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Abstract The potentialities of nanomaterials for applica-
tion in the field of conservation have been widely investi-
gated in the last two decades. Among nanomaterials,
nanolimes, i.e., dispersions of lime nanoparticles in alco-
hols are promising consolidating products for calcareous
materials. Nanolimes are effective in recovering the very
superficial loss of cohesion of decayed materials, but they
do not always provide sufficient mass consolidation. This
limitation is mainly related to the deposition of the
nanoparticles nearby the surface of the material. Experi-
mental research has been set up with the aim of improving
the in-depth deposition of lime nanoparticles. Previous
research by the authors has shown that nanolime deposition
within a substrate can be controlled by adapting the
nanolimes properties (kinetic stability and evaporation
rate) to the moisture transport behavior of the substrate.
Nanolime properties can be modified by the use of different
solvents. In this research, nanolime dispersions have been
further optimized for application on Maastricht limestone,
a coarse porous limestone. Firstly, nanolimes were syn-
thesized and dispersed in ethanol and/or water, both pure
and mixed in different percentages. Subsequently, based on
the kinetic stability of the nanolime dispersions, the most
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promising solvent mixtures were selected and applied on
the limestone. The deposition of lime nanoparticles within
the limestone was studied by phenolphthalein test, optical
microscopy and scanning electron microscopy. The results
confirm that nanolime dispersed in a mixture of ethanol
(95 %) and water (5 %) can guarantee a better nanoparti-
cles in-depth deposition within coarse porous substrates,
when compared to dispersions in pure ethanol.

1 Introduction

The application of nanotechnology in the field of conser-
vation Science has remarkably increased over the last two
decades. Several nanomaterials with cleaning, consolidat-
ing and/or protective properties have been developed for
the conservation of artworks [1-3]. Among nanomaterials,
nanolime attracted an increasing interest, due to its
potential as consolidating product for calcareous materials,
such as frescos, limestones and lime-based renders and
plasters. Nanolimes are colloidal alcoholic dispersions of
calcium hydroxide nanoparticles, with spherical to hexag-
onal shape and a size ranging from 50 to 600 nm [4-8].
Thanks to the nano to submicrometric size of the particles
and to the alcoholic solvent, nanolimes have a high reac-
tivity and a high lime concentration, which provide a better
consolidating effect than traditional lime-based consoli-
dants (e.g., limewater) [9, 10]. Besides, nanolimes have a
better compatibility and durability on calcareous substrates
than TEOS-based products (e.g., ethyl silicate), which are
commonly used for stone consolidation [11-14].
Concerning their consolidation effectiveness, nanolimes
have proven to work properly for the pre-consolidation and
for the recovery of the superficial cohesion of different
materials, such as mural paintings, plasters, paper and
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wood. [4, 5, 8-10, 15, 16]. However, when mass consoli-
dation is required, e.g., in the case of decayed renders or
limestone, nanolimes often show a poor effectiveness and
sometimes result in the formation of a white haze on the
surface [17, 18]. An important reason for their limited
effectiveness is related to deposition of nanoparticles at the
surface, resulting in a poor consolidating effect in depth
[18-21].

Previous research has shown that, depending on the
moisture transport properties of the substrate, surface
deposition may occur not only during absorption but also
during evaporation of the solvent, due to a partial back
migration of the nanoparticles to the surface [19]. This
suggests that the approach proposed by the authors in [22],
i.e., tailoring the kinetic stability and the evaporation rate
of nanolime (by modification of the solvent) to the mois-
ture transport properties of the substrate to be treated, can
improve nanoparticles in-depth deposition within the sub-
strate. According to this approach, dispersions with lower
kinetic stability and higher drying rate should be preferred
for application on substrates with very fast moisture
transport properties, as they limit back migration of
nanoparticles during drying and thereby improve in-depth
deposition.

In the research described in this article, this approach
has been optimized and validated for Maastricht limestone,
a highly and coarse porous limestone.

Lime nanoparticles were synthesized and dispersed in
ethanol, water and in mixtures of these two solvents; the
kinetic stability (Sect. 3.2) of the dispersions was mea-
sured; based on these data, nanolimes dispersed in pure
ethanol or in a mixed ethanol-water solvent were selected
(Sect. 3.3) and applied on Maastricht limestone (Sect. 3.1).
Finally, the in-depth deposition of the lime nanoparticles
within the limestone was assessed (Sect. 3.4).

2 Materials and methods
2.1 Maastricht limestone

The Maastricht limestone is a soft, yellowish limestone
(~95 % CaCOj3) [23, 24], quarried in the Belgian and
Dutch provinces of Limburg and used as building material
in the same regions.

Despite its low mechanical strength, Maastricht
limestone has generally shown a good durability, prob-
ably related to the dissolution and re-precipitation of
carbonates within the pore network of the stone, when
exposed to atmospheric agents [25]. However, Maas-
tricht limestone may in some cases show decay in the
form of loss of cohesion at the surface (e.g., powdering,
scaling) [26].
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2.1.1 Porosity and pore size distribution

The open porosity and the pore size distribution of Maas-
tricht limestone was assessed by means of mercury intru-
sion porosimetry (MIP). An Autopore IV9500
(Micromeritics) was used to obtain porosity data. Pores in
the range 0.01-400 pm could be measured with this
instrument. A contact angle of 141° was assumed between
mercury and the stone. An equilibration time of 30 s was
used between each pressure increase step.

2.1.2 Specimens

Cylindrical specimens (diameter: 4 cm, height: 4 cm) were
used in this research. Specimens were drilled from sound
Maastricht limestone blocks, with an orientation perpen-
dicular to the limestone bedding. Before testing, specimens
were dried in the oven at 60 °C for 24 h and then condi-
tioned at 20 °C and 50 % RH.

2.1.3 Absorption and drying kinetics

The capillary absorption of water and ethanol in the
Maastricht limestone specimens was measured according
to EN 15801 [27]. A grid was placed in a Petri dish, which
was subsequently filled with water or ethanol. The core
specimens, sealed with Parafilm M (by Bemis NA, USA)
on the lateral sides, were placed with their bottom surface
on the grid. During the absorption process, the specimen
weight was measured till saturation was reached.

The drying rate of the specimens, saturated with water
or ethanol, was evaluated by measuring the weight loss
over time, in accordance with EN 16322 [28].

The absorption and drying tests were carried out in
threefold and performed under controlled conditions (50 %
RH, T =120°C, air speed <0.1 m/s). Water, ethanol
absorption and drying were carried out in sequence on the
same specimens, in order to minimize the effect of the
stone variability.

2.2 Nanolime
2.2.1 Synthesis and solvent selection

Nanolimes were synthesized by solvothermal reaction of
metallic calcium in water. Metallic granular calcium (p.a.
99 %, by Sigma-Aldrich) was stirred for few hours in dis-
tilled water (conductivity <2 ps/cm) within a reactor at
T = 90 °C. The aqueous medium was then substituted by
centrifuging the colloidal dispersions using an Eppendorf
Centrifuge 5810R (rotation speed 8000 rpm, 7' = 10 min),
in order to obtain colloidal dispersions with an equivalent
concentration of 25 g/l. The supernatant was subsequently
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Table 1 Physical-chemical

. Solvent Density Dynamic Boiling Dielectric Surface tension
properties of the selected (g/cm3) viscosity point (°C) constant (solvent/air) (N/m)
solvents at T = 20 °C [29]

(mPa s)
Ethanol 0810 1214 78.37 24.6 0.0221
Water 1000 1002 99.61 80.4 0.0728

extracted through glass volumetric pipettes and substituted
by ethanol (p.a. 99.5 % by Sigma-Aldrich), fresh distilled
water (conductivity <2 ps/cm) or mixtures of these solvents.

Ethanol and water were selected as solvents based on the
results obtained in previous works [19, 22]. Ethanol is a
highly volatile solvent and guarantees a high kinetic sta-
bility to the dispersion, whereas water has a higher boiling
point and higher surface tension, which results in a low
kinetic stability (Table 1).

Next to pure ethanol and water dispersion, ethanol-based
dispersions mixed with different percentages of water
(5-20-50-80 %) were prepared as well (Table 2). The
addition of a percentage of water with the dispersion is
expected to decrease the kinetic stability. The aim was to
produce dispersions with a moderate stability that can
guarantee a homogenous absorption with the substrate, but
at the same time limit back migration of nanoparticles to
the surface during drying. In other words, when the desired
absorption depth is reached, the kinetic stability should
decrease and favor nanolime precipitation in depth.

2.2.2 Kinetic stability

The kinetic stability of the nanolimes was determined by
turbidity measurements, analyzing their absorbance at
A = 600 nm by a UV-Vis spectroscopy (UVmini-1240 UV—
Vis Spectrophotometer, by Shimadzu). Before the analysis,
the nanolimes were placed in an ultrasonic bath (60 Hz, by
VWR symphony Ultrasonic Cleaners) for 60 min, in order to
minimize nanoparticle aggregation phenomena. The absor-
bance at 600 nm was considered as the parameter propor-
tional to the turbidity of the dispersion; its decrease as a
function of time is due to particle agglomeration and settling.
Before measurement, the nanolimes were placed in an
ultrasonic bath (60 Hz, by VWR symphony Ultrasonic
Cleaners) for 60 min, to minimize nanoparticle aggregation
phenomena; afterward, nanolimes were placed in 10 mm
path length plastic cuvettes, which were capped during
measurements to avoid solvent evaporation.

The relative kinetic stability parameter (KS %) of the
dispersions, defined as the ratio of the optical density of the
supernatant liquid (i.e., saturated Ca(OH), solution) and of
the original dispersion determined at 600 nm, was calcu-
lated using the following formula:

Table 2 Acronyms and solvent composition of the nanolime dis-
persions considered in this work

Nanolime acronym Solvent mixture (in volume)

H100 100 % H,O

E20H80 20 % EtOH, 80 % H,O0
E50H50 50 % EtOH, 50 % H,0
E80H20 80 % EtOH, 20 % H,O
E95H5 95 % EtOH, 5 % H,0O
E100 100 % EtOH

EtOH ethanol, H,O water

KS%=1- [(Ao —At)/AO] x 100 (1)

where A starting absorbance at 600 nm and A, absorbance
at a given time at 600 nm [5].

2.2.3 Application and assessment of nanolime deposition

Nanolimes ESOH20 and E95HS5, selected on the basis of the
result of the kinetic stability measurements (Sect. 3.3),
were applied on the Maastricht limestone specimens by
capillary absorption until full saturation. E100 was applied
as well for comparison. The bottom surface of the speci-
mens was partially immersed in a Petri dish filled with
nanolime and with a grid on the bottom. The wetting front
was visually monitored during absorption (Fig. 1).

Immediately after saturation, the specimens were broken
with hammer and chisel in two halves: On one side, the
wetting front of the dispersion was visually checked, and
on the other side, the distribution of the lime nanoparticles
was assessed by phenolphthalein test. This test consists in
nebulizing a phenolphthalein solution (1 % phenolph-
thalein in 60 % ethanol/40 % water) on the fresh cross-
section of the specimen and observing the change in color.
Phenolphthalein alcoholic solution is a well-known pH
indicator which remains uncolored for pH <8.2, while pH
conditions higher than 9.8 lead to a purple color change
[30]. In this case, a purple color of the substrate indicates
the presence of nanolime (pHcyomy2 > 11). By comparing
the results of the phenolphthalein test with the macro-
scopical observations of the wetting front, separation of the
nanoparticles from the solvent during absorption can be
assessed.
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Fig. 1 Nanolime application by capillary absorption until full
saturation; the red arrows indicate the wetting front and the
homogeneous capillary rising of the nanolime

The deposition of nanolime in the stone after drying was
assessed by optical and Scanning Electron Microscope. In
order to be sure of the full carbonation of the lime nanoparticles
[31], the specimens were stored at 50 % RHand T = 20 °Cfor
at least 4 weeks before microscopy observations.

The drying surface and the cross-section of the speci-
mens were observed by stereomicroscope Zeiss Stemi SV
11. Images were recorded with a Zeiss AxioCam MRc5
digital microscopy camera. The AxioVision 4.8 software
and its interactive measurement tools were used to record
and analyze the specimens.

Cross-sections were also studied by Scanning Electron
Microscope equipped with energy-dispersive X-ray spec-
troscopy (SEM-EDS). The equipment used (Nova Nano-
SEM 650, by FEI) is coupled with a low vacuum solid-state
detector BSED (GAD) that allows high resolution imaging
(up to 1.4 nm) and a high flexibility of the working con-
ditions (1-30 kV).

3 Results
3.1 Substrate characterization
3.1.1 Porosity and pore size distribution

Figure 2 shows the total open porosity and the pore size
distribution of the Maastricht limestone. The Maastricht
limestone has a very high porosity (50 %) and an unimodal
pore size distribution, with macro pores (30-50 pm).

Because of its high and coarse porosity, Maastricht
limestone is expected to quickly absorb large amounts of
nanolime dispersions, guarantying the penetration of the
lime nanoparticles.
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Fig. 2 Pore size distribution (solid) and total porosity (dotted) by
MIP of Maastricht limestone

3.1.2 Absorption and drying kinetics

Figure 3a reports the absorption kinetics of ethanol and
water on Maastricht limestone. As seen, the absorption of
H,O is faster compared to that of ethanol, due to the higher
surface tension of water (see Table 1).

When observing the drying kinetics (Fig. 3b), EtOH
evaporates faster compared to H,O:EtOH completely
evaporates in 48-72 h, whereas H,O takes 7-8 days. This
can be explained by the lower boiling point of ethanol; in
addition, the higher surface tension of water enhances its
retention within the pore network, delaying the drying rate.

3.2 Nanolimes Kinetic stability

The kinetic stability of nanolime dispersions (Table 2) was
evaluated by UV-Vis spectroscopy, by monitoring the
absorbance of the dispersions at 600 nm (Fig. 4).

The aqueous dispersions (H100) showed a rapid drop in
the absorbance, indicating a very low kinetic stability:
Lime nanoparticles tend to settle rapidly, with a complete
deposition within a few hours. The relative kinetic stability
(KS %) for H100 is less than 40 % at 4 h from the
preparation of the dispersion, and around 25 % at 8 h,
indicating that most of the nanoparticles have settled at this
time. The aggregation phenomena observed for H100 are
most probably caused by short-range (attractive) Van der
Waals forces [32, 33].

Differently, E100 shows high kinetic stability, with a
slow and constant decrease in the absorbance over time
(KS % at 24 and 96 h is, respectively, 91 and 82 %). This
behavior can be explained by the ethanol adsorption onto
Ca(OH), nanoparticles, which subsequently acquire a
similar electrical charge [5]. The repulsive electrostatic
forces between nanoparticles decrease the frequency of
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collisions leading to aggregation of nanoparticles, which
move around in random Brownian motions [34]: Sedi-
mentation and particle aggregation are thus prevented [35].

When water is added to the ethanol-based dispersion,
the kinetic stability significantly decreases. In the case of
E80H20 (20 % water), KS % is still high at 8 h (84 %), but
it decreases to 66 % at 24 h and to around 35 % at 96 h.
When 5 % in volume of water is added (E95HS5), the KS %
of the dispersion is 80 % at 48 h, decreasing to 66 % at
96 h. Even a small amount of water is remarkably influ-
encing the kinetic stability of the dispersion.

3.3 Selection of the solvent

Based on the results reported in Sect. 3.2, it can be con-
cluded that:

e EI100 has a very good stability, and it is known from
previous research [19, 22] to easily penetrate in the
Maastricht limestone.

e HI100, HSOE20 and H50ES50 have a very low kinetic
stability (see Fig. 4). This makes the handling of these
nanolimes very difficult (nanolime should be used
within short time from sonication); moreover, nanopar-
ticle aggregation during absorption is expected.
Because of these reasons, these nanolimes are not
considered feasible alternatives and will not be further
studied.

e E80H20 and E95HS are expected to be stable enough to
be absorbed within the substrate. Their lower kinetic
stability in comparison to E100 might enhance precip-
itation of the nanoparticles at the end of the absorption
process, and thereby limit back migration of nanopar-
ticles to the surface.

Based on the above reported considerations, ESOH20,
E95HS5 and, as comparison, E100, have been selected to be
further studied.

3.4 Assessment of nanoparticles deposition

E80OH20, E95HS and, as comparison, E100, have been
applied by capillary absorption on Maastricht limestone.
The penetration of the nanoparticles immediately after
absorption as well as their deposition after drying of the
solvent has been studied.

3.4.1 Phenolphthalein test
The penetration of the nanoparticles immediately after
saturation has been studied by phenolphthalein test. Fig-

ure 5 shows the cross-section of Maastricht limestone
specimens, sprayed with a phenolphthalein solution

@ Springer
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C))

Fig. 5 Pictures of the phenolphthalein test performed on the cross-
sections of specimens of Maastricht limestone treated by capillary
absorption until full saturation with E100 (a), E9SHS5 (b) and ESOH20

(c). The drying surface (which was also the wetting surface) is on the
top of the specimen

Fig. 6 Microphotographs of the drying surface of Maastricht limestone specimens treated with E100 (a), E95HS (b) and E80H20 (c), and

relative zoom on most significant spots

immediately after saturation, respectively, with E100,
E95HS5 and ES8OH20.

It can be observed that nanolime E100 homogenously
penetrates within the limestone (Fig. 5a), saturating the
entire section (40 mm) of the specimen.

EO95HS5 treatment guarantees as well a fast and proper
penetration within the limestone (Fig. 5b), and no accu-
mulation of nanoparticles at the absorption surface is
observed; however, at 28-30 mm in depth, nanoparticles
separate from the solvent (no purple color induced by the
phenolphthalein is observed after that point), which flows
further to saturate the entire section of the specimen. This
can be explained by a partial aggregation of the lime
nanoparticles within the porous network, during nanolime
absorption.
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In the case of ESOH20, lime nanoparticles penetrate just
in the first 5-7 mm in depth in the material (Fig. 5c); the
low kinetic stability of the nanolime enhances nanoparti-
cles-solvent phase separation, causing deposition near the
absorption surface.

3.4.2 Optical microscopy

Maastricht limestone specimens treated with E100,
E80H20 and E95SHS were analyzed by optical microscopy.
When observing the absorption surfaces, it can be seen that
E100 and E95HS5 did not leave any white deposit at the
surface (Fig. 6a, b). Conversely, some deposits of lime
nanoparticles are observed with ESOH20, which formed a
whitish patina at the absorption surface (Fig. 6c¢).
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Fig. 7 Microphotographs of the cross-sections of the Maastricht
limestone specimens treated with E100 (a), E95HS5 (b) and E80H20
(c), and relative zoom on most significant spots. The arrows indicate
the deposits of lime nanoparticles

When analyzing more in detail the cross-section of the
treated limestone specimens, a layer (0.1-0.2 mm thick)
highly enriched in lime nanoparticles can be seen at
0.5 mm from the evaporation surface of the specimen
treated with nanolime E100 (Fig. 7a). Clusters of lime

nanoparticles are barely visible in depth in the specimen.
As observed in a previous study [19], the high kinetic
stability and evaporation rate of the ethanol-based nano-
lime can, in coarse porous stone, favor the migration of
nanoparticles back to the surface during drying, causing an
accumulation of nanolime just beneath the evaporation
surface.

Differently, a more homogeneous in-depth distribution
of the lime nanoparticles can be observed within the cross-
section of Maastricht limestone treated with E9S5HS.
Clusters of lime nanoparticles can be identified up to
18-20 mm from the absorption surface (Fig. 7b).

In the case of ESOH20, a deposit of lime nanoparticles
can be observed at the absorption surface of the treated
specimen (Fig. 7c). Sporadic and heterogeneously dis-
tributed clusters of nanolime are identified up to 6-8 mm in
depth in the specimen, confirming the results obtained by
phenolphthalein test.

On the basis of the optical microscopy results, it is can
be concluded that E9SH5 guarantees a deeper in-depth
deposition of nanoparticles and it is thus a much better
option than ESOH20. Because of this reason, further SEM
observations were only carried out on treatments with
E95HS and E100.

3.4.3 SEM-EDS

More detailed microstructural observations on the deposi-
tion of nanolime within the treated specimens were per-
formed by SEM-EDS.

The SEM analysis of E100 treatment confirms a sig-
nificant nanolime deposition nearby the drying surface, at
0.5 mm in depth (Fig. 8a). In fact, at this location
agglomerated primary microclusters (generally with a size
of 2-3 um) formed larger secondary nanolime deposits (up
to 50 um in some cases). In addition, local depositions of
lime nanoparticles are identified deeper in the cross-sec-
tion: At 20 mm from the drying surface, sporadic clusters
of nanolime particles are visible (Fig. 8b).

The SEM-EDS analysis of the limestone specimen
treated with E95HS5 shows nanolime deposits up to
25-27 mm in depth (Fig. 8d), more homogeneously dis-
tributed than in the case of E100; lime nanoparticles have a
squared to hexagonal plate-like shape and dimensions
ranging between 10 and 300 nm, which mainly agglom-
erate in larger clusters. Nanolime deposition just beneath
the surface (Fig. 8c) is much less than in the case of the
specimen treated with E100, confirming the optical
microscopy observations. Deeper in the specimens
(3540 mm), the presence of nanoparticles is limited, in
accordance with the results obtained by phenolphthalein
test.
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5.8 mm | 160 um

Fig. 8 SEM microphotographs of Maastricht limestone cross-sec-
tions after the treatment with E100 (a, b) and E95HS5 (¢, d). The
images correspond to different deposition depths from the drying

4 Discussion and conclusions

Previous research by the authors showed that very
stable nanolime dispersions (dispersed in pure ethanol)
may lead, in coarse porous substrates, to nanolime depo-
sition near the surface, due to back migration of the
nanoparticles during drying [19]. Based on these results, a
model for the choice of suitable nanolime has been
developed, relating the stability of nanolime dispersion to
the moisture transport properties of the substrates [22].
According to this model, less stable dispersions would be
more suitable for coarse substrates (i.e., with fast water
absorption and drying), whereas very stable dispersions
could be more successfully used on fine porous substrates.
The stability of the nanolime dispersion can be modified by
an appropriate choice of the solvent.

In this research, this model has been further developed
and validated in the case of Maastricht limestone, a coarse
porous limestone.

Newly synthesized nanolime particles were dispersed in
different solvents: pure ethanol, pure water, and water—
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surface: 0.4 mm (a); 18 mm (b); 0.5 mm (c¢) and 18 mm (d). The
arrows indicate the deposits of lime nanoparticles

ethanol mixtures with different ratios. The aim was to
define the optimal solvent mixture, i.e., with a kinetic
stability sufficient to guarantee a homogeneous absorption
of the nanolime within the substrate but, at the same time,
to avoid back migration of the particles to the surface
during drying.

The results of the colloidal stability of the nanolimes
showed that, as expected, ethanol-based dispersion (E100)
have a very high kinetic stability. The addition of water,
even in small amount, has been shown to remarkably
reduce the stability. Nanolimes with more than 20 % (in
volume) of water were considered to be not sufficiently
stable for the time needed to perform application.

Based on these results, ethanol-based nanolimes with
5 % (E95HS5) and 20 % (E80H20) of water were selected
and applied on Maastricht limestone. Nanolime E100 was
applied as well for comparison.

Nanolime E100 showed a good penetration but also
back migration of nanoparticles during drying, confirming
previous results [19]. Nanolime E8OH20 led to slight sur-
face deposition of nanoparticles during the absorption
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phase; besides, separation of the nanoparticles from the
solvent was observed during absorption. This suggests that
this percentage of water is too high (i.e., too low kinetic
stability of the nanolime) to guarantee proper absorption,
even in a very coarse substrate as the Maastricht limestone.

Conversely, nanolime E95H5 showed a proper pene-
tration during the absorption and, thanks to the lower
kinetic stability of the dispersion in comparison to E100,
back migration was limited and nanoparticles deposited in
depth.

It can be concluded that coarse porous substrates, such
as Maastricht limestone, can be optimally consolidated in
depth by the use of a nanolime dispersed in ethanol and a
limited amount of water (5 %). These results validate the
model [22] and confirm that knowledge on moisture
transport properties of the substrate is required for a suc-
cessful in-depth consolidation treatment.

Research is ongoing to assess the consolidating effec-
tiveness of the selected nanolime and to translate the results
of this laboratory research, carried out by capillary
absorption till full saturation of the specimens, to the
practice, where other application methodologies (i.e.,
nebulization or brushing) are used. The final aim is to
provide restorers and professionals in the field with
guidelines for the choice and application of nanolime on
calcareous substrates.
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