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Abstract. In this paper the application of a specific system identification procedure to a
rmrrricipat solid waste (MSW) incinerator is discussed. This procedure is a combination of,

on the one hand, a particular closed-loop identification method called the two stage method

and, on the other hand, the approach of high order MIMO ARX model estimation followed

by model reduction. MIMO ARX model estimation is performed by means of a, so called,

multiple data set identification method, i.e. a method by means of which it is possible

to estimate a model on the basis of several data sets instead of just one data set. Model

reduction is applied to each transfer function of the resulting MIMO ARX model separately.

It is shown that with the proposed identification procedure a model of the MSW incinerator

is obtained which, according to system identification validation measures, is good. Using

the estimated model, the influence of the disturbances on the identification and control of a

MSW incinerator is discussed. F\rrthermore, the validation of a first-principles model of the

MSW incineration process by means of the resulting low order SISO models is discussed.

The results show that the proposed way of validating a first-principles model is a powerful

tool for determining its qualitY.
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*-r-liltiph data set idrrrtification, model validation, municipal solid waste incineration

1 Introduction
Incineration of municipal solid waste is used to re-

duce the amount of waste and to produce energy'

Mainly due to strict environmental regulations a
MSW incinerator is a capital-intensive process of

which the capital costs have to be regained from the

profits obtained from the incineration of waste and

the production of energy' Due to the ever becom-

ing more stringent environmental regulations and

the necessity to operate more and more efficiently,

MSW incinerators are faced with a growing need for

a more optimal operation and, as a result of that,

optimization of the MSW incineration process'

*Author to whom correspondence should be adressed' E-

mail: m.leskens@meP'tno.nl.

Optimal operation of a MSW incinerator is difficult
due to the heavy disturbances acting on the pro-

cess which are the result of the heavily fluctuating
waste composition. Disturbance rejection is in fact

the main goal of the control system of a MSW in-
cinerator. Optimization of the MSW incineration
process is difficult due to its complexity and lack of
knowledge about the phenomena taking place in this
process. As a result, during in particular the last

decade, research has been carried out with the aim

to model these phenomena. Results of this research

are mainly static, theory based (i'e' non-empirical)
mathematical descriptions (obtained, for example,

by means of computational fluid dynamics model-

ing) of the phenomena taking place during MSW



incineration. See, for example, Gort (1995), Goh et

al. (1998) and Shin et ol. (1999). The literature
on the dynamic and/or experimental modeling of
the MSW incineration process, on the other hand,

is scarce. In particular, no literature exists about
the modeling of the MSW incineration process by

means of system identification.
Because of the scarcity of literature on the dynamic

modeling of the MSW incineration process, a dy-

namic model of this process has been developed at

TNO which is based both on first principles (in-

troducing dynamics by means of conservation laws)

and on the static modeling work of Gort (1995)'

This model, which is discussed in Van Kessel (2002),

had to be validated, i'e. confronted with real-life

data in order to assess its quality. As earlier results

showed (Leskens et ol. (1999)), validation of the

dynamics of the MSW incineration process directly

on the basis of the experimentally obtained data is

very difficult due to the presence of heavy distur-

bances. In this paper another approach of validat-

ing the first-principles model is discussed consisting

of an identification step followed by a step where

the dynamics of the first-principles model is com-

paredand adapted to the dynamics of the estimated

model. With this approach it was thought to be pos-

sible to cancel out the influence of the disturbances

on the validation of the first-principles model' The

in- and output data to be used for the identifica-

tion step were obtained from the MSW incinera-

tor N.V. Huisvuilcentrale N-H (HVC) at Alkmaar,

the Netherlands. The main pa^rt of this paper deals

with the identification procedure that was used to

estimate a MIMO model of this MSW incinerator'

Also, a comparison is given between the resulting

estimated model and the validated first-principles

model (i.e. after it has been compared and adapted

to the dynamics of the estimated model)' Specific

attention is given to two specific aspects that were

encountered during identification: closed-loop sys-

tem identification and, so called, multiple data set

identification. The latter aspect refers to the situ-

ation that more than one data set is available for

estimation.
This paper is organized as follows' First, in sec-

tion 2, the MSW incinerator HVC is described' Sec-

tion 3 is then devoted to the system identification

techniques that were used to model the dynamics

of this MSW incinerator. Specific attention is given

to closed-loop identification, multiple data set iden-

tification and the identification procedure that was

applied to the MSW incinerator' In section 4 results
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with the application ofthe proposed identi-

fication procedure to the MSW incinerator HVC are

discussed. First, the identification experiments that

were performed at this MSW incinerator, aspects

of the estimation and the way the validation of the
first-principles model was performed are discussed.

After that, the influence of the disturbances on the
identification and control of a MSW incinerator is

discussed. Also, a comparison is made between the

dynamics of the estimated model and the dynamics
of the validated first-principles model. Finally, in
section 5, the conclusions are given.

2 The MSW incinerator HVC

Municipal solid waste is collected from households

and transported to the MSW incinerator, mostly by

train or truck. There it is stored in a large bunker

and mixed as much as possible by means of cranes

to obtain a more homogeneous waste composition'

Subsequently, the waste is transported by cranes

into a large chute. See figure 1. At the bottom

\r\1.,\t.,/
Primary air

Fig. 1: The MSW incineration process'

of the chute, at the waste inlet, the waste is pushed

onto a moving grate by a ram. The waste, the fuel

of the combustion process, is incinerated while it is

traveling on this grate. Air is added to the com-

bustion process by means of two air flows: a pri-

mary and a secondary air flow' The primary air

flow, delivering most of the oxygen, comes from be-

neath the grate, flowing through holes in this grate

and, subsequently, through the solid waste bed' The

secondary air is added to the combustion process

through holes in the wall above the grate' The

main function of this secondary air flow is to re-

duce the amount of unburnt gases coming from the

waste bed. The combustion processes taking place

in the solid waste layer are complex' Among these

processes are (besides combustion) gasification and



pyrolysis. In Gort (1995) and Goh et al. (1998)

these processes in the waste layer are described both
qualitatively and mathematically. A description of
the phenomena taking place in the gas phase above

the waste layer by means of computational fluid dy-
namics modeling can be found in Shin et ol. (1999).

The burnt gases and remaining unburnt gases enter

a boiler delivering heat which is transformed into
steam. Finally, the flue gas leaving the boiler is

cleaned from residues that are not allowed to be fed

to the surroundings. This cleaning part is not de-

picted in figure 1 but it contributes most to the size

of a MSW incinerator due to the stringent environ-

mental regulations. The amount of oxygen in the

flue gas leaving the boiler is measured. It is an im-
portant variable to be controlled because it is not
allowed to exceed certain limits due to requirements

resulting from environmental considerations. Also

the steam production is measured. It is an impor-

tant variable to be controlled because it is a mea-

sure for the amount of energy that is produced by

the incinerator. The remains of the solid waste on

the grate, i.e. bottom ash, is disposed of or is used

as, for example, raw material for asphalt'

The MSW incinerator HVC is one of the 11 MSW

incinerators currently present in the Netherla^nds' It
was built in 1995 and has three lines (i'e' three fur-

naces as depicted in figure 1) each one of which has

a throughput of approximately 18'5 tonnes of waste

per houi fer line by means of which approximately

63 torr.r"t of steam (400 'C, 42bat) is produced per

hour per line.

For the identification of the dynamics of the MSW

incinerator I{VC, the waste inlet flow, the speed of

the grate, the primary air flow and the secondary

air flow were chosen as input signals and the steam

production and. the amount of oxygen in the flue

gas leaving the boiler were chosen as output sig-

nals. As a result, the MSW incinerator HVC ca^n

be modeled from an identification point of view as

depicted in figure 2. As indicated in this figure,

the MSW incineration process suffers from distur-

bances. As mentioned before, these are caused by

the (non-measurable) fluctuation of the waste com-

position. This fluctuation causes a fluctuation in

ihe density and, in particular, the caiorific value of

the waste which both have a large influence on the

outputs to be controlled, i.e. the steam production

urrd th" oxygen concentration in the flue gas leaving

the boiler.

Disturbancs

Waste inlet llow
Steam production

Speed of

Primary air flow

Secondary air flow

Fig. 2: The MSW incinerator from an identifica-
tion (and control) Point of uiew.

3 System identification
3.1 Preliminaries

3.L.1 Prediction error method ^''d MIMO
ARX model structure

For the identification of the dynamics of the MSW

incinerator HVC the prediction error approach was

followed. Following Ljung (1999), the data generat-

ing system is supposed to be given by the following

multiple input multiple output (MIMO) Iinear time

invariant (LTI) system:

a(t) = G.(q)u(t) + H"(q)e(t) (1)

Here, y(t) is a pdimensional column vector con-

sisting of output signals at time instant t, u(t) is

a rn-dimensional column vector consisting of input
signals, e(t) is a pdimensional column vector con-

sisting of white noise signals, G.(q) an LTI system

represented by its transfer function matrix in the

forward-shift-operator q ar.d' Hr(q) a stable and sta-

bly invertible LTI system representing the noise sys-

tem. A corresponding model of the system (1) is
represented by the transfer function matrices G(q,O)

and If (g, g) which are parametrized by the unknown

vector of parameters g. This set of transfer function

matrices defines the one-step-ahead prediction error

e(t,0) : H(s,o)-tla@ - G(q,o)u(t)) (2)

The transfer function matrices G(q,0) a"nd I/(q,0)
can be parametrized in several ways' The dynamics

of the MSW incinerator HVC was identified using

the MIMO ARX model structure. This model struc-

ture is represented by the transfer fuuction matrices

G(q,0) = A(q,il-'b@,9) and H(q,O) : A(q,O)-t
witt a(q,0) and B(q,0) given by the matrix poly-

nomials

A(s,0) : Ipl- Arq-l+ ""' + AnoQ-no (3)



and

B(q,o) : Bo * Bg-L + ..'.. + BnuQ-nb (4)

with 1p a unity matrix of dimension p xp. The poly-
nomial degrees of the ARX model structure were

chosen equal to each other, i.e. na : nb : n, and

all matrices A6,'i:1...n, and Bi, i :0...n were

fully parametrized. When using the ARX model
structure, the prediction error (2) is given by the
linear regression form

e(t,0) = A(q,0)y(t) - B(q,0)u(t) : y(t) - 9r U)0
(5)

with g(t) the so called regression matrix consisting

of in- and output data from the past up to time in-
stant t. When given a data set Zv of length N, an

estimate dn, of the vector of parameters is obtained

by minimizing the least squares criterion V7v(d) de-

fined by the optimization Problem

0* : argminVlv(d)

1N: arsmrin i r er (t,o)L-le(t,o) (6)

t=l

with A a weighting matrix which usually is cho'

sen equal to I, (the optimal value for this matrix
would be the covaria,nce matrix of the innovations

Ee(t)eT (t) with E the expectation operator (Ljung
(19b9)) but this matrix is usually a priori unknown)'

ihe solution to the optimization problem (6) can

analytically be obtained and is, for A = /p, equal to

Because the solution can be obtained analytically,

which is due to the fact that the prediction error

is affine in the parameters, the solution can be ob-

tained fastly which is the reason for its popularity

when a model has to be estimated with many in- an

outputs and thereby many parameters'

3.1.2 QP formulation of the MIMO ARX
model estimation Problem

The solution (7) to the optimization problem (6)

with A - I, can also be obtained by solving the
quadratic programminC (QP) problem

6,v = arg mri 110.5 ' 0r H(t)e + gT (fle (8)

with the Hessian 1/(t) equal to

and the gradient 9(f) equal to

1N
sU)=-+fe@a$)

t=1

(10)

,, = 
[+ fe$),p'(t] 

' 
[#irrt)utt)] 

(7)

H(t) :# 
E 

e(Der (il (e)

Solving the unconstrained QP problem leads to the
same solution for 01,, as given by eqn' (7). However,

the advantage of formulating the estimation prob-

lem as a QP problem is that equality and inequal-
ity constraints of the form A0 ( b can be included
easily into the optimization problem while software

for solving such a constrained QP problem is widely
available and a solution to the constrained QP prob-

lem can be obtained (almost) as equally fast as for
the unconstrained case' The formulation of the esti-

mation problem in the form of a QP problem is also

useful when discussing multiple data set identifica-

tion in section 3.2.2.

3.2 Two practical problems and their solu-
tions

The general set-up given in the preceding section

ignores some important practical problems that are

often encountered when identifying an industrial
process like the MSW incinerator HVC. Two of

these problems will be discussed here' The first one

refers to the estimation of a model on the basis of
closed-loop data. The second problem refers to the

estimation of a model on the basis of more tha'n one

data set.

3.2.L Closed-loop identification and the two
stage method

A typical situation that arises with the identification
of an industrial process is that during the identifica-

tion experiment(s) the controller is not allowed to be

turned off due to, for example, safety or economic

rea"sons. This was also the case for the identifica-

tion of the MSW incinerator HVC for which the

closed-loop configuration schematically is depicted

in figure 3. As indicated in the figure, during the

identification experiments the outputs of the con-

troller were excited by (four) user-defined excitation

signals ec(t) while at the same time the (four) in-
pot tigt ul. u(t) and (two) output signals y(t) of the

plant were measured.
As is known from literature (for example, Eek et

al. (1996) and De Callafon (1998)), following the

estimation procedure of section 3'1 directly, i'e' es-

timating the model directly on the basis of the in-

and output d,ata y(t) and u(t), may result in a bi-

ased model. This bias grows with growing inten-

sity level of the disturbances acting on the process

to be identified (an illustrative example of this is

given in De Callafon (1998)). A MSW incinera-

Ior suffers from disturbances with high power due



Fig. 3: Closed-loop (identification) configuration at

the MSW incinerator HVC: er(t) = ercita-
tion signals, r(r) = reference signals, u(t) :
i,nput signalt, G.(q) : (true) process trans'

fer function matrix, u(t) : disturbances,

C(q) : controller transfer function matrix,

Y(t) : outPut signals'

to the variation in waste composition. Therefore,

a model of this process that is estimated directly
on the basis of the experimentally obtained in- a.nd

output data is most likely to be biased. In order to
prevent this bias a specific closed-loop identification
method called the two stage method (Van den Hof

and Schrama (1993)) was used.

For the closed-loop configuration of figure 3, the in-

and output signals are given by (r(t) = g;

aO) : [1+ G.(q)C(q))'rG.(q)et(t) +

lI + G,(q)C(q)l-'r(t) (11)

and

u(t) : [r+ C(q)G,(q)]-ter(t) -
lI + C(q)G.(q)l-1C(q)u(t) (12)

The cause for a biased model is the correlation be'

tween the inputs u(t) and the disturbances [f +
G,(q)C(q)l-lo(t) acting on the outputs which is the

result of the presence of also a term due to the dis-

turbances u(t) in the inputs. The basic idea of the

two stage method is to remove this correlation by

removing the disturbance term in the input, i'e' the

term [r + C@)G"(q)]-rC(q)u(t) in eqn' (12), be-

fore estimating the process transfer function matrix'
This is done by estimating the transfer function ma-

trix [/+C(q) G,(d]-' between the excitation signals

eo(tj a.nd the input signals u(t) (see eqn' (12)) as a

fi.st'step (the first stage of the two stage method)'

With the resulting estimate' which is denoted by

S@,il and which is also called the input sensitiv-

ity function, the input signals without disturba'nce

contribution , u.,(t), is then obtained by simulation:

u"(t) = S@'fien(t) (13)

If ,9(q,0) is estimated correctly then u",(t) = ['f +
Ck)C.@))-1ez(t) which is equal to u(t) (see eqn'

(12)) without the disturbance contribution. At the
second stage, the process transfer function matrix is
then estimated as the transfer matrix between u", (t)
and y(t). Due to the absence ofthe disturbance con-
tribution in the input signals u""(t), the second step
reduces to an open-loop identification problem and

a consistent estimate ofthe process transfer function
matrix G.(q) can be obtained.
For a further discussion of the direct identification
problem, the two stage method, and other closed-

loop identification issues one is referred to the litera-
ture, for example Van den Hof and Schrama (1993),

Van den Hof (1998) and De Callafon (1998).

3.2.2 Multiple data set identification

A second problem that typically might be encoun-

tered with the identification of an industrial process

is that, due to the experimental conditions, not one

data set but several (shorter) data sets are obtained
from the identification experiment(s) which one all
would like to use for the estimation of the model.

Typical causes are for example that a number of
separate experiments have been carried out instead

of one and/or that bad data segments have to be re-

moved from the obtained data set(s)' This also was

the case for the identification of the MSW inciner-

ator HVC where the bad data segments typically
were caused by a low calorific value of the waste, re-

sulting in a drift of the operating point. In order to

deal with this problem a specific so called multiple
data set identification method was used employing

the ARX model structure.
Suppose that r data sets are available for estimation'
The basic idea behind multiple data set identifica-

tion is that the estimate d is obtained by minimizing
the sum of r criteria each of which is a function of

one of the r data sets and the same parameter vector

0:

0 : argmrin V(0) : argmrin yr(0)+""'+W(0) (L4)

When using the ARX model structure, the opti-

mization problem (14) can be simplified to a QP op-

timization problem of the form of eqn. (8) (Leskens

(1998)) with the Hessian now equal to

H(t) : 'H1(') + ""' + H'(') (15)

and the gradient equal to

s(t) : sr(t) + ....- + e'(r) (16)

where fli(t) and 9i(t) are the Hessian resp' gradient

corresponding to data set j which for each data set

separately and A - Io are given by eqn' (9) and

(10). Some characteristics of this multiple data set

identification method are:



. The parameter vector d is equal to the weighted

sum of the parameter vectors that would be

obtained when they would be estimated on the
basis of a single data set:

A : lH r(i) +... + //, ( D1- 
t 
lH L (DA t + ...+ H,ft)A,l

(17)

with 93, i : l.'.r, the parameter vector that
would be estimated when only data set j would

be used for estimation. The weighting "factor"
of each parameter vector d1 is the Hessian cor-

responding to data set j.

o Data sets can be combined which are obtained
with a completely different distribution of the

power over the frequencies. For example, a data

set which is obtained with a step input signal,

and thereby with most of its power in the low

frequencies, can be combined with a data set

that is obtained with a (P)RBS input signal

with a high switching probability and thereby

most of its power in the high frequencies'

r The combination of data sets in the way de-

scribed above allows for user-defined scalar

weighting of the data sets. As a result, the

dynamics embedded in a specific data set can

be given more weight in the optimization' This

is useful when certain data sets are thought to

be more reliable representations of the process

to be identified than others.

A further discussion on multiple data set identifica-

tion using the ARX model structure can be found

in Leskens (1998) and Ljung (1999) (where it is re'

ferred to as the merging of data sets)' Multiple data

set identification for the FIR and so called ORiTFIR

model structure case is discussed in Van Donkelaar

(2000).

3.3 Identification strategY

The approach that was used to identify the dynam-

ics of the MSW incinerator HVC is typically used for

the identification of large scale multivariable indus-

trial processes: high order ARX modeling followed

by a model reducti,on step. See, for example, Zhu &'

Backx (1993) where a number of advantages of this

strategy are given. Among them is the fact that,

by using the asymptotic theory for prediction er-

ror metlods, error bounds can be obtained for the

estimated model which can be used in a robust con-

trol design method. Also, the asymptotic theory

provides an explicit formulation for the optimal in-

put signal spectrum to be used during identification

l*p"ti*"ttt. Moreover, the selection of the model

structure is greatly simplified (note that a struc-

tural identiflcation step and the usage of (pseudo-

)canonical parameterizations is avoided). Other ad-

vantages are that the method is numerically reliable
and the estimate can be obtained relatively fast,
even for processes with many in- and outputs and

for high orders.
A high order is chosen for the ARX model (in lite-
rature figures ranging from n = 10 to n = 50 are

found) in order to capture all relevant dynamics of
the process to be identified' A high order model,

however, is often not desirable in case of control de-

sign (due to, for example, implementation or com-

putational reasons) and therefore model reduction

is applied. In case of the MSW incinerator HVC,

model reduction was applied for another reason: to

obtain a low order approximate realization of the

high order ARX model which does not exhibit the

'noisy' responses of the latter model- Model reduc-

tion was applied to each transfer function of the high

order MIMO ARX model separately resulting in a
Iow order SISO model for each of these transfer func-

tions. The main reason for aiming at more smooth

responses was that this facilitated the comparison

between the estimated model and the first-principles
model. Model reduction was performed by means of

the approximate realization method of Van Helmont

et at. (1OOO). This method will not not be discussed

here in detail. It is similar to the well known realiza-

tion algorithm of Kung (1978) but is based on step

response coefficients rather than pulse response co-

efficients.
Combining the approach of high order ARX model

estimation and model reduction with the two stage

method, the identification strategy used for the

identification of the MSW incinerator HVC can now

be summarized as follows:

1. Estimation of the input sensitivity function

S(q,ti) of eqn. (13) by estimating a-high or-

der MIMO ARX model (first stage of the two

stage method)'

2. Simulation of the inputs u",(t) using the esti-

mated input sensitivity function'

3. Estimation of the transfer function matrix from

u",(t) tog(r) by estimating a high order MIMO
ARX model (second stage of the two stage

method).

4. Obtaining (8) low order SISO models of the

high order MIMO ARX model that was esti
*ut"d at the previous step by applying the

method of Van Helmont et al' (1990) to all

(8) tra.nsfer functions of this high order ARX
model.

The choice of the model degree n(= na - nb)

of both ARX models was based on the out-



put/simulation error criterion

1N
voe j,n: i ItO,,.(t) - yu(t))' (18)

t=7

This criterion was not used directly: first scaling

was applied in order to prevent an unfair comparison

due to differences in dimension between the outputs
and, secondly, the scaled criteria were averaged over

all outputs. That model degree was chosen that
corresponded to the lowest value for the scaled and

averaged output error criterion. This choice turned
out not to be critical, i.e. the differences between

the finally obtained models (after model reduction)
were small.

4 Results

4.1 Experiments, estimation, comparison
and adaptation

The approach that was followed during identifi-
cation is based on the approach given in Backx

and Damen (1989) where the identification is split

up in several steps among which data acquisition,
pre.treatment of the experimentally obtained data,

model estimation and validation (of the estimated

model). The identification experiments were per-

formed in July and August of 1998. The operating

point values for these experiments are given in ta-

tle 1. During the experiments, the outputs of the

Voriable Value

Inprts Waste inlet flow
Speed of grate
Primary air flow
Secondary air flow

53.2

79.9
52028
10580

/o)

%)

Nnas /hl
Nrn3 lhl

Outputs Steam production
Oxyaen

16.3
5.7

kgls
%1

a model degree of n : 23 for the estimated input
sensitivity function and n = 18 for the estimated
process transfer function. The estimated high or-
der ARX models were validated by means of the
auto-correlation functions of the residuals and the
cross-correlation functions between the input sig-

nals and these residuals. These correlation func-
tions were computed on the basis of the validation
data set. Both a typical auto- and cross-correlation
function are shown in figure 4. As can be seen in

AulHo(oldlonludlonol reiffs. oulPd t 4

1.2

I

o.a

o6

4.05

{.1

las

{0 -30 -20 -rO 0
lag

Table 1: Operat'ing point aalues of the MSW i'ncin-

erator HVC duri,ng the identification es-

peri,ments.

controller were excited by user-defined test signals

(er(t) in figure 3). At first, some short prelimi-

nary experiments were performed in order to de-

termine the frequency contents of the (P)RBS test

signals to be used during the final data acquisition

experiments. With these data acquisition experi-

ments, a total of 5 data sets were obtained with
a length of up to 25 hours. One of the data sets

was used for validation only. After these data ac-

quisition experiments, a number of pre-treatment

,t"p, *"." applied to the experimentally obtained

data. These included subtraction of the means and

scaling. After that, the identification strategy de-

scribed in section 3.3 was applied. This resulted in

Fig. l: An auto- and cross-coneloti,on function for
the estimated high order ARX moilel of the

input sensiti,uity function, computed on the

basis of the aalidati,on dota set. Dotteil li,nes

: 99 % confidence limits.

the figure, the correlation functions are good which

implies that also the estimated model is good, at

least for the dynamics incorporated in the validation
data set. It also implies that the proposed identifica-
tion strategy is capable of producing a good model

of (an industrial process like) the MSW incinerator
HVC. However, computed confidence intervals and

personal knowledge of the incineration process indi-

cated that the slowest dynamic behaviour, in par-

ticular the static behaviour, was incorporated not

entirely well in this model. In order to improve the

static and low frequency dynamical behaviour of the

estimated model, a new estimation of the second

high order ARX model was performed with now the

static gains enforced on this model. These static
gains were obtained from the first-principles model

after this model was adapted statically to the first-
principles model i.e. to the operating point values

given in table 1. Enforcement of the static gains on

the model to be estimated is common practice for
the identification of industrial processes (see, for ex-

ample, Ludlage et at. (1991)). One reason for the

bad fit of the Iow frequency dynamic behaviour of

an estimated model is that the obtained data set(s)



often are relatively short compared to the domina"nt

time constant of the process to be identified. An-
other reason is that the ARX model structure pe-

nalizes high-frequency misfit behaviour much more

than low-frequency misfit behaviour (Ljung (1999)).

The next step was the application of the approx-
imate realization method of Van Helmont et al.

(1990) to the resulting high order ARX model. This
resulted in 8 low order SISO models which were sub-

sequently used to simulate the dynamic behaviour

of the MSW incinerator HVC. With the resulting
responses the first-principles model was validated.
This was performed by comparing the dynamic be-

haviour of both models and adapting manually a

number of (6 physically related) parameters of the

first-principles model until an agreement between

the dynamics of both models was obtained which

was (thought to be) as good as possible.

4.2 The influence of the disturbances

In this section, first, an idea will be given of the

contribution of the disturbances in the experimen-

tally obtained input signals. For that purpose, in

figure 5 two of the four experimentally obtained in-

put signals, i.e. primary and secondary air flow, are

depicted together with their disturbance free coun-

terparts; these were obtained by simulation using

the estimated input sensitivity function as filter and

the experimentally applied test signals as input sig-

nals oi this filter, i.e. as u",(t) : ^9(q,0)er(t) (see

eqn. 13). As one can see from this figure, the con-

tribution of the disturbances in the inputs is signifi-
cant. On the basis of the sta^ndard deviations of the
experimentally obtained input signals and their cor-

responding disturbance free counterparts, the con-

tribution of the disturbance part to the complete
input signal varied for the four input signals from
3 % (secondary air flow) to up to 30 % (speed of
grate) (20 % for the primary air flow)' This indi-
cates that the disturbance contribution in the input
signals can be significant for a MSW incinerator and

that the use of a specific closed-loop identification
method like the two stage method is necessary to
obtain a good model.

An idea of the contribution of the disturbances to
the experimentally obtained output signals can be

obtained from figure 6. In this figure the two mea-

sured output signals steam production and oxygen

concentration are depicted together with their dis-

turbance free counter parts; in this case, these were

obtained by simulation using the estimated process

tra.nsfer as filter and the experimentally obtained

input signals as input signals to this filter, i.e. as

G@,fiu(t) with G(q, d) the estimated process trans-

fer. (Note that if this transfer is equal to the real

process transfer, i.e. G@,il = Go(q), the differ-

ence between the measured and simulated output

signals is given by u(t) = y(t) - G,(S)"(fl)' Ftom
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Fig. 6: Top figure: measured, (- -) steam produc-

t'i,on and d,isturbance free, simulated, steam

prod,ucti,on (-) (see tert)' Bottom figure:-m,easured, (- - ) orygen concentration and'

disturbance free, simuloted, oxygen concen'

tration (-).

the figure it can be seen that the contribution of

the disturbances is significant. This is confirmed by

signal-to-noise ratios which were computed on the
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basis of computed standard deviations: the contri-
bution of the disturbances to the steam production
was 33 To and even 49 % for the oxygen concen-
tration. The large fluctuations present in the steam
production indicate that, in particular, also the tem-
perature at the (iniet of) the steam system/boiler is

subject to large fluctuations. This is an important
variable from a control point of view as it is sub-
ject to an upper-limit due to considerations of cor-

rosion. This thermal limit, in fact, also restricts

the amount of waste throughput and, simultane-
ously, the steam production. As a result, this limit
restricts the profitability of the plant because the

amount of processed waste and produced steam are

the main sources of income for a MSW incinera-

tor. If one, however, could reduce the fluctuations

in the temperature at the boiler, one could operate

on average more closely to the thermal limit and, as

s result, obtain a more profitable operation. This
indicates the need for a controller for the MSW in-

cineration process which is able to reduce the fluc-

tuations in the process variables, in particular the

temperature at the boiler, due to the variation in

waste composition as much as possible.

4.3 Comparison of the estimated and first-
principles model

In figures 7 to 10 simulated responses of the steam

production and oxygen concentration obtained with
lhe estimated and first-principles model are shown'

These simulations were made with only one input

signal excited at a time while the other input signals

were kept constant (in case of the first-principles

model) or zero (estimated model)' The excited in-

put signals are depicted in the lowest part of the

hgrrt". at d are equal to the (P)RBS test signals of

the validation data set after having been filtered by

the estimated input sensitivity function'

Figure 7 shows the simulated output signals when

oniy the waste inlet flow is excited' One can see that
both the simulated responses of the steam produc-

tion and the predictions of the oxygen concentration

coincide very well. A similar good agreement be'

tween the simulated outputs of the estimated model

and the first-principles model can be found in figures

8 and 9. A less well agreement is found for the simu-

Iated outputs of the steam production as a function

of the secondary air flow input signal (upper part

of figure 10). No clear explanation can be given

for this difference. Possible causes are unknown bad

experimental conditions or improperly described dy-

narnics in the first-principles model' Figure 10 also

shows that the simulated responses of the oxygen

concentration coincide rather well'

The results show that it is possible to obtain a
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Fig. 7: Simulation ofthe steamproduction and ory-
gen concentration obtained with the esti-

mated model (- - ) and the first-principles
modet (-) when only the waste inlet fl'ow
(lowest part of figure) is eacited.

clear picture about the quality of the first-principles
model by validating it on the basis of an estimated

model (which has (not) been (in)validated on the

basis of pure system identification measures). In the

case of the MSW incinerator HVC a clear picture

was obtained of the dynamics that is incorporated
well in the first-principles model. Of course one has

to be cautious with this conclusion: theoretically,
a lot (even an infinite number) of combinations of
parameters of the first-principles model might lead

to the same in- output behaviour (in identification
terms this means that the model structure should be

identifiable, i.e. two parameter sets/vectors should

not lead to the same in- output behaviour' See

Ljung (1999)). The choice of parameters to be

adapted and the choice of their intervals was rather

straightforward and a proper choice of these pararn-

eters and their intervals was thought to be made,

giving rise to the conclusion stated just above'

5 Conclusions

In order to estimate a model of the MSW inciner-

ator HVC a specific identification procedure was

followed which was a combination of the two stage

method and high order AR-X modeling followed

by a model reduction step: at both estimation
sieps of the two stage method a high order MIMO
ARX model was estimated which was followed by

a model reduction step applied to all (8) transfer

functions of the second estimated high order ARX
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model. For the estimation of the high order MIMO
ARX models a specific so called multiple data

set identification method was used. AIso, static
gains were enforced on the second estimated high

order ARX model in order to improve the slowest

dynamic behaviour of this model which was found

to be not incorporated well in this model' The

static gains were obtained from the first-principles
model after this model was statically adapted

to the MSW incinerator HVC. For the model

reduction step the approximate realization method

of Van Helmont et ol. (1990) was used which

employs step response coefficients of the system

for which a low order approximate realization has

to be obtained. With the applied identification
procedure it turned out to be possible to estimate

a good model of (an industrial process like) the

MSW incinerator HVC' Using the estimated model

and experimentally obtained data, it was shown

that the influence of the disturba^nces acting on

the MSW incinerator is large. These disturbances

are of such high amplitude that the usage of a
closed-loop identification method like the two stage

method is necessary in order to obtain a good

model of the process. The large influence of the

disturbances also shows that a controller with good

disturbance rejection properties is needed as these

disturbances prohibit a higher throughput of waste

and thereby a higher income for the MSW inciner-

ator. The first-principles model was validated on

the basis of the estimated model, i'e' compared

250 300

Timo lminl

Fig. 9: Si,mulation of the steam product'ion and, oty-
gen concentration obtained, with the esti-

mated mod'el (- - ) and the first-principles
modet (-) when only the primary air fl,ou
is excited.

and adapted to the dynamics exhibited by the

estimated model. This validation showed that most

of the dynamics of the MSW incinerator HVC was

incorporated well in the validated first-principles
model. Comparing and adapting the dyna^rnics of

the first-principles model to the dynamics exhibited

by an estimated model that has been validated

by means of pure system identification validation
measures proved to be a valuable tool for validatiou

of the first-princiPles model.
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