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In this paper, the phenomenon of spalling of concrete in fire has been studied using a numerical
model. Spalling is the violent or non-violent breaking off of layers or pieces of concrete when it is
exposed to high temperatures as experienced in fires. The types and mechanisms of spalling have been
explained. A numerical model has been developed, which takes into account main characteristics of
the real phenomenon. To improve the stability, robustness and calculation time of the model analysis,
the transport phenomenon and the mechanical behaviour have been coupled in a staggered way. The
system of differential equations describing the transport phenomenon has been implemented in
FEMLAB, an interactive environment to model single and coupled phenomenon based on partial
differential equations. A one-dimensional example has been studied. It has been shown that the
results are physically reasonable but still validation of the results needs to be done. These results will
be validated against the experimental measurements and the results obtained by other recently

developed models predicting the concrete spalling.
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1 Introduction

A series of fires in road and rail tunnels have occurred across Europe over the past decade, causing

a serious loss of life and significant structural damage. It was in the first place the human casualties
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and second the structural damage and as consequence the financial loss in the Mont Blanc tunnel,
Tauern tunnel, Kaprun tunnel, Gotthard tunnel, Great Belt tunnel (during construction) and
Channel tunnel (soon after commissioning) fires that have provided the impetus to take the fire
safety more seriously. These unforgettable disasters seize the public attention, the European
authorities attention and as consequence the engineers attention to focus on the fir safety.

As far as the fire safety is concerned the main structure shouldn’t collapse until both rescue workers
and users are safe. To this end it is important to know about the behaviour of the construction
exposed to fire. The use of incombustible materials does not guarantee the safety of a structure.
Steel, for instance, quickly loses its strength when heated and its yield strength decreases
significantly as it absorbs heat, endangering the stability of the structure. Also reinforced concrete is
not immune to fire. Concrete is the most widely used construction material on earth and has proved
to be very durable under most conditions. Despite the fact that concrete has the advantages of
durability in comparison to other construction materials, massiveness and in-combustibility related
to fire safety, it can also undergo serious damages under fire conditions. Concrete may spall under
elevated temperatures, exposing the steel reinforcement and weakening structural members.
Spalling of concrete is currently a hot issue in civil engineering and it is indicated as the major cause
for non-recoverable damage in structures subjected to fire. Figure 1 shows the construction damage
that occurred due to the fire inside the Channel tunnel. The concrete was completely destroyed and
vanished leaving only the bare steel reinforcement which lost it's strength and bent down in the

intense heat. This fire caused huge finance damage but fortunately no lives were lost.

Figure1:  Fire damage in Channel tunnel

Spalling of concrete is the violent or non-violent breaking off of layers or pieces of concrete from the

surface of a structural element when it is exposed to high temperatures as expected in fires. Spalling
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of concrete has serious consequences. Loss of section (i.e. reduction of the cross-sectional area of the
concrete so that it is no longer able to sustain the stresses) and loss of protection to steel
reinforcement (reinforcement reaching excessive temperatures) lead to a decrease of the structural
load bearing capacity and ultimately failure.

In this paper, a model is employed to describe the phenomenon of spalling of concrete due to high
temperatures. The concrete is modelled as a three-phase porous medium with constituents in the
solid phase (solid matrix and chemically bound water), the liquid phase (capillary or free water and
physically adsorbed water) and the gas phase (dry air and water vapour). This model also takes into
account the phase changes of water.

The governing differential equations describing the equilibrium of the flow of mass, energy and
momentum have been obtained based on the mixture theory by fully integration of the energy and
mass conservation equations. Four primary state variables, i.e. gas pressure p,, capillary pressure p,
temperature T and displacement vector of the solid matrix u, were chosen to describe the state of
concrete at high temperatures. After introducing the constitutive relationships and the
thermodynamic state relationship a system of differential equation of four coupled partially
differential equations was found. Three of them (p;, p. and T) describe the transport phenomenon
and the fourth one (u) describes the mechanical behaviour of the system. This paper describes the
fully coupled system. However, for the implementation of the model, the transport phenomenon
and the mechanical behaviour are coupled in a staggered way. It means that the effect of the
transport parameters on the mechanical behaviour is considered but the influence of the mechanical
behaviour on the transport phenomena is assumed to be negligible. Staggered analysis of this
system has several advantages. First of all the analysis will be more stabile and robust. Second, the
calculation time will be decreased by choosing different discretisations in time and space to
calculate the transport parameters than that to calculate the displacements.

The differential equations describing the transport phenomenon was solved using the computer
programme FEMLAB. A one-dimensional example was studied. In the frame of this example the
temperature and pressures were calculated inside an concrete wall exposed to fire at one side. The
results were plotted for different saturation degrees of the concrete.

Next development within the framework of this project is to validate these results. The validation
will be done firstly using experimental results and secondly by comparison with the results
obtained by another recently developed numerical model [3] describing the phenomenon spalling

of concrete.

Mechanisms which lead to spalling

Spalling can be grouped into five categories violent spalling, sloughing-off, corner spalling,
explosive spalling and post-cooling spalling [1].
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Many material (e.g. aggregate type), geometric (e.g. section shape and size), productional (e.g.
casting process) and environmental (e.g. heating rate) factors have been identified from experiments
as influencing spalling of concrete in fire. The main factors influencing spalling are the heating rate,
permeability of the material, initial pore saturation level and the level of external applied load. High
strength concrete is more likely to explosively spall than normal strength concrete despite its higher
tensile strength. This is because of the lower ductility and the greater pore pressures that build up
during heating owing to the material’s lower permeability. Other factors such as the cross sectional
size and shape, heating profile, concrete age, aggregate size and type, the presence of cracking and
reinforcement also play a role.

Each kind of concrete spalling is caused by a specific combination of physical or chemical

mechanisms. These are as follows:

° Pore pressure rises due to expanding and evaporating water at elevated temperatures;

° Compression of the heated surface due to a thermal gradient in the cross section;

° Internal cracking due to difference in thermal expansion between aggregate and cement
paste;

o Cracking due to difference in thermal expansion/deformation between concrete and
reinforcement bars;

. Strength loss due to chemical transitions during heating.

Violent spalling which is separation of small or large pieces of concrete from the cross section, is
caused by pore pressure, thermal gradients and internal cracking. Sloughing-off spalling is caused
by strength loss due to internal cracking and chemical deterioration of the cement paste. Corner
spalling is caused by cracks due to the different thermal deformation of concrete and reinforcement
bar at the corner of concrete. Explosive spalling is the result of the combination of the pore pressure
and thermal gradients in the cross-section. Post-cooling spalling occurs after the fire is over and
caused by internal cracking due to different thermal expansion of aggregate and loss of strength

due to chemical transitions.

Numerical approach

3.1 General overview

To study the phenomenon concrete spalling in fire a fully coupled multi-phase hydro-thermal-
mechanical model is considered, which takes into account the main characteristics of this problem.
Within this model the concrete is considered to be a three phase porous medium based on mixture
theory or averaging theory. This theory offers possibilities for a better understanding of the

microscopic situation and its relation to the macroscopic level.
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The three considered phases within this model are solid phase, liquid phase and gas phase. The
solid phase consists of solid matrix and chemically bound water. The liquid phase consists of
capillary or free water and physically adsorbed water. Physically adsorbed water is present in the
hole range of water contents of the medium, while, the capillary or free water appears when water
content exceeds the so-called solid saturation point S, [6]. The gas phase is a mixture of dry air and
water vapour.

Transitions that take place between the three abovementioned phases can be physical or chemical in
nature and are thermodynamically not fully reversible. In cement based concrete these phase
changes are dehydration/hydration of chemically bound water, evaporation/condensation of free
water and desorption/adsorption of physically adsorbed water. Other phase changes such as the
decarbonation/ carbonation and a-f inversion/ f- a inversion (a-f transformation of quartz at 573
°C) were not incorporated within this model. It has also been assumed that the phase changes
happen only between water vapour and the other three, i.e. there is no direct mutual exchange
between chemically bound water, physically adsorbed water and capillary water. Figure 2 shows

schematically the phase changes of water implemented in model.

Chemically bound Physically adsorbed
water water
2N Hydration 7
" . A{dsorption
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water (Gas)
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Figure 2: Phase changes of water; solid arrows indicate energy consumption, dashed arrows indicate

energy release

One can see in this figure that dehydration is the phase change of chemically bound water to water
vapour which is an energy consuming chemical process. This process produces a reduction in the
solid skeleton mass of the cement paste. Hydration, which is a reverse process of dehydration, takes
place at room temperature and the process increases with temperature in the presence of moisture
up to 80 °C or more resulting in an increase in the mass of solid skeleton. Above this temperature,

dehydration is a gradual process up to 850 °C [7]. Evaporation is the process by which water gains
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energy to change from the capillary or free water to the gas phase. In contrary, condensation is the
process whereby water vapour is returned to the liquid phase. Desorption is the evaporation of
water molecules from the surface of the solid, gaining energy, while, adsorption is the binding of
the water molecules to the surface of the solid. Evaporation of water increases with temperature
particularly above approximately 80 °C depending on the pressure. The loss of the capillary water
does not significantly influence the mechanical property of the cement paste but the loss of
physically adsorbed water has a major influence on the mechanical properties. Beyond the triple
point of water (374.14 °C) no difference exists anymore between capillary water and water vapour.
Also the capillary pressure vanishes.

The basic equations used in this model fall under three main categories: a) constitutive relationship
of concrete describing the real behaviour of the material derived directly from experiments, b)
thermodynamic state equations allowing the treatment of dry air and moist air as ideal gases
(Clapeyron’s law) as well as equilibrium relations for capillary menisci (Kelvin’s law) and gas
phases (Dalton’s law) c) general laws of conservation which must be obeyed in space and time
including the first principle of thermodynamics (enthalpy conservation). Before these equations are

discussed, first the definition of the material time derivative is given.

3.2 Material time derivative
The material time derivative of any differentiable function f:(x,t), given in its spatial description and

referring to a moving particle of the i phase of a material, is

D )
”_f”zﬁ_yv‘f”.v”’ 1)
Dt ot
with v, the mass velocity of the 7 phase. If subscript a is used it gives
D )
—a—f”=—f£+Vf”'Va. )
Dt ot
Subtraction of these derivatives yields to the following relation:
D,1. D1
———+Vf”-vm, 3)
Dt Dt

where Vu=-Vz=V,-Vx, known as diffusion velocity, is the velocity of the a phase with respect to the

phase. In these relations A is the gradient operator defined as ={d/dx, d/dy, 9/9z]".

3.3  Constitutive relationship and thermodynamic state relationships
In this model we assume the moist air as a mixture of two ideal gases, i.e. dry air and water vapour.

The equations of state of a perfect gas, applied to dry air (ga), vapour (gw) and moist air (g) are
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where M,, p; and p, are the molar mass, the density and pressure of constituent i, respectively, and
R is the universal gas constant. The degree of saturation of constituent r is defined as the ratio of the
volume of constituent  to the volume of the void. It follows immediately for the saturation degree
of liquid water and the gas that

S,+S, =1 ®)
The degree of saturation with liquid water is an experimentally determined function of capillary
pressure p. and temperature T. This function is usually presented in the form of the sorption
isotherms [2,3].
The capillary pressure is defined as the pressure difference between the gas phase and the liquid
phase, which can be find through the Laplace equation from the pore radius r and the surface

tension o

20
PC=PR—PW=T: (6)

and the pressure in the solid phase is

P, =prw+pgSg =pg—prSw. @)
where S, is the saturation degree of the constituent 7.
For the density of water many experiments were carried out in the past. The values were

approximated by a linearization in temperature and pressure:

P =Puyexp (=B, (T ~T,)+C, (P, ~ P.,)). ®
where pu, is the water density at the reference temperature T, and pressure puo, fu is the thermal
expansion coefficient and Cy is the compressibility coefficient.

For the relationship between the relative humidity (RH) and the capillary pressure in the pores, the

Kelvin-Laplace law is assumed to be valid

T
RH :I)gw—()zexp _I)_"I_‘_l__w_ , )
Pon (T) p RT

with pg.s(T) the water vapour saturation pressure which can be calculated using the Clausous-

Clapeyron equation,
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Pgws (T)ngwxoexp B — ’ (10)

where pg.s is the water vapour pressure at reference temperature T, and AHy, is the specific
enthalpy of evaporation.

Darcy’s law is assumed valid for transport of both water and gas in slow phenomenon.

k
v, =LK(—Vp” +0,8). (11)

" nS,u,

In this relation x is the permeability tensor of the medium, yi, is the dynamic viscosity of the
constituent 7, n is the porosity and ki is the relative permeability. The porosity n is defined as the
ratio of the volume of the void to the total volume of the medium

Diffusive-dispersive mass flux J is governed by Fick’s law

Y =18, P,V =—P:D,,V | 22 |, (12)
a

where Dy, is effective dispersion tensor, r is the diffusion phase and «is the phase in which
diffusion takes place (a=w,g).
A constitutive assumption for the heat flux is the generalised version of Fourier’s law, q=-A4AT,
with Ay the effective thermal conductivity tensor and q the heat flux of the multiphase medium, the
sum of the partial heat fluxes q,. For porous media the following linear relationship may be used
[8]:

1440wl | (13)

4 (i-n),

effzﬂ'

dry

3.4  Governing equations

To find the governing equations we need to fully integrate the conservation equations of the three
quantities, mass, energy and momentum (force balance). These conservation equations can be
derived using the general conservation equation. For a generic conserved variable i (e.g. like mass,

momentum and energy) the general conservation equation may be written as

a—l//+V~(f+z//v)—H=O, (14)

ot

with f the flux of yin the absence of the fluid transport, pv the transport flux and H the source or
sink of y. Given equation (14) for the conservation of anything and specifying the subscript s for
solid, w for liquid phase and g for the gas phase (dry air plus vapour), it is now straightforward to

consider the conservation equations.
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To derive the conservation equation of solid mass we just substitute y = (1-n)a (density is amount
of mass per unit volume), f = 0 (mass flux can only change due to transport) and H = -0 (Menyar)/0t
(solid mass can change by dehydration/hydration process) into equation (14) to get

A((1-n)p,)
ot

The mass conservation equations of liquid water, vapour water and dry air can be derived in the

+V-((1=n) v, ) = =1t - (15)

same way as equation (15) by substitution H = -9 (m;)/dt for liquid water (mass of liquid water can
be change by eider evaporation/condensation or desorption/adsorption processes), H= 9 (Maehyar +
m;)/dt for vapour water (mass of vapour water can be change by dehydration/hydration,
evaporation/condensation and desorption/adsorption processes) and H = 0 (dry air can not be
crated or destroyed) for dry air into (14). Hence, one may find for mass balance equation of liquid

water

d(nS,p,)
ot i

for mass balance equation of vapour water
d (nS P )

ot
and for mass balance equation of dry air
) (nS Pea )

ot

The amount of heat (energy) per unit volume is y = (0C,)4T where C, is the specific heat, T is the

V-(nS,0,v,)=-m, (16)

(”S PeuV gw) = My T 1, 17)

+V- (nS £..V 0. (18)

ga R“)

temperature and (0C,), is the effective thermal capacity of partially saturated concrete. The heat
flux has two components due to conduction and transport. In the absence of transport the heat flux
is f = -A4VT where Ay is the effective thermal conductivity of partially saturated concrete. Finally,
heat can be released /absorbed during dehydration/hydration, evaporation/condensation and
desorption/adsorption. The of energy related to the phase changes is equal to the change in the
enthalpy, AH. Thus the heat released /absorbed during abovementioned processes may be
calculated as H=AH enyard(Maenyar)/0t+AH0 (m;)/0t. Hence, the energy conservation equation may be

written as follows:

(9C,) y S+ (p.C v+ £,Cyp¥, ) VT =9 (2,97

= mdehydrAH dehyar T 1Y AH,

(19)

In these equations [ = desorp if S < S, and | = evap if S > S
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Conservation of linear momentum or force balance can be derived in exactly the same way,
however momentum is a vector field. In general momentum is mv, therefore the amount of
momentum per unit volume is y = (1-n)ov; for solid phase, = nS.0.vi for liquid water phase, y =
1SV gw fOr vapour water phase and y = nSg0.V, for dry air phase. The momentum can be
changed by forces. As stress is simply force per unit area, the stress can also be thought of as a flux
of the force potential, i.e. f=-(1-n)os for solid phase, f=-nS,0w for liquid water phase, f=-nS,Ggw for
vapour water phase and f=-nS,0y. for dry air phase. The other forces are body forces such as gravity
and internal forces. Neglecting the internal forces and considering the change of linear momentum
due to dehydration/hydration, evaporation/condensation and desorption/adsorption processes,
thus H=(1-n)ag-[0(Maenar)/dt]vs for solid phase, H=nS.,0.g-[0(m:)/dt]v., for liquid water phase,
H=nS¢0¢g+[0(Machyar)/0t+0(rm)/0t ]V, for vapour water phase and H=nSg0,.g for dry air phase where
g is the net acceleration. Substituting into (14) yields

o((1=n)p,v,)

+V-((1-n)p,v,®V,)

ot (20)
-V-((1-n)e,)—(1-n) g+ 1t 44 ¥, =0,
M—E‘;-tpW—vi)Jrv-(nswpwvw ®v,)-V-(nS,0,) o
-nS,p,g+mv, =0,
a(nS £,V w)
- +V (1800 V 0 ®V,, )~V (15,9, -

- nSgpgwg - (mdehydr + ml ) vgw = O’

a(nSgpgavga)
ot

for solid, liquid water, vapour water and dry air phase, respectively. Expanding the first and second

+V-(nSgp& \% ®vga)—V-(nS c )—nSgpgag=0,(23)

ga ~ ga 8 8a

terms of equations (20)-(23) and summation of these equations and by substitution of equations (15)

-(18) into the result yield to the following conservation of momentum

Vot pg=(1-m)p [ Doy (v) fens.o, [ Gren,9-(v.)

+nS, 0, a;:W+vng-(vgw) +nS,0,, a;:"+vgaV-(vga) 3

(24)
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where pis the average density of the multiphase medium, given by p=(1-n)o+nS.0.+ nSgp, and &
the total stress of the multiphase medium, expressed by 0=(1-n)o :+nS,, 6.+nS; 6;. In which 65, 6.

and o are the intrinsic stresses and can be calculated by:
4
6, =¢ —-alp,,¢, =Ip, o, =Ip, (25)
with I the identity tensor, 6’=D.€ the effective stress and a=1-(K;/Kn) is the Biot’s constant with K

and K the bulk moduli of solid and porous medium, matrix De is the stiffness matrix and e=Lu the

stress tensor, where L is the differential operator defined as follows:

-

9
0x

L=|0

0

0

J

dy
0

0

0

9
0z

9
dy
9
ox

0

0

9
0z
d
oy

9
0z

0

)

ox

ke 100

(26)

Under the assumptions of small-strain theory and isothermal equilibrium and with neglecting the
influence of the acceleration term dv/dt and the convector terms v(V.v), results for conservation of

momentum
V-o+pg=0. 7)

The conservation of angular momentum leads to the observation that the stress tensor is

symmetrical.

3.5 Formulation of system of equations
Applying the material time derivatives (1)-(3) and expansion of the divergence terms in

conservation equations (15)-(18) one may find for solid mass conservation equation

(1-n) Dg;k_%?ﬂl_n)v,vs:_w, (28)
P, P

for mass balance equation for liquid water
Ds"+iDsSw +LDspw
Dt S, Dt p, Dt

(29)

S o V-(nS,p,v,,)+nV-v = L;va ;

for mass balance equation for vapour water

+
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D DS Dp,,
e Lt i P B + (nS OV gs)
Dt S, Dt p, Dt S.p, .
Mgy M
F S (nS PguV gwx)+nv'vs = d;i‘vydr l
ngW Hng
for mass balance equation for dry air
D DS D
_sn+_’_1_ -+ - L ¥ 1 (nS PeaV gs)
Dt S, Dt p, Dt S,p,
(C2))

+

(nS 0¥ o ) +nV-v, =0.

gl ga
The first term in equation (28) that is related to the material time derivative of the solid density. The
solid density p; has been considered as function of solid pressure p;, temperature T, the first
invariant of effective stress tensor tro” and the degree of cement dehydration ['nys. Thus its

derivative with respect to time t leads to:

1 Dp _1(9p Dp, dp. DT
p, Dt dp, Dt OdT Dt

(32)
ap Dtro i ap‘ Dsrdehydr

atrc Dt dr,. Dt

However iip— =

L 295
psaps Kslpa

= and

90 _p L 1 dp, 1
" p, otre’ 3(n—1)KA_

DI DT
st dehydr =~—3(1—Q’)K V- v, Bl 1 D, sPs — 4 S in which K; is the bulk
Dt K Dt " Dr

modulus of solid, f is the thermal expansion coefficient of solid and o is the Biot’s constant.

Substitution of these expressions into relation (32) gives

1Dp. 1 (a-nDp DT
—sr7s sts . s 1___ V
p, Dt l—n{ K, Dt (a=n)A, Dt (1=a)v-v

s

(33)
N 1-n dp, DT sna

px ardehydr Dt
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Similarly, the third term in equation (29) that is related to the material time derivative of the water
density can be obtained by assuming that p,is a function of water pressure p,, and temperature T.

Thus its derivative with respect to time t leads to:

1 Dp,_1(9,Dp, 9p,DT
p, Dt p \dp, Dt OT Dt

(34)

However L apw = : k apw

p. op, K - p, oT

w

=— ﬂw in which K, is the bulk modulus of water

and f, is the thermal expansion coefficient of water. Hence equation (34) can be rewritten as:
iDspw: 1 Dspw_ﬂ DYT
p, Dt K, Dt " Dt

Solving the material derivative of porosity n from the solid mass balance equation (28) and

(35)

substitution into the equations (29)-(31) and by introducing the relations (6)-(5), (11), (12), (33) and
(35) into the results yield for mass balance equation for liquid water

— D -
) a-n  n Py ) a nSer n Dsp’+aSWV-vS
K, K, ) Dt K, K, ) Dt
DT a-n DS
=S, ((@—n)p +np, )——+| n— S —E
W(( ). 'Bw) Dt K ik Dt

s

= DI’
+ L W (nSwpwvws ) + Sw = = aps L
pw ps aFdehydr Dt

S

(36)

mdehydr m1
S, —m L

P Py

for mass balance equation for vapour water
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a-nDp, a-nD,p,
g —_Sgsw e
K. Dt K. Dt

~(a-n) DT | ., ¢ & |DS,
* ¢ Dt Pes K. ) Dt

(nS PV gs)

8w gw
n Ds pgw +S 1—n aps Dsrdehydr
f pgw Dt ) ps aFdehydr Dt

+aSgV°Vx

+

(nS Pon¥ ewe ) (37)

+5

_s M yohyar 1 Mpenyar + 1Y

g 9
s Pew
for mass balance equation for dry air
a-nDp a-n D,
s 0% g5, TP g5 vy,
K, Dt K, Dt ‘

DT a-n\D,S
-8, (a=n)B,=——|n+p.S —
Ha-mb T, [ Pk ]

s

(38)
1 k, x 1
+—V- pgaL(—Vpg +pgg) +—V: (nS PraV gnx)
pgﬂ 'us' pgﬂ
5 S n Dxpga o S l_n ap; Dstehy(Ir — _S mdehydr )

g

pga Dt ¢ ps al—‘dehydr Dt ¢ ps

Five partial differential equations (19), (27) and (36)-(38) form the system of differential equations of
this problem. Choosing gas pressure pg, capillary pressure p., temperature T and displacement
vector of the solid matrix u as four primary state variables we need to eliminate one of equations.

Solving the term 9 (m)/dt from equation (36) and with substitution in other equations, as well as the

following relationships:

Vv, —ILa—u 39)
o’
s, 0S, dp, 0S, 0T
= + — (40)
ot dp, ot IT ot
i(Mw )zMw apgw apr +Mw apsw pRW aT (41)
ot ¢ RT dp, ot RT\ dT EX
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a(Ma )_MaapR_Mﬂpga_T_MaapRW%

a\TR"*)"RT % RT® & RT op, ot
42)
+ M(l pgw _ apgw _QZ:
RO\ T 9T )or’
9 v
P | L P PPy w
p g p g ap c ( )4 ¢ )
and using the Galerkin’s method (weighted residuals) one can finally obtain the governing
equations written in matrix form as follows:
Ci +Kx=F, (44)

ot

pg Kgn Kgr KgT 0
K K. K 0
wihx={Pel K| @& e e ,
T K, K, K, 0
u Kug Kur KuT Kuu
¢, C, C, C £

f

gu 8
&

C
' and F =
CTg CTC CTI' Clu fT
0 0 0 0 £,

The terms of the matrices K, C and F are presented in Appendix A.

Staggered analysis of the problem

The coupled system of differential equations (44) can be solved numerically using the generalized
method also known as the generalized midpoint role. In the model the transport phenomenon are
coupled with the mechanical behaviour in staggered way. It is stated that the coupling terms, Cg,,
C. and Cr, have relatively small influence to the solutions and are negligible. Still the effect of
mechanical properties can be taken into account on the transport phenomena by an update of the
transport parameters such as the permeability on the basic of the results of the previous steps in
terms of mechanical stresses, strains and internal state variables such as cracks. This kind of
coupling or staggered approach bring about some advantages. First of all the numerical stability of
the analysis will be improved. For instance the transport phenomenon can be calculated using

different elements than the mechanical behaviour. Second and as consequence of the first advantage
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the calculation time will be obviously decreased. Finally it will be possible to study the results easier
and with more insight. The influence of parameters involved within this problem will be more
obvious. The objective is to couple the results obtained solving the transport phenomenon to
already available and most sophisticated mechanical FEM models.

Up to now, calculations were performed of the coupled transport phenomena. Coupling to the

mechanical behaviour is foreseen for 2005-2006.

Analysis of the numerical results

The coupled system of differential equation (44) describing only the transport phenomenon was
solved numerically using the computer programme FEMLAB, an interactive environment to model
single and coupled phenomenon based on partial differential equations. As a first attempt, the
approach by Majorana et al [8], setting C,,=0 was followed. A one-dimensional example has been
solved which deals with a concrete wall of 40 cm thickness. The initial conditions applied in this
example at time instant t=0 are pg=pgo, p=po, T=To. The Dirichlet boundary conditions are pg=p¢ on
Ty, pe=peo on I, T=Ty on I'r, and the Neumann boundary conditions are for the water flux (free water
and vapour water) gu+gw=0:(OgPgu) ON T, for the gas flux gg,=0 on Iy, for the heat transfer
qr=0(T*Tx) on I'. This wall has been subjected to transient heating from one side shown in Figure 3:
(left). This Figure shows that temperature increases within very short time up to 1000 °C. at the
other side the temperature is kept constant at T=20 °C. The main characteristic parameters of the

material employed in the calculations are chosen from reference [6].

Imposed temperature step modelling the fire
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Figure 3: Imposed temperature (left) and temperature of the concrete wall after 26 minutes (right)

The problem is solved for two cases of different initial saturation degrees 55% and 93%. Figure 3:
(right) shows the temperature in the concrete wall after about 26 minutes. This figure shows that

during this time the initial temperature of the wall has changed with the minimum temperature as
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initial temperature and the maximum temperature about 700 °C. One can see in this figure that the
difference between the temperatures for two different initial saturation degrees is very small. That

means that so far the initial saturation degree hasn’t too much influence on the temperature.
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Figure 4: Saturation degree (left) and gas pressure in the concrete wall after 26 minutes (right)

The change of the saturation degree in the concrete wall is shown for both initial saturation degree
in Figure 4: (left). This figure shows that the change of the saturation degree especially in the case of
concrete with low initial saturation degree is considerable high. This change is even in contrast to
temperature perceptible deep inside the concrete wall about 34 centimetre. One can see in Figure 4:

(right) that the gas pressure is also changed as deep inside the wall as saturation degree.

Ongoing and future research

Validation of the model is the main part of this ongoing research. Previous to the validation, the
material parameters will be improved and the staggered coupling of the transport phenomenon
with the mechanical behaviour needs to be realised. In our ongoing and future work, we are

focusing on the following challenges:

e Improving the material parameters and further implementation in FEMLAB;

e Coupling of the transport phenomenon calculated by FEMLAB with an FEM programme able
to calculate the mechanical behaviour, for example DIANA;

e Comparison of the results of the final so-called staggered analysed system with the results of
the other numerical programs such as HITECOSP [3], able to model the spalling of concrete;

e Validation of the results using the experimental results.
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Conclusions

The phenomenon spalling of concrete at elevated temperatures was studied. Five manifestations of
spalling of concrete were introduced. These are violent spalling, sloughing-off spalling, corner
spalling, explosive spalling and post-cooling spalling. The mechanisms which lead to spalling have
been explained. Pore pressure, thermal gradient, different thermal expansion between aggregate
and cement paste, different thermal expansion between concrete and reinforcement bars and the
change of the material properties due to temperature are the main factors influencing the spalling.
To analyse the phenomenon of concrete spalling a fully coupled multi-phase hydro-thermal-
mechanical model was introduced, based on the existing Hitecosp model [3]. Concrete was
modelled as a three-phase porous material at high temperature. The three phases within this model
are solid phase, liquid phase and gas phase. Phase changes are taken into account.

The constitutive relationships and the thermodynamic state equations describing the real behaviour
of concrete were discussed. The governing equations that describe the behaviour of concrete as a
three-phase porous material at high temperatures are presented. These equations were found by
full integration of the mass, energy and momentum balance equations. The final form of the
governing equations, choosing gas pressure py, capillary pressure p,, temperature T and
displacement vector of the solid matrix u as primary state variables, were derived. The coupled
system of differential equations describing only the transport phenomenon coupling three gas
pressure pg, capillary pressure p. and temperature T were solved using FEMLAB. A one-
dimensional example has been solved which deals with a concrete wall exposed to a fast
temperature rise up to 1000 °C. The temperature, saturation degree and gas pressure in the concrete
wall have been presented for two different initial saturation degrees. These results are physically
reasonable. It shows that inside concrete the moisture content has a minor effect on the temperature
distribution within the investigated range. The further steps of this research are firstly to improve
the material parameters used within this model, second to couple this model to an FEM programme
capable describing the mechanical behaviour and finally to validate the final results. The latest will
be done using the experimental results and the results obtained by other recently developed models
predicting the concrete spalling.
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Appendix A: Terms of the matrices
The terms of the matrices K, C and F are
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In these expressions Ny, Nyand Nrare the finite element shape functions and m ={1,1,1,0,0,0}" is the

vector form of the identity tensor L.
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