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Abstract

The fusion and enhancement of multiband nighttime imagery for surveillance and navigation

has been the subject of extensive research for over two decades. Despite the ongoing

efforts in this area there is still only a small number of static multiband test images available

for the development and evaluation of new image fusion and enhancement methods. More-

over, dynamic multiband imagery is also currently lacking. To fill this gap we present the

TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4–

0.7μm), near-infrared (NIR, 0.7–1.0μm) and long-wave infrared (LWIR, 8–14μm) motion

sequences. They represent different military and civilian surveillance scenarios registered in

three different scenes. Scenes include (military and civilian) people that are stationary, walk-

ing or running, or carrying various objects. Vehicles, foliage, and buildings or other man-

made structures are also included in the scenes. This data set is primarily intended for the

development and evaluation of image fusion, enhancement and color mapping algorithms

for short-range surveillance applications. The imagery was collected during several field tri-

als with our newly developed TRICLOBS (TRI-band Color Low-light OBServation) all-day

all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR

part of the electromagnetic spectrum using three optically aligned sensors (two digital image

intensifiers and an uncooled long-wave infrared microbolometer). The three sensor signals

are mapped to three individual RGB color channels, digitized, and stored as uncompressed

RGB (false) color frames. The TRICLOBS data set enables the development and evaluation

of (both static and dynamic) image fusion, enhancement and color mapping algorithms. To

allow the development of realistic color remapping procedures, the data set also contains

color photographs of each of the three scenes. The color statistics derived from these photo-

graphs can be used to define color mappings that give the multi-band imagery a realistic

color appearance.
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Introduction

The significance of image fusion

Night vision cameras are a vital source of information for a wide-range of critical military and

law enforcement applications such as surveillance, reconnaissance, intelligence gathering, and

security [1, 2]. Currently, most night-time imaging systems are either low-light-level cameras

which amplify reflected visible (0.4–0.7μm) to near-infrared (NIR, 0.7–1.0μm) light or thermal,

long-wave infrared (LWIR, 8–14μm) cameras which convert thermal energy into a visible

image. Because these systems operate in different spectral bands they typically represent differ-

ent aspects of a scene. For instance, after a period of extensive cooling (e.g., after a long period

of rain or early in the morning) the background (i.e., vegetation or soil areas, buildings and

other manmade objects) of an outdoor scene may be represented in full detail in the visible

bands, but may be much less detailed in the infrared bands due to the low thermal contrast in

the scene. On the other hand, objects like vehicles or human beings, which often have an

appreciable temperature contrast with their surroundings, will typically be shown with high

contrast in the infrared bands. They may be (nearly) invisible (camouflaged-) in the visible

bands when their luminance and/or color approaches that of their surroundings. In such cases

the thermal component of a fused visible/thermal image may help to detect and localize targets

in the context provided by the visible component [2] and contribute to situational awareness

[3]. In addition, appropriate color mappings may serve to give multi-band night-vision imag-

ery an intuitive color appearance, which may in turn lead to faster and more accurate scene

recognition [4, 5]. Examples of observational tasks that will evidently benefit from realistically

rendered fused multi-band imagery are navigation and surveillance tasks.

The increasing availability and deployment of imaging sensors operating in multiple spec-

tral bands [6–16], in combination with lenses that cover a broad spectral range [17] and dedi-

cated image fusion hardware [18–21] has led to a steady stream of publications on methods

that combine or fuse the signals from these sensors for viewing by human operators. The goal

of these studies is to develop algorithms that effectively combine the different complementary

and partially redundant spectral bands to visualize information that is not directly evident

from each of the individual input images (i.e., the sum should be more than its parts). Some

potential benefits of image fusion are: wider spatial and temporal coverage, decreased uncer-

tainty, improved reliability, and increased system robustness. Image fusion has important

applications for situational awareness [3], surveillance [22], target tracking [23], intelligence

gathering [24], concealed weapon detection [25–30], detection of abandoned packages [31]

and buried explosives [32], and face recognition [33, 34]. In the context of several allied Soldier

Modernization Programs (SMPs), image fusion has significantly gained importance [19], par-

ticularly for application in head-borne systems [35–37]. Other important image fusion applica-

tions are found in industry, art analysis [38], agriculture [39], remote sensing [40–43], and

medicine [44–47] (for a survey of different applications of image fusion techniques see [1, 48]).

The state of the art in multiband nighttime image fusion

The increasing availability of sensors operating at low light levels and in multiple spectral

bands has spurred the development of image fusion and enhancement algorithms for surveil-

lance and navigation applications. The general aim is to provide imagery that is both rich in

information content (more informative than the individual bands), easy to interpret (ergo-

nomic in a cognitive sense) as well as robust against degradation of environmental conditions

and/or sensor performance. To this end many different image fusion techniques have been

proposed and new studies appear regularly (for a recent review see [49]). Most methods apply

The TRICLOBS Dynamic Multi-Band Image Data Set

PLOS ONE | DOI:10.1371/journal.pone.0165016 December 30, 2016 2 / 23

11-1-3015, FA9550-14-1-0069, and FA9550-15-1-

0433. TNO provided support in the form of salaries

for authors AT and MAH. The specific roles of

these authors are articulated in the ’author

contributions’ section. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing Interests: TNO provided support in the

form of salaries for authors AT and MAH. This does

not alter our adherence to PLOS ONE policies on

sharing data and materials.



fusion to combine context information from the Visual band with the LWIR band [50–63].

Some fusion methods employ the NIR channel to enhance contrast in the Visual image,

exploiting the high permeability of NIR against atmospheric haze [64–66]. Other fusion meth-

ods use statistical information [67–69] color lookup tables [70, 71], histogram matching

techniques [72] or color transforms [73] to give fused multiband imagery a realistic color

appearance by transferring the color characteristics of associated visible color imagery. All

methods implicitly assume the availability of spatially registered multiband imagery. Most of

the aforementioned fusion methods [50–54, 56–62, 69, 73] were developed with the limited set

of static registered multiband (Visual, NIR, LWIR) imagery which we provided earlier [74,

75]. None of the methods discussed have been applied to dynamic multiband image sequences,

most likely because of this type of imagery is currently not publicly available.

The need for registered multi-band imagery

Despite of the ongoing interest in the fusion of multi-band (specifically visual, NIR and LWIR)

images for surveillance applications and the steady stream of publications in this area, there

is only a very small number of static registered multi-band test images (and a total lack of

dynamic image sequences) publicly available for the development and evaluation of image

fusion algorithms (e.g., [76]). Moreover, there is no central repository from which these images

can be obtained. (The site www.ImageFusion.org, which had provided some multispectral

imagery, closed several years ago, although recent publications still refer to this site). To the

best of our knowledge there are currently only two dedicated image data sets for the develop-

ment of image fusion techniques that are available from a public repository. The first is the

TNO Image Fusion Data Set [74]. It contains only a limited set of static multispectral (intensi-

fied visual, NIR, and LWIR) nighttime imagery of military-relevant scenarios. The second

dataset is the Kayak image fusion sequence [75]. It provides registered intensified visual, mid-

wave IR (3–5μm) imagery, and LWIR dynamic imagery depicting three kayaks approaching a

shore in a cluttered maritime background. The only other publicly available database of which

we are aware contains aligned dynamic Visual and LWIR imagery representing driving scenar-

ios in urban environments. It is intended for the development of visual place recognition algo-

rithms, and not suited for the development of image fusion algorithms [77].

We provide the TRICLOBS image data set (described in this paper) to fill this data gap.

This data set contains registered three-band dynamic imagery of different surveillance scenar-

ios showing various types of human activity. This imagery can be used for the development

and evaluation of (both static and dynamic) image fusion, enhancement and color mapping

algorithms. The content outline for the rest of this paper is as follows. First, we describe the

TRICLOBS camera system that was used to collect the imagery and the locations and scenarios

that were registered. Next, we describe the structure and content of the TRICLOBS data set.

Then, we present some sample applications that use the TRICLOBS imagery as input. Finally,

we end with some concluding remarks and note some limitations of the data set.

Materials and Methods

The TRICLOBS multi-band camera system

We recently developed the TRICLOBS (TRI-band Color Low-light OBServation) all-day all-

weather surveillance and navigation system which contains three optically aligned cameras

that are sensitive to the Visual, NIR and LWIR parts of the electromagnetic spectrum [78]. The

system combines (fuses) the three camera signals in real-time in a false-color RGB signal. It

has the capability to perform color remapping using either pre-recorded lookup tables [79] or

by deriving the color mapping in real-time from synthetic imagery or Google Earth data [80].

The TRICLOBS Dynamic Multi-Band Image Data Set
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As a result the system provides dynamic imagery with a realistic color appearance in condi-

tions of low visibility (low light levels, smoke). A recent evaluation study using static imagery

has shown that human scene inspection and recognition performance with color remapped

TRICLOBS imagery resembles the performance with standard color photographs [5].

The TRICLOBS can also be extended with a synthetic 3D scene generation system in com-

bination with an additional image fusion and image processing module. The result is INVIS,

an Integrated Night VIsion surveillance and observation System: [81]. For an online demon-

stration of INVIS’ capabilities, see [82, 83]).

This section describes the TRICLOBS system and the image registration procedure. In

addition, we briefly explain the color remapping procedure that was used to create the false-

color movies thus illustrating the contents of this data set. More details of the hard- and soft-

ware of the TRICLOBS system [78] and the color mapping procedure [79] are presented

elsewhere.

Sensor suite

Fig 1 shows a schematic representation of the layout of the TRICLOBS sensor suite and its

optical components. The system contains two digital image intensifiers and a thermal camera.

The two image intensifiers are high resolution (1280 × 960) Photonis PP3000U Intensified

Camera Units (ICU’s, www.photonis.com). The ICU is a low-light-level, intensified CMOS

camera. It has a 16.9mm (2/3") CMOS sensor with a spectral response range of 0.4–0.9μm.

It delivers an SDI—LVDS 270 Mbits/s signal and a PAL or NTSC composite video signal out-

puts (ITU-R BT.656-4, 640 × 480 pixels, 25 frames/s). Both ICU’s are equipped with Pentax

C2514M CCTV lenses, with a minimal focal length of 25mm and a lens aperture of F/1.4,

resulting in a 30.7˚ × 24.8˚ field-of-view (FOV.)

The thermal camera is a XenICs Gobi 384 uncooled a-Si infrared microbolometer (www.

xenics.com). It has a 384 × 288 pixel focal-plane array, and a spectral sensitivity range of

8–14μm. This is the range of most interest for outdoor surveillance applications. The camera is

equipped with an Ophir supIR18mm F/1 lens (www.ophiropt.com) providing a 29.9˚ × 22.6˚

FOV. The Gobi 384 has 16-bit Ethernet and CameraLink interfaces running at 44 frames/s.

Two beam splitters are deployed to direct the appropriate band of the incoming radiation

to each of the three individual sensors (Fig 1). The incoming radiation is first split into a

(thermal) long-wave infrared (LWIR) part and a Visual+NIR part by a heat reflecting (hot)

mirror. The hot mirror is a custom made Melles Griot dichroic beam splitter consisting of

Schott N-BK7 Borosilicate Crown glass with an Indium Tin Oxide coating. It has a reflec-

tion coefficient of R > 85%. The LWIR part of the spectrum is reflected into the lens of the

thermal camera, while the Visual+NIR light is transmitted to a combination of two digital

image intensifiers that are mounted at an angle of 90 degrees. Next, an NIR reflecting mirror

with 45 deg angle of incidence, Borofloat glass, and type Edmund Optics B43-958, 101 × 127

× 3.3 mm (see: www.edmundoptics.com separates the incoming light by transmitting the

Visual (0.4–0.7μm) and reflecting the NIR part (0.7–0.9μm), in such a way that one image

intensifier registers the visual part and the other one only detects the NIR part of the incom-

ing radiation. The sensor geometry is such that the optical axes of all cameras are aligned.

The sensors and the mirrors are mounted on a common metal frame. The whole configura-

tion is portable and contained in a dust and water resistant housing (Fig 2a and 2b) that

could be mounted easily onto a mobile platform (Fig 2c). A Germanium window covers the

aperture of the thermal camera. The sensor suite delivers both analog video and digital sig-

nal outputs.

The TRICLOBS Dynamic Multi-Band Image Data Set
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GPS receivers

An internal U-blox EVK-5P Positioning Engine (www.u-blox.com) provides a position and

orientation (i.e., sensor location and viewing direction) signal through the high-speed 7-port

USB 2.0 hub. The accuracy in position is less than 3m. The accuracy in orientation is less than

Fig 1. Schematic representation of theTRICLOBS sensor suite layout. The long-wave part of the incoming radiation is reflected into an uncooled

infrared microbolometer by a LWIR (hot) mirror, the near-infrared part is reflected by a dichroic beam splitter (NIR mirror) towards an image intensifier

(ICU), while the visual part goes straight to a second image intensifier.

doi:10.1371/journal.pone.0165016.g001
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5 degrees. In local area operations when high accuracy is required, an external Trimble SPS751

GPS receiver set (www.trimble.com) is connected to the system, to achieve high position accu-

racy (< 1 cm) through real time kinematic (RTK) GPS signal correction. The position infor-

mation provided by the U-blox Positioning Engine can be used to load color look-up tables

(see the section on color remapping) that are optimal for the environment in which the TRI-

CLOBS system is being deployed [80–83].

Electronic compasses

An internal Silicon Labs F350-COMPASS-RD multi-axis electronic compass (www.silabs.

com) provides the azimuth and tilt angle of the optical axis of the sensor suite with an accuracy

of a few degrees (Fig 2b). When the viewing direction needs to be known with higher accuracy,

an external Xsens 3D inertial measurement unit (IMU) motion sensor with an accelerometer,

magnetometer and gyroscope (www.xsens.com) is connected to the system to measure Yaw,

Roll en Pitch with an accuracy less than 0.1˚. The viewing direction provided by the electronic

compass can for instance be used to render a view from a synthetic geometric 3D scene model

that corresponds to the viewing direction and viewpoint of the TRICLOBS camera system

[80–83].

Computer

A Dell Precision M2400 Intel Core Duo P8600 2.4GHz laptop with a solid state hard disk is

used to store, colorize, and visualize the sensor signals and to generate and display the syn-

thetic scene view. The current implementation achieves real-time (~25 Hz) visualization, sig-

nal enhancement and data registration.

Fig 2. The TRICLOBS system. (a) The system is contained in a water and dust resistant housing with a single aperture and built-in displays that enable

signal monitoring. (b) The interior showing the sensors and other components. (c) The TRICLOBS system mounted on an all-terrain platform.

doi:10.1371/journal.pone.0165016.g002
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Displays

Two 6.4” TFT video displays, embedded in the system casing, enable simultaneous monitoring

of two of the three video signals (either Visual/NIR, Visual/LWIR, or NIR/LWIR; Fig 2a). The

laptop display (14 inch, 1440x900 pixels) is used to view the final fused, colored and enhanced

images.

Data transfer and storage

The Photonis ICU’s are connected to a high-speed 7-port USB 2.0 hub. This enables the user

to interface with the ICU’s and to adjust their settings, or to download and install preferred

settings.

A Pleora iPORT PT1000-ANL-2/6 frame grabber (www.pleora.com) digitizes the analog

video output signals of (1) both ICU’s and (2) the Gobi 384. Digitization is performed at a rate

of 25 frames/s with a resolution of 640x480 pixels and 10 bits per pixel.

The three sensors are not frame synchronized. Instead, the images of each of the three sen-

sors are stored with a time stamp (in ms). A three band image sequence is then constructed by

combining each Visual frame with the NIR and LWIR frames with nearest time stamps in a

single RGB frame. This procedure results in an average temporal offset between the Visual and

NIR bands of 7.5±1 ms and an average temporal offset between the Visual and IR bands of 9±1

ms. Thus, the temporal offset between the individual bands was less than one frame.

The Pleora transmits these signals to a Netgear Gigabit Ethernet switch. The 16-bit TCP/IP

Ethernet interface of the XenICs Gobi 384 is also directly connected to the Netgear Gigabit

Ethernet switch.

Three Pinnacle Video Transfer Units (www.pinnaclesys.com/PVT) store (a) the analog

video signals of all three cameras, and (b) the audio signals of two (optional) external micro-

phones, either on 3 internal 320 Gb hard disks, or on USB memory sticks. The microphones

can be positioned on the front and back of the camera suite. The microphone on front could

then be used to register relevant audio information from the registered scene, and the second

microphone could be used to record spoken annotations.

Image registration

The Visual (0.4–0.7μm) and NIR (0.7–0.9μm) images provided by the two ICU digital image

intensifiers have a size of 640 × 480 pixels and represent a FOV of 30.7˚ × 24.8˚. The LWIR (8–

14μm) image provided by the XenICs Gobi 384 thermal camera has a size of 384 × 288 pixels

and represents a FOV of 29.9˚ × 22.6˚. As a result of the optical alignment of the camera sys-

tems, the FOV of the LWIR image corresponds to the central part of the FOV of the Visual

and NIR images. The size of this common FOV area is 621 × 461 pixels in the Visual and NIR

images. To enable the fusion of the LWIR image with the other two channels, the LWIR image

(384 × 288 pixels) is bi-linearly interpolated and up-sampled (by a factor of about 1.6) to

621 × 461 pixels. The Visual and NIR images are cropped to their central part of 621 × 461 pix-

els so that only the common FOV area remains. Finally, all images are rescaled to 640 × 480

pixels. This is also the size of the three-band color images provided in the database presented

in this study. As a result, an individual pixel represents about 2.8 × 2.8 min of arc of the visual

field.

Color remapping

The TRICLOBS system has the option to deploy a recently developed color remapping tech-

nique [79]. This mapping assumes a fixed relation between false-color tuples and natural color
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triplets for bands near the visual spectrum. This allows its implementation as a simple color

table swapping operation. For bands that are not correlated with the visual spectrum (such as

LWIR) this assumption evidently does not apply. In that case, the color remapping could be

used to improve the detectability of targets through contrast enhancement and color highlight-

ing [84].

Color remapping can be achieved by mapping the multi-band sensor signal to an indexed

false-color image and swapping its color table with that of a regular daylight color image of a

similar scene (see Fig 3). Different (e.g., urban, rural, maritime, or desert) environments may

require specific color tables. However, in practice we found that an entire environment is well

represented by a single color table, as long as the environmental characteristics don’t change

too drastically [85]. Thus, only a limited number of color tables is required in practice. These

tables need to be constructed only once, before the system is deployed.

For a given environment, the lookup color table transformation can be derived as follows.

First, take a multispectral image of a scene that is typical for the intended operating theater

and transform this image to an indexed color representation. Second, take an indexed repre-

sentation of a regular color photograph of a similar scene. Then there are two options [86].

Either transfer the first order statistics of the lookup table of the color photograph to the

lookup table of the false-color multispectral image [68], or establish a direct mapping between

corresponding entries in both tables [79].

When matching multispectral and daylight color images of the same scene are available, a

realistic color mapping can be obtained by establishing a direct relation between the values of

corresponding pixels in both images [79]. When there is only a daylight color image available

of an environment that is similar to the one in which the multispectral sensor suite will be

deployed, a mapping can still be established by transferring the color statistics of the daylight

image to the multispectral image [68]. Although the first approach yields more specific colors,

both approaches produce intuitively correct and stable color representations. Note that the sta-

tistical approach can even be used with imagery from sources like artificial terrain databases or

Google Earth [80] (for demonstrations see [82] and [83]). The specificity of the lookup-table

color remapping has the additional advantage that it enables to selectively enhance and

emphasize details of interest (e.g., camouflaged targets) in a given scene [79, 87, 88].

For the sake of completeness we will briefly describe our color transformation here, using

the example shown in Fig 3. (A full description of the method is presented elsewhere [79]). Fig

3a depicts the full color daytime reference image, which is a color photograph taken with a

standard digital camera. Fig 3b and 3c show a visible and near-infrared image of the same

scene. Fig 3f shows the result of applying daytime colors to the two-band night-time sensor

image using our new color mapping technique. The color transfer method works as follows.

First, the three-band sensor image is transformed to a false-color RGB image by taking the

individual Visual (Fig 3b), NIR (Fig 3c), and LWIR bands as input to the R,G and B color

channels respectively. The result is a false-color RGB-image (Fig 3d). In this example we

assume that the LWIR signal is absent (black) and we consider only the Visual and NIR (R and

G) channels, because these two channels are typically used to produce naturalistic colors while

the LWIR (B) channel usually serves to enhance target distinctness. Note that the actual order

of the initial mapping of the sensor channels to the RGB channels is irrelevant. Mapping the

sensor bands to a false-color RGB-image allows us to use standard image conversion tech-

niques, such as indexing [89]. In the next step the resulting false-color (RGB) image (Fig 3d) is

converted to an indexed image. Each pixel in such an image contains a single index. The index

refers to an RGB-value in a color look-up table. The number of entries can be chosen by the

user. In the present example of a sensor image consisting of two bands (R and G; Fig 3d) the

color look-up table contains various combinations of R and G values. Here the B-values are

The TRICLOBS Dynamic Multi-Band Image Data Set
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ignored since only the Visual and NIR bands are considered, however the procedure is identi-

cal when all three channels are considered. For each index representing a given R,G combina-

tion (i.e., for a given false color) the corresponding realistic color equivalent is obtained by

locating the pixels in the target image with the same index and collecting the corresponding

pixels in the (realistic color) reference image (Fig 3a). First, the RGB-values are converted to

perceptually de-correlated lαβ values [90]. Next, the average lαβ-vector is calculated over this

ensemble of pixels. Averaging guarantees that the computed average color reflects the percep-

tual average color. Averaging automatically takes the distribution of the pixels into account.

Colors that appear more frequently are given a greater weight. For instance, let us assume that

we would like to derive the realistic color associated with color index i. In that case we locate

all pixels in the (indexed) false-color multi-band target image with color index i. We then col-

lect all corresponding pixels (i.e., pixels with the same image coordinates) in the reference

Fig 3. Color remapping procedure. (a) Daylight color reference image. Visible (b) and NIR (c) images of the

same scene as in (a). (d) Two-band (RG) false-color image obtained by assigning (b) to the green and (c) to

the red channel of an RGB color image. The blue channel is set to zero. (e) The color mapping derived from

corresponding pixel pairs in (a) and (d). (f) Result of the application of the mapping scheme in (d) to the false-

color image in (d).

doi:10.1371/journal.pone.0165016.g003
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daytime color image, convert these to lαβ, and calculate the average lαβ-value of this set. Next,

we transform the resulting average lαβ-value back to RGB. Finally, we assign this RGB-value

to index i of the new color look-up table. These steps are successively carried out for all color

indices. This process yields a new color look-up table containing the realistic colors associated

with the various multi-band combinations in the false-color (RGB) look-up table. Replacing

the RGB-color look-up table (left side of Fig 3e) by the realistic color look-up table (right side

of Fig 3e) yields an image with a realistic color appearance, in which the colors are optimized

for this particular sample set (Fig 3f).

Registration sites and conditions

The imagery in the TRICLOBS data set were collected at three different locations and show

three different scenes.

The first part of the imagery (TRI_A) was collected at Marnehuizen, The Netherlands

(53.386311 deg North latitude, 6.262761 deg East longitude) (see https://nl.wikipedia.org/wiki/

Marnehuizen). Marnehuizen is a Dutch mock-up village built to train soldiers and police for

operations in urban environments. Marnehuizen consists of houses, sheds, shops, a bank, a

school, a town hall, a gas station and a village square. Street furniture like lights, telephone

booths, shrubs and trees, street signs, fences, parking lots, and car wrecks give the village a real-

istic appearance.

The second part of the imagery (TRI_B) was registered at the training grounds of the Royal

Netherlands Army Camouflage School at Reek, The Netherlands (51.729450 deg North lati-

tude, 5.705908 deg East longitude). This site also contains a few realistic houses with some

street furniture for training purposes.

The third part of the imagery (TRI_C) was collected at the site of the TNO laboratories in

Soesterberg, The Netherlands (52.115469 deg North latitude, 5.290877 deg East longitude).

The imagery was collected near a side entrance of the main building, where the walls were cov-

ered with foliage and a path leads to glass doors.

An ‘additional_data’ folder in the TRICLOBS data set contains Excel and CSV files that

present information on the environmental (atmospheric and lighting) conditions during the

actual image registration periods.

Scenarios

Table 1 gives a brief description of the different scenarios represented in the TRICLOBS

dynamic image data set. The scenes that are registered are representative for typical short-

range (military or civilian) surveillance scenarios. They include people, vehicles, foliage and

buildings or other man-made structures. The people are either stationary, walking or running

and dressed in military or in civilian clothing. They perform a range of different (sometimes

suspicious) activities, such as carrying different objects (box, gun, axe, stick), loitering, hiding

in the foliage, inspecting and entering buildings, fighting, walking around and driving vehicles.

Their image may vary from completely unobstructed, to partially occluded and fully occluded

during the course of a scene. The imagery was collected for a range of different lighting condi-

tions, ranging from just before (Scenario C) and just after (Scenario B) sunset to full darkness

(Scenario A). The range was chosen so as to ensure a variation in the information content in

the different spectral bands. Most scenarios present outdoor human activities, while some also

show activities inside buildings (Scenarios B1-3, C3-4). Some scenes (Scenarios A3, C2) con-

tain smoke that obscures the Visual and NIR channels. Note that scenes in which people are

behind smoke (opaque for Visual and NIR) or glass (opaque for LWIR) yield imagery with

complementary information content because the different spectral bands represent different
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Table 1. Brief description of the scenarios represented in the TRICLOBS database.

Scenario No. of

Frames

Action

A1 687 Three soldiers park a jeep on a small village square surrounded by a brick wall,

descend from the vehicle and walk away.

A2 655 The camera pans over a scene with houses, trees and semi shrubs and an

abandoned car wreck.

A3 1744 The scene represents a path between two houses. Smoke from a grenade that is

thrown into the scene fills the space between the two houses. An armed soldier

appears from behind the house on the left, crawls over the ground and enters the

house on the right. The soldier leaves the house and walks away.

A4 1573 The camera pans back and forth over a scene with a row of houses and a bank.

There is a roll of barbed wire on the ground in front of the bank. A person runs

from right to left and disappears behind the house next to the bank. An armed

soldier leaves the bank.

B1 1325 The scene shows the facade of a building with glass doors and foliage in front of

the walls. A person comes out of the foliage on the right, hides in the foliage on

the left, enters the building, leaves the building with a large box, and hides in the

foliage.

B2 5910 Same scene as in B1. A person emerges from the foliage on the left, enters the

building, waits until other people have left the building, opens the door and

inspects the entrance with a flashlight, enters the building again, walks back and

forth inside the hallway, leaves the building and walks back and forth between

the foliage on both sides of the pathway.

B3 1517 Same scene as in B1. A person emerges from the foliage on the left, enters the

building, leaves the building with a large box while carrying a flashlight, and hides

in the foliage.

B4 2574 Two persons, one carrying a stick and the other one carrying a small axe, pass

behind a glass shelter, enter the scene from behind the shelter, start a fight using

their axe and stick, and walk away.

C1 6133 The scene shows the facades of two houses with a lawn in the foreground. In

front of the house on the left there is a hedge. A small hot object lies on the

ground at the right end of the hedge. A person enters the scene from left,

disappears behind the hedge, returns with a box, drops the box over the hot

object on the ground, and leaves the scene on the left. Somewhat later the

person returns, removes the box from the hot object, drops it behind the hedge,

and leaves the scene again. Later, armed soldiers and a civilian walk through the

scene from left to right, passing by the hot object on the ground.

C2 7257 Same scene as in C1. Smoke from a grenade thrown on the middle of the lawn

gradually obscures parts of the scene. Soldiers and civilians walk through the

smoke.

C3 3843 Same scene as in C1. Persons move behind the open (upper left) and closed

(upper right) windows of the house on the left. A person opens and closes the

upper left window of the house on the right. Two armed soldiers walk along the

path between the two houses.

C4 3695 Same scene as in C1. Two armed soldiers inspect the house on the left. One

inspects the upper floor and looks out of the open window on the left. The other

leaves the building through the backdoor and appears on the right side of the

house on the left. Persons move behind the upper left window and in the

doorway of the house on the right. The two soldiers walk past the house on the

right an leave the scene.

C5 10365 Same scene as in C1. Two persons with a jeep repeatedly drive along to deliver

goods: first two times to the house on the right, then twice to the house on the

left.

C6 6657 Same scene as in C1. A person enters the scene from left, disappears behind

the hedge, returns with a box, drops the box over the hot object on the ground,

and leaves the scene on the left. Civilians carrying a range of different objects

(e.g., a briefcase, a rake) and soldiers (some carrying guns) walk through the

scene past the hot object.

(Continued )
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details in the scene. The scenarios are particularly useful for the evaluation of image fusion

algorithms.

The only individuals that appear in this manuscript and in the TRICLOBS dynamic image

data set are the authors of this paper. These individuals have given written informed consent

(as outlined in PLOS consent form) to publish these case details.

The TRICLOBS Data Set: Contents and Structure

The TRICLOBS image database (publicly available from https://figshare.com/articles/The_

TRICLOBS_Dynamic_Multiband_Image_Dataset/3206887 with DOI 10.6084/m9.figshare.

3206887) consists of three parts: TRI_A, TRI_B, and TRI_C, with imagery that was collected at

sites in Marnehuizen, Reek, and Soesterberg (The Netherlands), respectively.

The main folders TRI_A, TRI_B, and TRI_C contain 4, 4, and 8 subfolders, respectively.

Each subfolder contains TRICLOBS imagery of the different scenarios registered at each of the

three different locations. In addition, each of the folders TRI_A, TRI_B, and TRI_C also con-

tains a folder with the extension ‘photographs’, which contains full-color photographs of the

registration site. These photographs can be used to derive color mappings that give the TRI-

CLOBS multi-band imagery a realistic color appearance.

The subfolders for the individual scenarios each contain a folder with the extension ‘frames’

and a movie in MP4 format.

The ‘frames’ folders contain sequentially numbered false-color RGB images in 24-bit BMP

format and with a size of 640 × 480 pixels (e.g., Fig 4). Each of these RGB images is composed

of three corresponding (i.e., nearly simultaneously grabbed) 8-bit frames from the Visual (R),

NIR (G), and LWIR (B) channels, respectively, of the TRICLOBS system. Since all frames are

sequentially numbered the user may use any video capture and processing tool to view them

as a video stream. An example of an efficient tool for this purpose is VirtualDub, which is

licensed under the GNU General Public License and is freely available from http://www.

virtualdub.org. With VirtualDub the images in a given frames folder can simply be inspected

as a video stream by using the ‘File > Open video file’ option and selecting the first image in

the frames folder. VirtualDub will then automatically open the entire range of sequentially

numbered frames and a slider below the image display allows easy navigation through the

motion sequence.

The MP4 movies consist of four panels: the lower three panels represent the Visual (left),

NIR (middle) and LWIR (right) channels, while the upper panel shows the fused result after

color remapping on the TRICLOBS system (e.g., Fig 5). These movies only serve to give the

user a quick impression of the contents of the corresponding frames folders (by dynamically

showing the individual channels in the lower three panels) and the effects that may be achieved

by realistic color remapping of the false-color frames (upper panel). They are not intended for

further processing.

Table 1. (Continued)

Scenario No. of

Frames

Action

C7 901 Same scene as in C1. Two civilians walk through the scene carrying an

elongated object.

C8 2029 Same scene as in C1. Two armed soldiers on patrol walk past the hot object on

the ground.

doi:10.1371/journal.pone.0165016.t001

The TRICLOBS Dynamic Multi-Band Image Data Set

PLOS ONE | DOI:10.1371/journal.pone.0165016 December 30, 2016 12 / 23

https://figshare.com/articles/The_TRICLOBS_Dynamic_Multiband_Image_Dataset/3206887
https://figshare.com/articles/The_TRICLOBS_Dynamic_Multiband_Image_Dataset/3206887
http://dx.doi.org/10.6084/m9.figshare.3206887
http://dx.doi.org/10.6084/m9.figshare.3206887
http://www.virtualdub.org
http://www.virtualdub.org


Example Applications

Image fusion

Figs 6–8 illustrate the use of individual false-color RGB frames for testing image fusion algo-

rithms. The grayscale image fusion method used in these examples is a 4 layer Laplacian pyra-

mid [91], using simple averaging to compute the lowest resolution level of the fused image

representation [92].

Fig 6a shows a frame from the TRI_B1 sequence in the TRICLOBS database. This scene

represents a building with a glass door and a person carrying a box behind the door. There is

foliage on both sides of the path leading to the door. Smoke rises from a chimney on the left.

Notice that there is a person behind the glass door carrying a large box. This person is quite

distinct in the Visual band (Fig 6b), much less visible in the NIR band (Fig 6c) and invisible in

the LWIR band (Fig 6d) because glass is opaque to thermal radiation. The smoke from the

chimney on the roof of the building on the left is clearly visible in the LWIR band (thermal

contrast) but not represented in the other two bands. Note that all these details are clearly rep-

resented in the grayscale fused image that is obtained by fusion of the three individual bands

with a Laplacian pyramid algorithm (Fig 6e).

Fig 7a shows a frame from the TRI_B2 sequence in the TRICLOBS database. This scene is

similar to the scene in Fig 6 except for the person, who now emerges from the foliage on the

left side of the pathway. His light jacket and dark trousers blend well into the light foliage and

dark shadows beneath the semi-shrubs with virtually no luminance contrast. Similarly, the

smoke rising from the chimney on the left has no luminance contrast with the sky. As a result

both details are hard to distinguish in the Visual (Fig 7b) and NIR (Fig 7c) bands. However,

they are both highly visible in the LWIR band (Fig 7d) due to their temperature contrast. Both

Fig 4. Example RGB false-color frame and its individual channels (from scenario TRI_A1). False-color

RGB frames in the TRICLOBS database (a) are constructed by mapping corresponding (b) Visual frames to

the Red channel, (c) NIR frames to the Green channel and (d) LWIR frames to the Blue channel of an RGB

color image.

doi:10.1371/journal.pone.0165016.g004
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these details are represented with high contrast in the grayscale fused image (Fig 7e) that is

obtained by fusion of the three individual bands with a Laplacian pyramid algorithm.

Fig 8a shows a frame from the TRI_C3 sequence in the TRICLOBS database. This scene

shows a house in the foreground with a slanting roof with a shed attached and a house with a

flat roof in the background. Note the two upper windows in the house on the foreground

(left). The left upper window is open while the right one is closed. The person behind the open

window is only visible in the LWIR band (Fig 8d: high thermal contrast), while the person

behind the closed window can only be seen in the NIR band (Fig 8c) since glass is opaque to

LWIR. The two soldiers walking in front of the hedge in the background are most distinct in

the Visible (Fig 8b) and in the NIR (Fig 8c) band. Note that all persons are clearly visible in the

grayscale fused image (Fig 8e). This image results from fusion of the three individual bands

with a Laplacian pyramid algorithm.

Color remapping

Fig 9 presents some examples of the application of color remapping to raw RGB false-color

frames from the TRICLOBS image data set. The transformation is defined by the lookup table

pair shown in Fig 9a and 9b, and was performed according to the procedure described previ-

ously in the Materials and Methods section (for a full description of the method see [79]). The

color table shown in Fig 9a represents all possible RG combinations that can appear in a RGB

Fig 5. Example MP4 movie frame (from TRI_A1.mp4). The MP4 movies consist of four panels: the lower

three panels represent the Visual (left), NIR (middle) and LWIR (right) channels, while the upper panel shows

the fused result after color remapping performed on the TRICLOBS system.

doi:10.1371/journal.pone.0165016.g005
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color image. The B or LWIR channels is not considered here since it has no relation with natu-

ral colors. The color table shown in Fig 9b was generated by relating all the RG tuples to corre-

sponding RGB triples in a color photographs matching a TRICLOBS false-color image. This

mapping gives the false-color frames a realistic color appearance, as shown in Fig 6d, 6f and

6h. In a previous study we found that this type of color-remapped multi-band image signifi-

cantly enhanced human perception. With color remapped imagery, observers correctly per-

ceive more details (i.e., they can extract the gist) of a scene in a single glimpse compared to

conventional monochrome image representations [5].

Concluding Remarks

In this paper we presented the TRICLOBS image data set which is the first publicly available

dataset that provides registered Visual, NIR and LWIR dynamic image sequences representing

different surveillance scenarios. The imagery was collected during several nightly field trials

using our newly developed TRICLOBS camera system. The resulting data set is intended for

the development and evaluation of image fusion, enhancement and color mapping algorithms

Fig 6. Example of grayscale image fusion. (a) False-color frame from series TRI_B1, with the Visual (R) channel (b), the NIR(G)

channel (c) and the LWIR (B) channel (d). (e) Result of grayscale (Laplacian pyramid) fusion of (b-d). The person carrying a box behind the

glass door is quite distinct in the Visual band but not represented in the LWIR band. In contrast, smoke from the chimney on the upper left is

quite distinct in the LWIR band but not represented in the other bands.

doi:10.1371/journal.pone.0165016.g006
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for military and civilian short-range surveillance scenarios. Individual frames from the data set

contain registered Visual, NIR and LWIR images. These can be used to develop and test static

image fusion and color remapping algorithms. Sequences of frames can be used for the devel-

opment of dynamic image fusion algorithms. TRICLOBS imagery has been used successfully

in previous studies to develop new color mapping schemes to give multi-band night vision

imagery a realistic color appearance [73, 86], to design new image fusion schemes [63], to

assess the added value of color fused image representations for human observation [5], to con-

struct an augmented reality nighttime surveillance system [80], and to evaluate a synthetic

observer approach to multisensory resolution assessment [93, 94].

Limitations of the data set

The TRICLOBS image data set also has some limitations.

Currently only a limited number of scenarios and scenes are included. To increase the

value of the data set we defined scenarios that are generic for (military and civilian)

Fig 7. Example of grayscale image fusion. (a) False-color frame from series TRI_B2 with the Visual (R) channel (b), the NIR(G) channel

(c) and the LWIR (B) channel (d). (e) Result of grayscale (Laplacian pyramid) fusion of (b-d). The person emerging from the foliage and the

smoke plume rising from the chimney on the left are both highly visible in the LWIR band (d) but hard to distinguish in the other two bands.

Both these details are represented with high contrast in the grayscale fused image (e) that is obtained through Laplacian pyramid fusion of

the three individual bands.

doi:10.1371/journal.pone.0165016.g007
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surveillance applications, including a wide range of different objects (white hot targets, weap-

ons, briefcase, vehicles, etc.). Also, the range of atmospherics and lighting conditions for which

imagery was registered is rather limited, ranging from just before, just after, to long after sun-

set. In the future, we plan to extend the data set with imagery of other natural, as well as urban,

environments, registered for a wide range of atmospheric conditions.

The digitization of the three TRICLOBS sensor channels was not synchronized. However,

the maximal time delays were quite small (< 9 ms). As a result, registration errors may only

become visible when objects move through the scene at high speed.

The two Photonis ICUs had independent automatic gain regulation, which resulted in

some minor flicker effects in some conditions. The user can correct these effects by normaliz-

ing both Visual and NIR image sequences.

The images of the two Photonis ICUs show some vignetting (a reduction of the image

brightness towards the edges). The user can either correct this effect by applying a digital con-

trast enhancement procedure or by using only the central part of the frames for image fusion

applications.

Fig 8. Example of grayscale image fusion. (a) False-color frame from series TRI_C3 with the Visual (R) channel (b), the NIR(G) channel

(c) and the LWIR (B) channel (d). (e) Result of grayscale (Laplacian pyramid) fusion of (b-d). The persons behind the two upper windows in

the house on the foreground (left) and the two soldiers in front of the hedge in the back are visible in different bands but are all represented

in the fused image (e).

doi:10.1371/journal.pone.0165016.g008
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system. In: Güell JJ, Bernier KL, editors. Enhanced and Synthetic Vision 2010; Vol SPIE-7689. Belling-

ham, WA, USA: The International Society for Optical Engineering; 2010. p. 7689061–16.

82. Toet A. INVIS: Integrated night vision surveillance and observation system 2015. https://dx.doi.org/10.

6084/m9.figshare.1495334.v1.

83. Toet A. Presentation of the INVIS full color night vision system 2015. https://dx.doi.org/10.6084/m9.

figshare.1495335.v1.

84. Hogervorst MA, Toet A. Evaluation of a color fused dual-band NVG. In: Dasarathy BV, editor. Multisen-

sor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2009; Vol SPIE-

734502. Bellingham, WA: The International Society for Optical Engineering; 2009. p. 1–7.

The TRICLOBS Dynamic Multi-Band Image Data Set

PLOS ONE | DOI:10.1371/journal.pone.0165016 December 30, 2016 22 / 23

http://dx.doi.org/10.1364/AO.55.006480
http://www.ncbi.nlm.nih.gov/pubmed/27534499
http://dx.doi.org/10.6084/m9.figshare.1008029
http://dx.doi.org/10.6084/m9.figshare.1007650
http://dx.doi.org/10.1109/TPAMI.2011.109
http://www.ncbi.nlm.nih.gov/pubmed/21576753
https://dx.doi.org/10.6084/m9.figshare.1495334.v1
https://dx.doi.org/10.6084/m9.figshare.1495334.v1
https://dx.doi.org/10.6084/m9.figshare.1495335.v1
https://dx.doi.org/10.6084/m9.figshare.1495335.v1


85. Hogervorst MA, Toet A. Presenting nighttime imagery in daytime colours. 11th International Conference

on Information Fusion; Cologne, Germany: IEEE; 2008. p. 706–13.

86. Toet A, Hogervorst MA. Progress in color night vision. Optical Engineering. 2012; 51(1):010901-1-19.

87. Hogervorst MA, Jansen C, Toet A, Bijl P, Bakker P, Hiddema AC, et al. Colour-the-INSight: combining a

direct view rifle sight with fused intensified and thermal imagery. In: Braun JJ, editor. Information Sys-

tems and Networks: Processing, Fusion, and Knowledge Generation; Vol SPIE-8407-24; Bellingham,

WA: The International Society for Optical Engineering; 2012. p. 1–10.

88. Toet A, Hogervorst MA. Real-time full color multiband night vision. In: Gallegos-Funes F, editor. Vision

Sensors and Edge Detection. Rijeka, Croatia: INTECHopen; 2010. p. 105–42. www.intechopen.com/

download/pdf/11883.

89. Heckbert P. Color image quantization for frame buffer display. Computer Graphics. 1982; 16(3):297–

307.

90. Ruderman DL, Cronin TW, Chiao C-C. Statistics of cone responses to natural images: implications for

visual coding. Journal of the Optical Society of America A. 1998; 15(8):2036–45.

91. Burt PJ, Adelson EH. The Laplacian pyramid as a compact image code. IEEE Transactions on Commu-

nications. 1983; 31(4):532–40.

92. Toet A. Hierarchical image fusion. Machine Vision and Applications. 1990; 3(1):1–11.

93. Pinkus AR, Dommett DW, Task HL. A comparison of Landolt C and triangle resolution targets using the

synthetic observer approach to sensor resolution assessment. Signal Processing, Sensor Fusion, and

Target Recognition XXI; Vol SPIE-83921A The International Society for Optical Engineering; 2012. p.

1–9.

94. Pinkus AR, Dommett DW, Task HL. A comparison of sensor resolution assessment by human vision

versus custom software for Landolt C and triangle resolution targets. In: Kadar I, editor. Signal Process-

ing, Sensor Fusion, and Target Recognition XXII; Vol SPIE-8745. Bellingham, WA, USA: The Interna-

tional Society for Optical Engineering; 2013. p. 87450Z1–12.

The TRICLOBS Dynamic Multi-Band Image Data Set

PLOS ONE | DOI:10.1371/journal.pone.0165016 December 30, 2016 23 / 23

http://www.intechopen.com/download/pdf/11883
http://www.intechopen.com/download/pdf/11883

