLSON, R. (1973) Role of relative humidity in the synergistic effect of a sulfur dioxide-aerosol mixture on the lung. Science 182: 503.
- McMILLAN , R.S., WISEMAN, D.H., HANES, B., and WEHRLE, P.F. (1969) Effects of oxidant air pollution on peak expiratory flow rates in Los Angeles schoolchildren. Arch. Environ. Health $18\colon 941$.
- MILLER, S., and EHRLICH, R. (1958) Susceptibility to respiratory infections of animals exposed to ozone: susceptibility to Klebsiella Pneumoniae. J. Infect. Dis. 103: 145.
- MINETTE, A., BRILLE, D., CASULA, D., VAN DER LENDE, R., et SMIDT, U. (1967) Commentaires relatifs au questionnaire pour l'étude de la bronchite chronique et de l'emphysème pulmonaire. CECA, Luxembourg.

- MINISTRY OF HEALTH (1954) Mortality and morbidity during the London fog of December 1952. Rep. Publ. Hlth. Med. Subj. no. 95. H.M.S.O., London.
- MORK, T. (1962) A comparative study of respiratory disease in England & Wales and Norway. Acta Med. Scand. 172: Suppl. 384.
- MORROW, P.E., GIBBS, F.R., and GAZIOGLU, K. (1967) Inhaled Particles and Vapours. Second international congress of inhaled particles and vapours, Cambridge, England, 1964. Pergamon Press, p. 351-359.
- MOSTARDIE, R.A., and LEONARD, D. (1974) Air pollution and cardiopulmonary functions. Arch. Environ. Health 29: 325.
- MUIR, D.C.F., and DAVIES, C.N. (1967) The deposition of 0.5 micron diameter aerosols in the lungs of man. Ann. Occ. Hyg. 10: 161.
- MUIR, D.C.F. (Editor) (1972) Clinical aspects of inhaled particles. William Heinemann Medical Books Ltd., London, p. 1-20.
- MURPHY, S.D., ULRICH, Ch.E., FRANKOWITZ, S.H., and XINTARAS, Ch. (1964) Altered function in animals inhaling low concentrations of ozone and nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 25: 246.
- NADEL, J.A., SALEM, H., TAMPLIN, B., and TOKIWA, Y. (1965) Mechanism of bronchoconstriction during inhalation of sulfur dioxide. J. Appl. Physiol. 20: 164.
- NAU, C.A., NEAL, J., STEMBRIDGE, V., and COOLEY, R.N. (1962) Physiological effects of carbon black. IV. Inhalation. Arch. Environ. Health 4: 415.
- NEIBURGER, M. (1967) Meteorological aspects of air pollution. Arch. Environ. Health $14\colon 41$.
- NORMAN, V., and KEITH, Ch. (1965) Nitrogen oxides in tobacco smoke. Nature $205\colon 915.$
- NORWOOD, W.D., WISEHART, D.E., EARL, C.A., ADLEY, F.E., and ANDERSON, D.E. (1966) Nitrogen dioxide poisoning due to metal cutting with oxyacetylene torch. J. Occ. Med. β : 301.
- OECD, (1964) Methods of measuring air pollution, Paris.
- ORIE, N.G.M., and SLUITER, H.J. (1961) Bronchitis. Royal VanGorcum, Assen.
- ORIE, N.G.M., SLUITER, H.J., DE VRIES, K., TAMMELING, G.J., and WITKOP, J. (1961) The Host Factor in Bronchitis. In: Orie, N.G.M., and Sluiter, H.J. (editors) Bronchitis, Royal VanGorcum, Assen, p. 43-59.
- ORIE, N.G.M., and SLUITER, H.J. (1964) Bronchitis II. Royal VanGorcum, Assen.
- ORIE, N.G.M., and VAN DER LENDE. R. (1970) Bronchitis III. Royal VanGorcum, Assen.
- OSHIMA Y., ISHIZAKI, T., MIYAMOTO, T., SHIMIZU, T., SHIDA, T., and KABE, J. (1964) Air pollution and respiratory diseases in the Tokyo-Yokohama area. Am. Rev. Resp. Dis. 90: 572.
- OSHIMA, Y., ISHIZAKI, T., MIYAMOTO, T., KABE, J., and MAKIMO, S. (1964) A study of Tokyo-Yokohama asthma among Japanese. Am. Rev. Resp. Dis. 90:632.
- PARKES, W.R. (1974) Occupational Lung Disorders. Butterworth & Co. Ltd. p. 65-67.
- PATTLE, R.E., and BURGESS, F. (1957) Toxic effects of mixtures of sulfur dioxide and smoke with air. J. Pathol. Bact. 73: 411.
- PATTLE, R.E., WEDD, C.D., and BURGESS, F. (1959) The acute toxic effects of black smoke. Brit. J. Industr. Med. 16: 216.
- PAVIA, D., SHORT, M.D., and THOMSON, M.L. (1970) No demonstrable long term effects of cigarette smoking on the mucociliary mechanism of the human lung. Nature $226\colon 1228$.
- PEMBERTON, J., and GOLDBERG, C. (1954) Air pollution and bronchitis. Brit. Med. J. 2: 567.

- PENHA, P.D., and WERTHAMER, S. (1974) Pulmonary lesions induced by long-term exposure to ozone. II. Ultrastructure observations of proliferative and regressive lesions. Arch. Environ. Health 29: 282.
- PHELPS, H.W., and KOIKE, S. (1962) Tokyo-Yokohama respiratory disease. Am. Rev. Resp. Dis. 86: 55.
- PHELPS, H.W. (1965) Follow-up studies in Tokyo-Yokohama respiratory disease. Arch. Environ. Health 10: 143.
- PROCTOR, D.F., SWIFT, D.L., QUINLAN, M., SALMON, S., TAKAGI, Y., and EVERING, S. (1969) The nose and man's atmospheric environment. Arch. Environ. Health 18: 671.
- PURVIS, M.R., and EHRLICH, R. (1963) Effects of atmospheric pollutants on susceptibility to respiratory infection: II. Effect of nitrogen dioxide. J. Infect. Dis. 113: 72.
- REID, D.D. (1962) Diagnostic standardization in geographic comparisons of morbidity. Am. Rev. Resp. Dis. 86: 850.
- REID, D.D., CORNFIELD, J., MARKUSH, R.E., SEIGEL, D., PEDERSEN, E., and HAENSZEL, W. (1966) Studies of disease among migrants and native populations in Great Britain, Norway, and the United States. III. Prevalence of cardiorespiratory symptoms among migrants and native-born in the United States. Nat. Canc. Inst. Mon. 19: 321.
- REID, D.D. (1975) International studies in epidemiology. Am. J. Epid. 102: 469.
- REID, L. (1963) An experimental study of hypersecretion of mucus in the bronchial tree. Brit. J. Exp. Pathol. 44:437.
- RYDER, R.C., DUNNILL, M.S., and ANDERSON, J.A. (1971) A quantitative study of bronchial mucous gland volume, emphysema and smoking in a necropsy population. J. Pathol. 104: 59.
- SALEM, H., and AVIADO, D.M. (1961) Inhalation of sulfur dioxide. Comparative behavior of bronchiolar and pulmonary vascular smooth muscles. Arch. Environ. Health 2: 656.
- SALEM, H., and CULLUMBINE, H. (1961) Kerosene smoke and atmospheric pollutants. Arch. Environ. Health 2: 641.
- SCHAAFSMA, W. (1966) Hypothesis testing problems with the alternative restricted by a number of inequalities. Thesis, Groningen.
- SCHEEL, L.D., DOBROGORSKI, O.J., MOUNTAIN, J.T., SVIRBELY, J.L., and STOKINGER, H.E. (1959) Physiologic, biochemical, immunologic and pathologic changes following ozone exposure. J. Appl. Physiol. 14: 67.
- SCHNURER L., and HAYTHORN, S.R. (1937) The effects of coal smoke of known composition on the lungs of animals. Am. J. Pathol. 13:799.
- SCHOETTLIN, C.E., and LANDAU E. (1961) Air pollution and asthmatic attacks in the Los Angeles area. Publ. Hlth. Rep. 76: 545.
- SCHRENK, H.H., HEIMAN, H., CLAYTON, G.D., GAFAFFER, W.M., and WEXLER, H. (1949) Air pollution in Donora, Pa. Epidemiology of the unusual smog episode of October, 1948. Publ. Hlth. Bull. (Washington) no. 306.
- SCOTT, J.A. (1963) The London fog of December 1962. Med. Officer 109: 250.
- SHY, C.M., HASSELBLAD, V., BURTON, R.M., NELSON, C.J., and COHEN, A.A. (1973) Air pollution effects on ventilatory function of US schoolchildren. Arch. Environ. Health 27: 125.
- SIMONSSON, B.G., JACOBS, F.M., and NADEL, J.A. (1967) Role of autonomic nervous system and the cough reflex in the increased responsiveness of airways in patients with obstructive airways disease. J. Clin. Invest. 46: 1812.
- SNELL, R.E., and LUCHSINGER, P.C. (1969) Effects of sulfur dioxide on expiratory flow rates and total respiratory resistance in normal human subjects. Arch. Environ. Health 18: 693.

- SPEIZER, F.E., and FRANK, N.R. (1966) A comparison of changes in pulmonary flow resistance in healthy volunteers acutely exposed to $\rm SO_2$ by mouth and by nose. Brit. J. Industr. Med. 23:75.
- SPEIZER, F.E., and FERRIS, B.G. (1973^a) Exposure to automobile exhaust. I. Prevalence of respiratory symptoms and disease. Arch. Environ. Health 26:313.
- SPEIZER, F.E., and FERRIS, B.G. (1973^b) Exposure to automobile exhaust. II. Pulmonary function measurements. Arch. Environ. Health 26: 319.
- STEPHENS, R.J., SLOAN, M.F., EVANS, M.J., and FREEMAN, G. (1974) Early response of lung to low levels of ozone. Am. J. Pathol. 74: 31.
- STERLING, T.D., POLLACK, S.V., and PHAIR, J.J. (1967) Urban hospital morbidity and air pollution: a second report. Arch. Environ. Health 15: 362.
- STOCKS, P. (1959) Cancer and bronchitis mortality in relation to atmospheric deposit and smoke. Brit. Med. J. 1:74.
- STOKINGER, H.E. (1965) Ozone toxicology. A review of research and industrial experience: 1954-1964. Arch. Environ. Health 10: 719.
- STRANDBERG, L.G. (1964) SO $_2$ absorption in the respiratory tract. Arch. Environ. Health $\theta\colon 160.$
- SWANN, H.E., and BALCHUM, O.J. (1966) Biological effects of urban air pollution. IV. Effects of acute smog episodes on respiration of guinea pigs. Arch. Environ. Health 12: 698.
- TAMMELING, G.J., DEGENHART, P., VAN DER LENDE, R., en BERG, W.Chr. (1969) Ervaringen met de peak flow meter volgens Wright ter bepaling van luchtwegobstructie. Ned. Tijdschr. Geneesk. 113: 2133.
- TASK GROUP ON LUNG DYNAMICS (1966) Deposition and retention models for internal dosimetry of the human respiratory tract. Health Physics 12: 173.
- TESCH, J.W. (1964) Geneeskundige aspecten van luchtverontreiniging. Ned. Tijdschr. Geneesk. $108\colon 2029$.
- THOMAS, H.V., MUELLER, P.K., and WRIGHT, G. (1967) Response of rat lung mast cells to nitrogen dioxide inhalation. J. Air Poll. Contr. Ass. 17: 33.
- THOMSON, M.L., and SHORT, M.D. (1969) Mucociliary function in health, chronic obstructive airway disease, and asbestosis. J. Appl. Physiol. 26:535.
- THOMSON, M.L., and PAVIA, D. (1973) Long-term tobacco smoking and mucociliary clearance. Arch. Environ. Health $2\theta\colon$ 86.
- THOMSON, M.L., and PAVIA, D. (1974) Particle penetration and clearance in the human lung. Arch. Environ. Health $2\theta\colon 214$.
- TOIGO, A., IMARISIO, J.J., MURMALL, H., and LEPPER, M.N. (1963) Clearance of large carbon particles from the human tracheobronchial tree. Am. Rev. Resp. Dis. $87\colon$ 487.
- TOYAMA, T. (1964) Air pollution and its health effects in Japan. Arch. Environ. Health $\theta\colon 153$.
- VAN DER LENDE, R. (1969) Epidemiology of chronic non-specific lung disease. Thesis, Groningen. Royal VanGorcum, Assen.
- VAN DER LENDE, R., DE KROON, J.P.M., TAMMELING, G.J., DE VRIES, K., and ORIE, N.G.M. (1970) Possible indicators of endogenous factors in the development of CNSLD. In: Orie, N.G.M., and Van der Lende, R. (editors) Bronchitis III, Royal VanGorcum, Assen, p. 52-70.
- VAN DER LENDE, R., and ORIE, N.G.M. (1971) Various aspects of international epidemiological investigation of CNSLD. TNO-nieuws 26: 541.

- VAN DER LENDE, R., and ORIE, N.G.M. (1972) The MRC-ECCS questionnaire on respiratory symptoms (Use in epidemiology). Scand. J. Resp. Dis. 53: 218.
- VAN DER LENDE, R., TAMMELING, G.J., VISSER, B.F., DE VRIES, K., WEVER-HESS, J., and ORIE, N.G.M. (1973^a). Epidemiological investigations in the Netherlands into influence of smoking and atmospheric pollution on respiratory symptoms and lung function disturbances. Pneumonologie 149: 119.
- VAN DER LENDE, R., VISSER, B.F., and ORIE, N.G.M. (1973^b) Epidemiological methods in studying chronic non-specific lung disease (CNSLD). Bull. de Physio-Pathol. Resp. 9: 1101.
- VAN DER LENDE R., HUYGEN,C., JANSEN-KOSTER, E.J., KNIJPSTRA, S., PESET, R., QUANJER, Ph.H., VISSER, B.F., WOLFS, E.H.E. en ORIE, N.G.M. (1975^a) Een tijdelijke vermindering van de ventilatoire longfunctie bij een deel van de inwoners van Vlaardingen tijdens een acute verhoging van de luchtverontreiniging. Ned. Tijdschr. Geneesk. 119: 584.
- VAN DER LENDE, R., JANSEN-KOSTER, E.J., KNIJPSTRA, S., MEINESZ, A.F., WEVER, A.M.J. en ORIE, N.G.M. (1975^b) Definitie van CARA in epidemiologie en preventie. Ned. Tijdschr. Geneesk. 119: 1975.
- VAN DER LENDE, R., JANSEN-KOSTER, E.J., KNIJPSTRA, S., MEINESZ, A.F., WEVER, A.M.J., en ORIE, N.G.M. (1975^C) Prevalentie van CARA in Vlagtwedde en Vlaardingen (Computerdiagnose versus artsendiagnose). Ned. Tijdschr. Geneesk. 119: 1988.
- VINTINNER, F.J., and BAETJER, A.M. (1951) Effect of bituminous coal dust and smoke on the lungs. Animal experiments. Arch. Ind. Hyg. and Occ. Med. 4: 206.
- WAHDAN, M.B.M.E.H. (1964) Atmospheric pollution and other environmental facors in respiratory disease of children. Thesis, London.
- WALLER, R.E., and LAWTHER, P.J. (1955) Some observations on London fog. Brit. Med. J. $2:\ 1356.$
- WALLER, R.E., and LAWTHER, P.J. (1957) Further observations on London fog. Brit. Med. J. 2: 1473.
- WAYNE, W.S., WEHRLE, P.F., and CARROLL, R.E. (1967) Oxidant air pollution and athletic performance. J. Am. Med. Assoc. 199: 901.
- WAYNE, L.G., and CHAMBERS, L.A. (1968) Biological effects of urban air pollution. V. A study of effects of Los Angeles atmosphere on laboratory rodents. Arch. Environ. Health 16: 871.
- WERTHAMER, S., SCHWARZ, L.H., CARR, J.J., and SOSKIND, L. (1970) Ozone-induced pulmonary lesions. Severe epithelial changes following sublethal doses. Arch. Environ. Health 20: 16.
- WEVER-HESS, J., and VAN DER LENDE, R. (1971) Interne Rapporten van de Werkgroep TNO Epidemiologie van CARA, Gezondheidsorganisatie TNO, 's-Gravenhage.
- WEXLER, H. (1961) Role of meteorology. WHO Monograph Series no. 46, p. 49-61.
- WHO (1958) Report of a WHO Expert Committee on Environmental Sanitation. WHO Techn. Rep. Ser. no. 157.
- WHO (1963) European Symposium on chronic non-specific lung disease. Moscow 10-15 December 1962. Regional Office for Europe. WHO, Copenhagen.
- WHO (1964) Report of a WHO Expert Committee. Atmospheric pollutants. WHO Techn. Rep. Ser. no. 271.
- WIDDICOMBE, J.G., KENT, D.C., and NADEL, J.A. (1962) Mechanism of bron-choconstriction during inhalation of dust. J. Appl. Physiol. 17: 613.

- WINKELSTEIN, W., KANTOR, S., and DAVIS, E.W. (1967) The relationship of air pollution and economic status to total mortality and selected respiratory system mortality in men: I. Suspended particulates. Arch. Environ. Health 14: 162.
- WINKELSTEIN, W., KANTOR, S., DAVIS, E.W., MANERI, C.S., and MOSHER, W.F. (1968) The relationship of air pollution and economic status to total mortality and selected respiratory system mortality in men. II. Oxides of sulfur. Arch. Environ. Health 16: 401.
- WINKELSTEIN, W., and KANTOR, S. (1969) Respiratory symptoms and air pollution in an urban population of Northeastern United States. Arch. Environ. Health 18: 760.
- YOUNG, W.A., SHAW, D.B., and BATES, D.V. (1964) Effects of low concentrations of ozone on pulmonary function in man. J. Appl. Physiol. 19:765.
- ZUIDERWEG, A. (1962) Over het vóórkomen van asthma (chronische aspecifieke respiratoire aandoeningen) in een huisartsenpraktijk in Z.O. Groningen. Thesis, Groningen.

APPENDIX A

CONVERSION TABLES

1. Introduction.

The conversion from e.g. parts per million (ppm) to milligrams per cubic meter (mg/m^3) can be derived as follows: Example: ozone (O_3)

1 ppm ozone = 1 liter ozone per
$$10^6$$
 liter (of air)
= 10^{-3} liter ozone per 10^3 liter
= 10^{-3} liter ozone per m^3 (1)

As 1 mole has a volume of

22.4 x
$$\frac{273 + \text{degrees centigrade (C)}}{273}$$
 liter (at l atmosphere)

hence, 1 liter ozone =
$$\frac{1 \text{ mole ozone}}{22.4 \times \frac{273 + C}{273}}$$
 (2)

Consequently, from (1) and (2):

1 ppm ozone =
$$\frac{10^{-3} \text{ mole ozone}}{22.4 \times \frac{273 + C}{273}} \text{ per m}^3$$

As 1 mole ozone has a molecular weight of 48 grams (0 = 16):

1 ppm ozone =
$$\frac{10^{-3} \times 48}{22.4 \times \frac{273 + C}{273}}$$
 g/m³ ozone

For 25 degrees centigrade at 1 atmosphere:

1 ppm ozone =
$$\frac{10^{-3} \times 48}{22.4 \times \frac{298}{273}}$$
 g/m³ = 0.001963 g/m³ = 1.963 mg/m³ = 1963 µg/m³ ozone

· The general formulae:

$$1 \text{ ppm} = \frac{\text{molecular weight}}{22.4 \times \frac{273 + C}{273}} \text{ mg/m}^3$$

$$1 \text{ mg/m}^3 = \frac{22.4 \times \frac{273 + C}{273}}{\text{molecular weight pmm}}$$

2. Conversion table of $ppm\ to\ mg/m^3$ and mg/m^3 to ppm for sulphur $dioxide^1$) (at 25 degrees centigrade and 1 atmosphere).

	ррт	to mg/m	3		mg/	m ³	to ppm	
0.05	ppm =	0.145	mg/m^3	0.100	mg/m^3	=	0.034	ppm
0.1	ppm =	0.290	mg/m^3	0.250	mg/m^3	=	0.085	ppm
0.2	ppm =	0.580	mg/m^3	0.500	mg/m^3	=	0.170	ppm
0.3	ppm =	0.870	mg/m^3	0.750	mg/m^3	=	0.255	ppm
0.4	ppm =	1.16	mg/m^3	ī	mg/m^3	=	0.340	ppm
0.5	ppm =	1.45	mg/m^3	1.5	mg/m^3	=	0.510	ppm
1	ppm =	2.9	mg/m^3	5	mg/m^3	=	1.7	ppm
2.5	ppm =	7.2	mg/m^3	10	mg/m^3	=	3.4	ppm
5	ppm =	14.5	mg/m^3	50	mg/m^3	=	17	ppm
10	ppm =	29	mg/m^3	100	mg/m^3	=	34	ppm
50	ppm =	145	mg/m^3	200	mg/m^3	=	68	ppm
100	ppm =	290	mg/m^3	300	mg/m^3	=	102	ppm

 $^{^{1)}}$ Molecular weight of sulphur dioxide: 64 (32 + 2 x 16)

3. Conversion table of $ppm\ to\ mg/m^3$ and mg/m^3 to ppm for $ni-trogen\ dioxide^1)$ (at 25 degrees centigrade and 1 atmosphere).

	P	рт	to mg/m	3		mg/m	3	to ppm	
0.1	ppm	=	0.188	mg/m^3	0.100	mg/m^3	=	0.05	ppm
0.5	ppm	=	0.94	mg/m^3	0.500	mg/m^3	=	0.27	ppm
1	ppm	=	1.88	mg/m^3				0.53	
2	ppm	=	3.76	mg/m^3	5	mg/m^3	=	2.66	ppm
5	ppm	=	9.4	mg/m^3	10			5.32	
10	ppm	=	18.8	mg/m^3	20	mg/m^3	=	10.6	ppm
25	ppm	=	47	mg/m^3	50	mg/m^3	=	26.6	ppm
50	ppm	=	94	mg/m^3	100	mg/m^3	=	53.2	ppm
100	ppm	=	188	mg/m^3	200	mg/m^3	=	106.4	ppm

 $^{^{1)}}$ Molecular weight of nitrogen dioxide: 46 (14 + 2 x 16)

4. Conversion table of $ppm\ to\ mg/m^3$ and $mg/m^3\ to\ ppm$ for $ozone^{1)}$ (at 25 degrees centigrade and 1 atmosphere).

ррт	to mg/	/m ³		mg/m	3 7	to ppm	
0.05 ppm =	0.098	mg/m^3		${\rm mg/m}^3$			
0.10 ppm =	0.196	mg/m^3	0.250	mg/m^3	=	0.128	ppm
0.25 ppm =	0.490	mg/m^3		mg/m^3			
0.37 ppm =	0.725	mg/m^3		mg/m^3			
0.50 ppm =	0.980	mg/m^3		mg/m^3			
0.75 ppm =	1.47	mg/m^3		mg/m^3			
1 ppm =				mg/m^3			
2.5 ppm =			5	mg/m^3			
5 ppm =	9.8	mg/m ³	10	mg/m^3	=	5.1	ppm

¹⁾ Molecular weight of ozone: 48 (3 x 16)

THE T.N.O. QUESTIONNAIRE ON RESPIRATORY SYMPTOMS.

GEZONDHEIDSORGANISATIE T.N.O. BEVOLKINGSONDERZOEK NAAR CHRONISCHE LONGAANDOENINGEN

N.	am:		No.:		1, 2, 3, 4
A	fres:		Geslacht:		5
11	oonplaats:		Burg. staat:		6
(1)	boortedatum:		Leeftijd:		7, 8
D.	itum van het onderzoek	19	Dag: **		9
U	ir van het onderzoek		Uur:*		10
En	queteur		Code no. enqueteur:		11, 12
	Klachte	en			
A	Anamnese				
W	eiding: Ik ga u een aantal vragen steller ilt u hierop zoveel mogelijk met ja" of , idelijk is, zegt u het me dan.	n. die betrek "neen" antwo	king hebben op uw borst, oorden? Als een vraag niet		
	I Hoes	ten		ja neen	
1	Hoest u's winters gewoonlijk bij het op (Hoesten bij de eerste sigaret, of bij het ken. Geen nota nemen van "keelschra	naar buiten	gaan, als positief aanmer enkele kuch).	1 2	13
2	Hoest u 's winters gewoonlijk overdag	of 's nacht		ja neen	14
	(Geen nota nemen van sporadisch hoe			1 2	
	Alleen indien minstens één der heantwoord vraag 3 en 4 steller	voorgaand i:	e vragen met "ja" wordt	ja neen	
3	Hoest u zo vrijwel dagelijks, wel drie m	aanden per j	aar?	1 2	15
4	Op welke leeftijd bent u begonnen te b	noesten?		2 cijfers jr.	16, 17
	II Sputu	ım		B	
5	Geeft u's winters gewoonlijk bij het op (Opgeven van fluimen bij de eerste sig positief aanmerken, Doorgeslikte fluim secreet uit de neus-keelholte).	aret, of bii	het naar buiten oaan als	ja neen	18
6	Geeft u 's winters gewoonlijk overdag - (Vanaf 2 fluimen per dag noteren).			ja neen	19
	Alleen indien minstens één der beantwoord vraag 7 en 8 stellet	voorgaande n:	vragen met "ja" wordt		
7	Geeft u zo vrijwel dagelijks fluimen op,	wel drie ma	anden per jaar?	ja neen	20
8	Op welke leeftijd is het opgeven van fli	uimen begor	nnen?	2 cijfers jr.	21, 22
9	Heeft u in de afgelopen 3 jaren wel eens van)** hoesten en opgeven van fluimen	ja neen	23		
	Indien deze vraag met "ja" wor	di beantwoo	ord:	ia neen	
10	Heeft u dit vaker dan één keer gehad?				24
				1 2	

Codering: zie instructies
 Deze formulering gebruiken voor personen die gewoonlijk hoesten en fluimen opgeven

	III Kortademigheid		I	
	(De vragen hebben betrekking op de doorsnee toestend van de onderzochte persoon in de winter).			
11	Hier een "1" invullen, wanneer de onderzochte persoon door een andere oorzaak dan hart- of longziekten moeilijkheden ondervindt bij het lopen.	ia neen		25
12	Heeft u last van kortademigheid, wanneer u zich op vlak terrein moet haasten, of wanneer u een lichte helling, of een trap in normale ras oploopt? ("necn" - graad 1ja" - doorgaan)	1		
13	Heeft u last van kortademigheid, wanneer u met andere mensen van uw leef- tijd in normaal tempo op vlak terrein loopt? (.neen" - graad 2, ga naar vraag 16ja" - doorgaan)	ja neen 2		
14	Moet u wel eens stilstaan om op adem te komen, wanneer u in uw eigen tempo op vlak terrein wandelt? (.neen' - graad 3. ga naar vraag 16ja'' - doorgaan)	3		
15	Bent u in rust kortademig? ("neen" - graad 4. ga naar vraag 16. "ja" - doorgaan)	ja neen		
15a	Soms of altijd?	soms altijd 5 6		
16	Op welke leeftijd heeft u bemerkt dat u kortademig was? (Het antwoord is aanvaardbaar, indien met "rond deze leeftijd" wordt ge- antwoord).	Codering *	2 cijfers	26 јг. 27, 28
	IV Piepende ademhaling	ja neen		
17	Heeft u ooit last van "piepen op de borst" gehad?			
	Zo ja:	ia neen		
18	Heeft u dit de meeste dagen of nachten?			
18a	Zo ja: Heeft u dit vrijwel alle dagen of nachten?	ja neen		
		3 Codering *		29
	V Astma aanvallen		ia neen	
19	Heeft u wel eens in rust aanvallen van benauwdheid met "piepen op de borst" gehad? (Astma-aanvallen)		ja neen	30
	Zo ja:		2 cijfers	
20	Op welke leeftijd heeft u de eerste aanval gehad? (Het antwoord is aanvaardbaar, indien met "rond deze leeftijd" wordt geantwoord).		2 cijfers	jr. 31, 32
21	Op welke leeftijd heeft u de laatste aanval gehad? (Het antwoord is aanvaardbaar, indien met "rond deze leeftijd" wordt ge-antwoord).		2 cijiers	jr. 33, 34
	VI Invloed van het weer			
	Heeft het weer invloed op uw ademhaling? (Hoest, opgeven van fluimen, piepen op de borst, kortademigheid). (Als "ja" te aanvaarden, indien bepaalde weersomstandigheden duidelijk en geregeld invloed hebben).		ja neen 1 2	35

Codering: zie instructies.

	VII Neuscatarrh	l
23	Heeft u gewoonlijk last van een verstopte neus of van een loopneus?	ja neen 36
	Zo ja:	1 2
24	Heeft u dit vrijwel dagelijks, wel drie maanden per jaar?	ja neen 37
25	Heeft u last van "hooikoorts" (gehad)? (Alleen te aanvaarden typische gevallen samengaand met seizoen-gebonden allergenen).	ja neen 38
	VIII Ziekten van de luchtwegen	
26	Heeft u de laatste 3 jaren een ziekte van de luchtwegen gehad, waardoor u uw gewone werkzaamheden gedurende minstens een week niet kon verrichten?	
	Zo ja:	
27	Gaf u daarbij meer fluimen op dan gewoonlijk?	
	Zo ja:	
28	Hoeveel van dergelijke perioden heeft u in de laatste 3 jaren gehad?	
	2 per. of meer.	
	4 Codering •	39
29	Heeft u ooit één of meer van de volgende aandoeningen gehad:	
	a (+) een ongeluk of een operatie aan uw borstkas?	40
	b (+) een hartaandoening?	41
	c (+) een hartklepaandoening?	42
	d (+) verhoogde bloeddruk?	43
	e (+) een nieraandoening?	44
	f (x) bronchitis?	45
	g (x) longontsteking?	46
	h (x) pleuritis?	47
	i (+) longtuberculose?	48
	j (x) andere borstaandoeningen?	49
	$(+)$ Codering $0 = neen \ 1 = ja$	
	(x) Codering $0 = neen 1 = 1 x 2 = 2 x$	
	3 = 3x, 4, 5 enz 9 = 9x of meer.	
	Gaarne nadere precisering bij ieder positief antwoord.	
	IX Roken	ia neen
30	Rookt u?	ja neen 50
30a	Heeft u vroeger gerookt?	ja neen 1 2 51
31	Op welke leeftijd bent u begonnen geregeld te roken?	2 cijfers jr. 52, 53

^{*} Codering: zie instructies.

31a				Tabel					
		Fabrieks- sigaretten gemiddeld per dag	Gerolde sigaretten gemiddeld per dag	Sigaren gemiddeld per week	Cigarillos gemiddeld per week	Pijp- tabak(gr) gemiddeld per week	Inha- latie		
nu *									54, 55, 56
	atste 10 jr.*								57, 58, 59
dáár	voor *								60, 61, 62
32	Indien u h	et roken ge:	staakt heeft,	hoe lang is	dat geleden	?#.			63
33	Indien u h borstklach		rminderd of	gestaakt he	eeft, is dat o	lan gebeurd	wegens	ja neen	64 65 t/m 74
				Reserv	e codering				65 t/ m /4
				Volg n	o. onderzoe	k *			75, 76
				Coder	ingsruimte z	1.B.W. *			77, 78, 79, 80
				Herha	ling persoor	is no. *			111, 211, 311, 411
			X Bero	epsanamnes	e				
34	Wat is uw heeft u da	huidige ber arvoor geh	oep? Hoelar ad? Hoelang	ng heeft u da	at uitgeoefei	nd? Welke b	eroepen		
	a Coderi	ng: huidige	beroep en o	luur *				a	511, 611, 711
	b Coderi		dat hiervóó. id en duur*	r gedurende	minstens 6	maanden w	erd uit-	b	811, 911, 1011
	c Coderi	ng: voornaa duur *	aniste beroef	o, dat vroeg	er werd uit	geoefend vó	ór b-en	С	1111, 1211, 1311
37	Komt of I	wam u ber	wam u beroepshalve in aanraking met chemische dampen, prikke-					a b	1411
		en, stof of r					• 500 00000	c	1511
39	rook of da	ampen tijde	n (verergere ns uw huidi werkzaamhe	ge werkzaar	nheden?*	door gasse	n, stof,		1611 1711
42	Welke opl	eiding heeft	u gehad?*						1811
43	Omschrijv	ing van de	huidige wer	kzaamheden					
		gen van de verkzaamhe	vragenstelle den	r wat betref	ft de risiko':	s van de hu	idige en		
							8		
В	Fysisch on	derzoek:		a Pie	epende of b	rommende r	ronchi	ja neen	1911
				b Vo	ochtige ronc	hi		ja neen	2011
				c Ve	rlengd exsp	irium		ja neen	2111
				Herha	ling volg no	. onderzoek		1 2	7511, 7611
							-		

Codering: zie instructies.
 Formulering afhankelijk van het al of niet bestaan van borstklachten.

APPENDIX B-2

DIAGNOSTIC CRITERIA FOR THE DIFFERENT GRADES OF CNSLD.

- GRADE 0: no respiratory symptoms: a clear "no" answer to question 3 (persistent cough), question 7 (persistent phlegm), question 9 (at least one chest illness), question 12 (dyspnoea), question 17 (wheezing), and question 19 (asthmatic attacks) of the TNO questionnaire on respiratory symptoms, and no impairment of the lung function, i.e. FEV 1.0 *VC not more than 10% below the predicted value.
- GRADE 1: respiratory symptoms: a clear "yes" answer to one or more of the following questions of the TNO questionnaire on respiratory symptoms:

 persistent cough (question 3),

 persistent phlegm (question 7),

 one chest illness ("yes" to question 9, "no" to question 10),

 dyspnoea grade II ("yes" to question 12, "no" to question 13),

 wheezing grade II ("yes" to question 17, "no" to question 18),

 and

 a clear "no" answer to question 19 (asthmatic attacks),

 and

 no impairment of the lung function, i.e. FEV

 1.0 VC not more

 than 10% below the predicted value.

Exception: If dyspnoea grade II will be found in combination with two or more "yes" answers to the above mentioned questions, this combination is placed in grade 2.

- GRADE 2: respiratory symptoms:
 - a. a clear "yes" answer to one or more of the following questions of the TNO questionnaire on respiratory symptoms:

 more than one chest illness (question 9 and 10),

 dyspnoea grade III (question 13),

 wheezing grade III (question 18),

 asthmatic attacks (question 19).
 - b. all other combinations, that do not fulfil the criteria of grade 1 and 3, and/or slight to moderate impairment of the lung function, i.e. FEV 1.0 VC 10-20% below the predicted value.
- GRADE 3: respiratory symptoms:

 a "yes" answer to all of the following questions of the TNO questionnaire on respiratory symptoms:

 persistent cough (question 3),

 persistent phlegm (question 7),

 more than one chest illness (question 9 and 10),

 dyspnoea grade III (question 13),

 wheezing grade III (question 18),

 asthmatic attacks (question 19),

 and/or

 moderate to severe impairment of the lung function, i.e.

 FEV 1.0 *VC more than 20% below the predicted value.

APPENDIX C

FIGURES C 1 TO 5 SHOWING THE DAILY MEAN SCORE-DIFFERENCES BETWEEN VLAARDINGEN AND OMMOORD FOR THE RESPIRATORY SYMPTOMS AND IRRITATION OF THE EYES, ACCORDING TO DEGREE OF CNSLD.

FIGURE C 6 SHOWING THE DAILY MEAN OF THE DIFFERENCES IN "PERCENTAGE DIFFERENCE FROM THE MEAN" BETWEEN VLAARDINGEN AND OMMOORD FOR THE PEAK FLOW VALUES, ACCORDING TO DEGREE OF CNSLD.

FIG. C 1. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM cough ACCORDING TO DEGREE OF CNSLD.

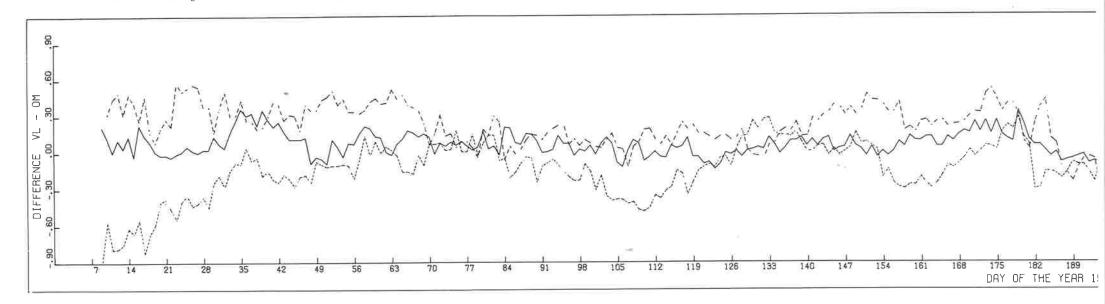
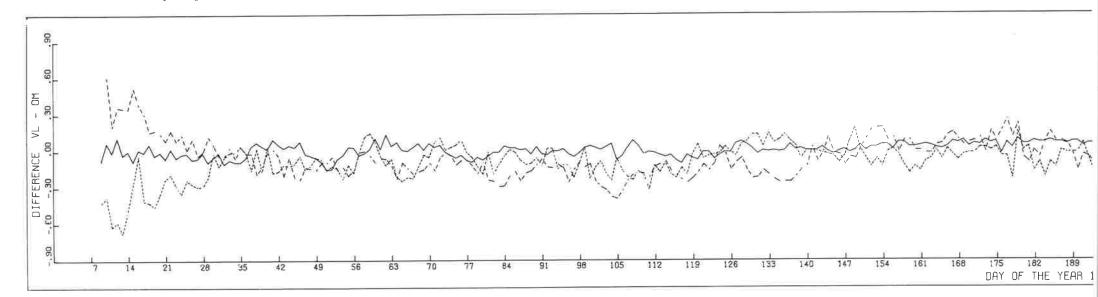
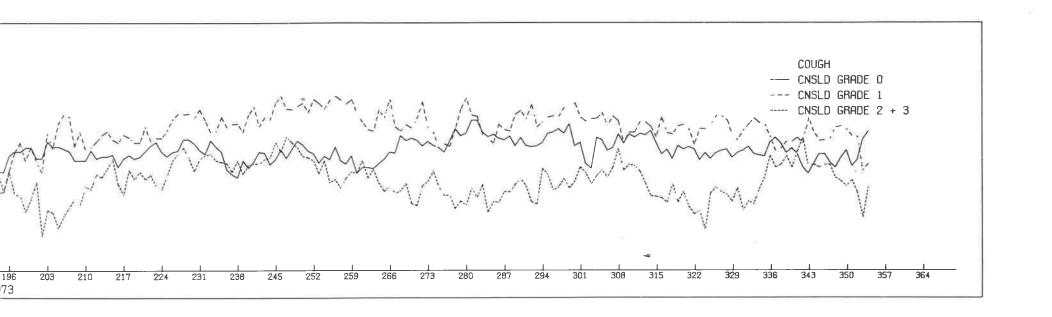




FIG. C 2. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM phlegm ACCORDING TO DEGREE OF CNSLD.

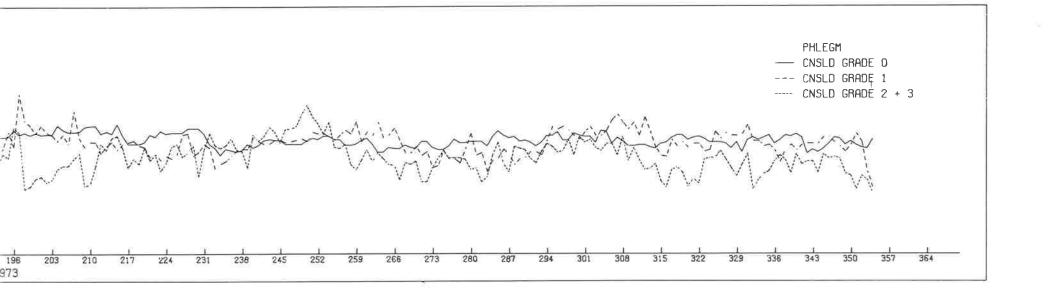


FIG. C 3. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM dyspnoea ACCORDING TO DEGREE OF CNSLD.

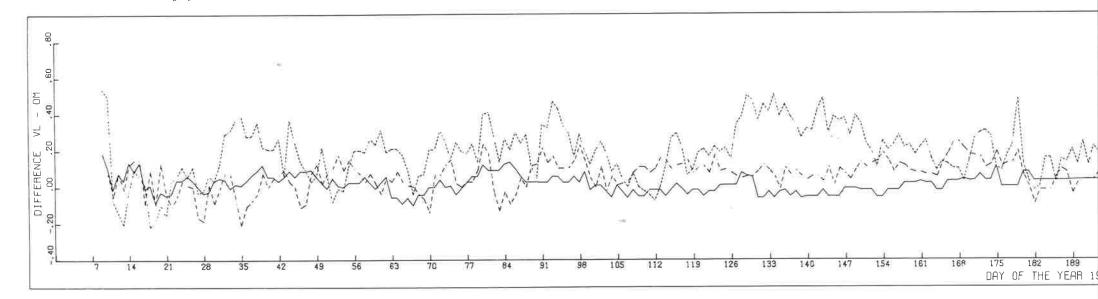
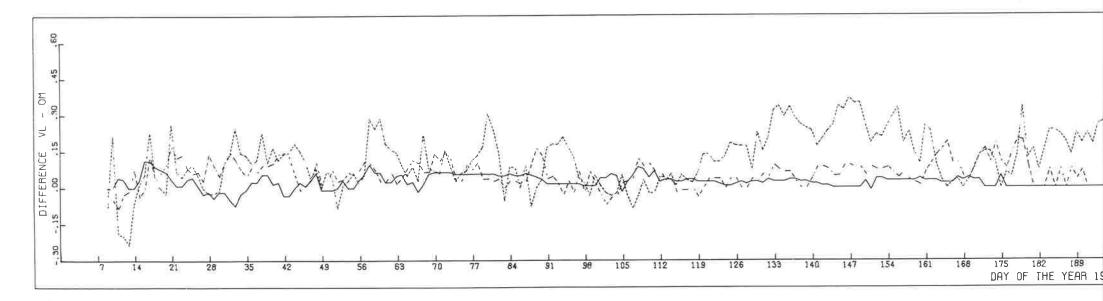
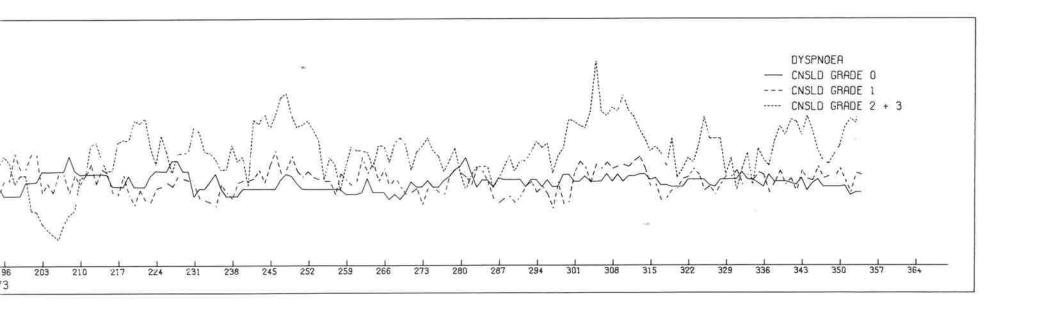




FIG. C 4. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM wheezing ACCORDING TO DEGREE OF CNSLD.

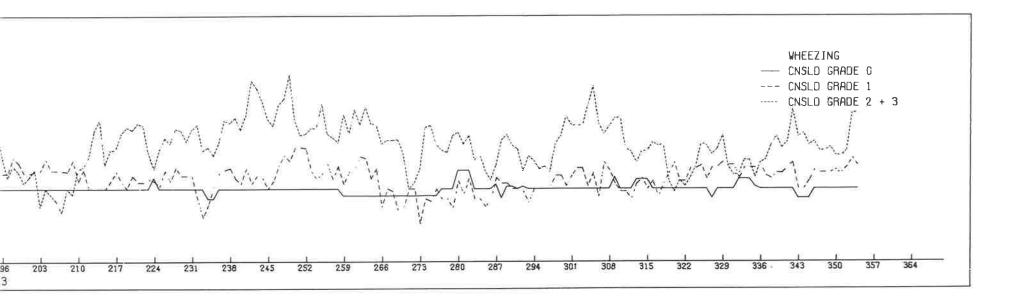


FIG. C 5. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM irritation of the eyes ACCORDING TO DEGREE OF CNSLD.

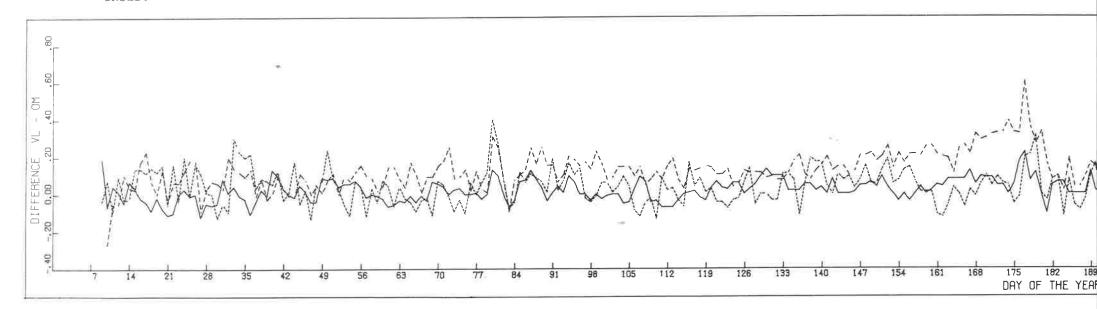
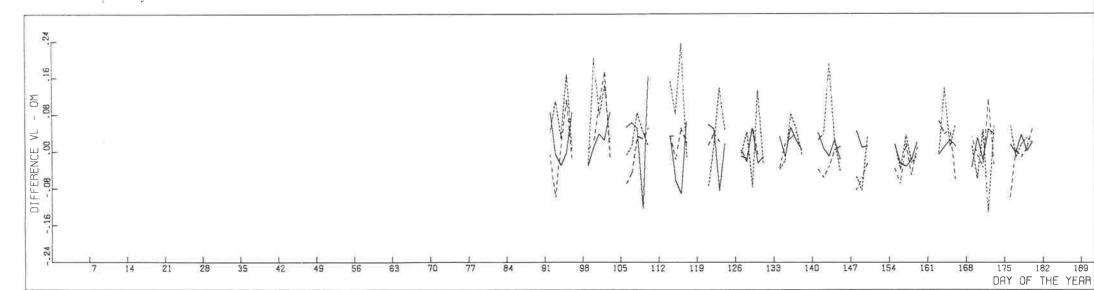
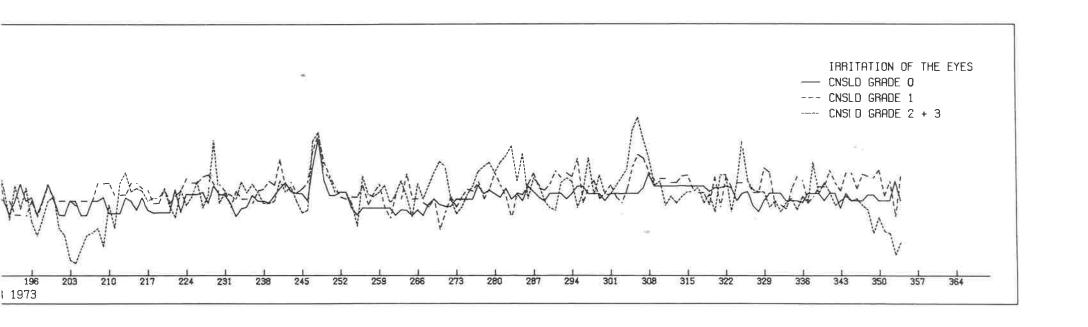
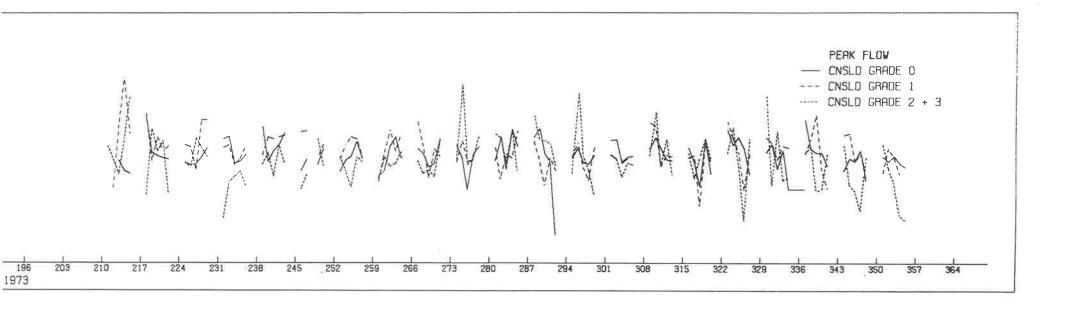





FIG. C 6. THE DAILY MEAN OF THE DIFFERENCES IN "PERCENTAGE DIFFERENCE FROM THE MEAN" WITH RESPECT TO THE peak flow values ACCORDING TO DEGREE OF CNSLD.

APPENDIX D

FIGURES D 1 TO 10 SHOWING THE DAILY CONCENTRATIONS OF THE AIR POLLUTANTS IN VLAARDINGEN AND OMMOORD.

FIG. D 1. THE 24-hour average CONCENTRATION OF sulphur dioxide IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M 3).

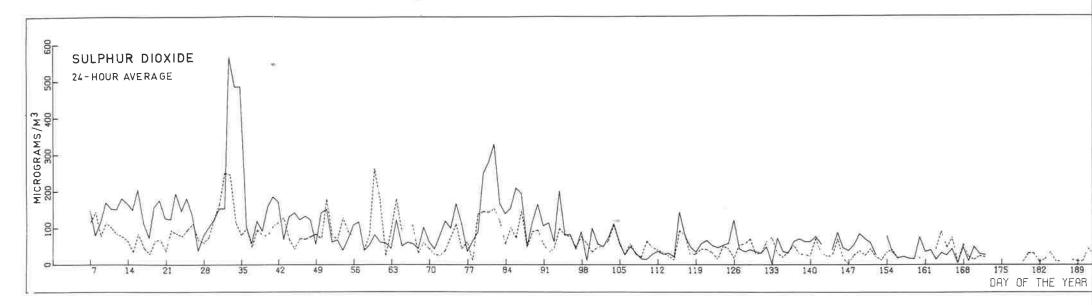
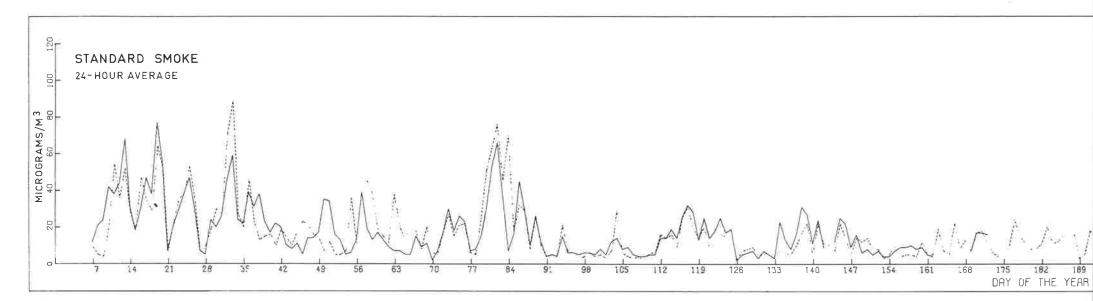
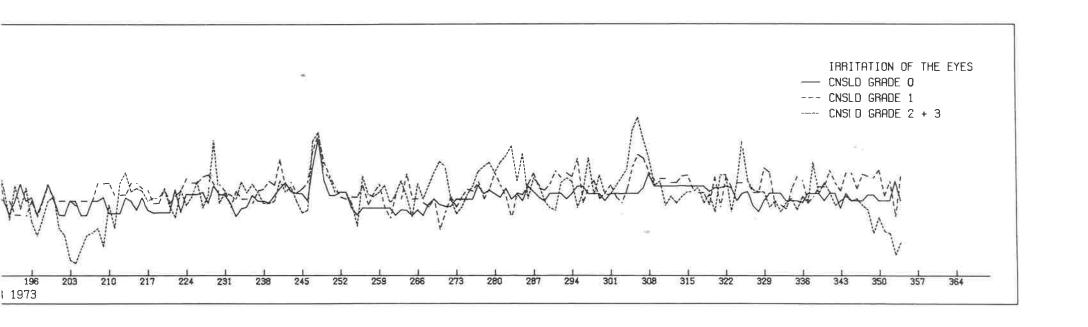




FIG. D 2. THE 24-hour average CONCENTRATION OF standard smoke IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/ 3).

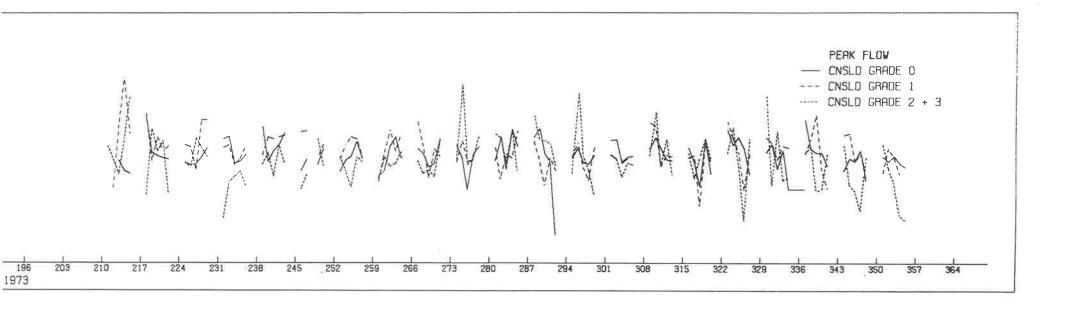


FIG. D 1. THE 24-hour average CONCENTRATION OF sulphur dioxide IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M 3).

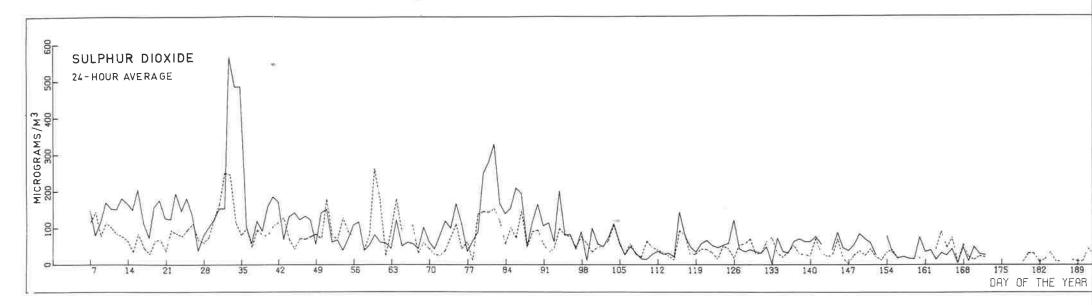
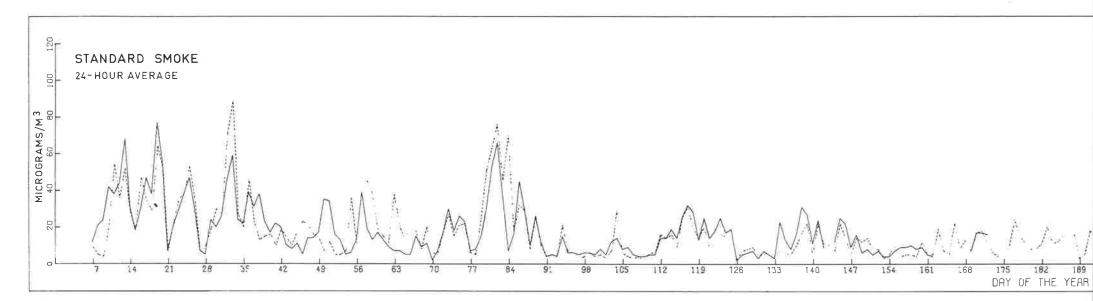
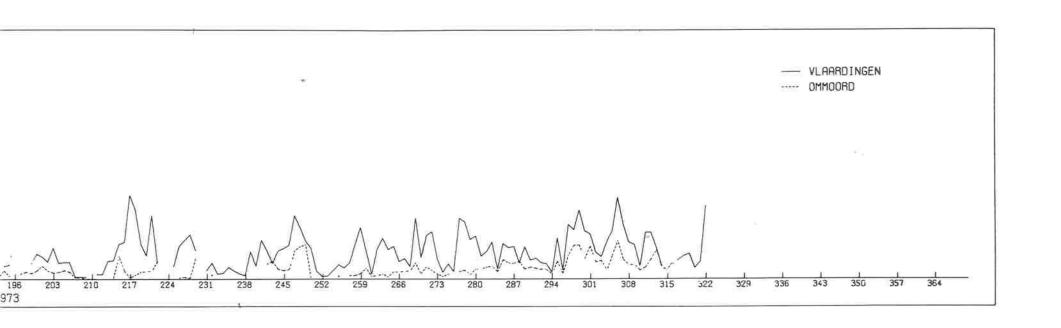




FIG. D 2. THE 24-hour average CONCENTRATION OF standard smoke IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/ 3).

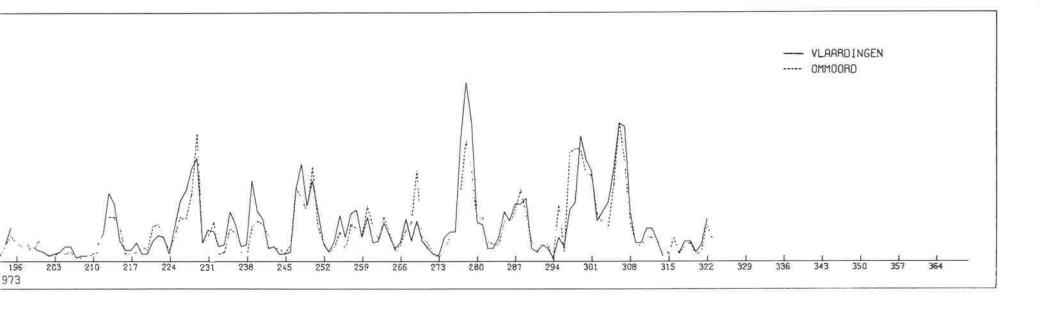


FIG. D 3. THE daily average CONCENTRATION OF nitrogen monoxide IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M3).

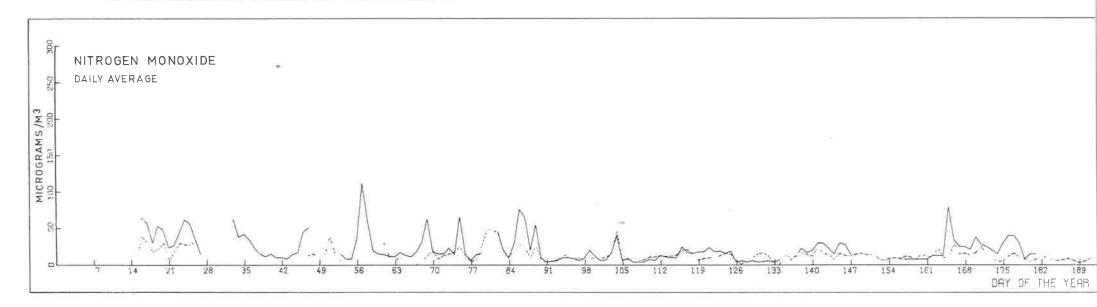
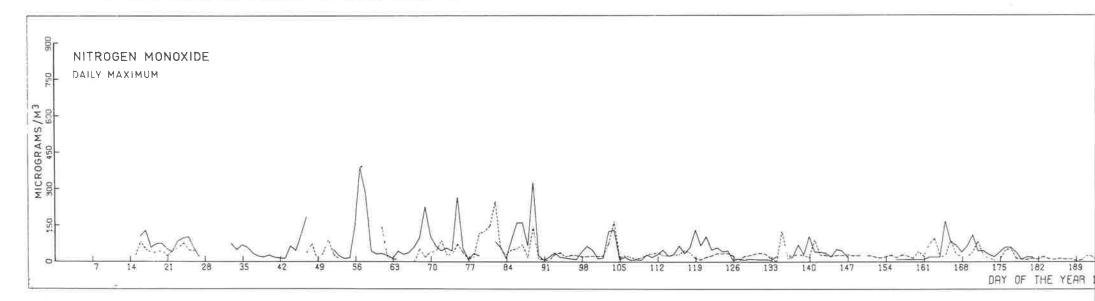
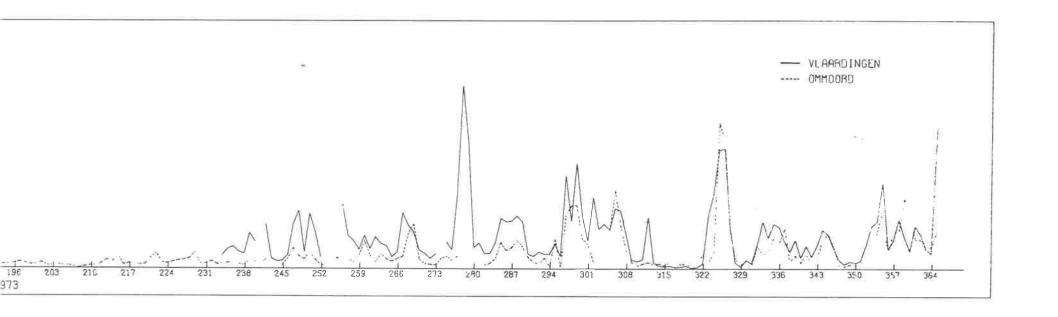




FIG. D 4. THE daily maximum CONCENTRATION OF nitrogen monoxide IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M3).

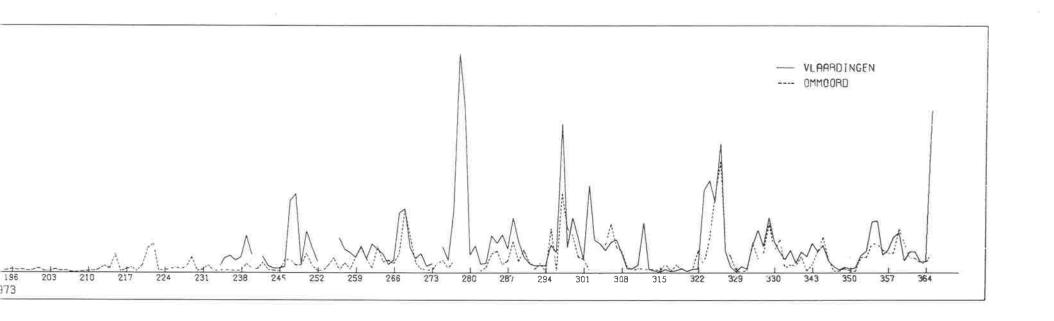


FIG. D 7. THE daily average CONCENTRATION OF ozone IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/ m^3).

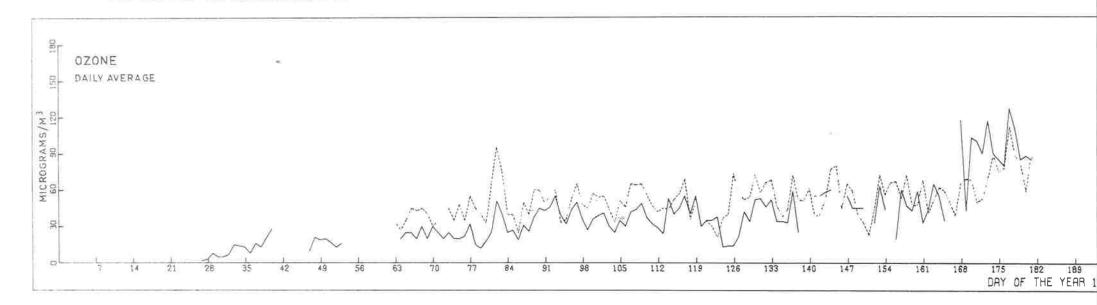
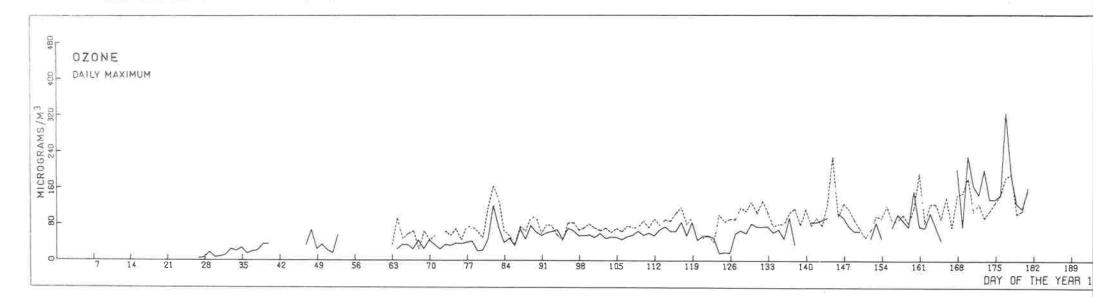
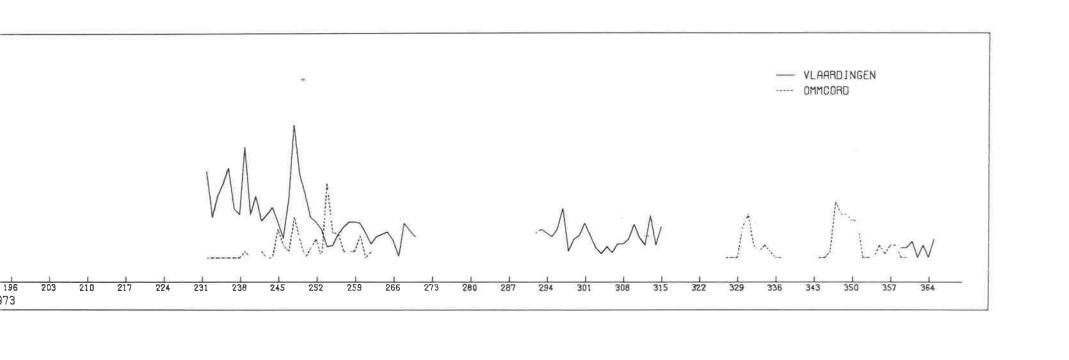




FIG. D 8. THE daily maximum CONCENTRATION OF osone IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M3).

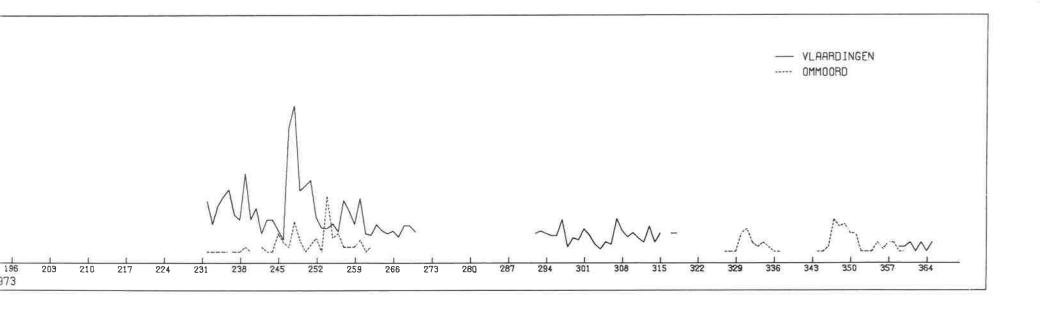


FIG. D 9. THE 24-hour average CONCENTRATION OF aldehydes IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M 3).

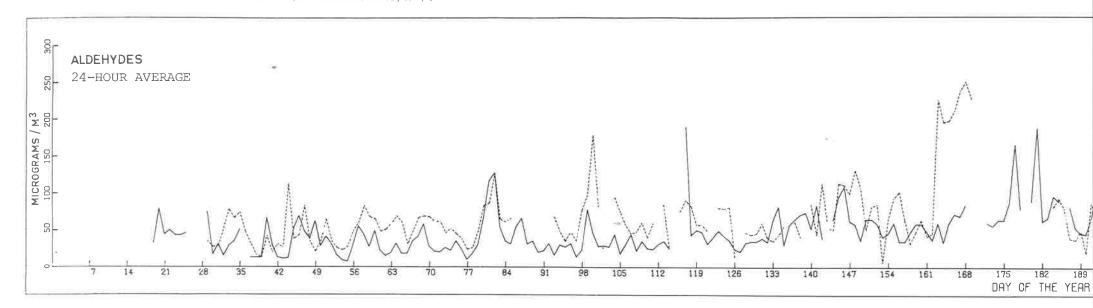
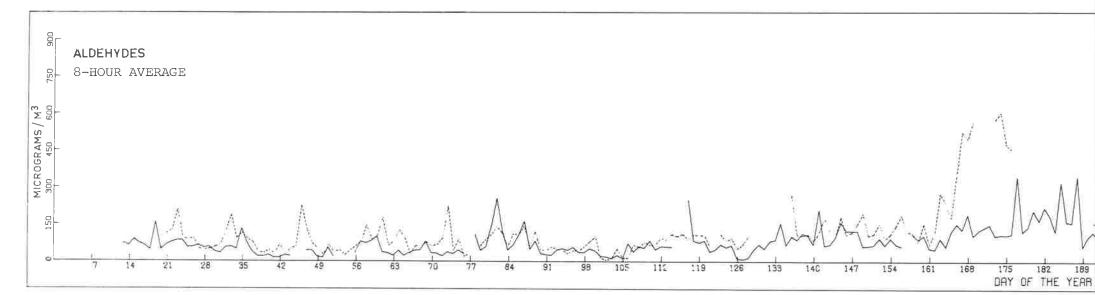
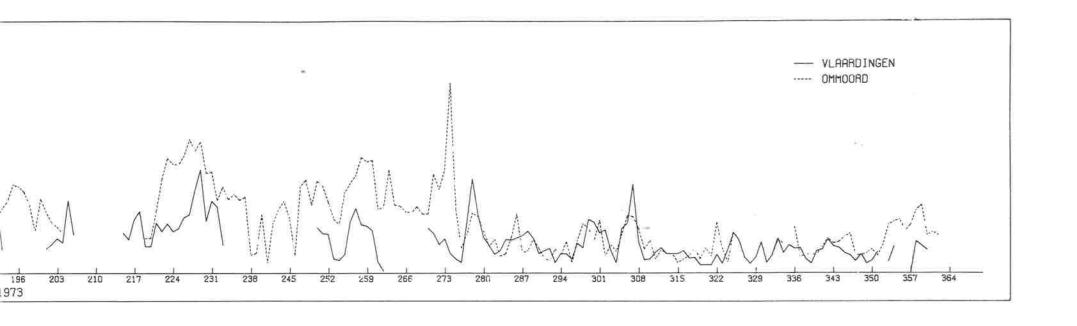
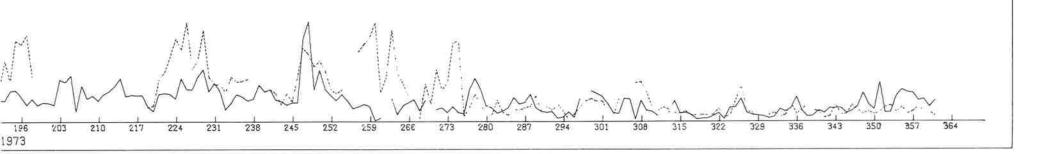





FIG. D 10. THE 8-hour average CONCENTRATION OF aldehydes IN VLAARDINGEN AND OMMOORD (IN MICROGRAMS/M 3).

APPENDIX E

FIGURES E 1 TO 4 SHOWING THE TEMPERATURE AND RELATIVE HUMIDITY IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION.

FIG. E 1. THE maximum temperature IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN CENTIGRADES).

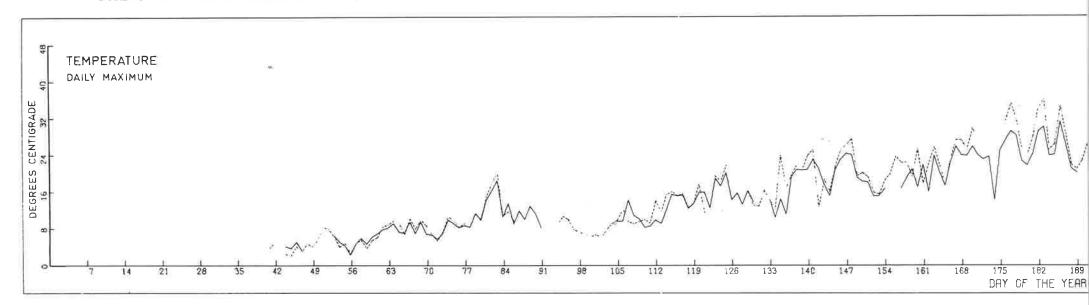
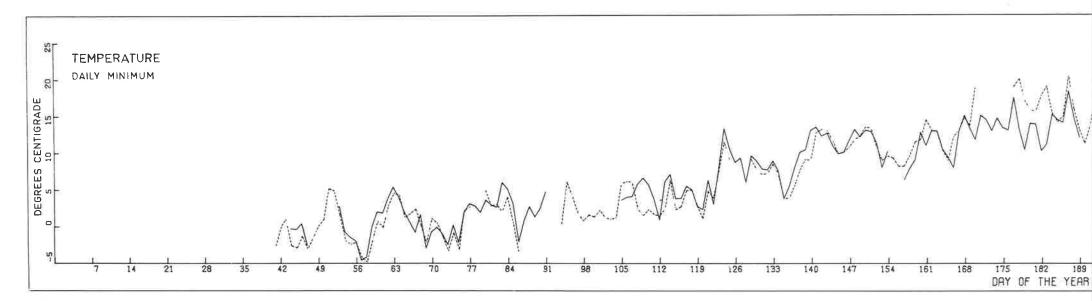
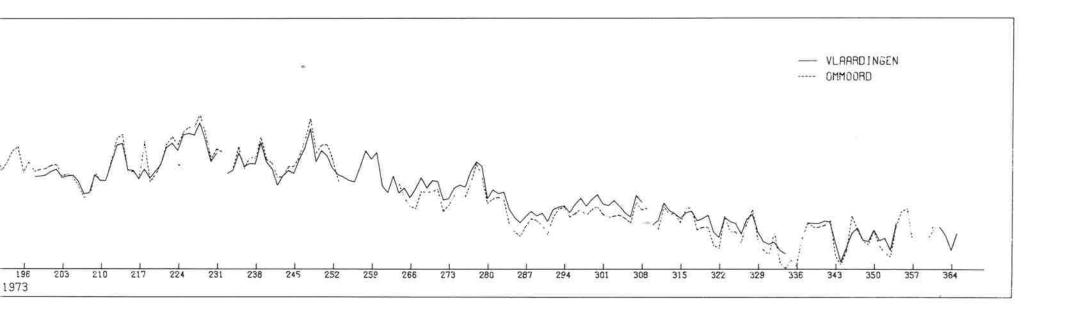
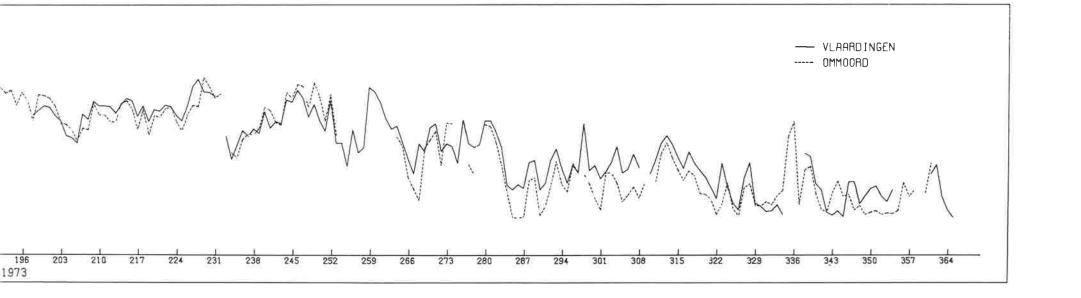
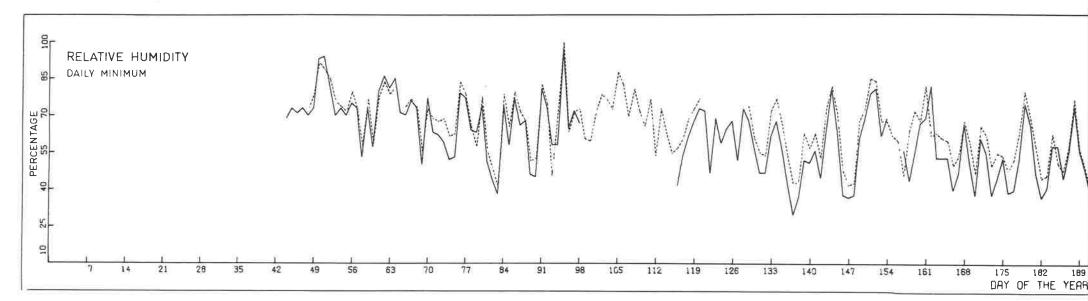
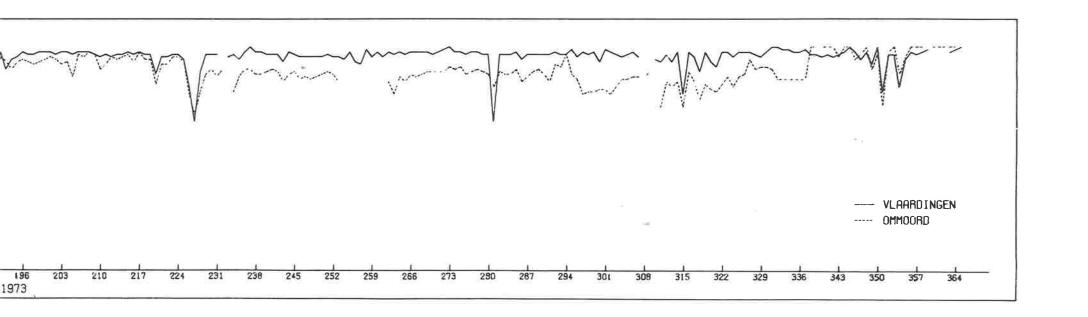




FIG. E 2. THE minimum temperature IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN CENTIGRADES).

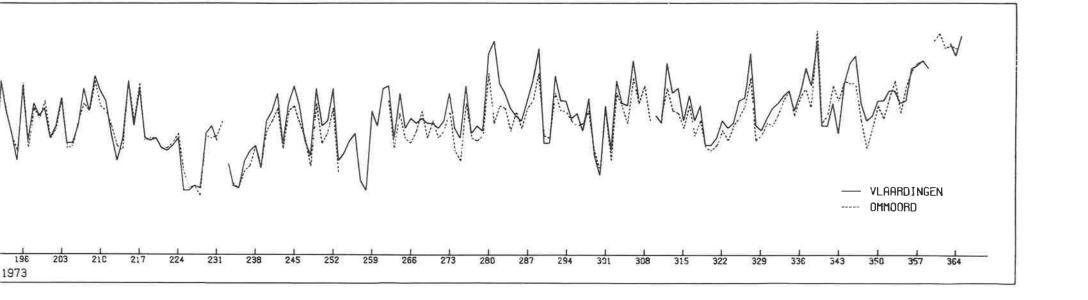

FIG. E. 3. THE maximum relative humidity IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (AS PERCENTAGE).

FIG. E 4. THE minimum relative humidity IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (AS PERCENTAGE).

TABLES

SHOWING THE ACTUAL VALUES PLOTTED IN THE GRAPHS IN THE APPENDICES C, D, AND E.

TABLE C-1.1. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM cough in the GROUP CNSLD grade 0.

(N is the number of pairs in which the data were available).

DAY	N	DIFF.	DAY	14	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	YAG	N	DIFF.
7:	4	1.250	54:	122	0.221	109:	115	0.078	160:	103	0.097	211:	60	0.003	262:	104	-0.058	313:	102	6.206
8:	23	0.174		123	0.203			-0.069	161:		0.096	212:	60	0.017	263:	104	-0.057	314:	100	0.240
9:	33	0.211		124	0.137			-0.035	162:		0.126	213:	59	0.034	264:	103	-0.029	315:	102	0.137
10:	59	0.119		125	0.128	112:		0.009	163:	102	0.127	214:	59	0.034	265:	103	0.016	316:	103	0.049
11:	71	0		123	0.008			-0.034	164:	102	0.049	215:	51	0.049	266:	104	0.067	317:	103	0.087
12:	84	0.107			-0.016	114:	117	-0.043	165:	102	0.049	216:	58	-0.052	267:	103	0.058	318:	102	0.010
13:	87	0.034		122	0.074	115:		0.060	166:	102	0.127	217:	62	0.015	268:	104	0.202	319:	102	0.118
14:	89	0.135	55:	121	0.116	116:	116	0.034	167:	97	0.093	218:	64	0.047	269:	105	0.152	320:	102	0.088
15:		-0.032	22:	119	0.185	117:	115	0.052	168:	97	0.144	219:	60	0.015	270:	102	0.181	321:	102	0.108
16:	97	0.227	57:	120	0.107	118:	114	0.123	169:	97	0.175	220:	65	0.031	271:	103		322:		0.068
17:	100	0.140	53:	120	0.133	119:	110	-0.034	170:	94	0.160	221:	65	0.077	272:			323:		0
18:	103	0.087	59:	120	0.158	120:	117	-0.034	171:	91	0.253	222:	66	0.121	273:			324:		0.059
19:	105	0.010	7):	123	0.130	121:	118	-0.093	172:	89	0.169	223:	66	0.152	274:			325:		0.010
20:	106	-0.019	71:	123	-0.008	122:	110	-0.076	173:	85	0.259	224:	84	0.071	275:			326:		0.059
21:	109	-0.018	72:	123	0.081			-0.137	174:		0.153	225:	90	0.032	276:			327:		0.078
22:	109	-0.037	73:	123	0.057	124:	117	-0.094	175:		0.262	226:	86	0.070	277:			320:		0.069
23:	109	-0.009	74:	123	0.089	125:		0	176:		0.145	227:	86	0.081	278:			329:		0.020
24:	110	0.009		123	0.065			-0.017	177:		0.111	228:	86	0.174	279:			330:		0.060
25:	114	0.053		123	0.098	127:			178:		0.088	229:	80	0.174	280:			331:		0.060
	115	0.017		120	0.058			-0.034	179:		0.341	230:	86	0.140	281:			332:		0.110
27:		0		120	0.025	129:		0.017	180:		0.237	231:	90	0.004	282:			353:		0.050 0.039
	119			120	0.050	130:		0.026	181:		0.105	232:	95	0.053	203:			334:		0.039
	118			122	0.180	131:		0.044	182:		0.061	233:	97	0.105	284:		0.192	335:		0.146
	119			120	0.033	132:		0.027	183:		0.063	234:	98	0.112	285:			336:		0.146
	122			120	0.058	133:		0.125	184:		0.016	235:	97	0.072	286: 287:			330:		0.136
	122				-0.017	134:		0.071	185:		-0.032	236:		-0.073	288:			339:		0.058
	123			118	0.212			-0.009	186:		0 001			-0.117	289:			340:		0.098
	123			117	0.205	136:		0.035	18 7: 188:		-0.081 -0.063	239:	99	-0.157	290:			341:		0.050
	121		1000	118	0.085	137:		0.097	189:		-0.052			-0.059	291:					-0.061
	123			117	0.068	138: 139:		0.097	190:		-0.035			-0.010	292:					-0.109
	124			113	0.159	140:		0.054	191:		-0.018	242:		0.070	293:					-6.030
	124			112	0.099	141:		0.108	192:		-0.091	243:	95	0.061	294:			345:		
	124	0.355		119	0.099	142:		0.054	193:		-0.073	244:		-0.031	295:			346:		
	124			120	0.008	143:		0.108	194:		-0.091	245:		0.010	296:			347:	99	-0.020
	123			121	0.025	144:		0.126	195:		-0.094	246:		0.090	297:	105	0.257	346:	98	-0.061
	124			122	0.139	145:		0.009	196:		0.038	247:		0.020	298:	105	6.219	349:	98	0.320
	124			122	0.074	146:		0.036	197:		0.075	248:	99	0.041	299:	105	0.295	350:	99	0.081
	125			121	0.074	147:		0.045	198:		0.073	249:	99	0.102	300:	103	0.117	351:	03	-0.048
	125				-0.025	148:		0.138	199:	56	0.107	250:	99	0.131	301:	104	0.144	352:	05	0
	120			121	0.025	149:		0.055	200:	56	0.107	251:	100	0.060	302:	103	-0.029	353:	47	
		-0.087		121	0.008	150:		0.028	201:	54	0.019	252:	104	0.050	303:	104	-6.067	324:		
		-0.032		120	0.058	151:	106	-0.028	202:	51	0.020	253:	105	-0.019	304:	103	0.184	355:		-0.053
		-0.048			-0.017	152:			203:	52	0.154	254:	107	0.037	305:	103		350:		
		-0.089		121	0.074	153:	105	-0.038	204:	53	0.113	255:				102		357:		
	124		103:	121	0.124	154:	105	0.010	205:		0.115	256:			100000	100		358:		_
	124			120	0.075			-0.029	206:		0.096	257:		Ü		103		354:		
54:	124	-0.032			-0.085	156:	106	0.009	207:		0.077			-0.029		103		360:		
55:	123	0.081	106:	117	-0.120		104	0.087	208:		0	259:				103		361:		0.800
56:	125	0.072	107:	117	0.017		104	0.048	209:		0			-0.105		102		362:		0
57:	123	0.163	108:	116	0.103	159:	104	0.135	210:	61	0	261:	103	-0.058	312:	102	0.216	303:	1	U

TABLE C-1.2. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM cough in the group CNSLD grade 1 (N is the number of pairs in which the data were available).

DAY	N	DIFF.	DAY N	DIFF.	DAY	Ν	DIFF.	DAY	Ν	DIFF.	DAY	N	DIFF.	UAY	Ν	CIFF.	DAY	IN	DIFF.
7:	1	4.000	58: 108	0.352	109:	101	0.089	160:	89	0.169	211:	64	0.109	262:	99	0.253	313:	43	0.312
8:	4	1.222	59: 109		110:		0.188	161:	90	0.256	212:	05	0.154	263:	40	0.240	314:	91	0.275
9:	23	0.348	50: 109		111:		0.196	162:	90	0.267	213:	63	0.200	264:	97	0.412	310:	45	0.169
10:	41	0.317	61: 109		112:		0.109	163:	89	0.213	214:	63	0.238	265:	97	0.351	316:	94	0.351
11:	54	0.441	22: 169	0.413	113:		0.069	164:	90	0.256	215:	04	0.172	266:	94	0.500	317:	94	0.223
12:	77	0.494	53: 107	0.523	114:	103	0.135	165:	90	0.267	216:	01	0.145	267:	95	0.274	310:	44	C.213
13:	74	0.315	54: 106	0.443	115:	103	0.058	166:	89	0.213	217:	71	0.211	268:	96	0.240	319:	94	0.277
14:	81	0.481	55: 107	0.477	116:	103	0.155	167:	33	0.227	218:	74	0.189	269:	96	0.242	360:	43	6.290
15:	61	0.407	55: 107	0.343	117:	104	0.250	168:	90	0.233	219:	70	0.147	270:	40	6.205	3 < 1:	74	0.255
16:	87	0.264	57: 107	0.374	118:	103	0.194	169:	90	0.256	220:	75	0.147	271:	97	0.340	322:	94	6.128
17:	87	0.450	53: 107	0.340	119:	105	0.226	170:	90	0.300	221:	73	0.274	272:	44	0.479	323:	44	6.255
18:	84	0.159	57: 107	0.243	120:	100	0.160	171:	88	0.330	222:	75	0.100	273:	43	0.269	324:	94	0.255
19:	93	0.080	70: 107	0.065	121:	100	0.160	172:	86	0.326	223:	76	0.164	274:	96	0.229	320:	94	U. 267
20:	94	0.202	71: 107		122:	105	0.132	173:	85	0.482	224:	93	0.163	275:	95	0.104	320:	44	0.362
21:	94	0.277	72: 108			105	0.105	174:	82	0.524	225:	93	0.247	276:	97	0.134	327:	46	0.359
22:	45	0.221	73: 108		124:		0.133	175:	73	0.438	226:	93	0.333	277:	47	0.113	325:	42	U.326
23:	90	0.583	74: 107		125:		0.142	176:	62	0.339	227:	92	J.360	276:	97	0.250	329:	92	0.207
24:	97	0.500	75: 107		126:		0.105	177:	55	0.400	228:	93	0.370	279:	46	0.417	330:	94	6.163
25:	94	0.535	75: 107		127:		0.123	178:	45	0.400	229:	92	0.300	280:	45	0.505	331:	45	0.239
26:		0.564	77: 107		123:	22000000000	0.189	179:	41	0.317	230:	92	0.340	201:	95	0.308	332:	42	0.293
27:		0.540	73: 108		129:		0.028	180:	33	0.091	231:	94	0.415	282:	95	6.358	3 3 3 :	91	C.341
28:	155 PASS	0.382		-0.037			-0.019	1 6 1 :	31	0.032	232:	94	0.330	283:	95	0.211	334:	43	0.361
29:		0.355	30: 108				-0.029	182:	54	0.241	233:	94	0.234	204:	75	0.179	335:	43	0.290
30:		0.168	81: 109				-0.047	1 0 3:	54	0.370	234:	92	0.239	285:	94	0.138	336:	93	0.194
	102	0.373	82: 109		133:		0.065	184:	53	0.434	235:	93	0.355	286:	89	C.292	337:	93	0.075
	102	0.500	33: 109		134:		0.084	185:	53	0.113	236:	92	0.272	287:	99	0.250	338:	43	0.097
33:		0.304		-0.050	135:		0.168	186:	53	0.075	237:	91	0.297	200:	5 5 5 5	0.239	337:	93	0.151
	102	0.304	Ho: 108		136:		0.198	187:		-0.135 -0.173	238:	94	0.298	290:	89	0.404	340:	43	0.151
	105	0.434	87: 106	0.028	137: 130:		0.181	188: 189:		-0.236	240:	94	0.234	291:	88	0.341	342:	43	0.163
	105	0.264	33: 105		139:		0.135	190:		-0.125	241:	94	0.430	292:	88	0.455	343:	44	U.340
	105	0.204	33: 105		140:		0.135	191:		-0.055	242:	93	0.450	293:	88	0.273	344:	44	0.234
	107	0.215	7): 105		141:		0.286	192:		-0.036	243:	91	0.352	294:	93	0.312	342:	94	0.160
	107	0.299	91: 104		142:		0.260	193:		-0.055	244:	90	0.333	295:	94	0.351	346:	42	0.163
	107	0.421	92: 10:		143:		0.311	194:	50000	-0.259	245:	92	0.407	296:	44	0.362	347:	91	0.176
	107	0.402	93: 108		144:		0.333	195:		-0.255	246:	92	0.522	297:	93	0.355	340:	40	6.267
	107	0.271	44: 108			101	0.396	196:		-0.083	247:	93	0.419	298:	43	0.430	344:	40	6.278
	107	0.318	99: 108		140:	49	0.374	197:	47	0.064	248:	94	0.415	299:	43	0.430	300:	91	0.253
	107	0.308	95: 106		147:	97	0.309	198:	47	0.149	249:	95	0.442	300:	92	0.467	351:	15	0.200
	107	0.187	77: 106		148:	97	0.371	199:	47	0	250:	94	0.466	301:	95	0.347	352:	07	6.194
47:	106	0.396	₹3: 105		149:	96	0.312	200:	46	0.109	251:	94	0.394	302:	45	U.316	3:3:	40	-0.083
48:	105	0.352	99: 105	0.105	150:	47	0.351	201:	47	0	252:	90	0.500	303:	45	0.337	354:	31	-0.032
49:	105	0.352	100: 104	0.077	151:	94	0.479	202:	42	-0.095	253:	90	0.409	304:	94	0.346	355:	ユン	6.067
50:	10,	0.438	101: 104	0.048	152:	93	0.430	203:	41	0.220	254:	97	0.423	305:	43	0.307	300:	13	U.308
51:	100	0.462	102: 102	0.039	153:	92	0.424	204:	41	0.098	255:	97	0.495	300:	43	6.286	357:	В	0
52:	100	0.509	103: 103	0.107	154:	45	0.396	205:	40	0.300	256:	97	0.526	307:	42	0.359	3:0:	Ö	0
53:	109	0.394	1)4: 103	0.155	155:	45	0.333	206:	40	0.375	257:	97	0.445	308:	93	0.323	354:	Ö	0
54:	108	0.444	105: 104	0.038	156:	40	0.333	207:	41	0.366	258:	97	0.404	309:	93	0.140	300:	C	0
55:	107	0.339	106: 104		157:	44	0.415	208:	42	0.119	259:		0.500	310:	93	0.226	301:	ь	O
56:	109	0.339	137: 104	-0.115	158:	43	0.183	209:	43	0.233	260:		0.300	311:	93	0.226	302:	۷	0
57:	103	0.324	133: 102	0.649	159:	91	0.209	210:	63	0.095	261:	47	0.313	312:	43	0.312	303:	1	0

TABLE C-1.3. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM cough IN THE GROUP CNSLD grade 2+3

(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

			onder of the	N. V	N DIFF.	DAY	N DIFF.	DAY	N DIFF.	UAY	N DIFF.	JAY	N	UIFF.
DAY	₹ DIFF.	YAC	N DIFF.	DAY	N DIFF.	L'AT	N 01111	0.41		PRODUCT OF	70.00			100
7:	3 0	58:	94 0.138	109:	91 -0.473	160:	90 -0.267	211:	56 -0.232	262:	83 -6.145	313:		-0.190
8:	12 -1.133	57:	94 -0.021	110:	91 -0.484	161:	90 -0.200	212:	54 -0.111	263:	83 -0.072	314:		-6.294 -0.298
9:	25 -0.885	50:	94 0.090	111:	91 -0.451	162:	90 -0.256	213:	59 -0.130	264:	82 -0.103 83 -0.253	3.5:		-6.310
10:	42 -0.571	51:	43 U	112:	91 -0.352	163:	89 -0.292	214:	50 -0.067	205:		315:		-0.310
11:	53 -0.792	52:	94 0.053	113:	90 -0.378	164:	88 -0.250	215:	60 0.017	200:	86 -0.209 85 -0.271	310:		-0.190
12:	65 -0.785	33:	90 0.021	114:	93 -0.312	165:	87 -0.184	216:	57 -0.193	267:	85 -0.271	314:		-0.345
13:	nd -0.750	54:	45 -0.021	115:	42 -0.283	166:	87 -0.103	217:	02 -0.274	268:	84 -0.190	320:		-6.256
14:	70 -0.615	00:	47 -0.150	116:	45 -0.147	167:	88 -0.125	218:	65 -0.075	269: 270:	85 -0.353	321:		-0.379
15:	74 -0.662	66:	98 -0.153	117:	93 -0.172	168:	89 -0.090	219:	67 -0.149	271:	81 -0.370	322:		-0.442
16:	74 -0.554	57:	98 -C.173	118:	43 -0.344	159:	89 -0.045	220:	06 -0.091	272:	77 -0.208	323:		-0.412
17:	75 -0.621	50:	98 -0.020	119:	95 -0.242	170:	90 0.022	221:	60 -0.152 69 -0.11c	273:	87 -0.172	324:		-0.570
18:	78 -0.667	59:	98 -0.102	120:	95 -0.147	171:	90 -0.033	222:	68 -0.206	274:	91 -0.088	360:		-0.271
19:	85 -0.588	7.):	97 0.072	121:	95 -0.116	172:	87 0.011	224:	85 -0.235	275:	g8 -0.216	326:		-0.224
20:	85 -0.400	71:	97 6.072	122:	94 -0.096	173:	87 0.057 85 0.047	225:	87 -0.146	276:	87 -0.287	327:		-0.259
21:	87 -0.379	72:	46 6.663	123:	94 -0.117	174:		226:	87 -0.120	277:	08 -0.284	328:		-6.282
22:	88 -0.466	73:	97 0.621	124:	94 -0.043	175:	76 0.026 65 0.169	227:	86 0.058	278:	do -0.395	364:		-0.337
23:	88 -0.545	74:	97 0.631	125:	92 -0.033	176:		228:	85 0.166	279:	87 -0.333	330:	87	-6.230
24:	91 -0.396	75:	97 0.180	126:	92 -0.109	17 7: 178:	62 0.226 52 0.192	229:	83 0.024	280:	86 -0.372	331:	86	-6.467
25:	92 -0.348	75:	97 0.610	127:	93 0.032	179:	45 0.289	230:	83 -0.084	281:	87 -0.230	332:	86	-6.337
26:	92 -0.435	77:	97 0.610	128:	93 0.129 92 0.141	180:	32 0.125	231:	90 0.011	282:	86 -0.302	333:	54	-6.357
27:	42 -0.413	7 ♂:	97 6.155	129:		181:	31 0.065	232:	91 0.044	283:	85 -0.200	334:	85	-0.235
28:	93 -0.366	7 →:	95 -0.021	130:	92 0.261 91 0.198	182:	53 -0.302	233:	90 0.055	284:	85 -0.424	330:	85	-0.141
29:	94 -0.447	80:	95 0.084	131:	92 0.272	183:	52 -0.288	234:	89 0	205:	83 -0.337	335:	64	0.036
30:	95 -0.242	31:	95 6.147	132:	91 0.286	184:	51 -0.157	235:	89 -0.011	286:	81 -0.346	3 3 7 :		-0.060
31:	97 -0.186	82:	95 0.147	134:	92 0.163	185:	51 -0.157	236:	89 -0.022	287:	82 -0.256	330:	82	-0.037
32:	95 -0.281	33:	94 -0.064	135:	92 0.141	186:	50 -0.180	237:	86 -0.093	286:	81 -0.259	334:	03	0.036
33:	97 -0.144	54:	94 -0.043	136:	90 0.144	187:	47 -0.213	238:	85 0	289:	81 -0.198	340:		-0.060
34:	97 -0.082	35:	93 -0.204	137:	90 0.133	188:	44 -0.159	239:	82 -0.110	290:	79 -0.152	341:	03	6.072
35:	97 -0.093	87:	94 -0.160 92 -0.087	138:	bb 0.170	189:	49 -0.082	240:	82 -0.037	291:	81 -0.210	342:	02	0.183
36:	97 0.041	83:	93 -0.033	139:	87 0.090	190:	49 -0.102	241:	82 -0.024	292:	82 -0.341	343:		-0.048
37:	95 -0.062	37:	90 -0.044	140:	93 0.011	191:	49 -0.102	242:	81 -0.025	293:	81 -0.358	344:		-6.036
38:	95 -0.042 95 -0.187	77:	87 -0.241	141:	93 0.011	192:	50 -0.160	243:	80 0.012	294:	87 -0.669	345:		-0.060
39:		91:	91 -0.110	142:	94 0.053	193:	50 -0.240	244:	78 0.02c	295:	86 -0.11t	340:		-0.037
40:	95 -0.145 96 -0.219	72:	95 -0.084	143:	94 0.064	194:	48 -0.104	245:	80 0.150	296:	86 -0.244	347:		-0.036
41:	96 -0.240	73:	96 -0.052	144:	94 -0.021	195:	43 -0.256	246:	81 0.074	297:	86 -0.221	348:		-0.145
43:	96 -0.177	94:	96 -0.104	145:	95 0.032	196:	45 -0.089	247:	81 0.198	298:	86 -0.151	349:		-0.171
44:	98 -0.214	45:	95 -0.156	146:	93 -0.022	197:	43 -0.279	248:	81 0.140	299:	87 -0.230	350:		-0.212
45:	98 -0.275	95:	95 -0.200	147:	92 0.011	198:	43 -0.279	249:	82 0.110	300:	87 -0.172	351:		-0.162 -0.263
46:	99 -0.192	97:		148:	92 0.043	199:	43 -0.419	250:	82 0.037	301:	88 -0.057	352.		-6.467
47:	99 -0.182	93:	95 -0.229	149:	91 0.165	200:	42 -0.310	251:	81 0.025	302:	88 -0.132	354:		-0.219
48:	99 -0.242	99:	96 -0.094	150:	91 0.077	201:	41 -0.171	252:	84 0	303:	88 -0.193	324.	21	
49:	95 -0.071	100:	96 -0.150	151:	92 0.087	202:	39 -0.615	253:	85 -0.106	304:	88 -0.125 88 -0.080	355:	15	0.400
50:	96 -0.094	101:	95 -0.305	152:	91 0.055	203:	42 -0.405	254:	84 3	305:		357:	11	0.091
51:	97 -0.113	132:	95 -0.187	153:	91 0.022	204:	40 -0.425	255:	83 -0.181	306:	84 -0.050	377:	11	0.091
52:	97 -0.103	103:	95 -0.350	154:	94 -0.202	205:	40 -0.550	256:	84 -0.155	307:		329:	10	0.200
53:	97 -0.103	104:	94 -0.394	155:	93 -0.140	206:		257:	85 -0.224	308:	500	300:	10	
54:		105:	94 -0.383	156:	91 -0.253	207:	42 -0.381	258:	84 -0.143	310:		301:	8	
55:	97 -0.103	105:	93 -0.387	157:	91 -0.286	208:		259:	85 -0.094	311:	1000	362:	7	
56:		107:	93 -0.419	158:	91 -0.297	209:		260:		312:		303:	2	
57:		133:	91 -0.407	159:	91 -0.264	210:	52 -0.212	261:	83	216.	0,000		_	
50/18														

TABLE C-2.1. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM phleam in the GROUP CNSLD grade 0

111001		III		Lin								Jugin III .		SKOOL OND	DD graa					
		(N	IS THE	NUMBE	ER OF PA	IRS IN WE														
DAY	14	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DAY	14	DIFF.	DAY	IN	DIFF.	YAC	1.	DIFF.
																			. 81	
7:	4				-0.016			0.043	160:		0.029	211:	60	0.150	262:		0			-6.029
8:		-0.251		123	0.015			-0.026	161:		0.038	212:	60	0.063			-0.067			-0.040
9:		-0.079		124	0.105			-0.009	162:		0.049	213:	59	0.102			-0.068	:		0
10:		0.068		125	0.010			-0.017	163:		0.039	214:	59	0.085			-0.029			0.010
11:	71	-0.014		123	0.138			-0.034	164:		0.020	215:	61	0.164			-0.038	317:		0.049
12:		0.113		122	0.041			-0.051	165:		0.010	216:	58	0.009			-0.039	310:		
13:		-0.035		122	0.074			-0.034	166:		0.029	217:		0			-0.010	314:		0.069
14:	44			121	6.008			-0.078	167:		0.072	218:	64	U			-0.029	320:		
15:		-0.085		119	U			-0.104	168:		0.062	219:	00	U			-0.038	321: 322:		0.059
16:		0.010		120	0.033			-0.035	169:		0.082	220:		0.015			0.019	343:		0.059
17:		-0.013		120	0.067			-0.059	170:		0.032	221:	לט	U.S. (South) 51 51				323.		
		0.058		120	0.008			-0.076	171:		0.055	222:	66	0.001			-0.029	329:		
		-0.038		123	0.005			-0.008	172:		0.045	223:	66	0.106			-0.047	320:		
		-0.009		123	0.033			-0.008	173:		0.082	224:		0.003			-0.019	327:		0.010
		-0.064			0.049			-0.068	174:		0.059	225:	80 85	0.093			0.037			-0.040
		0.018			-0.008			-0.034	175:		0.075	226:		0.093	278:			329:		
		-0.055			-0.033			-0.009	176:		-0.029	228:		0.128	279:			330:		-0.071
		-0.027			-0.057			-0.017	177: 178:		0.063	229:		0.126	280:			331:		
		-0.018			-0.033	127:		0.060	178:		0.018	230:	85	0.125	281:			332:		0.051
		-0.073			-0.075	128:		0.077	180:		0.053	231:			282:			333:		
		-0.061			-0.092	129:		0.052	181:	38	0.053	232:	95	0.084			-0.019	335:		
		-0.017			-0.050	130:		0.017	182:		0.077	233:		-0.031	284:			335:		0.069
		-0.093			-0.074	131:		-0.027	183:		0.063	234:		-0.092	285:			335:		- 0
		-0.050			-0.642			-0.009	184:		0.063	235:		-0.041	200:			357:		
		-0.015			-0.008	134:		0.009	185:		0.081	236:		-0.052	287:			338:		
		-0.107			0.008			-0.009	186:		0.065	237:		-0.062	288:			339:		
		-0.073		118		136:		0.007	187:		0.065			-0.050		103		340:		
		-0.090		118		137:		0.053	188:		0.048	239:			290:			341:		
		-0.057		117		138:		0.009	189:		0.069			-0.030			0.010			-0.081
	124				0.007	139:		0.018	190:		0.070			-0.010			-0.026	343:	101	-0.050
	124				-0.627	140:		0	191:		0.035			0.030	293:	102	0.010	344:	100	-0.070
	124				0.030	141:		O	192:		0.055	243:			294:	105	0.007	345:	100	-6.040
	124				-0.025	142:		O	193:		0.055	244:	97	0.031	295:	104	0.067	346:	99	0
	124				-0.033	143:			194:		0.055	245:	100	0.030	296:	104	0.096	347:	99	0.051
	125		1000-000	121	U			-0.009	195:		0.057	246:	100	6	297:	105	0.029	340:		0.041
	124			122	Ü			-0.027	196:	52	0.115	247:	100	Ú	298:	105	0.029	344:	40	-0.010
	124				0.017			-0.009	197:	53	0.075	248:	99	U	299:	105	0.086	350:		
	12:				-0.025	147:	110	0.009	198:	55	0.091	249:	44	0	300:	103	0.068	351:		-0.012
	12		97:	121	-0.050	148:	109	-0.018	199:	56	0.071	250:				104		3:2:		-0.031
		-0.024	98:	120	-0.017	149:	109	0	200:	56	0.089	251:				103		3 > 3 :		-0.043
48:	120	-0.040	99:	120	0.025	150:	107	0.047	201:	54	0.074	252:				104		354:		0.034
49:	126	-0.050	100:	121	0.041	151:	106	0	202:		0.078	253:				103		350:		0.053
		-0.088	101:	121	0.025	152:		0.029	203:		0.077	254:				103		356:		-6.250
51:	124	4 -0.153	102:	121	0.008	153:		0.029	204:		0.151	255:				102		357:		
52:	12	4 -0.145		121		154:		0.048	205:		0.115	256:				100		350:		
53:	124	4 -0.065		120		155:		0.048	206:		0.096			-0.010		103		300:		
		4 -0.032			-0.075	156:		0.010	207:		0.096			-0.010			-0.019			
		3 0.033			-6.643	157:			208:		0.100	259:					-0.019	301:		
		0.032			0.020	158:			209:		0.140	260:					-0.010	363:		
57:	12	3 -0.033	103	116	0.086	159:	104	0.029	210:	61	0.148	261:	103	0.049	312:	102	-0.010	303.	1	0

TABLE C-2.2. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM phlegm IN THE GROUP CNSLD grade 1
(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

		(14 1.	S THE NUMBER OF FA.	AS IN WHICH THE DATA	WERE AVAILABLE).			
DAY	4	DIFF.	. HALU N YAC	DAY N DIFF.	DAY N DIFF.	DAY N JIFF.	DAY N DIFF.	JAY N UFF.
7:	1	4.000	od: 108 U	109: 101 -0.178	150: 89 0	211: 64 0.015	262: 99 6.071	313: 93 0.097
b:	1	0.333	59: 109 -0.037	110: 101 -0.168	161: 90 0	212: 65 -0.077	263: 96 0.177	314: 41 -0.033
9:	23	0.609	50: 104 -0.692	111: .01 -0.218	162: 90 -0.022	213: 63 -0.010	264: 97 0.052	315: 44 -0.096
			61: 109 -0.055	112: 101 -0.129	163: 89 -0.022	214: 03 0.016	265: 97 0.072	316: 94 -0.166
10:	41	0.610		113: 101 -0.109	164: 89 0.045	215: 64 -0.047	266: 94 0.128	317: 94 0.032
11:	59	0.203	52: 109 -0.064	114: 103 -0.087	165: 90 0.056	216: 61	267: 96 0.031	318: 94 -0.021
12:	77	0.364	63: 107 -0.121		166: 89 0.124	217: 71 0.014	268: 96 -0.073	319: 94 0.011
13:	74	0.354	6+: 106 -0.226	115: 103 -0.165		218: 74 0.027	269: 96 -0.073	320: 93 -0.032
14:	81	0.346	59: 107 -0.093	116: 103 -0.194	167: 88 0.148 168: 89 0.090	219: 75 -0.013	270: 98 -0.020	321: 94 0
15:	81	0.519	65: 107 -0.140	117: 104 -0.240			271: 97 -0.093	322: 94 0
16:	87	0.379	57: 107 -0.187	118: 103 -0.262	169: 90 0.044	The state of the s	272: 94 -0.064	323: 43 -0.065
17:	88	0.307	68: 107 -0.168	119: 106 -0.226	170: 90 0.067		273: 92 -0.196	324: 94 -0.053
19:	87	0.157	57: 107 -0.150	120: 106 -0.179	171: 88 0.080		274: 95 -0.179	325: 94 0.096
19:	93	0.172	70: 107 -0.093	121: 105 -0.113	172: 86 0.105	223: 75 -0.132	275: 96 -0.652	320: 94 0.043
20:	94	0.149	71: 107 -0.159	122: 100 -0.160	173: 85 -0.012	224: 93 -0.097	276: 97 -0.124	327: 42 0.087
21:	94	0.085	72: 100 -0.050	123: 105 -0.105	174: 82 0.159	225: 92 -0.120	277: 97 -0.124	320: 91 0.066
22:	45	0.168	73: 100 -0.609	124: 104 0.038	175: 73 0.082	226: 93 -0.000		329: 92 0.065
23:	90	0.083	74: 107 -0.637	125: 104 -0.019	175: 62 0.161	227: 91 0.077	276: 96 -0.156	330: 42 0.076
24:	97	0.134	75: 107 -0.112	126: 104 -0.154	177: 55 0.255	228: 93 0.085	279: 96 -0.642	331: 92 0.152
25:	44	0.010	75: 107 -0.075	127: 105 -0.095	178: 45 0.111	229: 92 -0.098	280: 95 0.084	
26:	101	0.099	77: 107 -0.675	128: 105 -0.057	179: 41 0.220	230: 42 -0.065	261: 95 -0.095	
27:	101	-0.040	78: 108 -0.120	129: 106 -0.160	180: 33 -0.061	231: 94 0	282: 95 -0.074	
28:	102	0	79: 108 -0.185	130: 106 -0.226	181: 31 -0.097	232: 93 -0.032	263: 95 -0.232	334: 43 -6.022
29:	101	0.119	33: 108 -0.693	131: 105 -0.219	182: 54 0	233: 94 -0.202	284: 95 -0.137	335: 43 -0.011
30:	101	0.050	31: 109 -0.239	132: 106 -0.160	183: 54 -0.056	234: 92 -0.163	285: 94 -0.117	336: 43 -0.054
31:	102	-0.034	32: 109 -0.248	133: 107 -0.196	184: 53 0.075	235: 93 -0.140	286: 89 -0.645	337: 43 -0.151
32:	102	-0.034	33: 109 -0.294	134: 107 -0.234	185: 53 0.151	236: 92 -0.090	287: 88 -0.091	330: 93 -0.043
33:	102	0.029	84: 108 -0.287	135: 107 -0.262	186: 53 0.075	237: 91 -0.000	288: 88 -0.170	339: 93 -0.011
34:	102	-0.059	89: 108 -0.204	136: 105 -0.255	187: 52 0.077	238: 94 -0.043	289: 88 -0.125	340: 93 -0.054
35:	106	0.038	35: 107 -0.168	137: 105 -0.257	188: 52 0.058	239: 94 -0.043	290: 89 -0.112	341: 93 -0.011
36:	105	-0.019	37: 105 -0.245	138: 103 -0.214	189: 55 -0.018	240: 94 0.053	291: 88 -0.068	342: 43 0
37:	100	-0.019	33: 105 -0.181	139: 104 -0.154	190: 55 -0.161	241: 94 0.021	292: 87 -0.069	343: 94 0
38:	100	-0.189	39: 105 -0.162	140: 103 -0.126	191: 55 -0.036	242: 93	293: 87 -0.092	344: 44 0
39:	107	-0.121	FO: 105 -0.114	141: 105 0.029	192: 55 -0.055	243: 91 0	294: 93 0.022	345: 94 0.053
40:	107	-0.009	91: 104 -0.067	142: 104 -0.087	143: 55 -0.109	244: 90 0.033	295: 94 C.138	346: 92 0.054
41:	107	0.019	12: 106 -0.132	143: 103 -0.010	194: 54 -0.037	245: 43 0.032	296: 94 0.117	347: 91 0.011
42:	108	-0.037	73: 105 -0.139	144: 101 0,109	195: 51 0.098	246: 93 0.011	297: 93 0.140	348: 90 -0.022
43:	108	-0.204	74: 100 -0.111	145: 101 -0.020	196: 48 -0.021	247: 94 0.021	298: 93 0.108	349: 90 -6.067 350: 91 -6.011
44:	104	-0.056	95: 108 -0.139	146: 98 -0.031	197: 47 0.404	248: 95 0.032	299: 93 0.065	
45:	107	-0.215	95: 105 -0.257	147: 97 -0.113	198: 47 0.191	249: 96 0.042	300: 91 0.033	351: 74 6.061 352: 67 0.015
46:	107	-0.234	17: 105 -6.152	148: 97 -0.052	199: 47 0.149	250: 95 0.021	301: 45 0.095	
47:	105	-0.132	98: 105 -6.095	149: 40 -0.062	200: 46 0.087	251: 94 0.096	302: 95 0.137	353: 48 -0.229 354: 31 -0.355
48:	100	-0.143	99: 100 -0.133	150: 95 0.021	201: 47 0.149	252: 95 0.084	303: 95 0.063	
49:	104	-0.154	100: 103 -0.107	151: 94 0.096	202: 43 0.093	253: 95 0.083	304: 94 0.004	355: 15 0.067
50:	105	-0.095	131: 103 -0.252	152: 93 0.172	203: 41 0.073	254: 97 0.062	305: 93 0.108	356: 12 0.083
51:	106	-0.094	102: 101 -0.247	153: 92 0.185	204: 41 0.024	255: 97 0.031	306: 93 0.194	357: 8 -0.375
52:	103	-0.046	103: 103 -0.320	154: 96 0.187	205: 40 0.075	256: 97 0.072	307: 92 0.239	358: 8 -0.375
53:	109	-0.150	104: 103 -0.379	155: 95 0.083	206: 40 0	257: 97 0.113	306: 93 0.172	359: 8 -0.375
54:	108	-0.130	105: 104 -0.394	156: 96 0.104	207: 41 0.268	258: 97 0.082	309: 93 0.116	360: 8 -0.375
55:	104	-0.202	105: 104 -0.327	157: 94 -0.011	208: 42 0.048	259: 100 0.160	310: 93 0.172	361: 6 -0.500
56:	109	-0.150	1)7: 103 -0.243	158: 93 0.086	209: 43 -0.023	260: 100 0.020	311: 93 0.065	362: 2 -1.500
57:	105	-0.009	104: 102 -0.190	159: 91 0.088	210: 63 0.016	261: 99 0.101	312: 93 0.215	303: 1 -3.000

TABLE C-2.3. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM phlegm IN THE GROUP CNSLD grade 2+3

	(N I	S THE NUMBER OF PAIRS	IN WHICH THE DATA	WERE AVAILABLE).			
DAY	N DIFF.	DAY N LIFF.	DAY N DIFF.	DAY N DIFF.	DAY \ JIFF.	DAY N DIFF.	DAY N UIFF.
7:	3)	23: 94 0.117	109: 91 -0.165	160: 90 -0.133	211: 55 -0.162	262: 63 -0.145	313: 04 -0.202
8:	1, -1.057	59: 94 0.149	110: 91 -0.198	161: 90 -0.167	212: 54	263: 63 -0.072	314: 05 -6.165
9:	20 -0.423	53: 94 0.074	111: 91 -0.319	162: 90 -0.089	213: 59 -0.051	264: 83 -0.126	310: 64 -0.310
10:	42 -0.341	51: 93 -0.643	112: 91 -0.121	153: 89 -0.067	214: 60 0.050	265: 83 -0.169	316: 64 -0.357
11:	23 -0.623	02: 94 -0.117	113: 90 -0.178	164: 88 0	215: 60 0.007	260: 86 -0.174	3.7: 84 -0.214
12:	62 -0.585	73: 42 -6.603	114: 93 -0.097	165: 87 -0.069	216: 57 -0.035	207: 85 -0.294	310: 03 -0.193
13:	58 -0.675	24: 95 -0.211	115: 93 -0.194	156: 87 0.011	217: 62 -0.194	268: 85 -0.153	319: 85 -0.235
14:	70 -0.487	49: 97 -0.247	115: 94 -0.223	167: 88 -0.034	218: 60 -0.121	269: 84 -0.167	320: 86 -6.349
15:	74 -0.273	55: 90 -0.214	117: 92 -0.141	168: 89 -0.079	219: 57 -0.164	270: 85 -0.141	321: 07 -0.287
10:	74 -0.041	27: 90.624	118: 92 -0.196	169: 89 -0.034	220: 55 -0.030	271: 81 -0.309	322: 80 -0.326
17:	74 -0.410	53: 90 -(.133	119: 95 -0.632	170: 90 -0.022	221: 07 -0.134	272: 77 -0.312	323: 00 -0.129
18:	78 -0.423	59: 98 -0.031	120: 45 0.053	171: 90 -0.022	222: 59 -0.087	273: 87 -0.195	324: sc -0.116
19:	85 -0.457	7): 97 -6.652	121: 95 -0.063	172: 87 0.023	223: 68 -0.241	274: 91 -0.121	325: 65 -0.118
20:	35 -0.353	71: 47 0.672	122: 94 -0.043	173: 87 0.023	224: 85 -0.153	275: 88 -0.057	326: 65 -6.059
21:	87 -0.230	72: 95 6.115	123: 94 -0.032	174: 86 0	225: 87 -0.023	276: 87 -0.115	327: 85 -0.129
22:	88 -0.193	73: 97 0.010	124: 94 -0.021	175: 75 0.026	226: 85 0	277: 88 -0.114	328: 05 -0.260
23:	88 -0.284	74: 97 0.031	125: +1 0.033	176: 65 -0.046	227: 80 -0.100	278: 07 -0.115	324: 00 -0.267
24:	91 -0.352	75: 97 0.052	126: 91 -0.611	177: 62 -0.048	228: 80 -0.071	279: b7 -0.126	330: 87 -0.172
25:	92 -0.239	75: 97 0.093	127: 93 -0.043	178: 52 -0.231	229: 83 -0.012	280: 86 -0.209	331: 00 -0.081
26:	92 -0.272	77: 97 -0.010	128: 93 0.654	179: 45 0.156	230: 83 -0.265	281: 86 -0.198	332: 80 -0.372
27:	92 -0.293	78: 97 -0.052	129: 92 0.076	1 × 0: 32 0	231: 90 -0.044	202: 00 -0.314	323: 84 -0.298
28:	93 -0.240	79: 90 -0.140	130: 92 0.130	181: 31 0.032	232: 91 0.088	283: 85 -0.271	334: 85 -0.247
29:	9+ -0.213	3): 95 -6.189	131: 91 0.132	182: 53 -0.170	233: 90 -0.011	284: 85 -0.694	335: 05 -0.224
30:	95 -0.021	31: 95 -0.011	132: 92 0.033	163: 52 -0.096	234: 88 -0.034	285: 83 6.012	330: 64 -0.143
31:	97 -0.124	32: 95 -0.189	133: 41 0.143	184: 51 -0.216	235: 89 -0.011	286: 80 -0.162	337: 84 -0.095
32:	96 -0.052	53: 94 -6.105	134: 92 0.065	145: 51 -0.098	236: 89 0.045	287: 82 -0.232	338: 02 -6.134
33:	97 -0.013	34: 94 -0.043	135: 92 0.087	186: 50 -0.140	237: 85 -0.047	200: 01 -0.025	339: 03 -0.241
34:	97 -3.013	35: 93 0.011	130: 90 0.133	187: 47 0	238: 85 -0.059	269: 81 -0.037	340: 83 -6.084
35:	97 0.041	Ho: 94 -6.011	137: 90 0.078	188: 44 -0.023	239: 82 -0.195	290: 19 -0.051	341: 03 -6.169
36:	47 -0.010	37: 92 -0.070	138: 85 0.645	189: 49 -0.020	240: 82 0.073	291: 81 -0.123	342: 03 -6.145
37:	95 -0.155	HH: 90 -0.111	139: 07 -0.067	190: 49 -0.020	241: 82 0.024	292: 82 -0.159	343: 54 -6.143
3 3:	96 0.021	H9: 89 -0.101	140: 43	191: 49 0.061	242: 81 0.062	293: 01 -0.062	344: 04 -0.238
39:	95 -0.167	4J: 87 -6.057	141: 93 0	192: 50 -0.060	243: 80 0.137	294: 87 (345: 03 -0.084
40:	95 0.631	91: 9J -0.122	142: 9+ -0.011	193: 50 -0.180	244: 78 0.103	295: 86 -0.023	340: 02 -0.122
41:	90 -0.177	H2: 94 0.621	143: 94 -0.021	194: 48 -0.043	245: 80 0.012	240: 86 -(.070	347: 03 -0.168
42:	90 -0.157	13: 90 0.021	144: 94 -0.032	195: 43 -0.116	246: 81 0.123	297: 86 -0.058	340: 03 -0.120
43:	95 -0.115	14: 90 -0.14/	145: 45 -0.042	196: 45 0.133	247: 81 0.123	298: 87 6.634	349: 82 -0.244
44:	93 -0.122	10: 40 -0.116	146: 93 -0.097	197: 43 0.093	248: dl J.140	299: 87 -0.092	3,0: 60 -0.262
45:	97 -0.103	95: 44 -0.117	147: 92 -0.043	198: 43 -0.372	249: 82 0.644	300: 87 0.657	301: 07 -0.373
46:	99 -0.040	47: 45 -0.221	148: 92 0.075	199: 43 -0.349	250: 52 0.317	301: 88 0.011	352: 57 -0.263
47:	94 -0.152	43: 95 -6.100	149: 91 0.187	200: 42 -0.286	251: 31 6.222	302: 08 0.034	353: 44 -0.295
48:	99 -0.121	99: 95 0.031	150: 91 0.011	201: 41 -0.268	252: 34 0.167	303: 88 -0.634	354: 32 -0.406
49:	97 -0.051	1)): 90 -0.229	151: 92 -0.065	202: 38 -0.316	253: 80 0.082	304: 88 -0.657	3.5: 21 -0.333
50:	46 -0.073	101: 95 -6.137	152: 91 -0.132	203: 41 -0.293	254: 84 0.179	305: 88 C	350: 15 -0.467
51:	97 -0.155	102: 90 -0.063	153: 91 -0.066	204: 39 -0.205	255: 83 -0.024	306: 86 C	3:7: 11 -0.091
52:	97 -0.124	103: 95 -0.189	154: 94 -0.128	205: 39 -0.179	256: 34 -0.036	307: 84 -0.095	358: 11 -6.091
53:	97 -0.144	134: 94 -0.245	155: 92 -0.011	206: 39 -0.179	257: 30	308: 85 0.059	359: 10 0
54:	97 -0.227	10): 94 -0.064	156: 91 0.011	207: 41 -0.122	258: 84 -0.107	309: 56 -0.140	300: 10 0.300
55:	97 -0.113	105: 93 -0.161	157: 91 -0.033	208: 41 -0.073	259: 85 -0.212	310: 86 -0.035	301: 8 0.125
56:	45 -3.174	137: 93 -0.219	158: 91 -0.121	209: 41 -0.341	260: 84 -0.131	311: 85 -0.129	362: 7 0.143
57:	9: -0.011	103: 91 -0.242	159: 91 -0.187	210: 51 -0.333	261: 83 -0.048	312: 85 -0.212	303: 2 1.500

TABLE C-3.1. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM dyspnoea in the group cnsld grade 0 (N is the number of pairs in which the data were available).

		(10 1112	NONE	DER OF FF	THE IN	птсг	I THE DAT	A WERE A	VMIL	ABLE!									
DAY	Ň	DIFF.	DAY	iv.	DIFF.	JAY	9	DIFF.	DAY	N	DIFF.	DAY	N	ülff.	UAY	N	DIFF.	ÜAY	N	UIFF.
7:	4	U	233	123	0.657	104:	11.	-0.052	160:	103	0.019	211:	2)	0.160	240.	27	,		1. 5	
8:	23	0.130		123				-0.052	161:			211:	60	2.0 5 8 8	262: 263:		0.677		162	C.098
9:	38	0.184			-6.068			-0.017	162:			213:	59						100	6.100
10:	54	0.102		125				-0.017	103:			214:			264:		C		103	U. 068
11:		-0.014			0.657			-0.017			-0.020	214:	59	0.102	205:		6		103	0.078
12:	8.2	0.073			-0.057			-0.051			-0.020		61	0.098	260:		C		103	0.039
13:	35				-0.057			-0.001	106:			216:	23				-0.039		102	(.039
14:	84				-0.091			0.017	167:	97		217:	2 c	0.032			-0.010		102	0.029
15:	94	0.089			-0.059			-0.009	168:	97		219:	64	0.031			-0.038		102	0.029
		0.134			-0.160			-0.009				219:	62	0.092	270:		0		102	0.029
17:		-0.013			-0.042				169:	97		220:	02	0.031	271:		0.058		102	6.069
	103				-0.042			-0.017	170:	94		221:	60		272:		0.029		102	U. UE9
		-0.085						-0.017	171:	91		222:	22		273:		0.029		102	0.069
		-0.023		123				-0.051	172:	89		223:			214:		0.665	365:	162	0.069
		-0.025		122	U			-0.025	173:	85		224:		0.119	275:		0.626	320:	102	0.039
					0.341			-0.026	174:	d 5		225:	60	0.115	276:		C.62F	367:	102	0.029
		-0.037		123		124:			175:	30		226:	85	0.110	277:	107	0.005	320:	101	L. U69
	104			123		125:			175:	69		227:	80	0.174	278:	165	U. Cot	364:	100	0.070
	110				-0.041	126:		0.009	177:	23	0	228:	00	0.174	279:	105	0.124	330:	44	6.071
	114	0.051			-0.000	127:		0.009	178:	57	0	229:	85	v.115	280:	105	0.143	331:	44	0.071
	115			120		128:			179:	44	0	230:	85	0.116	281:	105	0.190	332:	44	0.111
	11)	J		120		129:	117	0.060	1 80:	38	0.079	231:	95	-0.021	282:	105	0.105	333:	44	0.071
		-0.034		120		130:		0.053	1 + 1:	38	0.079	232:	95	0.021	203:	106	0.020	334:	101	6.069
		-0.025	3):	122	0.123	131:	112	-0.062	182:	65	0.031	233:	47	0.021	204:	105	0.007	335:		0.050
	119		31:	120	0.642	132:	113	-0.062	183:	63	0.032	234:	98	0.001	285:	105	0.067	330:		0.029
	122	0.044		120		133:	112	-0.027	184:	63	0.032	235:	97	0.103	280:	102	0.029	337:		6.097
32:	122	0.041	₹ 3:	120	0.092	134:	113	-0.052	1 45:	62	0.032	236:	90	0.021	207:	103	0.678	330:		0.058
33:	123	-0.008	34:	118	0.127	135:	113	-0.027	1 4 5:	62	0.032	237:	96	-0.021	288:		0.006	339:		6.059
	123	0.010	3):	117	0.137	135:	113	-0.018	187:	62	0.032	238:		-0.020	289:		0.008	340:		0.059
35:	122	0.008	30:	116	0.102	137:	113	-0.053	188:	63	0.032			-0.020	290:		0.068	341:		0.050
36:	123	0.033	37:	117	6.060	138:	113	-0.027	189:	58	0.034	240:		0.020	291:		0.069	342:		0.040
37:	124	0.065	33:	113	0.027	139:	112	-0.062	190:	57	0.035	241:	101	0.020	242:		0.030	343:		0.079
38:	124	0.047	77:	112	0.027	140:	112	-0.054	191:	57	0.035	242:		0.020	293:		0.059	344:		0.010
39:	124	0.121	·):	111	0.027	141:	111	-0.054	192:	55	0.036	243:		0.020	294:		0.007	345:		0.050
40:	124	0.055	→1:	119	0.025	142:	111	-0.054	193:	55		244:		0.021	295:		0.029	346:		6.071
41:	124	0.055	42:	120	0.625	143:	111	-0.018	194:	55	0.036	245:		0.023	290:		0.067	347:		0.030
42:	125	0.032	+3:	121	0.050			-0.054	195:	53		246:		0.026	297:		0.029	340:		0.031
43:	124	0.000	94:	.22	0.057			-0.05.4	196:		-0.019	247:		0.070	298:		0.029	349:		0.031
44:	124	0.049	99:	121	0.625			-0.055	197:		-0.019	248:	99	0.161	299:		0.095	320:		0.030
45:	125	0.050	9):	121	0.025			-0.009	198:		-0.018	249:		0.091	330:		0.097	351:		0.036
45:	125	0.088		121	6.658			-0.009	199:		-0.018	250:	99	0.001	301:		0.056	352:		-0.016
47:	120	0.087		121	0.025			-0.009	200:	56		251:		0.020	302:		0.056	353:		0.010
48:	125	0.095		121	0.083	-		-0.019	201:	54	0.056	252:		0.019	303:		0.057	354:		Ü
49:	125	J.050			-0.017			-0.019	202:	51	0.059	253:		0.019	304:		0.056	355:		-0.211
50:		3.024		121	0.003			-0.019	203:	52		254:		0.019	305:		C.C28	355:		-0.333
		-J.00d		121				-0.057	204:	53	0.113	255:		0.019	305:		0.659	357:	12	-0.333
52:		0.043			-6.625			-0.057	205:	52	0.115	256:		0.019	307:		0.100	357:	7	0
53:		0.000			-0.658			-0.019	206:	52	0.115	257:		0.019	307:		0.106	350:		0
54:)		117				-0.019	207:	52	0.115	258:		0.019	309:		0.096	300:		
55:		0.024			-(.020			-0.019	208:	50	0.200			-0.010	310:		0.058		C	0
56:		0.024			-0.000			0.019	209:	50	0.200			-0.010	311:			301:	2	0
	123				-0.017			0.019	210:	61	0.120			-0.010			0.006	352:		0
15.0		V. V.	100.	- 10	0.017	177.	104	0.017	210.	01	0.090	201:	104	-0.010	312:	102	0.660	363:	1	0

TABLE C-3.2. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMTPOM dyspnoea IN THE GROUP CNSLD grade 1

(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

		(N	IS THE N	UMBE	R OF PAIR	RS IN WE	HICH	THE DATA	WERE AV	AILA	BLE).									
DAY	A	DIFF.	YAG	N	DIFF.	DAY	N.	DIFF.	DAY	Ν	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DMY	is	LIFF.
7:	1	2	53:	ilon	0.523	109:	101	0.109	160:	39	0.079	211:	64	0.094	262:	49	0.192	313:	73	0.194
ø:	5	0.500	591		0.073	110:		0.109	161:	90	0.078	212:	55	0.154	603:	40	0.104	314:	41	0.132
9:		-3.522	٦):		0.019	111:		0.078	162:	90	0.067	213:	63	0.040	264:	47	0.105	315:	44	0.032
10:		0.073			-0.337	112:		0.099	153:	89	0.067	214:	63	0.127	205:	97	0.662	310:	44	0.043
11:		-0.051	52:		L. 050	113:		0.158	154:	39	0.056	215:	54	0.109	266:	94	0.128	317:		-0.043
12:	77		53:		C. U2n	114:		0.145	165:	90	0.133	216:	61	Ü	267:	90	0.031	310:		-0.032
13:		-0.013	5+:		し・しゃり	115:	103	0.097	166:	89	0.180	217:	71	-0.014	266:	46	0.683	319:	94	0.011
14:	41	0.123	>>:		0.023	110:	103	0.117	167:	83	0.239	218:	74	0.045	209:	90	0.031	320:	44	0.021
15:	81		50:	106	0.609	117:	104	0.125	168:	89	0.247	219:		-0.013	270:		-6.01C	361:	44	0.074
16:	87	0.149	57:	100	0	118:	103	0.146	169:	40	0.211	220:		-0.06/	271:	97	C	322:	94	0.065
17:		-0.091	53:	10t	-0.030	119:	100	0.675	170:	90	0.178	221:	73	0.014	272:	94	0.021	323:	44	0.128
18:	34	0.090	57:	165	-0.007	120:	106	0.104	171:	88	0.170	222:		-0.040	273:		-0.000	324:	44	0.096
19:	93	-0.097	73:	105	-0.142	121:	106	0.113	172:	85	0.163	223:		-0.053	274:	95		325:	94	0.011
20:	44	0.120	71:	106	0.066	122:	105	0.076	173:	85	0.106	224:	93	0.022	275:	90	0.031	326:	44	0.032
21:	44	-0.043	72:	107	0.000	123:	104	0.173	174:	82	0.122	225:	93	0.032	270:	97	0	327:	92	-0.311
22:	95	-0.100	73:	167	0.121	124:		0.086	175:	73	0.192	226:	93	0.054	277:		-0.010	328:	90	0.044
23:	95	-0.052	74:	105	0.151	125:		0.095	176:	52	0.113	227:	92	U.033	278:	97		329:	92	0.087
24:	97	0.031	70:	100	0.019	126:		0.077	177:	55	0.127	228:	93	0.085	279:	96		330:	92	6.120
25:	95	0.010		165	Ú	127:		0.058	178:	45	0.133	229:	92	0.070	200:	94	0.106	331:	42	0.120
26:	101	U		100	0.020	120:	-	0.048	179:	41	0.195	230:	92	0.065	281:	95	0.084	332:		0.043
27:	101	-0.168		107	0.023	129:		0.057	180:	33	0.061	231:	94	0.043	202:	95	0.042	333; 334;	92	0.065
28:	102	-0.135		107	0.043	130:		0.057	181:	31	0	232:		-0.032	203:	95	0.137 0.116	335:	93	0.005
29:	101	0.010	3):	107	0.234	131:		0.085	1 : 2:		-0.093	233:		-0.043	284:	95		330:	93	6.097
30:	101	-0.089		108	6.185	132:		0.123	183:		-0.019	234:		-0.054	205:		0.054	337:	43	0
31:	102	-0.010			-0.028	133:		0.093	184:		-0.019	235:	93	0.075	206: 207:		-0.057	330:	43	0.054
	102	0.070			-0.130	134:		0.050	185:		-0.019	236:			200:		-0.034	339:	93	0.118
	102				-0.628			-0.009	166:	53	0.057	237:	91	-0.032	289:		-0.034	340:	43	0.043
		-0.059			-0.093	136:	-	0.104	187:	52	0.096	238: 239:	94		290:		-0.0:6	341:	43	0.075
		-0.200				137:		0.067	188:	52	0.077	240:	94		291:		-0.623	342:	43	0
		-0.105		100	0.048	138:		0.088	189:	55 56	0.018	241:	94	0.064	292:	88		343:	44	0.117
		-0.075		104	0	139:		0.058	191:	55	0.036	242:	93		293:	88		344:	44	0.074
		-0.03B		104	0.115	140:		0.039	191:	55	0.036	243:	90	J.122	294:	93	0	345:	94	0.064
	107			104	0.125	141:		0.057	192:	55	0.036	244:	93		295:	94		340:	92	0.141
	107	U		104	0.212	142:		0.029	194:	54	0.074	245:	93		290:		-0.011	347:	41	0.077
	107	0.047		106	0.132	143:		0.108	195:		-0.020	246:	93		297:		-0.086	345:	91	0.008
	104			107		149:		0.103	196:	48	0.062	247:	94		298:		0.054	349:	40	0.078
	107			108		145:		0.101	197:	47	0.064	248:	95		299:	43	-0.065	350:	91	0.132
	100	U.028		100		147:		0.072	198:	47	2.213	249:	95		300:		-0.054	351:	75	0.067
	107	-0.112		105	0.143	148:		0.041	199:	47	0.128	250:	95		301:	40		352:	67	0
		-0.112		105		149:		0.094	200:	45	0.130	251:	94		302:	95	0.168	353:	46	0.164
	100			105	0.143	150:	90	0.135	201:	47	0.213	252:	40		303:	45	0.137	354:	31	0.097
	135		10):			151:		0.106	202:	43	0.209	253:	40	U.U03	304:	44	0.053	300:	زد	0.133
	105		1)1:		0	152:			203:	41	0	254:	97		305:	43	0.101	326:	12	0.417
	105		1)2:			153:		0.141	204:	41	0.049	255:	97	0.062	306:	93	0.129	357:	р	0
	108				-0.019	154:		0.187	205:	40	0	256:	97	0.002	307:	92		308:	Ö	0
	109		134:			155:		0.146	206:	40	0.100	257:	97	-0.010	308:	93	0.129	324:	6	0
	104		107:			156:		0.083	207:	41	0.098	258:	97	0.103	309:	92		360:	Ö	
	109		100:			157:		0.128	208:	42	0	259:	100	0.070	310:	43		301:	6	
	109		107:			158:		0.118	209:	43	0.093	260:	100		311:	93		362:	4	0
	109			101		159:	91	0.088	210:	63	0.048	261:	99	0.061	312:	93	0.172	303:	1	0

TABLE C-3.3. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM dyspnoea in the GROUP CNSLD grade 2+3 (N is the number of pairs in which the data were available).

		-						IND DITT	A WELLE A	AUIDI	ADDL).									
DAY	.4	DIFF.	YAC	N.	CIFF.	DAY	N	DIFF.	DAY	Ν	DIFF.	DAY	N	DIFF.	UAY	N	DIFF.	JAY	is	JIFF.
7:	3	1.000	53:	94	0.191	109:	92	0	160:	91	0.176	211:	55	C - C - 1		100.00				
ಠ:	15	0.333	59:	94	6.200	110:		-0.022	161:	91	0.220	212:	54	0.091	262:	83	0.229	3.3:	04	0.345
9:	20	0.538	o):	94	0.234	111:			162:	91	0.253	213:	54	0.271	263:	83	0.217	314:	05	0.294
10:	42	0.50)	:1c	43	6.312	112:	42		163:	90	0.156	214:	60	0.271	264:	82	0.134	: درد	04	6.226
11:	53	-0.075	52:	94	6.191	113:	41	C C	164:	89	0.090	215:				83	0.253	310:	04	0.250
12:	00	-0.13s	23:	45	0.211	114:	94	0.117	105:	88	0.136	216:	57	0.117	266:	06	0.25€	317:	24	0.214
13:	54	-0.205	54:	45	0.211	115:	44	0.265	166:	8.8	0.125	217:	62	U.123 U.274	267:	00	0.105	310:	02	0.140
14:	76	-0.026	09:	97	0.175	116:	45	0.245	157:	.89	0.101	218:	02	0.274	260:	80	0.271	319:	97	0.294
15:	74	0.095	50:	40	0.042	117:	93	0.215	168:	90	0.100	219:	67	0.200	269: 270:	84	0.296	320:	CC	0.081
16:	74	0.054	57:	90	-0.04.	118:	43	U.CE5	169:	90	0.033	220:	05	0.204		27	0.209	321:	CO	0.128
17:	78	0.013	53:	93	0.001	119:	10	0.094	170:	90	0.144	221:	60		271:	01	0.123	3 4 2 :	97	0.168
18:	73	-0.213	5 1:	9 5	6.671	125:	90	0.187	171:	91	0.264	222:		3.374	272:	77	0.221	3 < 3:	60	0.163
19:		-0.185	73:	97	0.200	121:	40	0.20H	172:	88	0.295	223:	69	0.406	273:	07	0.253	324:	00	0.207
20:		-0.094	71:	47	0.200	122:	95	0.168	173:	88	0.307	224:	68	0.250	274:	91	0.297	325:	97	0.412
21:		-0.161	72:	90	6.312	123:	95	0.221	174:	87	0.276	225:	80	0.153	275:	00	0.227	320:	ひい	0.294
22:	83	3.034	73:	97	0.47	124:	44	6.191	175:	77	0.104	226:	87	0.310	270:	86	0.198	367:	05	0.294
23:	80	0.05/	74:	97	0.155	125:	43	0.215	176:	66	0.104	227:	56	0.221	277:	00	6.114	320:	05	0.294
24:	91	0.110	75:	97	0.47	125:	43	0.151	177:	63	0.175	228:	80	0.105	276:	00	C.174	329:	05	0.194
25:	42	0.054	72:	47	0.190	127:	44	0.340	178:	52	0.231	229:	87	0.212	279:	87	0.241	330:	00	U.160
26:	42	0.109	77:	97	0.186	126:	43	0.347	179:	45	0.489	230:	53	0.217	280:	85	0.105	331:	05	0.012
27:		-0.033	7:	47	0.237	129:	92	0.500	100:	32	0.469	230:	82	0.220	281:	87	0.011	332:	05	0.129
28:		-0.022	79:	95	0.137	130:	93	0.473	181:	31	0.032	232:	91	0.350	282:	07	0.092	333:	04	0.214
29:	94	0.064	ಕ್ರ:	95	0.400	131:	43	0.366	182:		-0.019	233:		0.330	263:	85	0.141	334:	27	0.035
30:	95	0.032	51:	95	0.411	132:	43	0.452	183:	52	-0.019	234:	90	0.222	204:	95	0.141	330:	c4	0.230
31:	97	0.124	32:	95	0.284	133:	92	0.413	184:	51	0.157	235:	55 55	0.216	285:	83	0.145	330:	04	0.179
32:	95	0.292	53:	94	0.135	134:	93	0.505	185:	51	0.157	236:	89	0.182	206:	81	0.625	337:	62	0.146
33:	97	0.309	04:	94	0.260	135:	43	0.387	186:	50	0.020	237:			207:	82	0.673	330:	04	0.280
34:	97	0.371	35:	43	0.204	136:	91	0.451	167:	47	0.020	238:	85 85	0.129	288:	81	0.136	339:	63	0.361
35:	96	0.396	35:	93	0.301	137:	91	0.385	188:	44	0.136	239:	82	0.239	289:	81	0.198	340:	03	0.313
36:	97	0.278	37:	92	6.239	130:	89	0.348	189:	49	0.204	240:	82	0.171	290: 291:	79	0.114	341:	03	0.398
37:	90	0.281	83:	90	0.269	139:	89	0.270	190:	49	0.122	241:	82	0.037		81	0.173	342:	83	0.386
38:	95	0.354	39:	90	0.111	140:	94	0.319	191:	49	0.245	242:	81		292:	82	0.171	343:	83	0.313
39:	95	0.219	40:	87	0.645	141:	94	0.309	192:	50	0.120	243:	80	0.395 0.375	293:	02	0.220	344:	84	0.417
40:	90	0.208	91:	91	0.341	142:	95	0.421	193:	50	0.220	244:	78	0.430	294: 295:	57	0.276	345:	ь3	0.337
41:	95	0.208	42:	45	0.326	143:	95	0.484	194:	48	0.187	245:	80	0.450		80	0.207	340:	c 2	0.232
42:	94	0.266	93:	96	0.469	144:	95	0.295	195:	43	0.140	246:	81	0.420	296:	86	0.105	347:	63	0.169
43:	95	0.002	94:	95	0.427	145:	90	0.385	196:	45	0.200	247:	81	0.519	298:	86	0.198	340:	83	0.157
44:	98	0.367	95:	96	0.333	140:	94	0.362	197:	43	0.163	248:	81	0.543	299:	o 7	0.196	347:	79	0.267
45:	95	0.245	95:	95	0.695	147:	93	0.375	198:	42	0.048	249:	82	0.427	300:	88	0.398	3:0: 3:1:	57	6.358
40:	94	0.141	97:	96	0.167	148:	92	0.283	199:	43	0.093	250:	81	0.350	301:	00	0.386			
47:	99	0.091	98:	97	0.209	149:	42	0.391	200:	42	0.095	251:	81	0.370	302:	00	6.364	352: 353:	57	0.464
48:	44	0.030	91:	97	0.195	150:	92	0.348	201:		-0.098	252:	84	0.373	303:	88	3.352	354:	32	0.625
49:	90	0.061	100:	97	0.124	151:	93	0.237	202:		-0.105	253:	84	0.345	304:	88	0.443			
50:	97	0.215	101:	45	0.200	152:	42	0.196	203:		-0.171	254:	84	0.206	304:	99	0.716	357:	41	0.714
51:	97	0.062	102:	97	0.247	153:	92	0.109	204:		-0.205	255:	83	0.072	306:	90	0.442	326:	11	
52:	97	-0.082	133:	90	0.187	154:	95	0.253	205:		-0.231	256:	84	0.190	307:	84	0.417	357.		0.364
53:	97	-0.010	104:	9,	0.064	155:	94	0.202	206:		-0.256	257:	85	0.193	300:	04	C.464	329:	10	6.760
54:	47	-0.021	139:	95	0.120	156:	42	0.228	207:		-0.171	256:	84	0.133	309:	05	0.442		10	0.760
55:	97	0.113	100:	94	0.043	157:	92	0.283	208:		-0.122	259:	85	0.141	310:	00	0.529	361:		
56:	95	0.200	137:	94	0	158:	42	0.217	209:		-0.098	260:	84	0.250	311:	85	0.447		7	0.375
57:	44	0.202	133:	92	0.670	159:	92	0.228	210:		0.078	261:	83	0.229	312:	60	0.412	362:		0.429
										21		201.	33	0.227	215.	0)	0.412	303:	4	0

TABLE C-4.1. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM wheezing IN THE GROUP CNSLD grade 0

(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

		(N	IS THE	NUMBI	ER OF PAIRS	IN W	HICH	THE DATA	A WERE A	VAILA	BLE).									
DAY	N	DIFF.	YAC	N	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	YAG	N	DIFF.
7:	4	3	50:	123	0.090	109:	115	0.078	160:	103	0.039	211:	60	Ü	262:	104	-0.629	313:	Los	0.039
8:	23	O	59:	123	0.665	110:	110	0.043	161:	104	0.029	212:)			-0.029	314:		
9:	33	Ü	o):	124	0.065	111:	115	0.070	162:	103	0.029	213:		ű			-0.029	315:		0.039
10:	54	U	b1:	125	0.024	112:	110	0.020	163:		0.029	214:		o			-0.029	310:		
11:	71	0.042	52:	123	0.024	113:	116	0.034	164:	102	0.020	215:		v			-0.029	317:		Ü
12:	82	0.037	23:	122	0.649	114:	117	0.034	105:	102	0.020	216:	23	3			-0.029	310:		o
13:	85	U	5+:	122	0.657	115:	117	0.026	166:		0.020	217:	62	ō			-0.029	317:		0
14:	87	O	5):	121	0.017	115:	110	0.026	167:	97	0.041	218:	64	Ü			-0.029	320:	10000	0
15:	44	0.032	55:	119	0.005	117:	115	0.035	168:	97	0.031	219:	60	Ü			-0.029	321:		o
16:	97	0.113	57:	120	-0.017	116:	114	0.035	169:	97	0.041	220:	00	O			-0.029	342:		O
17:	47	0.111	54:	120	0.017	119:	110	0.025	170:	94	0.032	221:	65	U			-0.029	323:		Ö
18:	103	0.087	67:	120	0.058	120:	118	0.025	171:	91	0.033	222:	66	Ü			-0.029	344:		o
19:	105	3.076	7):	123	0.005	121:	118	0.025	172:	89	0	223:	60	O			-0.028	320:		0
20:	106	0.066	71:	123	6.005	122:	118	0.025	173:	85	0	224:	84	0.040			-0.026	326:		o
21:	104	0.037	72:	123	0.065	123:	117	0.017	174:	85	0	225:	86	U			-0.028			-0.039
22:	108	0.009	73:	123	0.065	124:	117	0.009	175:	80	0.050	226:	80	Ū.	277:		0	320:		0.034
23:	109	0.009	74:	123	0.657	125:	116	0.009	176:	69	0	227:	86	o	270:		G	329:		0
24:	110	0.030	75:	123	0.057	120:		0.017	177:	63	0	228:	85	Ö	279:		0	330:		0
25:	114	0.044	76:	123	0.057	127:		0.025	178:	57	C	229:	86	o	280:			331:		0
26:	110	0.004	77:	120	0.050	128:		0.017	179:	44	0	230:	00	Ü	201:		0.076	332:		0.040
27:	115	-0.026		120	0.058	129:		0.025	180:	3 8	o	231:	95	n	202:		0.676	333:		6.040
28:	117	-0.017	79:	120	0.058	130:		0.025	181:	3.8	0	232:	95	ű	283:		ζ	334:		0.040
29:	110	-0.042	8):	122	0.057	131:	112	0.018	182:	65	0	233:	96	v	284:		Ö	335:		0.010
30:	114	-0.017	81:	120	0.058	132:		0.035	183:	63	0	234:	98	-0.041	200:		0	330:		0.010
31:	122	-0.015	32:	120	0.050	133:	112	0.027	184:	63	ō	235:		-0.041	200:	7 9 9 9 3 8 8	0	337:		0
32:	122	-0.049	33:	120	0.050	134:	113	0.027	185:	62	C	236:	96	0			0.019	330:		Ü
33:	123	-3.073	34:	110	0.659	135:		0.027	186:	62	o	237:	90	č			-0.039	337:		o
34:	123	-0.024	80:	117	0.051	130:		0.035	1 87:	62	0	238:		Č.	209:		0.010	340:		0
35:	122	-0.008	30:	118	0.051	137:	113	0.035	188:	63	0	239:		6	290:		0.010	341:		o
36:	123	0.024	37:	117	0.060	138:	113	0.027	189:	5.8	0	240:		Ü	291:		C	342:		0
37:	124	0.024	53:	113	0.053	139:	112	0.027	190:	57	0	241:	101	Ü	292:		0.010			-0.040
38:	124	0.050	39:	112	0.045	140:	112	0.018	191:	57	0	242:		Ū	293:		G			-0.040
39:	124	0.056	9):	111	0.036	141:	111	0.018	192:	55	C	243:	90	Š	294:		G			-0.040
40:	124	0.015	91:	119	0.017	142:	111	0.009	193:	55	0	244:	97	o o	295:		C.	340:	99	0
41:	124	0.024	92:	120	0.017	143:	111	0.009	194:	55	0	245:	100	0	246:		G	347:	44	o
42:	125	-0.032	73:	121	0.017	144:	111	0	195:	53	0	246:	100	Ö	297:		Č	340:	97	o
43:	124	-0.032	94:	122	0.016	145:	111	0	196:	52	0	247:		Ü	298:		C	349:	98	o
44:	124	J	95:	121	0.017	146:	110	0	197:	53	0	248:	99	O	299:		C	350:	99	o
45:	120	0.024	10:	121	6.017	147:	110	0	198:	55	0	249:	99	Č	300:		Ğ	351:	03	0
46:	125	0.008	97:	121	0.017	148:	109	0	199:	56	0	250:	99	Ü	301:		Č	352:	64	o
47:	125	0.032	93:	121	0.008	149:	109	0	200:	56	0	251:		Ü	302:		0	323:	47	o
48:	125	0.063	++:	121	0.008	150:	107	0.028	201:	54	0	252:		Ü	303:		C.	354:	29	0
49:	125	-0.008	1)):	121	0.008	151:	105	-0.009	202:	51	0	253:	105	Ü	304:		C	300:	19	o
50:	120	-0.003	101:	121	0.641	152:	105	0.038	203:	52	0	254:		Ū	305:		Č	320:	12	ō
51:	124	-0.008	102:	121	0.041	153:	105	0.038	204:	53	0	255:		Ü	306:		0	357:	6	o
52:	124	C	103:	121	0.058	154:	104	0.029	205:	52	0	256:		ō	307:		Č	328:	7	o
53:	124	0.032	104:	120	0.050	155:	104	0.029	206:	52	ō	257:		Ü	308:		0	359:	6	0
54:	124	J	105:	118	-0.017	156:	105	0.029	207:	52	o	258:		Ü	309:		0.049	300:	6	0
55:	123	U	105:		0.026	157:		0.029	208:	50	0		2000	-0.029	310:		0	301:	5	0
56:	120	0.032	107:	117	0.051	158:	103	0.029	209:	50	O			-0.029	311:		0	362:	3	Ö
57:	123	0.057	108:	110	0.086	159:	104	0.029	210:	61	0			-0.029	312:		0	303:	1	Ö

TABLE C-4.2. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM wheezing IN THE GROUP CNSLD grade 1
(N is the number of pairs in which the data were available).

DAY	-4	DIFF.	DAY	l _s	DIFF.	DAY	8	DIFF.	YAC	Ν	DIFF.	DAY	Ν	DIFF.	DAY	N	DIFF.	YAG	14	ulff.
7:	1	3	53 :	10 =	0.102	100.	101	0.089	160:	89	0.011	211:	2.7		262:	99	0.131			
8:	8	o	59:	Z.3 0	0.073		101	0.099	161:	90	0.011	211:	65	0.076	263:	96	0.131	313: 314:	93	0.022
9:		-0.217	5):		0.628		131	0.069	102:	90	0.100	213:	63	5	264:	97	0.041	315:	91	0.044
10:		-0.049	21:		0.020		101	0.069	163:	89	0.135	214:	03	ŭ	265:	97	0.002	310:	94	0.032
11:		-0.085	22:		0.664	113:		0.030	154:	89	0.157	215:	64	· ·	200:		-0.674	317:		-6.032
12:	71	-0.026	53:		0.019		103		165:	90	0.189	216:	61	0.033	207:	40	0.014	310:	94	0.021
13:	73	-0.013	54:	105	0.647			-0.019	166:	88	0.102	217:	71	0.070	200:		-0.010	319:	94	0.064
14:	81	0.074	99:	100	0.085	116:	103	-0.010	167:	8.8	0.102	218:	74	0.027	269:		-0.095	340:	94	0.166
15:	81	-0.037	50:	10:	0.114			-0.010	168:	89	0.045	219:	75	Ü	270:		-0.082	321:	94	0.032
16:	87	0	57:	105	0.164	110:	103	0	169:	89	0.034	220:	70	0.000	271:	47	C	322:	93	0.032
17:	88	0.136	63:	106	6.000	119:	106	-0.638	170:	90	0.089	221:	73	0.027	272:	44	C	323:	94	0.065
18:	89	0.034	57:		0.665		100	0	171:	88	0.136	222:	75	0.027	273:	71	-0.143	324:	44	0.085
19:	93	0.065	70:		0.142		106	0.038	172:	86	0.153	223:	75	0.034	274:	90	-0.042	325:	44	0.096
20:	94	0.090	71: .		0.113	122:		J. C38	173:	65	0.106	224:	93	0.032	275:	90	-0.652	320:	94	6.043
21:	94	0.170	72:		0.150		104	0.038	174:	82	0.183	225:	93		276:	97	0	3 4 7:	46	L. UE7
22:	95	0.126	73:		0.121	124:		0	175:	73	0.110	226:	43	0.075	277:		-0.041	365:	89	6.090
23:	95	0.135	74:		0.028	125:		0.038	176:	52	0.081	227:	92	0.033	278:		-0.041	369:	42	0.169
24:	97	0.082	79:		0.028	120:		0.038	177:	55	0.145	228:	93	0.000	279:		-0.083	330:	92	0.098
25:	94	0.061	75: .		0.094	127:		0	178:	45	0.200	229:	92	0.054	280:	94	0.032	331:	42	0.098
	101	0.069	77:		0.675	128:		0	179:	41	0.195	230:	45		201:		-0.021	332:	92	0.043
	102	0.030	78: . 79:]		0.103	129:		0.038	180:	33	0.091	231:	44	0.053	202:	ソン	0.042	333:	76	0.087
		0.089	3):]		0.037			0.029	181:	31	0	232:		-0.043	203:		-0.042	354:	43	0.086
	101	0.050	81:		0.028	131:		0.047	182:	54	0	233:		-0.117	284:		-0.042	335:	93	0.066
	102	0.108	82:		0.028	133:		0.043	184:	53	0.075	234:	93	-0.065	200:		-1.074	330:	43	0.097
	101	0.149	83: 1		0.037	134:		0.075	185:	53	0.075	236:	92		286:	88	0.045	337: 330:	43	0.054
	101	0.119	84:		0.628	135:		0.065	186:	52	0.077	237:	91	0.077	288:	55	0.043	339:	43	C. UE 5
	101	0.079	82:		0.028	136:		0.066	187:	52	0	238:	94	0.005	289:	88	0.023	340:	73	0.065
	106	0.047	85:		0.019	137:		0.029	188:	52	0.077	239:	94	0.043	290:	89	0.025	341:	92	6.067
36:	105	0.086	87:		0.629	138:		0	189:	55	0.036	240:	94	0.021	291:	88	0	342:	43	0.108
37:	105	0.066	88:]	104	0.096	139:		0	190:	56	0.071	241:	94	0.065	292:		-0.011	343:	94	0
38:	106	0.094	39:	104	0.163	140:		0.039	191:	55	0	242:	93	0.022	2931		-0.057	344:	94	0
39:	107	0.093	9):	104	0.135	141:	105	0.086	192:	55	0	243:	90	0.050	294:	93	C	345:	94	0.032
40:	107	0.103	91:	104	0.038	142:	104	0.087	193:	55	0	244:	89	0.045	295:	94	C	346:	92	0.076
	107	0.140	92:	100	0.047	143:	103	0.078	194:	54	0	245:	93	Ü	296:	44	0	347:	41	0.366
	108	0.139	93: .		0.019	144:		0.049	195:	51	0.039	246:	93	0.032	297:	93	0.011	348:	41	6.066
1000	108	0.130			-0.028	145:		0.050	196:	48	0.062	247:	94	0.095	298:	43	0.054	349:	90	C.067
	108	0.056	45:		0.028	146:	99	0.091	197:	47	0.064	248:	95	0.137	299:	93	0.054	350:	41	6.077
		-0.009			-0.019	147:	97	0.093	198:	47	0.128	249:	90	0.115	300:	93	0.011	351:	15	0.067
	107	0.009	97:		0.007	148:	47	0.002	199:	47	0.106	250:	95	0.100	301:	45	0.053	352:	07	0.090
	106	0.038			-0.019	149:	46	0.083	200:	46	0.065	251:	94	0.170	302:	95	C.C64	353:	40	0.125
	105	0.105	99: .		0.067	150:	96	0.052	201:	47	0.064	252:	96	0.107	303:	95	0.004	354:	31	0.097
	105	0.010	100:		0.019	151:	94	0.085	202:	43	0.070	253:	96	0.073	304:	94	0.011	355:	15	0.260
	105	0.029			-0.029	152:	93	0.075	203:	41	0.073	254:	97	0.041	305:	93	0.005	356:	12	0.250
F/57	108	0.075			-0.639	153: 154:	92	0.076	204:	41	0.122	255:	97	0.002	306:		0.109	327:	0	o o
	109	0.028			-0.029	155:	96	0.083	205:	40	0.075	256: 25 7:	97	0.103	307: 306:	92	0.109	350: 359:	8	0
	108	0.065	100:		0.019	156:	96	0.062	207:	41	0.073	258:	97	0.041	300:	43	0.622	300:	C	0
	109	0.055	105:		0.029	157:	44	0.042	208:	42	0.073	259:		0.023	310:		-0.011	361:	0	o o
	109	0.073	107:		0.039	158:		0.032	209:	43	0.116	260:		0.073	311:		-0.011	304:	2	Ü
	109	0.110	103:		0.119	159:		0.022	210:	63	0.032	261:		0.001	312:		-0.043	303:	-	G

TABLE C-4.3. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM wheezing IN THE GROUP CNSLD grade 2+3

(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

		(N	IS THE N	UMBE	R OF PAIRS	IN WH	ICH	THE DATA	WERE AV	AILA	BLE).									
DAY	١	DIFF.	YAC	N	DIFF.	DAY	N	DIFF.	DAY	Ν	DIFF.	DAY	N	DIFF.	DAY	N	DIFF.	YAG	٨	ulff.
7:	3	-1.333	53:	94	0.287	109:	41	0.033	160:	90	0.100	211:	55	0.091	202:	83	0.265	313:	04	0.107
8:		-0.267	59:	44	0.245	110:		-0.022	161:	90	0.256	212:	54	0.133	263:	83	0.337	314:	85	0.153
9:		-0.077	6):	94	0.207	111:		-0.022	162:	90	0.233	213:	54	0.237	204:	82	0.266	315:	84	0.155
10:		0.214	21:	93	0.163	112:	91	0.044	163:	89	0.101	214:	60	0.283	205:	83	0.205	316:	04	0.190
11:		-0.189	22:	94	0.160	113:	90	0.044	164:	88	0.034	215:	60	0.100	206:	86	6.186	317:	04	0.179
12:		-0.200	53 :	95	0.147	114:	93	0.032	165:	87	0	216:	57	0.150	267:	85	0.200	318:	03	0.161
13:		-0.235	24:	95	0.095	115:	43	0.011	166:	87	0.023	217:	62	0.101	266:	85	0.200	319:	85	0.035
14:		-0.066	55:	96	0.052	116:	94	0.053	167:	88	0.034	218:	66	0.227	269:	84	0.202	320:		-0.012
15:	74		65:	98	0.692	117:	92	0.033	168:	89	0	219:	67	0.254	270:	85	0.141	321:	67	0.034
16:	74		67:	98	0.031	118:	92	0.022	169:	89	0.034	220:	06	0.242	271:	81	0	322:	85	0.012
17:	77	0.234	29:	98	0.224	119:	95	0.063	170:	90	0.078	221:	07	0.209	272:	77	0.026	323:	86	0.047
18:	77		69:	98	0.082	120:	95	0.137	171:	90	0.133	222:	69	0.201	273:	87	0.080	324:	86	0.093
19:	84	0	70:	97	0.072	121:	94	0.138	172:	87	0.149	223:	68	0.147	274:	91	0.253	325:	85	0.168
20:	85	-0.024	71:	97	0.062	122:	94	0.106	173:	87	0.149	224:	85	0.062	275:	99	0.261	320:	85	0.176
21:	87	0.264	72:	90	0.150	123:	94	0.106	174:	86	0.105	225:	87	0.161	276:	87	0.184	327:	85	0.141
22:	83	0.068	73:	97	0.093	124:	93	0.129	175:	75	0	226:	80	0.209	277:	88	0.159	328:	85	0.165
23:	88	0.045	74:	97	0.031	125:	92	0.185	176:	65	0.062	227:	86	0.186	278:	87	0.149	329:	86	0.221
24:	91	0.077	75:	97	0.062	126:	92	0.174	177:	62	0.048	228:	85	0.247	279:	87	0.216	330:	07	0.092
25:	92	0.098	70:	97	0.072	127:	93	0.172	178:	52	0.135	229:	83	0.241	200:	86	0.233	331:	86	0.058
26:	92	0.054	77:	97	0.113	128:	43	0.172	179:	45	0.333	230:	82	0.195	281:	07	0.184	332:	05	0.059
27:	92	O	73:	97	0.134	129:	91	0.077	180:	32	0.125	231:	93	0.244	202:	87	0.218	333:	84	U.119
28:	92	-0.022	79:	95	0.168	130:	42	0.228	181:	31	0.161	232:	91	0.264	203:	85	0.118	334:	05	0.118
29:	93	-0.022	ಕ ು:	95	0.365	131:	92	0.152	182:	53	0.075	233:	87	0.1:7	284:	05	0.141	335:	85	0.047
30:	95	-0.011	31:	45	0.242	132:	92	0.207	183:	52	0.154	234:	83	0.170	200:	83	0.672	330:	04	U.107
31:	97	0.103	32:	95	0.147	133:	91	0.319	164:	51	0.235	235:	83	0.136	200:	90	0.037	357:	03	0.120
32:	90		83:	94	-0.053	134:	92	0.337	185:	51	0.235	236:	89	0.191	267:	02	0.098	333:	83	6.181
33:	97	0.247	34:	94	0.000	135:	92	0.293	186:	50	0.220	237:	85	0.202	288:	80	0.200	339:	03	0.217
34:	97		85:	93	0.665	136:	90	0.333	187:	47	0.191	238:	85	0.271	289:	01	0.222	340:	03	6.169
35:	96		86:	93	Ü	137:	40	0.289	188:	44	0.136	239:	82	0.293	240:	79	0.177	341:	03	0.143
36;	97	0.103	d7:	92	0.098	138:	99	0.261	189:	49	0.224	240:	82	0.244	291:	80	0.162	342:	83	0.325
37:	96		44:		-0.678	139:	89	0.247	190:	49	0.184	241:	82	0.305	292:	82	0.073	343:	04	0.214
38:	90		34:	90	O	140:	93	0.237	191:	49	0.224	242:	81	0.444	293:	82	0.134	344:	03	0.229
39:	95		90:	87	0.034	141:	93	0.172	192:	50	0.180	243:	80	0.413	294:	87	0.115	345:	03	C.181
40:	95		91:	90	0.167	142:	94	0.202	193:	50	0.260	244:	78	0.359	295:	06	0.081	340:	86	0.195
41:	95		92:	94	C.181	143:	94	0.234	194:	48	0.271	245:	80	0.200	296:	86	0.093	347:	03	0.157
42:	95		93:	95	0.179	144:	93	0.258	195:	43	0.256	246:	81	0.259	297:	86	0.070	340: 349:	63 62	0.157
43:	96		94:	95	0.211	145:	95	0.337	196:	45	0.133	247:	81	0.346	298:	87	0.186	350:	80	6.171
44:	98		95;: 95;	95	0.168	146:	93	0.323	19 7: 198:	43	0.095	249:	81	0.469	299: 300:	07	0.299	351:	07	0.134
45:	98		97:	45	0.128	147:	92	0.348	199:	43	0.070	250:	81	0.204	301:	55	0.261	3:2:	57	0.158
46: 47:	99		99:	96	0.021	149:	91	0.352	200:	42	0.024	251:	81	0.222	302:	88	0.261	353:	45	0.311
	99		99:		-0.031	150:	91	0.264	201:	41	0.049	252:	84	0.220	303:	88	0.261	324:	32	0.312
48:	98	0.001	100:	95	0.053	151:	92	0.185	202:	38	0.079	253:	84	0.250	304:	88	0.341	355:	21	0.667
50:	97		101:	94	0.011	152:	91	0.220	203:		-0.073	254:	84	0.250	305:	68	0.420	356:	15	0.467
51:	97		101:		-0.021	153:	91	0.220	204:	39	-0.073	255:	83	0.349	306:	86	0.207	357:	11	6.273
52:	97		103:		-0.032	154:	94	0.255	205:		-0.026	256:	84	0.226	307:	84	0.226	328:	10	0.300
53:	97		104:		-0.032	155:	92	0.293	206:		-0.051	257:	85	0.212	308:	85	0.259	359:	10	0.300
54:	97		104:	93	0.054	156:	91	0.293	207:		-0.098	258:	84	0.190	309:	86	0.291	300:	10	0.300
55:	97		106:		-0.032	157:	91	0.187	208:	41	0	259:	85	0.306	310:	86	0.291	301:	ь	6.375
56:	95		107:		-0.086	158:	91	0.231	209:		-0.024	260:	84	0.220	311:	85	0.105	302:	7	0.429
57:	94		108:		-0.033	159:	91	0.143	210:	51	0.078	261:	83	0.325	312:	85	0.153	363:	2	1.500
51.	74	0.000	100.	, 1	0.033	177.	1	0.143	-10.	2 1	5.510	201.	-, 5	0.363	JIL.			505.	-	

TABLE C-5.1. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM irritation of the eyes in the GROUP CNSLD grade 0
(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

DAY	Ŋ	DIFF.	DAY	N	biff.	DAY	Ν	DIFF.	DAY	N	DIFF.	DAY	N	0164.	DAY	N	DIFF.	DAY	ī.	DIFF.
7:	4	v	58:	123	0	109:	1-25	-0.043	160:	103	0.019	211:	60	-0.067	202:	104	-0.077	313:	100	0.078
8:	23	0			-0.008			-0.034	161:		0.048	212:	60	-0.0L7	263:	104	-0.04+	314:	100	U.060
9:		0.184			-0.024			-0.070	162:	103	0.039	213:	54	0.017	264:	103	-0.049	315:	103	6.078
10:		-0.068			-0.065			-0.069	163:	102	0.078	214:	59	U	265:	103	-0.C70	310:	103	0.078
11:	71	0.042			-0.057			-0.069	164:	102	0.078	215:	01	-0.049	260:	100	-0.048	317:	103	U.078
12:	82	0.012			-0.033			-0.034	165:	102	0.078	216:	20	0.0.7	207:	103	-0.078	310:	102	0.078
13:		-0.047			-0.641	115:	117	0	166:	102	0.078	217:	62	-0.040	260:	104	-0.019	3.7:	102	6.049
14:	84	The same of the sa			-6.668	110:	115	0.009	167:	97	0.124	218:	64	-0.062			0.010	320:	102	0.069
15:	94		56:	119	-0.042	117:	115	0.017	168:	97	0.052	219:	65	-0.002			-0.019	361:	102	0.069
16:		-0.021	27:	120	-0.008	118:	114	-0.018	169:	97	0.093	220:		-0.062			-0.029	362:		0.078
17:		-0.040	58:	120	-0.033	119:	118	-0.034	170:	94	0.085	221:	65	-0.0EZ			-0.C3C	363:		0.069
18:		-0.087	69:	120	0.067	120:	117	0.034	171:	91	0.088	222:	60	0.001	273:	104		324:	105	O
19:	10>	-0.019	7):	123	0.657	121:	118	0.068	172:		0.045	223:	100000	-0.001	274:	-		327:		0.040
20:	106	-0.075	71:	123	0.041	122:	118	0.034	173:	85	0.047	224:	84		275:			366:		0.049
21:	109	-0.110	72:	123	Ü	123:	117	0.026	174:	85	Ü	225:	80	0.035	276:					-6.029
22:	108	-0.102	73:	123	0.024	124:	117	0.060	175:	80	0.050	226:	85	0.035	277:					-6.059
23:	109	U	74:	123	0.033	125:	116	0.060	176:	69	0.174	227:	86	0.047	278:			329:		0
24:	110	0.027	75:	123	Ü	126:	117	0	177:	63	0.222	228:	85		274:			330:	44	0.040
25:	113	-0.009	75:	123	U	127:	117	0.026	178:		0.070	229:	05	0.001	200:			3.51:	44	0.040
20:	115)	77:	120	0.003	128:	117	0.051	179:	44	0.114	230:	85	0.032	681:			332:	44	0.040
27:	115	-0.122	78:	120	-0.025	129:	117	0.094	180:	38	0	231:	95	0.032	202:			333:		0
28:	119	-0.053	79:	120	0	130:		0.132	181:		-0.105	232:		-0.011	203:			334:		U
29:	118	-0.059	3):	122	0.131	131:	112	0.098	182:		0.046	233:		-0.063	284:			335:		0
30:	119	-0.050		120		132:		0.097	183:		0.063	234:		-0.041	285:		0			-0.010
31:	122	0.082		120	O	133:		0.098	184:		0.063	235:		-0.031	280:					0.039
32:	122	0.008			-0.067	134:		0.018	185:	2000	0	236:	90	0.031	207:			330:		0.039
33:	123	0.041			-0.034	135:		0.018	186:		0	237:	96	9	288:		0.019	339:		0.039
		-0.008		117		136:		0.018	187:	62	0	238:		0	269:			341:	0.000	0.040
35:	122	-0.025		118		137:		0.053	188:		0			-0.010	290: 291:			342:		0.040
		-0.106		117		138:		0.053	189:		0.121	240:		0.036	292:					-0.040
		-0.040		113		139:		0.018	190:			241:						344:		0.040
	124				0.030	140:			191:	57	0	242:	98	0.100	293: 294:			345:		0.040
		-0.008			-0.036	141:		0	192:		-0.073	243:			295:			346:	99	0
	123			119				0.081	193:		0	245:			296:			347:	44	Ö
	124			120		143:		0	194: 195:		0.091	246:		0.040	297:			340:	98	
	125			121		144:		0	195:	-	0.019	247:			298:			349:		6.031
	124	Э		122		145:			190:		-0.075	248:			299:			350:	44	0
		-0.010		121		146:			197:		-0.075	249:	99		300:			351:	03	ō
	125			121	0				198:			250:	99		301:			352:	04	0
	125			121	0	148:			200:			251:			302:			3>3:		0.164
		-0.040			-0.033				200:		-0.074	252:			303:			354:		0
		-0.040		121	0 ()	5 0 0 0	107		201:		-0.078	253:			304:			300:		U.263
	126				-0.625	5°00 5°00	106		202:					-0.037	305:			3:0:		
	125			100000	-0.008	152:	105	0.036	203.		0			-0.075	300:			357:		
	124		102:		Ŭ			-0.038	204.		-0.077			-0.037	307:			350:		
	124		103:		0 (50	155:		-0.038	206:	-	-0.077			-0.03r	306:			329:		
	124				-0.050			-0.038	207:		-0.011			-0.038	309:			300:		
	124				0.026	157:		-0.036	208:					-0.030	310:			301:		
	123		105:				103		209:					-0.030	311:			302:		Ó
	125						104		210:		-0.066			-0.030	312:			303:		
57:	123	-0.016	173:	110	0.004	139.	104	0	210.	01	0.000	201.					e etastestar (2)			

TABLE C-5.2. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM irritation of the eyes IN THE GROUP CNSLD grade 1
(N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

DAY	N	DIFF.	DAY	DIFF.	DAY	DIFF.	DAY	DIFF.	DAY	N 01FF.	UAY	N DIFF.	DAY	N DIFF.
7:	1	ij	Jd: 10c	0.085	109: 100	C.080	160: 89	0.258	211:	64 0.031	262:	99 0.030	313:	43 6.097
8:	8	3	57: 104	0.018	110: 101	0.119	161: 90		212:	00 0.031	263:	96 0.010	314:	91 0.132
9:	23	-0.217	50: 109	0.045	111: 100	0.080	162: 90		213:	63 0.032	264:	97 0.144	315:	45 6.137
10:			51: 109	0.147	112: 100	0.150	163: 89		214:	63 0.095	265:	97 0.010	310:	74 L. Ut4
11:	59	-0.051	52: 109	0.147	113: 100	0.190	164: 89		215:	64 0.094	260:	94 0.611	317:	94 0.043
12:	77	-0.052	53: 107	0.084	114: 103	0.078	165: 90	0.244	216:	61 0.006	267:	96 -0.010	315:	94 0.043
13:	79	0.101	54: 106	0.038	115: 103	0.029	166: 88	0.261	217:	71 0.056	268:	96 -0.031	319:	94 -0.021
14:	81	0.037	55: 106	0.170	116: 103	0.136	167: 88	0.216	218:	74 -0.014	269:	95 0.011	320:	94 0.128
15:	81	0.025	06: 106	0.104	117: 104	0.125	168: 87	0.322	219:	75 -0.013	270:	98 -0.153	321:	94 -0.032
16:	87	0.172	57: 106	0.009	118: 103	0.135	169: 90	0.289	220:	75 0.067	271:	97 -0.062	322:	94 0.128
17:	83	0.227	68: 106	0.094	119: 105	0.152	170: 90	0.300	221:	73 -0.014	272:	94 0.021	323:	94 0.074
18:	89	0.067	57: 106	0.094	120: 106	0.142	171: 88	0.318	222:	75 0.027	273:	91 -0.033	3 6 4 :	44 0.096
19:	43)	7): 106	0.151	121: 105	0.104	172: 86	0.326	223:	76 0.053	274:	95 0.021	365:	94 0.096
20:	94	0.123	71: 106	0.179	122: 105	0.105	173: 85	0.329	224:	92 0.120	275:	96 0.062	325:	44 6.096
21:	94	-0.043	72: 107	0.252	123: 105	0.133	174: 82		225:	93 0.097	276:	97 0.052	327:	92 0.043
22:	95	0.063	73: 107	0.064	124: 105	0.038	175: 73		226:	93 0.097	277:	97 0.103	328:	40 0.044
23:	90	0.062	74: 100	0.094	125: 105	0.057	176: 62		227:	92 0.130	278:	97 0.010	324:	91 0.176
24:	97	0.124	75: 106	0.132	126: 104	0.125	177: 55		228:	92 0.141	279:	96 U.OE2	330:	92 0.152
25:	99	0.182	75: 105	0.019	127: 105	0.114	178: 45		229:	92 0.007	280:	94 6.149	331:	92 -0.033
	101	0.178	77: 106	0.123	128: 104	0.115	179: 41		230:	92 0.08/	201:	95 0.084	332:	92 -0.022
		-0.089	75: 107	0.623	129: 105	0.114	180: 33		231:	94 0.053	282:	95 0.021	333:	42 -6.043
	102	0.024	79: 107	0.009	130: 105	0.086	181: 31		232:	94 -0.032	283:	95 -0.695	334:	43 C.065
	101	0.064	30: 107	0.300	131: 106	0.094	182: 54		233:	94 0.353	204:	95 0.042	332:	43 0.129
	101	0.059	81: 108	0.250	132: 100	0.075	183: 54		234:	92 0.011	260:	94 6.632	330:	93 C.108
	102	0.029	82: 108	0.074	133: 107	0.075	184: 53		235:	93 0.011	286:	69 0.090	357:	93 -6.011
	102	0.195	33: 109		134: 107	0.112	185: 53		236:	92 -0.011	267:	00 0.148	355:	93 0.022
	102	0.137	84: 107	0.075	135: 107	0.178	186: 52		237:	91 0.055	200:	88 (.058	359:	93 6.075
	102	0.118	85: 107	0.103	136: 106	0.208	167: 52		238:	94 0.064	289:	88 0.097 89 0.090	340: 341:	93 6.075
	100	0.094	85: 106	0.132	137: 105	0.105	188: 52 189: 54		239:	94 0.105	290: 291:		342:	92 0.163 93 0.097
	100	0.133	87: 105	0.248	138: 103	0.078	190: 56		241:	94 0.083	292:	88 0.159 88 0.125	343:	94 0.053
	106	0.015	83: 104 89: 104	0.163	139: 104 140: 103	0.155	191: 55		242:	93 0.075	293:	87 0.149	344:	94 6.149
		-0.028	93: 104	0.154	141: 105	0.200	192: 55		243:	90 0.100	294:	93 0.129	345:	94 6.149
	107		91: 104	0.154	142: 104	0.125		-0.073	244:	90 0.044	295:	93 0.226	340:	92 0.065
	107	0.103	92: 105	0.000	143: 103	0.146	194: 54		245:	93 0.005	296:	94 -0.611	347:	91 0.143
	108	0.103	93: 107	0.103	144: 102	0.147	195: 51		246:	92 0.098	297:	93 0.075	340:	91 0.132
		-0.009	94: 108	0.204	145: 101	0.099	196: 45		247:	94 0.200	298:	93 0.108	344:	90 0.122
		-0.009	95: 108	0.185	140: 99	0.121		-0.085	248:	95 0.325	299:	92 0.011	350:	91 0.165
	107		96: 106	0.151	147: 97	0.206	198: 47		249:	96 0.260	300:	93 0.043	3:1:	75 6.027
	107	0.072	97: 105	0.171	148: 97	0.206	199: 47		250:	95 5.137	301:	45 0.084	352:	07 0.164
	100	0	98: 104	0.135	149: 96	0.219	200: 46		251:	94 0.074	302:	95 0.021	323:	48 -0.063
	105	0.048	99: 105	0.229	150: 90	0.177	201: 47		252:	96 0.021	303:	95 -0.011	354:	31 0.129
	105	0.010	100: 103	0.165	151: 94	0.202	202: 43		253:	96 0.010	304:	94 0.064	355:	15 0.267
	105	0.076	101: 103	0.078	152: 93	0.258	203: 41		254:	97 0.021	305:	93 0.183	356:	11 0.364
	106	0.113	102: 101	0.089	153: 92	0.141	204: 41		255:	97 0.021	306:	93 0.247	357:	ь о
	108	0	103: 103	0.146	154: 96	0.219	205: 40	0	256:	96 0.083	307:	92 0.228	328:	8 0
	109	0.101	104: 103	0.140	155: 96	0.167	206: 40	0	257:	97 -0.021	308:	93 0.151	354:	0 0
	108	0.074	105: 103	0.140	156: 45	0.211	207: 41	0	258:	97 0.041	309:	91 0.116	300:	b 0
55:	109	0.119	135: 104	0.095	157: 94	0.213	208: 42	0.095	259:	100 0.090	310:	93 6.116	361:	6 0
56:	109	0.156	107: 103	0.145	158: 93	0.204	209: 43	0.093	260:	100 -0.040	311:	43 C.116	362:	2 0
57:	109	0.101	103: 101	0.650	159: 91	0.253	210: 63	0.095	261:	99 -0.091	312:	93 0.097	363:	1 0

TABLE C-5.3. THE DAILY MEAN SCORE-DIFFERENCE WITH RESPECT TO THE SYMPTOM irritation of the eyes IN THE GROUP CNSLD grade 2+3 (N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

DAY	N DIFF	. DAY	И	. 4410	YAC	N	DIFF.	DAY	N	DIFF.	DAY	N	Ulff.	PAG	N.	DIFF.	YAU	Íx	LIFF.
7:	3	58	: 94	0.032	109:	9.1	-0.022	160:	90	0.011	211:	55	-0.145	202:	83	6.036	313:	-1	-0.012
8:		59			110:		-0.132	161:		-0.111	212:	54	0.093	203:	03		314:	85	0.024
9:	26 -0.03				111:	91		162:		-0.122	213:	59	0.153	204:	83		315:	04	0.048
10:	42 0.07				112:	91	0.022	163:		-0.056	214:	60	0.050	205:		-6.084	316:	04	0.048
11:	53 -0.09	6.2	: 94		113:	90	0.033	164:	88	0.034	215:	60	0.007	200:	86	0.093	317:	04	0.071
12:	65 0.09	2 53	: 95	0.042	114:	93	-0.032	165:	87	0	216:	50	0.054	207:	נט	0.012	310:		-6.012
13:	68 -0.02	9 54	: 95	-0.021	115:	43	-0.065	166:	87	-0.069	217:	61	Ō	266:	00	0.062	314:	05	6.035
14:	75 -0.02	5 50	: 97	-0.041	116:	94	0.170	167:	88	0.023	218:	65	0.015	204:	84	0.155	320:	05	-0.059
15:	74 0.13	00	: 98	-0.092	117:	93	0.043	168:	89	-0.C11	219:	60	0.010	270:	00	0.212	321:	c7	U.138
16:	73 0.13			-0.031	118:	93	0.086	169:	89	0.056	220:	65	0.002	271:	31	0.185	322:	65	0.141
17:	78 0.11			-0.020	119:	95	0.011	170:	90	0.100	221:		-0.030	272:	77		323:		100000000000000000000000000000000000000
18:	78 0.14				120:	95		171:	90	0.044	222:		-0.008	273:		-0.009	364:	00	6.343
19:	85 0.11				121:		-0.042	172:	87	0.092	223:	60	0.059	274:		-0.033	325:	00	0.318
20: 21:	85 0.15				122:		-0.043	173: 174:	87	0.057	224:		-0.024	275:	07		3625	65	0.100
22:	87 -0.05			-0.010	123: 124:	94	-0.074 -0.032	174:	86	0.047	225:	87	0.023	276:	07	0.000	327:	ر د	0.059
23:	65 -0.03			-0.031	125:		-0.032	176:		-0.015	226:	80	0.105	277: 270:	87	0.159	369:	05	0.047
24:	91 0.19			-0.103	126:	92		177:	51	0.197	228:	85	0.035	279:	57	6.207	329:		-6.034
25:	92 -0.01				127:	73		173:	52	0.212	229:	83	0.325	280:	80	0.151	: دود	00	0.051
26:	92 0.15				128:		-0.654	179:	45	0.311	230:		-0.012	201:	07	0.207	٠٠٠:		-6.560
27:	92 0.10				129:	91	0	180:	32	0	231:	90	0.044	202:	e7	0.241	: د د د		
28:	93 0.01				130:	92	0	181:		-0.032	232:	91	0.033	203:	85	0.244	334:	00	0.012
29:	94	3 3	: 95	0.400	131:	92	-0.033	182:	53	0.075	233:	90	0.011	284:	85	0.106	330:	04	-0.048
30:	95 -0.12	5 81	: 95	0.274	132:	92	-0.033	183:	52	0.096	234:	88	0.102	285:	83	0.253	330:	04	0.024
31:	97 -0.05	2 32	: 95	0.684	133:	91	0.110	184:	51		235:	88	0.045	286:	01	0.012	337:	03	
32:	96 -0.09			-0.074	134:	92		185:	51	0.078	236:	88	0.091	207:	82		336:	03	6.205
33:	97 0.29			-0.043	135:	92		186:		-0.060	237:	86	0.047	288:	81	0.086	339:	63	0.036
34:	97 0.22				136:	90		187:		-0.085	238:		-0.012	289:	81	G	340:	63	0.096
35:	97 0.19				137:	90	0.056	188:		-0.023	239:		-0.012	290:		-0.638	341:	03	6.348
36:	97 0.21				138:	83	0.193	189:	49	0.102	240:	81	U	291:	01		342:		
37: 38:	95 0.03 95 0.08				139: 140:	93	0.170	190: 191:	49	0.163	241:	82	0.116	292:	82		343:	04	0.024
39:	96 0.07				141:	93	0.043	191:		-0.100	243:	80	0.075	294:	87		345:	04	0.024
40:	96 0.05				142:	94	0.043	193:	50	0.080	244:	78	0.075	295:	05		340:	63	0.012
41:	95 0.12		13 15.5		143:	94	0.106	194:		-0.042	245:		-0.003	296:	05	(B) (E) (E) (E) (E) (E)	347:		-0.024
42:	95 -0.03				144:	93	0.075	195:	43	0.070	246:	81	-0.349	297:	07		340:		
43:	95 0.01				145:	95	0.095	196:		-0.111	247:	61	0.321	298:	80		344:		
44:	98 0.17		L. 15		140:	43	0.032	197:		-0.186	248:	01	0.370	299:	07	6.136	3:0:	19	-6.069
45:	98 -0.05	1 95	: 94	0.138	147:	92	0.076	198:	42	-0.095	249:	82	0.159	300:	07	0.034	321:	07	-0.164
46:	99 0.02	97	: 40	-0.021	140:	92	0.152	199:	43	0	250:	81	0.123	301:	00	0.034	352:	57	-0.175
47:	99 -0.13	1 98	: 96	-0.042	149:	91	0.055	200:	41	0.024	251:	81	0.049	362:	88	6.000	353:		-0.269
48:	98 0.06	1 99	: 95	-0.011	150:	91	0.055	201:	41	-0.146	252:	84	0.040	303:	00		324:	32	
49:	98 0.07			0.062	151:	42	0.130	202:		-0.184	253:	35	0.047	304:	88		3:5:	41	0
50:	97 0.23				152:	91	0.187	203:		-0.317	254:		-0.012	305:	88		320:	15	0.233
51:	97 0.08				153:	91	0.055	204:		-0.333	255:		-0.134	300:	05	(.447	7: د د	11	Ü
52:	97 0.03				154:	94	0.074	205:		-0.256	256:	83	0.133	307:	84		3.0:	10	0
53:	97 -0.05				155:	93	0.129	206:		-0.184	257:	84	0.036	308:	83		359:	10	O
54:	97 -0.11				156:	91	0.143	207:		-0.171	258: 259:	85	0.024	309: 310:	85		301:	0.1	Ü
55:	97 0.07 95 0.04			-0.086	157:	90 91	0.067	208:		-0.244	260:	84	0.047	310:	85		362:	7	Ú
56: 57:	95 0.04 94 -0.11			-0.644	158: 159:	91	0.011	210:		-0.020	261:	100.0	-0.012	312:	35		363:	2	Ü
57.	94 -0.11	1 135	. 91	-0.044	159.	71	0.011	210.	1	-0.020	201.	02	-0.012	312.	3,7	0.024	505.	-	•

TABLE C-6.1. THE DAILY MEAN OF THE DIFFERENCES IN "PERCENTAGE DIFFERENCE FROM THE MEAN" WITH RESPECT TO

THE peak flow values in the group CNSLD grade 0 (N is the number of pairs in which the data were available).

DAY	N DIFF.	DAY N DIFF.	DAY	N DIFF.	DAY N DIF		N DIFF.	DAY N DIFF.	DAY N DIFF.
7:		58:	109:	6 -0.124	160:	211:	2 0.069	262: 18 0.012	313: 6 -0.021
8:		59:	110:	2 0.162	161:	212:	2 0.007	263: 15 0.032	314:
9:		60:	111:	2 0.102	162:	213:	5 -0.019	264: 7 -0.014	315:
10:		61:	112:		163: 8 -0.0		3 -0.041	205:	316: 19 0.007
11:		62:	113:		164: 13 0.0		2 -0.047	266:	317: 19 -0.024
12:		63:	114:	8 0.035	165: 7 0.0			267: 14 0.006	318: 11 -0.075
13:		64:	115:	11 -0.063	166: 4 0.0			268: 19 -0.004	319: 10 0.026
14:		65:	116:	6 -0.091	167:	218:	9 0.073	269: 20 -0.034	320: 3 -6.049
15:		65:	117:	7 0.065	168:	219:	5 -0.001	270: 16 -0.025	321:
16:		67:	118:		169: 14 -0.0	220:	8 -0.009	271: 5 0.028	322:
17:		68:	119:		170: 7 0.0		6 -0.013	272:	323: 13 6.347
18:		69:	120:		171: 3 -0.0	17 222:	6 -0.016	273:	324: 16 0.013
19:		70:	121:	7 0.059	172: 5 0.0			274: 19 0.013	325: 10 0.031
20:		71:	122:	8 0.050	173: 4 0.0			275: 12 -0.014	326: 17 0.006
21:		72:	123:	5 -0.084	174:	225:	13 -0.023	276: 16 -0.082	327: 6 -0.050
22:		73:	124:	6 0.018	175:	226:	7 -0.028	277: 16 -0.005	328:
23:		74:	125:		176: 11 0.0		9 -0.026	278: 9 0.011	329:
24:		75:	126:		177: 12 -0.0		13 -0.011	279:	330: 17 -0.003
25:		75:	127:	8 0.003	178: 7 0.0		9 0.009	280:	331: 13 0.016
26:		77:	128:	9 -0.022	179: 9 0.0 180: 5 0.0			281: 17 -0.020 282: 10 0.032	332: 15 -0.038 333: 12 0.002
27:		78:	129: 130:	12 0.051 5 -0.025	181:	232:	13 0.029	203: 17 -0.039	334: 6 -0.062
28:		79: 80:	130:	9 -0.012	182:	233:		284: 15 0.048	335:
30:		81:	132:	9 -0.012	183:	234:		285: 7 0.011	336:
31:		82:	133:		184:	235:		286:	337: 14 6.067
32:		83:	134:	19 0.033	185:	236:		207:	338: 17 0.005
33:		84:	135:	18 -0.012	186:	237:	10 0.000	288: 9 0.031	339: 6 -0.003
34:		85:	136:	24 0.052	187:	238:		289: 13 0.050	340: 12 -0.003
35:		85:	137:	14 0.024	188:	239:	12 0.055	290: 11 -0.006	341: 0 -6.032
36:		87:	138:	5 0.004	189:	240:		291: 13 -0.023	342:
37:		89:	139:		190:	241:	16 0.002	292: 6 -0.180	343:
38:		89:	140:		191:	242:	15 0.015	293:	344: 12 -0.042
39:		90:	141:	17 0.041	192:	243:	9 0.041	294:	345: 12 -0.316
40:		91:	142:	20 0.007	193:	244:		295: 17 -0.014	346: 14 -6.021
41:		92: 7 0.086	143:	18 -0.011	194:	245:		296: 19 0.007	347: 13 0.002
42:		93: 8 -0.006	144:	16 0.026	195:	246:		297: 18 -0.025	348: 9 -6.062
43:		94: 7 -0.029	145:	8 -0.017	196:	247:	11 -0.016	298: 14 -0.028	349:
44:		95: 5 -0.603	146:		197:	248:	15 0 057	249: 7 -0.009	350:
45:		96: 6 0.086	147:		198:	249: 250:		300: 301:	351: 16 -C.011 352: 29 -0.022
46:		97:	148:	16 0.045	199:	251:	10 0.008	302: 16 0.024	353: 20 -0.022
47:		98:	149:	18 0.009	200:	252:		303: 13 0.025	354: 12 -0.026
48:		99: 10 -0.031	150:	20 0.011	201:	253:	15 -0.042	304: 13 -0.024	355: 6 -0.033
49:		100: 5 0.009	151:	3 -0.066	203:	254:	16 -0.018	305: 16 -0.013	356:
50: 51:		101: 11 0.039 102: 4 0.026	152: 153:	3 -0.000	204:	255:	13 -0.010	306: 6 -0.010	357:
52:		103: 7 0.086	154:		205:	256:		307:	320:
53:		103: 7 0:000	155:	19 0.014	206:	257:	10 -0.015	308:	359:
54:		105:	156:	15 -0.026	207:	258:		309: 15 0.604	360:
55:		105: 10 0.053	157:	14 -0.032	208:	259:		310: 16 0.029	361:
56:		107: 11 0.063	158:	13 -0.018	209:	260:	18 -0.053	311: 20 0.006	362:
57:		108: 9 0.051	159:	6 0.020	210:	261:	10 -0.042	312: 14 -0.018	363:
3									

TABLE C-6.2. THE DAILY MEAN OF THE DIFFERENCES IN "PERCENTAGE DIFFERENCE FROM THE MEAN" WITH RESPECT TO

THE peak flow values in the group CNSLD grade 1 (N is the number of pairs in which the data were available).

DAY	N DIFF. DAY N DIFF.	DAY	N DIFF.	DAY	N DIFF.	DAY N DIFF.	DAY N DIFF.	DAY N DIFF.
7:	58:	109:	7 0.028	160:		211:	262: 12 0.046	313: 15 -0.012
8:	59:	110:	7 0.052	161:		212: 1 -0.077	263: 10 0.001	314:
9:	63:	111:		162:		213: 2 0.056	204: 12 0.038	315:
10:	61:	112:		163:	0.066	214: 4 0.161	265:	316: 17 -0.013
11:	62:	113:		164:	5 0.038	215: 6 0.039	266:	317: 12 -6.010
12:	63:	114:	8 0.034	165:	2 0.049	216:	267: 18 0.064	318: 10 -0.118
13:	64:	115:	10 -0.017		5 -0.060	217:	208: 14 0.012	319: 7 (.017
14:	65:	116:	9 0.051	167:		218: 8 0.081	269: 12 -0.056	320: 14 -0.026
15:	65:	117:	12 0.019	168:		219: 0 -0.020	270: 11 0.005	321:
16:	67:	118:			7 0.032	220: 3 0.031	271: 13 -0.010	322:
17:	63:	119:			5 -0.007	221: 5 0.001	272:	323: 14 0.063
18:	64:	120:			1 -0.034	222: 10 0.012	273:	324: 11 0.028
19:	70:	121:	10 0.015		2 0.111	223:	274: 18 -0.022	325: 10 -0.002
20:	71:	122:	12 0.040		2 -0.027	224:	275: 4 0.024	326: 9 -0.064
21:	72:	123:	12 0.021	174:		225: 12 0.015	276: 13 -0.021	327: 17 -6.007
22:	73:	124:	14 0.015	175:	and the second second	226: 10 0.011	277: 13 -0.018	328:
23:	74:	125:			6 -0.100	227: 9 -0.038	278: 18 -0.016	329: 330: 19 0.029
24:	75:	126:			5 0.004	228: 9 0.069	279:	330: 19 0.029 331: 15 0.018
25:	76:	127:	16 -0.010		6 -0.012	229: 11 0.069	280:	
26:	77:	128:	11 -0.015		5 0.007	230:	281: 18 0.008 282: 4 -0.060	332: 28 -0.018 333: 8 0.011
27:	78:	129:	11 0.056		4 0.049	231:		334: 13 0.007
28:	79:	130:	15 -0.006	181:		232: 14 0.010	283: 12 -0.006 284: 12 -0.015	335:
29:	80:	131:	18 -0.006	182:		233: 14 0.015		336:
30:	81:	132:		183:		234: 8 -0.028		337: 13 -0.006
31:	82:	133:	12 0 025	184:		235: 6 -0.014 236: 15 0.013	266: 467:	336: 11 6.026
32:	83:	134:	12 -0.035	185: 186:		236: 15 0.013 237:	288: 0 0.021	339: 1 0.077
33:	84:	135:	10 0.018	187:		238:	269: 8 -0.017	340: 9 -0.040
34:	85:	136:	10 0.030 8 0.041	188:		239: 14 -0.007	290: 8 -0.073	341: 9 -0.080
35:	85:	137: 138:	13 0.039	189:		240: 15 0.032	291: 10 -0.013	342:
36:	87: 83:	139:	13 0.039	190:		241: 8 0.027	292: 13 -0.042	343:
37:	89:	140:		191:		242: 8 0.032	293:	344: 7 0.035
38:	90:	141:	9 -0.040	192:		243: 11 0.036	294:	345: 10 0.038
39:	91:	142:	16 -0.056	193:		244:	295: 17 -0.012	346: 15 -0.022
40: 41:	92: 9 -0.007	143:	14 -0.032	194:		245:	296: 12 0.018	347: 8 -0.007
42:	93: 12 -0.099	144:	14 0.003	195:		246: 12 0.043	297: 10 -0.035	348: 12 -0.058
43:	94: 10 0.009	145:	18 0.011	196:		247: 13 0.045	298: 12 -0.063	349:
44:	95: 10 0.112	146:		197:		248:	299: 16 0.008	350:
45:	96: 10 -0.015	147:		198:		249: 12 -0.014	300:	351: 27 -0.046
46:	97:	148:	9 -0.083	199:		250: 16 0.015	301:	352: 15 6.066
47:	93:	149:	13 -0.058	200:		251:	302: 17 -0.008	353: 14 -0.014
48:	99: 18 0.606	150:	11 -0.026	201:		252:	303: 9 -0.016	354: 11 -6.049
49:	100: 18 0.618	151:		202:		253: 14 -0.016	304: 9 -0.025	355: 14 -0.048
50:	101: 10 0.106	152:	11 0.009	203:		254: 12 0.015	305: 8 -0.016	356:
51:	102: 8 0:172	153:		204:		255: 10 0.032	306: 16 -0.014	357:
52:	103: 13 -0.013	154:		205:		256: 9 0.027	307:	358:
53:	104:	150:	21 -0.037	206:		257: 14 -0.011	308:	399:
54:	105:	156:	10 -0.069	207:		258:	309: 14 0.061	366:
55:	106: 18 -0.069	157:	15 0.017	208:		259:	310: 12 0.053	361:
56:	107: 10 -0.045	158:	4 -0.051	209:		260: 17 -0.064	311: 11 -0.033	302:
57:	108: 10 0.034	159:	8 0.009	210:		261: 9 -0.002	312: 11 -0.008	363:

TABLE C-6.3. THE DAILY MEAN OF THE DIFFERENCES IN "PERCENTAGE DIFFERENCE FROM THE MEAN" WITH RESPECT TO

THE peak flow values IN THE GROUP CNSLD grade 2+3 (N IS THE NUMBER OF PAIRS IN WHICH THE DATA WERE AVAILABLE).

	THE peak f	low values IN	THE GROU	JP C	NSLD grade	2+3	(N I	S THE N	UMBER OF	PAIR	S IN WHIC	H THE D.	ATA WERE AVA	ILABLE).	
DAY	N DIFF. DAY	N DIFF.	DAY	14	DIFF.	DAY	Ν	DIFF.	DAY	N	DIFF.	DAY	N DIFF.	DAY	N DIFF.
7:	58:		109:	4	0.045	160:			211:	1	0.012	202:	16 -0.032	313:	13 -0.050
8:	54:		110:	2	0.011	161:			212:	2	-0.017	263:	11 -0.026	314:	
9:	6):		111:	_		162:			213:		-0.040	264:	12 -0.001	315:	
10:	01:		112:			163:	21	-0.002	214:	3	0.029	265:		316:	14 -0.064
11:	62		113:			164:	10	0.138	215:	2	0.118	266:		317:	7 -6.059
12:	53:		114:	1	0.152	165:	4	0.013	216:			267:	15 -0.020	310:	8 -0.012
13:	64:		115:	7	0.082	166:	6	0.057	217:			268:	9 -0.047	319:	7 6.027
14:	52		116:		0.235	167:			218:	10	-0.093	269:		320:	7 -0.019
15:	00		117:	R	-0.012	168:			219:	6	0.051	270:	11 -0.054	321:	
16:	57:		118:			169:			220:		0.001	271:	10 0.024	322:	
17:	63:		119:			170:		-0.058	221:		0.023	272:		323:	12 -6.065
18:	69:		120:		0 (7)	171:			222:	8	-0.089	273:	12 0 010	324:	9 6.051
19:	73:		121:		-0.074	172:		-0.132	223:			274:	12 -0.018	320:	13 -0.032
20:	71:		122:		0.016	173:	3	0.057	224:	-	0.023	275:	7 0.143 13 -0.028	326:	13 -0.150
21:	72		123: 124:	7	0.138	175:			225:		-0.023	276: 2 77:	12 -0.015	327: 328:	15 0.028
22:	73: 74:		124:	0	0.040	176:	Ω	0.056	227:		0.030	278:	10 0.036	329:	
24:	75		126:			177:		-0.011	228:		0.008	279:	10 0.030	330:	12 6.118
25:	76		127:	10	-0.003	178:	10	0.017	229:		-0.011	280:		331:	11 -6.073
26:	77		128:		0.043	179:	6	0.030	230:	10	0.011	281:	10 0.038	332:	13 0.042
27:	75		129:		-0.076	180:	5		231:			202:	3 0.030	333:	10 -0.063
28:	79		130:		0.135	181:			232:	8	-0.143	283:	16 -0.026	334:	8 -0.057
29:	Съ		131:		-0.027	182:			233:		-0.065	284:	10 0.648	330:	
30:	81		132:			183:			234:	13	-0.053	205:	11 -0.041	330:	
31:	8.2		133:			184:			235:	10	-0.041	286:		337:	13 -0.064
32:	83		134:	37	-0.038	185:			236:	9	-0.072	287:		338:	8 6.011
33:	84		135:	11	-0.019	186:			237:			288:	10 0.077	339:	10 -0.084
34:	85		130:		0.082	187:			238:			289:	7 0.023	340:	9 -6.065
35:	85		137:		0.049	188:			239:		-0.027	290:	12 0.024	341:	8 -6.007
36:	3.7		138:	5	-0.007	189:			240:		-0.002	291:	7 0.016	342:	
37:	83		139:			190:			241:	1000000	-0.052	242:	10 -0.032	343:	V 8 VIII
38:	6.5		140:	1 1	0.026	191:			242:		0.014	293:		344:	8 0.013
39:	90		141:		0.026	192:			243:	14	-0.028	294:	10 -0 067	345: 346:	4 -0.072 14 -0.086
40: 41:	91 92		142:	12		194:			245:			295: 296:	10 -0.047 7 0.126	347:	13 -6.128
42:	93		144:		0.025	195:			245.	1.2	-0.081	297:	15 -0.011	348:	13 -0.012
43:	94		145:		-0.042	196:			247:		-0.049	298:	10 -0.042	349:	13 0.012
44:	95		146:		0.0.2	197:			248:	,	0.017	299:	15 -0.094	350:	
40:	95		147:			198:			249:	12	0.029	300:		351:	12 0.315
46:	97		148:	11	-0.054	199:			250:		-0.031	301:		352:	17 -6.037
47:	93		149:	10	-0.084	200:			251:			302:	14 -0.007	353:	14 -0.069
48:	99	10 -0.027	150:	14	0.034	201:			252:			303:	10 -0.018	354:	13 -0.138
49:	100	2 0.203	151:			202:			253:	13	-0.011	304:	17 -0.055	355:	8 -0.148
50:	101	8 0.079	152:	6	0.012	203:			254:	11	-0.042	365:	11 -0.026	356:	
51:	102		153:			204:			255:		-0.076	306:	13 -0.030	357:	
52:	103		154:			205:			256:		-0.012	307:		358:	
53:	104		155:		0.016	206:			257:	10	-0.022	308:		359:	
54:	100		156:		-0.040	207:			258:			309:	12 -0.010	300:	
55:	105		157:		0.036	208:			259:			310:	11 0.084	361:	
50:	107		158:		-0.024	209:			260:		-0.058	311:	13 -0.033	302:	
57:	108	8 0.084	159:	7	-0.009	210:			261:	8	-0.012	312:	10 0.025	363:	

TABLE D-1. THE 24-hour average CONCENTRATION OF sulphur dioxide IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	٧L	DMM	YAC	٧L	MAU	DAY	٧L	OMM	DAY	۷L	OMM	DAY	٧L	DMM	DAY	٧L	CMM	DAY	٧L	OMM
7:	148	114	58:	3.8	40	109:	15	20	160:	76	20	211:	13	0	262:	81	9	313:	84	71
8:	79	143	59:	53	82	110:	14	63	161:	36	2.0	212:	13	O	263:	110	13	314:	34	76 30
9:	116	77	60:	81	260	111:	28	47	162:	41		213:	49		204:	79	5	315:	34	26
10:	169	114	61:	60	175	112:	36	39	163:	15	44	214:	51	3	265:	88	19	316:	41	4 t
11:	152	100	62:	58	24	113:	28	32	164:	3 3	91	215:	95	62	266:	47	19	317:	52	40
12:	150	Н3	63:	43	90	114:	31	23	165:	26	47	216:	101	22	267:	55	21	318:	63	
13:	180	76	64:	121	178	115:	21	13	166:	44	74	217:	228	4	268:	33	21	319:	69	
14:	166	65	65:	50	89	116:	143	92	167:	4	6	218:	189	11	269:	165	43	320:	30	
15:	148	34	65:	60		117:	79	81	168:	49	56	219:	95	19	270:	58	14	321:	48	
16:	203	83	67:	56	107	118:	48	25	169:	10	22	220:	63	21	271:	118	33	322:	198	
17:	112	44	68:	43	31	119:	34	30	170:	50	14	221:	173	22	272:	128	23	323:	1,0	
18:	72	29	69:	101	59	120:	57	42	171:	30	24	222:	44	48	273:	23	13	324:		
19:	156	63	70:	61	43	121:	66	41	172:	27	21	223:			274:	18	7	325:		
20:	174	68	71:	42	27	122:	52	32	173:			224:			275:	41	13	326:		
21:	125	3.5	72:	78	24	123:	46	15	174:			225:	34		276:	20		327:		
22:	122	92	73:	118	38	124:	53	50	175:			226:	89	3	277:	164	20	328:		
23:	193	84	74:	98	75	125:	58	43	176:			227:	105	5	278:	155	24	329:		
24:	145	77	79:	160	110	126:	121	18	177:			228:	121	2	279:	107	12	330:		
25:	180	94	76:	111	43	127:	43	54	178:			229:	78	56	280:	116	27	331:		
26:	133	110	77:	35	62	128:	35	56	179:		9	230:			281:	62	27	332:		
27:	37	67	78:	64	10	129:	41	70	180:		32	231:	23		282:	74	32	333:		
28:	78	60	79:	89	137	130:	35	30	181:		31	232:	44	11	283:	100	35	334:		
29:	101	75	80:	248	144	131:	31	30	182:		8	233:	14		284:	27	20	335:		
30:	122	126	81:	279	142	132:	49	63	183:		16	234:	16		285:	96	52	336:		
31:	153	165	82:	327	152	133:	3	74	184:		34	235:	32		286:	85	43	337:		
32:	153	250	33:	166	118	134:	73	31	185:		9	236:	22		287:	88	42	338:		
33:	564	245	84:	138	55	135:	36	21	186:		10	237:	14		288:	43	48	339:		
34:	483	116	85:	153	100	136:	32	35	187:			238:	9		289:	87	27	340:		
35:	484	81	85:	208	73	137:	63	54	188:		13	239:	75		290:	51	32	341:		
36:	103	99	87:	193	145	138:	71	29	189:		10	240:	35		291:	56	29	342:		
37: 38:	58 120	4 8 9 5	88:	51	47	139:	63	28	190:		10	241:	106		292:	44	26	343:		
	91	80	89:	115	89	140:	63	24	191:		45	242:	77	41	293:	41	26	344:		
39:	158	79	90:	164	94	141:	77	72	192:		28	243:	43	40	294:	18	14	345:		
40:	185	105	91:	105	57	142:	56	31	193:	2.5	6	244:	77	27	295:	111	48	346:		
42:	171	115	93:	113	33 45	143: 144:		24	194:	35	23	245:	83	23	296:	24	15	347:		
43:	68	128	94:	200	98	145:	4.2 8.8	24 70	195:	39	8	246:	92	26	297:	148	64	348:		
44:	131	70	95:	81	79	146:	46	17	196:		1.0	247:	173	77	298:	133	91	349:		
45:	141	43	96:	81	76	147:	39	3	197:		14	248:	140	8.8	299:	187	92	350:		
46:	122	71	97:	41	47	148:	54	26	198:	12	20	249:	103	93	300:	130	55	351:		
47:	132	69	98:	89	75	149:	85	38	199:	43 69	16 23	250:	83	2	301:	122	89	352:		
48:	122	76	99:	11	56	150:	71	26	201:	61		251:	21		302:	72	46	353:		
49:	55	83	100:	99	34	151:	60	43	202:	47	36 23	252:	7		303:	60	50	354:		
50:	141	69	101:	56	48	152:	27	22	203:	85	17	253:	8		304:	101	24	3 > 5 :		
51:	151	178	102:	46	49	153:	21	13	204:	44	19	254: 255:	23		305:	131	64	356:		
52:	61	76	103:	73	65	154:	78	35	205:	46	24		39	8	306:	221	103	357:		
53:	67	72	104:	111	108	155:	35	41	206:	46	20	256: 257:	30	n.	307:	148	52	358:		
54:	38	127	105:	61	57	156:	19	17	207:	6	4	258:	44	9	308:	99	38	359:		
55:	71	89	106:	26	27	157:	23	1 /	208:	6	5	258:	94 140	9	309:	93	39	360:		
56:	108	76	107:	49	57	158:	18		209:	5	0	260:	75	15 29	310:	35	24	361:		
57:	116		108:	31	27	159:	16		210:	,	1	261:	13	7	311:	126	32	362:		
5.0			1001	31	- 1	177.	10		210.		1	201.	13	,	312:	126	53	363:		

TABLE D-2. THE 24-hour average CONCENTRATION OF standard smoke IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	٧L	OMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	۷L	DMM	DAY	٧L	OMM	DAY	٧L	OKM	DAY	٧L	UMF
7:	12	9	58:	19	45	109:	4	2	160:	9	12	211:	9	5	262:	11	12	313:	11	10
8:	21	5	59:	13	38	110:	5	6	161:	5	5	212:	15		263:	21	24	314:	3	10
9:	24	4	60:	17	19	111:	5	6	162:	4	5	213:	37	24	264:	14	15	315:		4
10:	42	20	61:	13	15	112:	14	16	163:		19	214:	31	24	265:	7	6	316:	2	13
11:	38	54	62:	9	11	113:	14	14	164:		7	215:	11	19	266:	10	9	317:	5	4
12:	44	36	63:	7	38	114:	19	16	165:		5	216:	6	4	267:	23	17	318:	11	4
13:	68	52	64:	7	21	115:	14	9	166:		22	217:	6	4	268:	11	21	319:	11	10
14:	31	28	65:	5	12	116:	26	25	167:		В	218:	10	5	269:	22	49	320:	5	4
15:	18	19	60:	5		117:	32	31	168:		13	219:	4	8	270:	11	12	321:	9	5
16:	30	47	67:	15	18	118:	28	20	169:	7	7	220:	4	6	271:	7	10	322:	23	20
17:	47	34	63:	9	8	119:	13	14	170:	17	17	221:	11	19	272:	4	4	323:		12
18:	3.8	29	69:	11	20	120:	25	20	171:	17	18	222:	14	20	273:	3	2	324:		
19:	77	64	70:	Z	6	121:	14	9	172:	16	11	223:	13	12	274:	13	ь	325:		
20:	55	52	71:	7	5	122:	18	11	173:		6	224:	4	6	275:	16	13	326:		
21:	7	7	72:	17	17	123:	25	16	174:		4	225:	19	14	276:	16		327:		
22:	20	22	73:	30	27	124:	17	15	175:		4	226:	33	24	277:	67	39	320:		
23:	29	35	74:	18	15	125:	19	8	176:		9	227:	38	22	278:	97	65	329:		
24:	38	38	75:	26	21	120:	2	2	177:		24	228:	50	36	279:	75	50	330:		
25:	47	53	76:	23	22	127:	5	7	178:		15	229:	56	64	260:	21	21	331:		
26:	30	35	77:	7	6	128:	6	8	179:		11	230:	10	10	261:	20	25	332:		
27:	7	5	78:	8	5	129:	7	9	180:		8	231:	17	13	202:	7	11	333:		
20:	5	10	79:	15	25	130:	3	5	181:		8	232:	16	21	283:	7	9	334:		
29:	24	19	80:	31	51	131:	7	5	182:		11	233:	8	4	284:	13	9	335:		
30:	20	30	81:	53	63	132:	5	7	183:		20	234:	9	5	285:	27	22	330:		
31:	26	27	82:	66	76	133:	3	4	184:		11	235:	27	18	286:	22	20	337:		
32:	46	71	83:	36	45	134:	23	7	185:		12	236:	20	15	287:	31	28	338:		
33:	59	89	84:	7	70	135:	13	6	186:		16	237:	8	5	288:	31	39	339:		
34:	24	27	85:	16	18	136:	8	5	187:			238:	9	2	209:	34	26	340:		
35:	22	20	86:	45	32	137:	16	10	188:		16	239:	44	19	290:	7	11	341:		
36:	39	46	87:	29	29	138:	31	17	189:		3	240:	27	22	291:	5	6	342:		
37:	31	23	88:	10	8	139:	27	22	190:		5	241:	23	20	292:	9	10	343:		
38:	38	13	89:	26	26	140:	11	5	191:		18	242:	7	14	293:	7	4	344:		
39:	23	15	90:	12	10	141:	24	22	192:		15	243:	8	7	294:	2	1	345:		
40:	17	16	91:	4	4	142:	9	11	193:		3	244:	4	7	295:	13	31	346:		
41:	22	10	92:	5	5	143:		10	194:	9	8	245:	4	4	296:	8	5	347:		
42:	20	19	93:	4	4	144:	12	6	195:	18	14	246:	5	9	247:	28	59	340:		
43:	10	14	94:	15	21	145:	25	22	196:		10	247:	39	40	298:	32	61	349:		
44:	8	10	.95:	6	7	146:	22	14	197:		8	248:	53	34	299:	68	61	3:0:		
45:	11	17	90:	6	7	147:	9	5	198:		10	249:	30	27	300:	55	47	351:		
46:	5	23	97:	5	3	148:	16	14	199:	8	4	250:	44	51	301:	49	47	352:		
47:	14	21	98:	6	4	149:	6	12	200:	6	11	251:	27	19	302:	22	26	353:		
48:	14	16	99:	6	6	150:	8	14	201:	5	8	252:	10	9	303:	27	21	354:		
49:	17	14	100:	5	4	151:	5	8	202:	3	3	253:	5	5	304:	32	15	355:		
50:	35	7	101:	В	5	152:	7	8	203:	4	3	254:	11	8	305:	50	42	356:		
21:	34	12	102:	5	3	153:	4	3	204:	5	5	255:	25	16	306:	75	70	357:		
52:	16	5	103:	12	7	154:	4	5	205:	8	4	256:	13	6	307:	73	53	350:		
53:	13	5	104:	14	29	155:	7	10	206:	8	5	257:	26	20	308:	27	22	359:		
54:	5	7	105:	В	6	156:	9	4	207:	2	2	258:	28	10	309:	10	10	300:		
55:	6	36	106:	9	4	157:	9	5	208:	3	2	259:	13	14	310:	10	8	361:		
50:	13	11	107:	5	3	158:	10	5	209:	3	2	260:	24	30	311:	18	13	302:		
57:	39		108:	4	4	159:	8	4	210:		4	261:	10	19	312:	1.8	13	303:		

TABLE D-3. THE daily average CONCENTRATION OF nitrogen monoxide IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/ 3).

DAY	٧L	OMM	DAY	٧L	MMU	DAY	۷L	OMM	DAY	٧L	OMM	DAY	V L	UMM	DAY	٧L	DMM	DAY	VL	UMM
S.,			58:	60		109:	4	7	160:	8	15	211:		4	262:	43	9	313:	В	6
7:			59:	19		110:	8	11	161:	8	11	212:		7	263:	34	20	314:	4	7
8:			60:	15		111:	6	11	162:	13	11	213:		12	264:	31	13	315:	3	4
9:			61:	14	30	112:	13	13	163:	13	23	214:		9	265:	16	10	316:	4	16
10:			62:	12	10	113:	11	12	164:	13	10	215:		18	266:	23	14	317:	2	2
11:			63:	11	7	114:	10	12	165:	79	10	216:		5	267:	76	17	318:	3	7
12:			64:	17	9	115:	10	14	166:	34	29	217:		7	268:	59	48	319:	4	6
13:			65:	13	,	116:	25	20	167:	25	15	218:		6	269:	49	61	320:	1	3
14: 15:		11	55:	11		117:	17	21	168:	25	16	219:		9	270:	25	13	321:	2	4
16:	64	39	67:	18	0	118:	16	14	169:	21	13	220:		6	271:	21	7	322:	7	20
17:	57	30	68:	31	6	119:	18	7	170:	38	17	221:		15	272:	14	6	323:	72	ь
18:	30	18	69:	63	12	120:	18	9	171:	28	25	222:		21	273:	20	5	324:	102	22
19:	53	22	70:	17	21	121:	24	10	172:	25	13	223:		8	274:		14	325:	162	198
20:	48	30	71:	15	8	122:	18	10	173:	20	8	224:		7	275:	36	17	326:	163	172
21:	24	6	72:	15	13	123:	19	13	174:	15	5	225:		9	276:	26	11	327:	56	52
22:	26	19	73:	23	15	124:	16	16	175:	30	5	226:		11	277:	101	17	328:	Q	14
23:	43	30	74:	14	18	125:	19	15	176:	40	12	227:		12	278:	249		329:	3	2
24:	62	28	75:	66	25	126:	4	5	177:	40	16	228:		14	279:	174		330:	12	3
25:	26	28	75:	15	12	127:	6	1	178:	30	10	229:		22	280:	29		331:	7	4
26:	35	33	77:	6	5	128:	4	9	179:	8	8	230:		7	281:	35		332:	33	31
27:	14		78:	14	7	129:	6	10	180:	15	5	231:		7	282:	21	5	333:	64	20
28:			79:	16	25	130:	4	15	181:	15	8	232:		10	283:	21	8	334:	42	23
29:			80:		48	131:	5	17	182:		8	233:		6	264:	36	14	335:	61	43
30:			81:		47	132:	6	12	183:		12	234:	18	6	285:	69	36	336:	57 37	55
31:			82:	44	45	133:	4	3	184:		7	235:	27	8	206:	64	25	337: 338:	23	10
32:			83:	20	20	134:	7	1	185:		6	236:	30	7	287:	65	29	339:	39	16
33:	62		84:	9	12	135:		13	186:		7	237:	23	6	288:	72	39	340:	19	8
34:	38		85:	29	19	136:	7	10	187:		9	238:	20	5	289:	64 20	30 16	341:	31	21
35:	42		86:	76	29	137:	11	12	188:		6	239:	48	12	290:	17	9	342:	16	6
36:	34		87:	65	24	138:	23	16	189:		3	240:	37	9 E	291:	23	7	343:	32	14
37:	22		88:	20	9	139:	17	15	190:		5	241:		12	293:	20	15	344:	53	40
38:	15		89:	55	27	140:	20	12	191:		9	242:	60	5	294:	20	3	345:	46	46
39:	11		90:	9	7	141:	30	24	192:		9	243:	14	5	295:	34	40	346:	29	31
40:	15		91:	4	4	142:	30	16	193:		4	244: 245:	11	5	296:	17	2	347:	12	5
41:	10		92:	5	5	143:	23	14	194:		6	246:	19	14	297:	126	73	348:	6	3
42:	10		93:	7	6	144:	15	8	195: 196:		7	247:	61	28	298:	65	86	349:	10	6
43:	8		94:	10		145:	30	16	197:		9	248:	79	17	299:	143	86	350:	8	4
44:	14		95:	10		146:	28 15	13	198:		7	249:	22	13	300:	71	40	351:	11	4
45:	17		95:	9		147:	15	15	199:		5	250:	75	23	301:	38	34	352:	32	25
46:	45		97:	6	10	148:		16	200:		6	251:	50	12	302:	97	10	353:	58	40
47:	51	13	98:	9		149:		14	201:		8	252:	16	5	303:	54		354:	64	49
48:		15	99:	20		150:		14	202:		4	253:	10	4	304:	61		355:	110	81
49:		3	100:	12		151:		10	203:		4	254:		8	305:	53	53	356:	26	20
50:		12	101:	6		152:		6	204:		5	255:		15	306:	82	106	357:	39	50
51:		40	102:	7		153: 154:		9	205:		4	256:	87	7	307:	79	59	358:	67	50
52:	22	12	103:	16		155:		10	206:		4	257:	45	13	308:	46	25	359:	43	45
53:	15	6	104:	40		156:	8	9	207:		2	258:	38	9	309:	12	9	360:	24	70
54:	8		105:	6		157:	8		208:		1	259:	26		310:	10	4	361:	58	4 C
55:	8		105:	9		158:	8		209:		3	260:	45		311:	13	7	362:	47	40
56:	36		107:	4		159:	8		210:		4	261:	27		312:	70	9	363:	27	30
57:	112		108:	4	O	177.						20000000								

TABLE D-4. THE daily maximum CONCENTRATION OF nitrogen monoxide IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/ M^3).

		DONIE	o ind in	MIC OI	11111	DITOMITON														
DAY	٧L	UMM	DAY	٧L	UMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	٧L	UMM	UAY	VL	OMM	DAY	V L	4Mu
7:			53:	284		109:	7	17	160:	10	42	211:		4	262:	118	18	313:	14	14
8:			59:	42		110:	28	28	161:	10	23	212:		12	263:	96	107	314:	4	1 t
9:			63:	30		111:	18	33	162:	20	72	213:		28	204:	76	45	315:	3	7
10:			61:	32	142	112:	29	38	163:	20	96	214:		17	265:	34	50	316:	15	37
11:			62:	25	19	113:	48	26	164:	20	23	215:		74	200:	52	37	317:	6	٤
12:			63:	13	9	114:	23	25	165:	168	22	216:		6	207:	245	74	318:	10	32
13:			64:	42	11	115:	30	26	166:	80	92	217:		14	268:	262	259	319:	19	16
14:			65:	24		116:	55	31	167:	68	28	218:		22	269:	101	140	320:	7	ь
15:		24	66:	37		117:	34	46	168:	40	24	219:		6	270:	58	40	321:	10	15
16:	104	82	67:	61	0	113:	59	37	169:	65	21	220:		30	271:	7 E	16	3 ∠ 2 :	17	91
17:	128	49	68:	98	52	119:	131	14	170:	110	39	221:		101	272:	27	13	3 < 3:	340	34
18:	57	37	69:	224	17	120:	65	9	171:	45	84	222:		119	273:	37	9	324:	378	129
19:	73	38	7):	105	40	121:	104	19	172:	45	21	223:		10	274:	77	40	325:	291	313
20:	75	46	71:	63	40	122:	48	25	173:	30	16	224:		11	275:	105	50	326:	230	455
21:	51	23	72:	44	67	123:	58	34	174:	20	7	225:		14	276:	51	19	327:	88	107
22:	40	47	73:	55	28	124:	41	34	175:	40	9	226:		21	277:	256	49	328:	25	64
23:	33	57	74:	43	29	125:	46	35	176:	60	47	227:		10	276:	896		329:	2	7
24:	97	77	75:	265	72	126:	6	24	177:	60	55	228:		22	279:	075		330:	27	t
25:	101	47	76:	53	38	127:	12	1	178:	40	14	229:		63	200:	73		331:	16	11 124
20:	56	45	77:	9	9	128:	7	22	179:	10	11	230:		9	281:	110	100	332: 333:	114	28
27:	20		78:	3 3	20	129:	11	26	180:	20	9	231:		13	282:	36	2.3	334:	170	83
28:			79:	23	116	130:	10	32	181:	20	15	232:		30	283:	40	23			202
29:			80:		125	131:	9	36	182:		11	233:	20	В	204:	153 121	78 89	335: 330:	226	91
30:			81:		147	132:	10	31	183:		21	234:	20	10	205:	157	35	337:	80	137
31:			82:	82	248	133:	6	15	184:		13	235:	60	11	286: 20 7:	99	48	338:	53	19
32:			83:	57	39	134:	22	1	185:		10	236:	70 50	9	201.	225	128	339:	42	33
33:	73		84:	13	30	135:		125	186:		14	237:		8	289:	131	48	340:	39	26
34:	48		85:	91	48	136:	13	23	187:		11	238:	63 153	30	290:	65	92	341:	86	66
35:	68		85:	160	53	137:	20	26	188:		12	240:	75	16	291:	38	41	342:	60	G
36:	58		87:	161	70	138:	70	30	189: 190:		6	241:	13	15	292:	30	10	343:	122	3.2
37:	34		88:	65	17	139:	28 104	25 19	191:		24	242:	66	41	293:	30	38	344:	87	. 87
38:	22		89:	327	143	140:	40	90	192:		23	243:	28	13	294:	30	5	345:	113	146
39:	18		90:	25	13	141:	40	28	193:		9	244:	18	4	295:	115	181	340:	44	54
40:	26		91:	7	7	143:	35	26	194:		9	245:	18	7	296:	84	9	347:	20	ь
41:	17		92:	19	30	144:	20	23	195:		10	246:	25	52	297:	610	327	348:	12	7
42:	14		93: 94:	36	37	145:	50	26	196:		14	247:	298	54	248:	104	182	344:	24	10
43:	12		95:	15	21	146:	45	26	197:		11	248:	323	31	249:	226	154	300:	10	4
44:	64		95:	12	26	147:	20	29	198:		12	249:	35	32	300:	145	65	351:	21	7
45:	112		97:	9	26	148:	20	25	199:		8	250:	170	78	301:	54	56	352:	71	02
46:	183	36	98:	40	21	149:		26	200:		11	251:	104	20	302:	358	15	323:	89	63
48:	103	73	99:	64	22	150:		23	201:		18	252:	47	10	303:	135		354:	209	119
49:		. 4	100:	48	23	151:		26	202:		7	253:		ъ	304:	120		355:	214	119
50:		33	101:	13	22	152:		20	203:		7	254:		31	305:	92	110	356:	72	74
51:		88	101:	16	24	153:		16	204:		14	255:		60	300:	126	201	357:	94	Q C
52:	48	28	103:	125	75	154:		21	205:		8	256:	142	12	307:	137	100	358:	140	00
53:	24	10	104:	131	104	155:		28	206:		10	257:	45	39	308:	81	88	359:	160	100
54:	12	10	105:	9	16	156:	10	18	207:		3	258:	82	15	309:	17	27	360:	44	126
55:	16		100:	19	24	157:	10		208:		3	259:	62	63	310:	18	11	301:	00	00
50:	148		107:	6	19	158:	10	24	209:		5	260:	109	104	311:	33	1 6	362:	86	60
57:			108:	9	12	159:	10		210:		7	261:	26	55	312:	206	17	363:	44	40
, , ,	301		100.			500.00 M	14000													

TABLE D-5. THE daily average CONCENTRATION OF nitrogen dioxide IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	٧L	UMM	DAY	٧L	JMM	DAY	VL	OMM	DAY	VL	OMM	DAY	٧L	UMM	UAY	٧L	CMM	DAY	VL	UMI
7:			৩ ব:	45	50	109:	13	12	160:	28	36	211:	34	16	262:	44	32			100
ಠ:			59:	37	53	110:	23	26	161:	21	24	212:	40	22	263:	54	35	313:	36	31
9:			60:	35		111:	27	37	162:	26	26	213:	73	40	203.	44	35	314:	31	3.1
10:			51:	20	39	112:	36	3.8	163:	42	51	214:	70	35	205:	31	26	315:	15	11
11:			62:	21	40	113:	35	36	164:	28	27	215:	40	51	206:	41	34	316:	33	30
12:		15	63:	22	48	114:	34	33	165:	38	24	216:	25	21	207:	63	43	317:	20	14
13:		15	54:	35	67	115:	28	27	166:	59	51	217:	25	23	268:	44	35	318:	37	27
14:			55:	27	36	116:	59	64	167:	43	25	218:	23	21	269:	57	66	319:	34	36
15:			60:	24	26	117:	51	52	168:	45	41	219:	23	20	270:	41	35	320: 321:	24	15
16:	26		67:	31	36	118:	55	42	169:	33	27	220:	23	24	271:	37	35	322:	35	26
17:	21		68:	39	33	119:	29		170:	50	36	221:	40	42	272:	34	28	323:	52 32	46
18:	18		69:	40	45	120:	46		171:	52	44	222:	20	48	273:	30	20	324:	45	43
14:	19		70:	20	21	121:	31		172:	40	42	223:	34	20	274:	49	20	325:	45	
20:	19		71:	33	24	122:	31		173:	27	27	224:	24	18	د75:	01		320:	100	
21:	19		72:	36	24	123:	42		174:	23	13	225:	46	27	276:	41		327:	62	
22:	20		73:	47	36	124:	49		175:	30	14	226:	50	36	277:	86		328:	20	
23:	26		74:	35	30	120:			176:	49	25	227:	87	39	278:	107	3 3	329:	11	40
24:	22		75:	52	45	126:			177:	81	47	228:	93	47	279:	92	28	330:	29	45
25:	23		75:	41	45	127:			178:	49	31	229:	94	90	200:	22		331:	24	05
26:	23	32	77:	17	15	128:			179:	34	31	230:	30	16	281:	52		332:	51	45
27:		10	78:	32	29	129:			180:	26	29	231:	43	20	202:	36	21	333:	64	20
28:		13	74:	45	53	130:			181:	40	37	232:	39	34	203:	38	24	334:	59	33
29:		18	80:	50	76	131:			182:	51	30	233:	28	15	284:	49	22	330:	74	6.5
30:		19	81:	78	63	132:			183:	67	37	234:	34	20	285:	74	32	330:	70	
31:		16	82:	100	101	133:			184:	35	34	235:	53	26	200:	65	29	337:	4.7	
32:		23	83:	58	76	134:			185:	56	20	236:	47	25	207:	53	24	338:	40	
33:		26	84:	28	45	135:		19	186:	42	24	237:	34	21	200:	58	32	339:	44	
34:		27	85:	44	58	130:		28	187:	40	33	238:	28	12	289:	53	22	340:	34	
35:		29	40:	60	56	137:		30	188:		20	239:	87	30	290:	37	20	341:	43	40
36:	2.	29	87:	44	€3	138:		47	189:		10	240:	67	3 シ	291:	36	21	3 4 2 :	21	20
37:	24	32	88:	32	34	139:		46	190:		20	241:	65	40	242:	38	20	343:		3 C
38: 39:	23	31	89:	30	50	140:		31	191:		36	242:	34	31	243:	55	20	344:	60	40
40:	18	31	90:	28	44	141:		48	192:		35	243:	26	25	294:	45	11	345:	54	44
41:	24 19		91:	15	30	142:		45	193:		13	244:	21	29	295:	63	3 t	340:	45	42
42:	20		92:	16	21	143:		36	194:		27	245:	20	22	246:	29	14	347:	25	17
43:	22		94:	10	19	144:		29	195:		36	246:	24	37	297:	78	47	340:	10	1.1
44:	22		95:	35 22	57	145:		60	196:		3 3	247:	62	69	298:	71	55	349:	22	2.1
45:			96:		45	146:		38	197:	2.2	28	248:	64	55	299:	100	53	3 × 0 :	19	10
46:			97:	19 14	31 15	147:		22	198:	33	31	249:	52	54	300:	47		351:	13	20
47:		43	95:	25	27	148:		43	199:	29	26	250:	84	62	301:	75		352:		3 1
48:		30	99:	36	30	150:		40	200:	27	31	251:	56	35	302:	61		3 > 3 :		
49:		18	100:	27	22	151:		34 41	201:	25 18	27	252:	34	17	303:	51		354:		
50:		45	101:	17	16	152:		25	203:	19		253:	41	16	304:	66	* **	355:		
51:		51	102:	19	20	153:		20	204:	28	30	254: 255:	50	30	305:	72	5.5	356:		40
52:	32	42	103:	45	35	154:		34	205:	33	19		61	30	306:	81	55	357:		30
53:	26	30	104:	83	59	155:		34	206:	28	19	256:	44	24	307:	89	52	358:		30
54:	14	33	105:	03	26	156:		20	207:	14	7	25 7: 258:	01	42	300:	01	45	359:		35
55:	18	40	100:		22	157:		24	208:	14	8	259:	83	43	309: 310:	37	47	300:		23
50:	38	43	107:	104	16	158:	24	17	209:	15	11	260:	70	40 52	310:	29	17 23	301:		40
57:	58	65	103:	38	12	159:	21	18	210:	18	21	261:	41	36	312:	38	32	302:		33
100 0 11				30	TC	1071	C 1	10	210.	10	C 1	501.	-4 T	30	216.	44	36	363:		33

TABLE D-6. THE daily maximum CONCENTRATION OF nitrogen dioxide IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	VL	UMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	٧L	UMM	DAY	VL	UMM	UAY	VL	UMM	
7:			53:	74	80	109:	20	18	160:	48	80	211:	54	44	262:	79	51	313:	52	44	
8:			59:	44	70	110:	47	61	161:	31	61	212:	90	58	263:	94	61	314:	40	43	
9:			6):	53		111:	61	66	162:	56	77	213:	126	58	264:	73	57	315:	30	23	
10:			61:	49	65	112:	59	74	163:	72	94	214:	120	88	265:	03	57	316:	59	23	
11:			52:	38	57	113:	80	72	164:	72	79	215:	100	128	260:	76	52	317:	44	26	
12:		20	63:	35	66	114:	66	71	165:	85	72	216:	37	43	207:	84	60	318:	70	06	
13:		20	54:	44	91	115:	56	42	166:	111	150	217:	45	38	268:	89	75	319:	81	5.2	
14:			65:	40	67	115:	119	130	167:	67	63	218:	3 3	43	269:	137	44	320:	44	36	
15:			60:	54	72	117:	95	113	168:	85	95	219:	29	56	270:	73	69	321:	77	58	
16:	31		67:	42	71	118:	68	63	169:	74	50	220:	55	79	271:	83	61	322:	93	75	
17:	35		6B:	61	58	119:	64		170:	76	51	221:	92	88	272:	42	54	3 < 3:	57	24	
18:	22		54:	77	63	120:	76		171:	93	76	222:	80	105	273:	20	34	324:	89		
19:	23		70:	68	60	121:	56		172:	52	76	223:	59	33	274:	85		325:	135		
20:	25		71:	57	40	122:	58		173:	42	55	224:	52	44	275:	80		320:	135		
21:	25		72:	71	54	123:	76		174:	43	21	225:	87	56	276:	60		327:	80		
22:	29		73:	75	51	124:	118		175:	69	44	226:	100	55	277:	123		320:	04		
23:	31		74:	54	54	125:			176:	89	56	227:	114	60	278:	208	50	329:	10	70	
24:	30		79:	79	77	126:			177:	135	98	228:	178	99	279:	131	53	330:	49	o C	
25:	28		75:	80	73	127:			178:	80	58	229:	180	227	280:	97		331:	47	100	
26:	27	47	77:	41	35	128:			179:	78	53	230:	55	24	2 t 1:	78		332:	87	8 C	
27:		18	78:	70	73	129:			180:	48	47	231:	7 B	67	282:	46	29	333:	84	4 C	
28:		31	74:	74	63	130:			181:	81	70	232:	68	44	283:	52	38	334:	90	00	
29:		26	30:	94	103	131:			182:	161	63	233:	28	30	284:	84	40	335:	100		
30:		26	81:	244	121	132:			183:	149	80	234:	55	36	٤٥٥:	110	53	336:	93		
31:		24	82:	163	151	133:			184:	60	68	235:	80	41	200:	80	38	337:	59		
32:		64	83:	137	130	134:			185:	142	58	236:	70	40	207:	70	30	338:	01		
33:		55	84:	63	83	135:		37	186:	66	38	237:	73	43	288:	85	48	339:	05		
34:		32	85:	83	64	136:		49	187:	69	60	238:	73	28	289:	65	34	340:	65		
35:		33	85:	77	77	137:		43	188:		55	239:	165	64	290:	31	47	341:	75	21	
36:		32	87:	62	166	130:		65	189:		25	240:	93	65	291:	64	43	342:	26	35	
37:	30	35	44:	54	62	139:		61	190:		33	241:	108	76	292:	44	37	343:	-	46	
38:	33	35	89:	71	119	140:		74	191:		55	242:	49	61	293:	60	42	344:	79	57	
39:	25	35	90:	50	68	141:		99	192:		64	243:	44	58	294:	70	28	345:	60	62	
40:	45		91:	29	47	142:		60	193:		37	244:	32	50	295:	105	59	346:	56	50	
41:	31		92:	35	32	143:		49	194:		59	245:	29	41	290:	61	30	347:	43	32	
42:	32		93:	53	68	144:		69	195:		54	246:	30	53	297:	179	73	348:	32	24	
43:	26		94:	50	73	145:		82	196:		58	247:	108	168	298: 299:	36 150	68 72	349: 350:	57	49 26	
44:			95:	34	79	146:		65	197:		54	248:					12	350:	19	26	
45:			95:	31	78	147:		45	198:	64	62	249:	103	86	300:	125 98		352:	19	47	
46:			97:	27	27	148:		58	199:	51	52	250:	184	137		92		352:		47	
47:		68	98:	44	50	149:		61	200:	41	43	251:	98	68	302:	78		354:			
48:		72	99:	63	54	150:		63	201:	85	32	252: 253:	56	35	303: 304:	74		325:			
49:		36	100:	56	51	151:		63	202:	40		254:	31 91	44 54	305:	103	60	356:		o (
50:		62	101:	31	33	152:		45	203:	35 67	42	255:	132	63	306:	122	72	357:		50	
51:		58	102:	43	57	153:		43		98	54	256:	82	48	307:	113	59	320:		40	
52:	37	50	103:	92	70 76	154: 155:		68	205:	86	66	257:	93	71	308:	85	60	329:		20	
53:	34	40 50	104:	111	60	155:		41	200:	21	9	258:	180	82	309:	53	64	360:		30	
54:	22		105:		58	157:		45	208:	23	16	259:	114	62	310:	41	31	301:		06	
55:	38	60	137:	218	34	157:	31	25	209:	23	40	260:	121	73	311:	62	37	362:		35	
50:			107:	90	16	159:	58	39	210:	38	36	261:	113	5 b	312:	67	50	363:		35	
57:	111	110	109:	40	10	159:	28	34	210:	30	30	201.	113	20	216.	01	20	505.		33	

TABLE D-7. THE daily average CONCENTRATION OF ozone IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	٧L	UMM	DAY	٧L	MMD	DAY	V L	OMM	DAY	٧L	OMM	DAY	VL	иMu	UAY	٧L	UMM	UAY	VL	140
7:			58:			109:	49	65	160:	59	48	211:			202:	31	25	313:	54	
o:			59:			110:	37	56	161:	33	68	212:			203:	37		314:	30	
9:			60:			111:	32	47	162:	44	41	213:			264:	39		315:	45	
10:			61:			112:	29	42	163:	65	52	214:			265:	41		316:		
11:			6?:			113:	24	45	164:	55	62	215:			200:	34		317:	40	
12:			53:		33	114:	53	44	165:	35	59	216:			267:	21		310:	45	
13:			64:	20	27	115:	40	52	166:		50	217:			268:	48		319:		
14:			65:	25	35	116:	45	57	167:		39	218:			209:	42		320:	50	
15:			65:	25	45	117:	55	69	168:	117	66	219:			270:	37		3 - 1:		
16:			67:	20	43	118:	40	36	169:	43	69	220:			271:			3 2 2 :		
17:			58:	30	45	119:	55	52	170:	103	68	221:			272:			323:		
18:			69:	20	40	120:	30		171:	100	50	222:			273:			324:		
19:			70:	30	30	121:	35	35	172:	90	53	223:			۷74:			325:		
20:			71:	25	35	122:	35	30	173:	117	69	224:			275:			326:		27
21:			72:	20		123:	38	21	174:	90	88	225:			276:			367:		20
22:			73:	25	45	124:	13	37	175:	85	75	226:			277:			328:		26
23:			74:	20	35	125:	14	40	176:	80	78	227:			278:			329:		26 45
24:			75:	20	48	126:	14	73	177:	127	112	228:			279:			330:		55
25:			76:	22	35	127:	22	57	178:	110	88	229:						332:		36
26:			77:	32	55	128:	42	52	179:	85	82	230:			201: 202:			333:		25
27:	2		78:	15	45	129:	34	54	180:	88	59	231: 232:	90	20	283:			334:		36
28:	3		79:	12	40	130:	52	72	181:	85	89	233:	53	20	204:			337:		25
29:	8		30:	10	33	131:	53	58	182: 183:			234:	70	20	200:			336:		20
30:	5		81:	25	65	132: 133:	46 52	66 68	184:			235:	80	20	286:			337:		26
31:	5		82:	51	95 75	134:	34	47	185:			236:	93	20	287:			330:		
32:	7		83: 84:	25	40	135:	34	38	186:			237:	53	20	288:			339:		
33:	15 14		85:	27	40	136:	33	44	187:			238:	25	20	289:			340:		
34:	13		86:	19	25	137:	59	72	188:			239:	110	25	290:			341:		
35: 36:	1.3		87:	31	50	138:	25	52	189:			240:	55	20	291:			342:		
37:	16		88:	26	40	139:	_ ,	51	190:			241:	70		292:	40		343:		
38:	13		89:	38	60	140:		61	191:			242:	50	25	293:	43		344:		20
39:	21		90:	45	60	141:	55	38	192:			243:	55	20	294:	40		345:		26
40:	28		91:	43	49	142:	55	40	193:			244:	51	20	245:	37		346:		25
41:	2.0		92:	40	55	143:	58	53	194:			245:	44	43	296:	43		347:		05
42:			93:	55	60	144:	60	77	195:			246:	36	30	247:	60		348:		ンち
43:			94:	39	33	145:		80	196:			247:	07	25	246:	25		344:		ンち
44:			99:	32	36	146:	60	45	197:			248:	128	53	244:	35		350:		20
45:			95:	44	53	147:	55	65	198:			249:	00	35	360:	38		351:		20
46:			97:	50	65	148:	45	59	199:			250:	72	20	301:	48		322:		2.0
47:	10		98:	30	48	149:	45	39	200:			251:	23	28	302:	38		3 > 3:		26
48:	21		99:	27	45	150:	45	33	201:			252:	49	35	303:	28		354:		26
49:	19		100:	36	57	151:		23	202:			253:	43	20	304:	23		355:		30
50:	20		101:	39	54	152:	33	44	203:			254:	29	80	305:	29		320:		23 30
51:	17		102:	41	55	153:	63	72	204:			255:	30	40	306:	24		357:		36
52:	13		103:	30	44	154:	44	56	205:			256:	39	40	307:	31		358: 359:	20	20
53:	16		104:	25	33	155:		66	206:			257:	45	25	308:	31 35		300:	20	26
54:			105:	35	51	156:	20	67	207:			258:	49	25 25	309: 310:	47		361:	33	20
55:			100:	30		157:	60	53	208:			259:	49	38	311:	36		362:	20	
56:			107:	42		158:	47	72	209:			261:	40	20	312:	30		303:	30	
57:			103:	44	64	159:	43	47	210:			201.	40	20	312.	30		202		

TABLE D-8. THE daily maximum CONCENTRATION OF ozone IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/ m^3).

			G THE YEA			IIGATION (0.44	0.4	77.1	A M KI	11.4.4	٧L	UMM	DAY	6.0	GMM
DAY	٧L	UMM	DAY	VL	UMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	V L	MM	VAY	V L	U F FI	UAI	VL	Unit
7:			53:			109:	65	73	150:	153	117	211:			262:	51	35	313:	5 U	
8:			59:			110:	56	88	161:	75	192	212:			263:	84		314:	45	
9:			57:			111:	61	72	162:	72	82	213:			264:	71		310:	00	
1):			:10			112:	55	92	163:	105	124	214:			265:	04		310:		
11:			62:			113:	68	78	164:	75	125	215:			266:	70		:71د	05	
12:			53:		33	114:	75	90	165:	45	92	216:			267:	57		310:	65	
13:			24:	25	93	115:	65	87	166:		139	217:			200:	0.2		319:	70.00	
14:			55:	35	44	115:	65	105	167:		72	218:			269:	32		320:	75	
15:			60:	35	59	117:	85	117	168:	200	144	219:			270:	69		3 2 1:		
15:			67:	25	65	113:	55	80	169:	75	149	220:			271:			3 2 2 :		
17:			53:	45	25	119:	85	95	170:	230	1 9 3	221:			272:			323:		
18:			59:	25	05	120:	45		171:	165	107	222:			273:			324.		
19:			73:	45	45	121:	55	51	172:	145	124	223:			c74:			325:		
20:			71:	35	55	122:	55	55	173:	200	94	224:			275: 276:			327:		25
21:			72:	25		123:	50	41	174:	135	110	225:			277:			320:		25
22:			73:	35	65	124:	16	101	175:	135	128	226:			278:			324:		25
23:			74:	33	55	125:	18	86	176:	145	144	227:			279:			330:		55
24:			75:	30	70	126:	17	92	177:	325	184	228:			280:			331:	*	75
25:			75:	37	45	127:	60	91	178:	185	191	229:			201:			332:		45
26:			77:	40	75	128:	67	116	179:	125	103	230:			202:			333:		35
27:	5		73:	43	75	124:	60	109	180:	115	110	231: 232:	135	25	202:			334:		45
28:	6		7 → :	21	65	130:	82	129	181:	155	160	233:	85	25	284:			335:		35
29:	18		8 D :	22	50	131:	75	104	182: 183:			234:	125	25	285:			330:		25
30:	7		31:	47	115	132:	75	132				235:	145	25	200:			3 3 7 :		25
31:	4		82:	121	165	133:	76	106	184: 185:			236:	160	25	287:			338:		
32:	12		33:	72	135	134:	62	76 81	186:			237:	100	25	288:			339:		
33:	25		84:	34	65	135:	69 48	81	187:			238:	95	25	289:			340:		
34:	21		35:	49	55	136:	95	106	188:			239:	195	35	290:			341:		
30:	28		46:	3.2	35	137:	35	115	189:			240:	95	25	291:			342:		
36:	15		87:	70	75	139:	37	79	190:			241:	120	-	292:	05		343:		
37:	20		84:	47	65	140:		114	191:			242:	02	35	243:	70		344:		25
38:	22		89:	77	95	141:	85	77	192:			243:	95	25	244:	65		345:		25
39:	36		90:	62	45	141:	85	95	193:			244:	95	25	245:	60		346:		35
40:	36		91:	55	60 79	143:	90	77	194:			245:	73	65	290:	00		347:		45
41:			92:	61	77	144:	95	123	195:			246:	21	45	297:	95		348:		06
42:			94:	64 68	56	145:	,,	228	196:			247:	246	35	298:	35		349:		05
43:			95:	46	44	140:	105	98	197:			248:	343	90	299:	55		320:		20
44:			95:	71	63	147:	95	126	198:			249:	158	50	300:	50		351:		05
45:			97:	06	84	148:	75	113	199:			250:	159	25	301:	75		3:2:		25
45: 47:	34		98:	55	67	149:	65	90	200:			251:	181	40	302:	60		3>3:		25
48:	08		99:	25	72	150:	65	71	201:			252:	100	55	303:	40		324:		25
49:	25		100:	57	61	151:		51	202:			253:	77	25	304:	30		350:		45
50:	35		101:	51	72	152:	49	67	203:			254:	70	140	300:	46		350:		3 C
51:	23		102:	60	66	153:	84	98	204:			255:	86	55	306:	40		357:		45
52:	16		103:	49	72	154:	49	94	205:			256:	64	65	307:	97		358;		45
52:	56		103:	52	62	155:		120	206:			257:	137	35	308:	70		359:	35	25
54:	20		100:	51	71	156:	74	86	207:			258:	114	35	309:	57		300:	35	25
55:			100:	40	54	157:	102	88	208:			259:	おり	35	310:	00		301:	40	
56:			107:	53	76	158:	88	101	209:			260:	141	50	311:	54		362:	25	
57:			10%:	56	73	159:	74	82	210:			261:	04	25	312:	45		363:	45	
51.			107.	20		877.085														

TABLE D-9. THE 24-hour average CONCENTRATION OF aldehydes IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	٧L	UMM	DAY	VL	MML	DAY	٧L	DMM	DAY	VL	OMM	DAY	٧L	UMM	DAY	٧L	UMM	DAY	VL	UMM
7:			58:	44	83	109:	35	60	160:	59	64	211:			262:	3	88	313:	26	26
8:			59:	27	68	110:	25	40	161:	48	42	212:			263:		138	314:	26	26
9:			63:	49	65	111:	24	59	162:	37	46	213:			264:		91	3.5:	26	14
10:			61:	22	46	112:	31		163:	60	226	214:			265:		90	310:	30	15
11:			62:	15	5.1	113:	35	84	164:	34	196	215:	54		266:		82	317:	20	23
12:			63:	19	59	114:	25	26	165:	60	198	216:	45		267:		81	316:	21	33
13:			64:	32	69	115:			166:	72	212	217:	72		268:		8.9	314:	11	19
14:			65:	16	00	116:		75	167:	69	239	218:	83		269:		74	320:	11	34
15:			65:	18	31	117:	189	90	168:	84	251	219:	30	47	270:	60	79	321:	11	23
16:			67:	35	49	118:	43	82	169:		228	220:	36	47	271:	53	132	322:	25	66
17:			68:	41	67	119:	50	57	170:	67		221:	68	84	272:	38	112	323:	13	32
18:			64:	58	69	120:	47	57	171:			222:	56	126	273:	46	138	324:	36	15
19:	33		70:	20	68	121:	31	49	172:	60		223:	67	154	274:	26	255	325:	54	57
20:	79		71:	21	61	122:	40	STORES	173:	56		224:	56	146	275:	19	85	326:	44	
21:	44		72:	20	62	123:	49	80	174:	64		225:	60	145	276:	14	33	327:	21	
22:	50		73:	26	46	124:	42	79	175:	64		226:	75	157	277:	68	52	328:	13	
23:	43		74:	22	52	125:	36	81	176:	87		227:	79	179	278:	126	80	329:	21	
24:	43		75:	35	45	126:	24	14	177:	166		228:	112	164	279:	79	76	330:	42	
25:	46		76:	24	3.8	127:	21	191941	178:	79		229:	139	176	280:	48	56	331:	14	24
26:			77:	10	24	128:	33	46	179:	0.0		230:	70	134	281:	37	36	332:	25	2 t
27:			78:	18	.26	129:	35	43	180:	89		231:	97	136	282:	25	45	333:	47	40
28:		1010	79:	30	49	130:	35	45	181:	188		232:	89	98	283:	30	23	334: 335:	27	40
29:	74	35	80:	67	83	131:	39	59	182:	52		233:	38	116	284:	45	26	336:	38	62
30:	17	27	81:	117	86	132:	34	40	183:	67	0.2	234:		99	285:	44	48 79	337:	34	22
31:	31	28	82:	127	126	133:	64	35	184: 185:	96 89	82 93	235:		106 98	286: 287:	50	27	338:	19	25
32:	15	52	83:	54	65	134:	82 30	43 55	186:	0.4	79	237:		102	288:	56	30	339:	13	25
33:	29	78	84:	35	61	135:		22	187:	81	39	238:		24	289:	46	40	340:	30	25
34:	35	66	85:	31	66	136:	57 65	61	188:	53	37	239:		27	290:	26	33	341:	32	36
35:	51	74	86:	55		137:	71	41	189:	46	50	240:		79	291:	30	19	342:	46	47
36:	1.5	48	87:	66			74	41	190:	45	20	241:		14	292:	33	17	343:	30	40
37:	13	32	88:	31		139:	52	85	191:	67	86	242:		67	293:	14	32	344:	34	42
38:	13	17	89: 90:	35		141:	84	44	192:	97	73	243:		85	294:	26	23	345:	27	49
39:	13 67	13	91:	20		141:	39	113	193:	32	87	244:		96	295:	26	42	346:	24	53
41:	30	20	92:	32		143:	3 7	57	194:	32	97	245:		74	296:	19	14	347:	10	24
42:	13	31	93:	16	68	144:	64	48	195:		119	246:		24	297:	40	44	348:	20	24
43:	11	26	94:	30	49	145:	95	113	196:		116	247:		116	298:	34	66	349:	13	27
44:	12	112	95:	27	35	146:	109	111	197:		109	248:		125	299:	72	60	350:	17	32
45:	52	38	95:	32	48	147:	62	99	198:		92	249:	65	91	300:	68	43	351:	28	23
46:	69	43	97:	14	35	148:	58	131	199:		56	250:	61	123	301:	54	71	352:		36
47:	48	83	98:	23	77	149:	36	107	200:		100	251:	53	117	302:	58	23	353:	10	05
48:	38	35	99:	78	97	150:	65	51	201:	33	82	252:	52	95	303:	31	38	354:	36	69
49:	02	21	100:	46	178	151:	65	82	202:	39	68	253:	19	72	304:	14	29	355:		72
50:	28	35	101:	28	82	152:	59	85	203:	47	62	254:	17	65	305:	60	52	356:		56
51:	41	65	102:	29	02	153:	41	7	204:	41	54	255:	25	108	306:	67	77	357:	1	65
52:	31	35	103:	27		154:	46	66	205:	98		256:	69	120	307:	119	76	350:	43	04
53:	16	26	104:	44	94	155:	60	93	206:	52		257:	87	131	308:	42	60	359:	3/	91
54:	9	23	107:	18	75	156:	35	102	207:			258:	65	155	309:	18	32	360:	31	51
55:	7	28	106:	31	57	157:	35	64	208:			259:	63	149	310:	19	44	301:		25
56:	29	49	107:	44	45	158:	48	32	209:			260:	57	151	311:	28	19	302:		51
57:	55	60	108:	22	48	159:	59	48	210:			261:	15	86	312:	34	31	363:		
57:	25	00	108:	22	40	199:	79	40	210.			201.	10	00	216.	27	51			

TABLE D-10. THE 8-hour average CONCENTRATION OF aldehydes IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN MICROGRAMS/M³).

DAY	٧L	UMM	DAY	VL	OMM	DAY	٧L	OMM	DAY	٧L	DMM	DAY	٧L	UMM	DAY	٧L	UMM	DAY	VL	UMM
7:			58:	72	146	109:	53	78	160:	105	153	211:	111		202:		181	313:	30	46
8:			59:	82	86	110:	83	65	161:	53	69	212:	123		263:	91	367	314:	03	35
9:			60:	100	102	111:	47	66	162:	49	114	213:	144		264:	28	194	315:	33	32
10:			61:	35	175	112:	60	96	163:	93	275	214:	175		205:	63	151	316:	36	42
11:			62:	32	63	113:	59	86	164:	60	238	215:	102		260:	75	98	317:	28	25
12:			63:	22	79	114:	58	110	165:	123	176	216:	107		267:	86		318:	10	27
13:	71		64:	42	127	115:	-	101	166:	153	355	217:	105		268:	43	13	319:	13	26
14:	62		07:	22	98	116:		111	167:	129	524	218:	106		269:	83	149	320:	14	27
			55:	34	30	117:	249	89	168:	191	497	219:	59	57	270:		70	321:	23	26
15:	88		67:	43	62	118:	83	108	169:	104	573	220:	42	64	271:	48	206	322:	35	53
10:	71		68:	44	57	119:	75	105	170:	125	515	221:	111	171	272:	55	126	323:	11	20
17:	62		69:		77	120:	84	108	171:	138		222:	115	199	273:	36	156	3 4:	50	24
18:	45			80		121:	39	62	172:	149		223:	111	262	274:	59	318	325:	58	BE
19:	158		70:	33	60	122:	47	UZ	173:	104	577	224:	42	333	275:	35	321	340:	92	142
20:	45		71:	31	67 93	123:	68	109	174:	109	602	225:	174	289	276:	31	20	327:	36	43
21:	65	112	72:	20		124:	57	84	175:	107	474	226:	130	399	277:	128	56	320:	28	35
22:	76	125	73:	37	222		65	93	176:	112	453	227:	129	210	276:	173	109	329:	25	6
23:	83	208	74:	24	44	125:	12	52	177:	344	400	228:	180	240	279:	130	64	330:	22	
24:	84	93	75:	44	91	126:	9	67	178:	119		229:	210	367	280:	62	35	331:	14	27
25:	55	86	76:	29	18	127:		100	179:	140		230:	121	178	201:	54	26	332:	20	36
26:	57	92	77:		37	128:	15	100	180:				155	150	282:	33	83	333:	51	20
27:	64	49	78:	109		129:	47			206		231: 232:	123	148	283:	41	36	334:	40	28
28:	53	45	79:	43	61	130:	69		181: 182:	164		233:	47	118	284:	54	25	335:	54	59
29:	57	49	80:	57	88	131:	51						75	179	285:	95	49	336:	100	31
30:	38	56	81:	143	107	132:	82		183:	184		234:	139	160	286:	69	44	337:	42	46
31:	32	65	82:	255	139	133:	87		184:	121		235:	100		287:	75	54	338:	20	.09
32:	55	119	83:	123	115	134:	155		185:	320		236:		163	288:	109	60	339:	24	46
33:	58	187	04:	45	59	135:	65		186:	161		237:	83	171	289:	54	101	340:	45	3 b
34:	48	92	85:	65	111	136:	102	268	187:	156		238:	91		290:	40	44	341:	34	16
35:	132	114	86:	106	107	137:	88	109	188:	344		239:	148		291:	36	59	342:	54	21
36:	73	91	87:	162	143	138:	113	105	189:	59		240:	120	1.20	292:	40	44	343:	53	07
37:	36	76	88:	48	60	139:	105	110	190:	100		241:	129	128	293:	13	68	344:	54	27
38:	19	37	39:	82	120	140:	68	83	191:	120	156	242:	86	113	294:	17	40	345:	34	36
39:	19	32	90:	31	44	141:	209	113	192:	85	151	243:	80	68	295:	38	7	346:	43	66
40:	25	44	91:	26	44	142:	64	178	193:	83	243	244:	66	112			30	347:	61	45
41:	13	31	92:	24	56	143:	69	118	194:	123	161	245:	75	79	296: 297:	16 91	55	348:	115	31
42:	14	68	93:	44	49	144:	98	99	195:	127	326	246:	75	182	298:	91	81	349:	07	39
43:	24	26	94:	51	45	145:	160	180	196:	100	311	247:	333	295	299:	123	91	347.	40	29
44:	20	50	95:	44	31	146:	124	109	197:	67	349	248:	403	269			80	351:	157	36
45:		58	96:	56	43	147:	124	118	198:	91	180	249:	127	220	300:	112	82	352:	35	ΣE
46:		226	97:	36	43	148:	124	152	199:	66		250:	207	243	301:	100		353:	36	64
47:	43	127	98:	35	58	149:	61	194	200:	77		251:	129	202	302:	70	36	353.	102	35
48:	43	71	99:	51	78	150:	63	105	201:	74		252:	104	127	303:	35	22			
49:	17	52	100:	42	99	151:	67	111	202:	67		253:	84	112	304:	31	69	355:	127	50 31
50:	13	28	101:	21	15	152:	94	155	203:	170		254:	109	129	305:	92		356:		
51:	54	65	102:	18	4	153:	65	89	204:	159		255:	83		306:	89	3.4.7.	357:	113	. 46
52:	18	37	103:	12	12	154:	94	111	205:	186		256:	52		307:	9	155	358:	63	59
53:	100	44	104:	25	51	155:	69	144	206:	41		257:	59	281	308:	84	160	359:	84	36
54:		25	105:	12	15	156:	61	187	207:	145		258:	69	312	309:	44	115	300:	50	37
55:		44	105:	72	13	157:		123	208:	92		259:	60	335	310:	40	55	301:	84	22
56:	34	61	107:	38	66	158:		114	209:	105		260:	4	397	311:	24	42	302:		20
57:	79	79	108:	59	57	159:	89	0.8	210:	84		261:	14	117	312:		58	363:		

TABLE E-1. THE maximum temperature IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN CENTIGRADES X 10).

DAY	٧L	DMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	VL	MML	DAY	٧L	OMM	DAY	٧L	1.71
7:			58:	59	55	109:	101	96	160:	170	252	211:	190	191	202:	165		313:	127	119
o:			59:	47	37	110:	83	100	161:	218	179	212:	228	236	263:	200		314:	120	121
9:			50:	62	55	111:	86	92	162:	160	220	213:	267	282	264:	164	183	315:	110	100
10:			61:	69	61	112:	99	141	163:	238	257	214:	271	289	205:	175	153	310:	122	131
11:			62:	76	85	113:	91	115	164:	202	216	215:	213	207	266:	124	135	317:	126	133
12:			63:	82	08	114:	121	154	165:	173	174	216:	212	211	267:	173	131	318:	105	85
13:			64:	91	47	115:	154	160	166:	224	233	217:	194	194	268:	197	167	314:	110	91
14:			65:	72	91	116:	151	151	167:	258	272	218:	210	274	269:	175	165	320:	117	91
15:			65:	70	68	117:	153	155	168:	239	272	219:	196	188	270:	191	167	321:	80	21
16:			57:	95	102	118:	124	125	169:	238	251	220:	210	204	271:	189	172	322:	64	46
17:			58:	59	79	119:	134	135	170:	258	297	221:	220	220	272:	149	125	323:	112	114
10:			6):	45	99	120:	159	176	171:	239	271	222:	262	270	273:	152	130	364:	103	31
19:			70:	60	86	121:	159	115	172:	230		223:	271	284	274:	175	159	325:	99	01
20:			71:	66	67	122:	125		173:	236		224:	250	267	275:	181		320:	70	26
21:			72:	:7	54	123:	189	194	174:	142		225:	289	295	276:	177	150	327:	108	100
22:			73:	70	73	124:	172	182	175:	249		226:	292	305	277:	210	165	320:	119	129
23:			74:	44	107	125:	201	217	176:	271	313	227:	288	303	278:	231	227	369:	c1	04
24:			75:	91	96	126:	142		177:	291	351	228:	315	333	279:	222	200	330:	00	46
25:			75:	82	84	127:	157		178:	282	313	229:	278	292	200:	152	142	331:	54	31
26:			77:	87	91	128:	132		179:	227	251	230:	231	236	281:	171	151	332:	59	80
27:			73:	83		129:	162	160	180:	217	240	231:	249	258	282:	103	155	333:	41	14
28:			79:	113		130:	138	131	181:	242	279	232:		252	283:	166	149	334:	34	٤
29:			80:	90	101	131:		128	182:	291	342	233:	206	800.0	284:	129	95	3.55:		20
30:			81:	142	149	132:		163	183:	300	359	234:	213	219	205:	111	80	336:		Ł
31:			82:	163	179	133:	143	142	184:	238	251	235:	250	262	286:	100	71	337:		56
32:			83:	104	201	134:	104	122	185:	240	262	236:	221	216	207:	114	92	335:	100	100
33:			84:	105	108	135:	144	238	186:	311	344	237:	227	241	200:	125	109	339:	99	71
34:			85:	135	117	136:	111	168	187:	263	283	238:	226	238	289:	115	105	340: 341:	104	91
35:			86:	90	46	137:	193	196	188:	210	218	239:	272	284	290:	121	75	342:	103	109
36:			87:	119		138:	208	219	189:	201	209	240:	230	236	291:	129		343:	57	3 C
37:			88:	100		139:	207	208	190:		227	241:	216	228 197	292: 293:	134	112	344:	10	10
38:			89:	129		140:	208	239	191:		262	242:		199	294:	137	134	345:	47	40
39:			90:	113		141:	230	251	192:		212	243:	201	221	295:	122	113	340:	70	115
40:			91:	82		142:	211	126	193:		229	244: 245:	206	221	296:	140	120	347:	89	35
41:		39	92:			143:	176	186	194: 195:		263	246:	236	242	297:	153	130	348:	63	02
42:		51	93:			144:	151	161	196:		208	247:	261	278	298:	136	115	349:	60	53
43:			94:		٤7	145:	207	213	197:		230	248:	302	324	299:	150	129	3:0:	85	06
44:	41	25	95:		107	146:	230	261	198:	199	210	249:	231	250	300:	161	135	321:	62) C
45:	37	21	95:		100	147:	243	274	199:	200	214	250:	255	267	301:	141	118	352:	67	35
46:	51	41	97:		78	148: 149:	191	195	200:	202	216	251:	244	268	302:	137	112	3:3:	41	27
47:	32	30	98:		72	150:	182	201	201:	210	223	252:	217	235	303:	148	115	324:	44	92
48:		47	99:		68	151:	181	192	202:	215	225	253:	203	189	304:	136	117	300:		125
49:		41	100:		62	152:	150	158	203:	197	201	254:	198	10,	305:	122	110	356:		130
50:		57	101:		67 61	153:	151	155	204:	201	204	255:	191		300:	113	100	357:		06
51:		83	102:		77	154:	167	184	205:	202	197	256:	188		307:	159	144	358:		27
52:		78			92	155:	107	199	206:	189	180	257:	220		308:	145	128	329:		
53:	54	52	104: 105:	96	92	156:		236	207:	162	155	258:	255		309:		132	300:		76
54:	51	40	105:	97	123	157:	168	223	208:	164	153	259:	237		310:	96		301:	64	00
55:	43	48	107:	142	95	158:	191	224	209:	203	209	260:	251		311:	105	87	302:	90	
56: 57:	47	26 47	107:	109	91	159:	209	193	210:		190	261:			312:	143	135	303:	73	
21.	41	47	100.	107	, 1	/ .	20,	- , -		1000										

TABLE E-2. THE minimum temperature IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (IN CENTIGRADES \times 10).

DAY	VL	UMM	DAY	٧L	UMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	VL	LMM	UAY	VL	CMN	JAY	V L	LMN
7:			5 H:	-42	-42	109:	66	15	160:	128	119	211:	151	139	262:	134		313:	111	101
в:			59:	Ü	-19	110:	57	23	161:	110	145	212:	150	130	263:	120		314:	99	81
9:			5):	20	7	111:	37	17	162:	130	131	213:	141	129	204:	124	109	315:	02	05
10:			61:	13	-i	112:	9	14	163:	130	128	214:	153	154	205:	102	97	310:	υ7	51
11:			62:	3 0	29	113:	61	24	164:	105	104	215:	161	158	266:	80	55	317:	84	64
12:			53:	54	46	114:	71	63	165:	94	90	216:	158	140	267:	60	39	318:	74	57
13:			54:	40	43	115:	3.8	23	166:	40	122	217:	137	120	208:	100	24	314:	04	3.3
14:			50:	20	12	110:	3.8	27	167:	130	131	218:	151	140	269:	89	94	320:	50	32
15:			50:	6	16	117:	55	49	168:	151	148	219:	130	112	270:	122	105	321:	41	25
16:			57:	-0	24	118:	50	50	169:	133	137	220:	146	138	271:	127	117	3 < 2:	20	5
17:			58:	16	2	119:	27	28	170:	118	190	221:	144	136	272:	90	71	3 < 3:	74	15
18:			54:	-30	-22	120:	23	11	171:	151		222:	152	147	273:	100	126	324:	42	47
19:			7):	-7	11	121:	63	48	172:	145		223:	150	150	274:	90	127	325:	20	13
20:			71:	-1	5	122:	30	39	173:	130		224:	130	130	275:	74		326:	11	2
21:			72:	-10	-14	123:	80	74	174:	147		225:	131	117	276:	132		327:	54	41
22: -			73:	-25	-33	124:	133	115	175:	134		226:	150	139	277:	100	72	320:	70	4 C
23:			74:	2	- 8	125:	105	91	176:	131		227:	177	152	2/8:	90	54	329:	20	17
24:			75:	-22	-31	126:	87		177:	175	190	228:	187	150	279:	99		330:	16	16
25:			76:	19	22	127:	93		178:	132	200	229:	170	189	280:	131	126	331:	4	22
25:			77:	31	27	128:	60		179:	104	171	230:	169	177	281:	131	123	332:	10	16
27:			78:	28		129:	96	91	180:	140	158	231:	104	162	282:	116	101	333:	15	3 C
28:			79:	19		130:	89	77	181:	139	156	232:		167	203:	95	71	334:	5	37
29:			80:	36	49	131:	78	71	182:	103	178	233:	110		284:	44	34	335:		116
30:			81:	29	28	132:	77	72	183:	112	190	234:	79	88	285:	38	1	330:		130
31:			82:	26	30	133:	89	85	184:	152	154	235:	98	81	286:	45	Ü	337:		16
32:			83:	00	20	134:	75	72	185:	145	142	236:	118	100	287:	40	2	338:	87	65
33:			94:	51	40	135:	38	38	186:	141	150	237:	110	113	288:	75	51	339:	83	76
34:			85:	31	5	136:	55	39	187:	184	204	238:	120	112	289:	78	54	340:	40	33
35:			85:	-21	-34	137:	80	56	188:	147	159	239:	114	121	290:	38	3	341:	30	12
36:			87:	b		138:	101	77	189:	121	131	240:	143	144	291:	47	16	342:	Ø	Ċ
37:			88:	27		139:	104	91	190:		113	241:	121	145	292:	78	43	343:	4	34
38:			89:	13		140:	131	90	191:		137	242:	130	129	293:	93	76	344:	10	50
39:			90:	25		141:	135	128	192:		176	243:	127	125	294:	07	45	345:	2	29
40:			91:	47		142:	123	132	193:		168	244:	159	169	295:	47	35	340:	49	32
41:		-29	92:			143:	127	130	194:		172	245:	156	161	296:	71	74	347:	49	11
42:		-2	93:			144:	110	117	195:		152	246:	172	180	297:	01	61	340:	19	17
43:		10	94:		4	145:	99	99	196:		169	247:	161	177	298:	127	60	344:	30	5
44:	- 3	-26	95:		61	146:	101	1 C 1	197:		158	248:	136	147	299:	64	46	350:	40	b
45:	- 4	-29	96:		40	147:	117	108	198:	139	131	249:	153	182	300:	71	26	351:	43	10
46:	4	-13	97:		17	148:	132	118	199:	145	166	250:	131	162	301:	53	11	352:	24	5
47:	-25	-30	93:		8	149:	122	123	200:	151	165	251:	117	131	302:	63	61	353:	22 38	ť
48:		-15	99:		16	150:	131	135	201:	149	161	252:	158	166	303:	75	61	354:	30	10
49:		1	100:		13	151:	129	134	202:	138	151	253:	101	112	304:	96	47	355:		46
50:		10	101:		22	152:	114	108	203:	131	128	254:	101		305:	61	22	356:		29
51:		52	102:		12	153:	80	90	204:	111	126	255:	7.0		306:	66	31	357:		3 b
52:	ener.	49	103:		10	154:	102	96	205:	108	119	256:	119		307:	86	42	320:		30
53:	27	16	104:		12	155:		93	206:	101	104	257:	88		308: 309:	08	27 47	359:		34
54:	-8	-19	105:	36	5.9	156:		82	207:	140	121	258:	95			4.0	47	301:	60	74
55:	-15	-24	106:	40	61	157:	64	82	208:	133	119	259:	170		310:	60 79	49	361:	72	6.7
50:	-20	-21	107:	41	61	158:	79	96	209:	157	154	260:	170		311:		87	363:	29	
57:	-46	-42	108:	58	24	159:	91	115	210:	151	139	261:	150		312:	101	0/	303:	64	

TABLE E-3. THE maximum relative humidity in VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (AS PERCENTAGE).

		(110 12	No Billiani																	
DAY	٧L	UMM	YAC	V L	UMM	DAY	٧L	CMM	YAG	VL	OMM	DAY	V L	UMM	UAY	٧L	OMM	UAY	VL	0.41
-			E	100	100	109:		100	160:	99	100	211:	97	93	262:	98	86	313:	44	74
7:			53: 54:	99	99	110:		100	161:	98	99	212:	95	90	203:	97	8.1	314:	48	36
8:			6):	100	100	111:		100	162:	97	100	213:	97	95	264:	98	88	315:	81	76
7:						112:		100	163:	98	100	214:	77	96	205:	97	8.6	316:	40	46
10:			61:	100	100	113:		100	164:	95	100	215:	98	97	266:	98	89	317:	95	dt
11:			62:	100	100			100	165:	90	98	216:	97	94	267:	98	80	318:	90	79
12:			63:	100	100	114:		100	166:	100	100	217:	98	98	268:	98	8.9	319:	40	35
13:			64:	100	100	115:	99	100	167:	96	100	218:	97	95	264:	98	90	320:	44	83
14:			65:	100	100	116:		100	168:	98	100	219:	97	95	270:	97	90	321:	42	52
15:			66:	100	100	117:	93	100	169:	98	100	220:	89	85	271:	98	90	322:	98	85
15:			67:	100	100	118:	100	100	170:	97	100	221:	96	93	272:	99	90	323:	98	3.5
17:			69:	100	100	119:				98	100	222:	90	93	273:	100	92	324:	96	64
10:			69:	100	100	120:	100	100	171:	96	100	223:	97	96	274:	98	91	325:	90	36
19:			70:	100	100	121:	98		172:	94	99	224:	97	96	275:	48	92	326:	98	89
20:			71:	100	100	122:	100		173:			225:	95	94	270:	97	Ú9	327:	98	95
21:			72:	100	100	123:	98		174:	93	100			81	277:	98	90	328:	97	91
22:			73:	100	100	124:	97		175:	98	100	226:	84 70	73	278:	98	91	329:	96	92
23:			74:	100	100	125:	100		176:	97	100	227:		82	279:	97	90	330:	40	92
24:			75:	100	100	126:	98		177:	95	100	228:	90		280:	97	89	331:	100	71
25:			76:	100	100	127:	100		178:	97	100	229:	97	84 91	201:	70	64	332:	100	67
26:			77:	100	100	128:	99		179:	100	100	230:	97		282:	97	96	333:	49	87
27:			78:	100	100	129:	100	100	180:	97	100	231:	97	88		97	89	334:	44	37
28:			7 7:	100	100	130:	99	100	181:	97	100	232:	2.	91	203:	97	89	337.	98	07
29:			80:	100	100	131:	73	98	182:	94	100	233:	96	0.0			91	335:	98	87
30:			81:	100	100	132:	98	100	183:	96	100	234:	97	82	285:	98		337:	49	37
31:			82:	97	97	133:	99	100	184:	97	100	235:	95	86	286:	95	86			100
32:			83:	94	100	134:	99	100	185:	97	96	236:	98	91	207:	97	88	338:	97	100
33:			84:	100	100	135:	100	100	186:	97	95	237:	100	91	288:	97	90	339:		100
34:			85:	100	100	136:	91	98	187:	97	96	238:	98	89	289:	97	91	340:	40	
35:			86:	100	100	137:	71	92	188:	98	95	239:	98	89	290:	97	8.9	341:	97	100
30:			87:	100	100	138:	72	90	189:	97	88	240:	97	90	291:	97	80	342:	90	96
37:			83:	100	100	134:	96	95	190:	100	89	241:	97	91	292:	98	93	343:	97	
33:			89:	100	100	140:	98	100	191:	90	89	242:	97	90	293:	97	92	344:	98	100
39:			90:	100	100	141:	98	100	192:	98	96	243:	94	80	294:	97	97	345:	98	95
40:			91:	100	160	142:	97	100	193:	91	94	244:	98	84	295:	99	89	346:		97
41:			92:	100	100	143:	97	100	194:	95	91	245:	97	90	296:	96	8.7	347:	95	100
42:			93:	73	100	144:	100	1.00	195:	96	94	246:	90	87	297:	98	61	345:	98	91
43:			94:	100	100	145:	98	100	196:	98	95	247:	40	80	298:	97	82	344:	93	97
44:	100		95:	100	100	146:	98	100	197:	97	94	248:	96	87	299:	98	82	350:	100	
49:	100		96:	100	100	147:	92	100	198:	97	93	249:	96	88	300:	94	83	351:	82	7 t 9 t
45:	130		97:	100	100	148:	96	100	199:	98	94	250:	96	89	301:	99	83	352:	97	
47:	100		98:	99	100	149:	99	100	200:	98	95	251:	97	90	302:	98	٤1	353:	97	100
48:	100	100	99:		100	150:	99	100	201:	98	96	252:	96	84	303:	97	84	354:	84	89
49:	100	100	100:		100	151:	97	100	202:	97	95	253:	70	86	304:	96	8.7	355:	45	7E
50:	100	100	101:		100	152:	98	100	203:	98	93	254:	95		305:	97	٤7	350:	40	100
50:	100	100	102:		100	153:	98	100	204:	98	94	255:	98		306:	98	88	357:	47	100
	100	100	103:		100	154:	96	97	205:	97	8.8	256:	94		307:	96	8.8	350:	90	100
52:		99	103.		,100	155:	. 0	100	206:	98	97	257:	43		308:		88	354:	99	-
53:	47	100	104:		100	156:		100	207:	98	96	258:	99		309:		90	300:		100
٠4:	100		105:		100	157:	99		208:	98		259:	96		310:	45		361:		LUC
55:	100	100	107:		100	158:	98		209:	97	97	260:	98		311:	94	76	302:		100
55:	100	100			100	159:	98		210:	96	91	261:	96		312:	97	66	303:	48	100
57:	100	100	104:		100	177.	, 0													

TABLE E-4. THE minimum relative humidity IN VLAARDINGEN AND OMMOORD DURING THE YEAR OF INVESTIGATION (AS PERCENTAGE).

		(AS	FERCENT.	MGE).																
DAY	VL	OMM	DAY	٧L	OMM	DAY	٧L	DMM	DAY	٧L	DMM	DAY	٧L	OMM	DAY	٧L	OMM	DAY	VL	LMF
7:			53	: 53	58	109:		72	160:	67	68	211:	72	68	262:	78	72	313:	75	68
8:			59	: 73	77	110:		66	161:	69	82	212:	58	62	203:	57	53	314:	77	07
4:			60	57	59	111:		77	162:	82	62	213:	48	54	264:	75	67	315:	64	01
10:			61	: 80	78	112:		54	163:	53	63	214:	57	52	205:	61	57	316:	74	70
11:			62	: 86	84	113:		73	164:	53	61	215:	80	80	266:	05	55	317:	04	28
12:			63	: 81	79	114:		63	165:	53	60	216:	62	64	267:	03	60	310:	70	64
13:			64	: 85	62	115:		55	166:	40	50	217:	77	79	268:	65	68	319:	54	53
14:			65	: 71		116:	42	57	167:	47	54	218:	57	56	269:	63	57	320:	54	52
15:			66	: 70	74	117:	54	61	168:	67	68	219:	56	57	270:	63	64	321:	57	54
16:			67	76	77	118:	62	69	169:	51	59	220:	57	57	271:	61	57	322:	04	60
17:			68	: 73	75	119:	68	73	170:	38	47	221:	53	53	272:	64	60	323:	61	56
18:			69	: 50	56	120:	73	77	171:	61	66	222:	52	53	273:	75	68	324:	63	62
19:			70	: 77	73	121:	72		172:	55	62	223:	54	55	274:	61	52	320:	72	05
20:			71	: 63	69	122:	47		173:	38	50	224:	57	59	275:	57	48	326:	73	76
21:			72	62	68	123:	69		174:	45	55	225:	36	44	276:	78	71	327:	91	81
22:			73	5 9	69	124:	59		175:	53	54	226:	36	37	277:	59	57	320:	02	56
23:			74	: 52	62	125:	65		176:	39	48	227:	38	38	278:	62	56	329:	00	56
24:			75	53	63	126:	68		177:	40	52	228:	37	34	279:	60	58	330:	05	63
25:			76	79	84	127:	52		178:	53	64	229:	59	58	280:	91	83	331:	04	62
26:			77	: 77	79	128:	73		179:	75	80	230:	62	57	261:	96	63	332:	71	ot
27:			78	: 64	66	129:	68	74	180:	56	70	231:	56	58	282:	79	70	333:	74	72
28:			79	63	58	130:	57	61	181:	47	58	232:		64	283:	75	£9	334:	76	7 c
29:			83	74	78	131:	47	55	182:	37	45	233:	48		284:	69	60	335:	68	06
30:			81	: 51	56	132:	47	54	183:	41	46	234:	38	39	285:	66	68	336:	75	73
31:			82	: 44	49	133:	62	72	184:	58	63	235:	37	37	286:	64	61	337:	85	77
32:			83	3 8	42	134:	68	77	185:	58	51	236:	48	44	287:	72	69	330:	70	09
33:			84	: 74	79	135:	57	67	186:	45	48	237:	52	46	268:	80	72	334:	90	100
34:			85	: 58	66	136:	43	54	187:	56	58	238:	54	54	289:	93	63	340:	02	03
35:			86	: 77	80	137:	30	43	188:	74	77	239:	40	46	290:	55	58	341:	62	ot
36:			87	: 66	72	138:	37	43	189:	56	57	240:	64	60	291:	55	57	342:	71	7 t
37:			88			139:	52	63	190:	49	50	241:	68	64	292:	82	75	343:	59	72
38:			89			140:	51	57	191:	40	42	242:	75	69	293:	72	68	344:	79	86
39:			90	: 45	53	141:	56	63	192:	80	80	243:	55	53	294:	72	68	345:	87	79
40:			91			142:	45	53	193:	68	68	244:	71	68	295:	65	64	346:	90	79
41:			92			143:	64	73	194:	59	58	245:	78	70	296:	67	62	347:	71	64
42:			93			144:	81	82	195:	48	52	246:	70	63	297:	60	63	340:	64	53
43:			94			145:	64	71	196:	78	79	247:	50	57	298:	73	68	349:	00	61
44:	69		95			146:	38	48	197:	56	53	248:	50	40	299:	20	52	350:	72	76
45:	73		96			147:	37	42	198:	71	69	249:	77	71	300:	42	44	351:	72	05
46:	71		97			148:	38	43	199:	66	65	250:	62	55	301:	70	69	352:	70	73
47:	73		98			149:	61	68	200:	59	72	251:	64	59	302:	52	48	3>3:	76	8 C
48:	70	73	99		61	150:	69	73	201:	57	57	252:	77	69	303:	80	75	354:	71	07
49:	73	79	100		60	151:	79	85	202:	62	61	253:	48	43	304:	71	70	355:	72	7 c
50:	93	92	101		72	152:	81	84	203:	73	73	254:	51		305:	70	63	350:	85	84
51:	94	89	102		79	153:	62	68	204:	55	53	255:	56		306:	88	81	327:	80	07
52:	82	85	103		77	154:	69	68	205:	55	54	256:	59		307:	73	71	358:	00	96
53:	70	76	104		73	155:		62	206:	62	64	257:	40		308:		78	354:	60	1400
54:	73	74	105		88	156:	200	60	207:	77	71	258:	36		309:		64	360:		96
55:	70	72	106		83	157:	56	46	208:	68	68	259:	60		310:	06		361:		99
56:	75	80	107		70	158:	44	64	209:	8.2	80	260:	62		311:	63	60	302:	1000	93
57:	73	73	108	:	81	159:	55	72	210:	76	70	261:	77		312:	87	77	303:	95	94

LIST OF ABBREVIATIONS

CNSLD Chronic Non-Specific Lung Disease

FVC Forced Vital Capacity

VC Vital Capacity (inspiratory)

 $^{\mathrm{FEV}}$ 1.0 Forced Expiratory Volume measured over one second

 $\text{FEV}_{1.0}$ % VC $\text{FEV}_{1.0}$ expressed as a percentage of the observed

Vital Capacity

MMFR Maximum Mid-expiratory Flow Rate

 \dot{v}_{max} at 50% VC Maximum flow at 50 per cent of the observed

Vital Capacity

 $\begin{array}{ccc} {\rm NO} & & {\rm Nitrogen\ monoxide} \\ {\rm NO}_2 & & {\rm Nitrogen\ dioxide} \\ {\rm SO}_2 & & {\rm Sulphur\ dioxide} \end{array}$

ppm part per million

 mg/m^3 milligrams per cubic meter $\mu g/m^3$ micrograms per cubic meter

ECSC European Coal and Steel Community

MRC Medical Research Council

TNO Toegepast Natuurwetenschappelijk Onderzoek

(Applied Scientific Research)

WHO World Health Organization