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Though the behaviour of woodwind instruments
is far from unterstood, a gradual increase in know-
ledge may be observed. A few studies have appeared
[1] to [8], but this subject seems to lag behind de-
velopments in other fields of acoustics [9], [10].

Hole Calculations for an Oboe

by C. J. NEDERVEEN
Central Laboratory TNO, Delft

and A. pE BrunN

Technological University of Delft

Summary

Methods are derived to calculate the required positions and sizes of holes in a conical
woodwind. With a simple algebraic expression, the holes are located, independently of one
another. Only the frequencies for the opened and the closed positions need to be specified.

An approximative solution of the wave equation in a conical tube is derived including
viscous and thermal damping along the walls and a complex impedance at the entrance of
the tube. Pitch variations due to these effects are determined. Corrections are introduced
for departures from the ideal cone and for the row of closed side holes.

The difference between calculated and measured hole positions is plotted, and the
separate points scatter 0.1 to 0.2 semitone around a smooth curve drawn through them.
The deviation from zero of the smooth curve indicates that the low register may be ex-
pected to be flat with respect to the high register.

Berechnung der Locher an einer Oboe

Zusammenfassung

Es werden Verfahren zur Berechnung der erforderlichen Lage und GroBe der Locher
in einem konischen Holzblasinstrument hergeleitet. Mit Hilfe eines einfachen algebraischen
Ausdruckes wird die Lage der Locher unabhiingig voneinander bestimmt. Nur die Frequen-
zen fiir die gedfineten und geschlossenen Licher miissen angegeben werden.

Unter Beriicksichtigung von viskoser und thermischer Dimpfung an den Winden und
einer komplexen Impedanz am Eingang wird eine Niherungslosung der Wellengleichung
fiir ein konisches Rohr hergeleitet. Die durch solche Einfliisse hervorgerufene Anderung
der Tonhohe wird bestimmt. SchlieBlich werden Korrekturen fiir Abweichungen vom
idealen Konus und fiir die Reihe der geschlossenen Seitenlocher eingefiihrt.

Der Unterschied in der errechneten und gemessenen Lage der Locher wird aufgetragen,
wobei die einzelnen Punkte um 0,1 bis 0,2 Halbtone um eine durch sie gezeichnete glatte
Kurve streuen. Die Abweichung dieser Kurve von Null liBt darauf schlieBen, da das
niedrige Register in bezug auf das hohe flach sein wird.

Calculs des trous pour un hautbois

Sommaire

On a établi des méthodes pour calculer les positions requises et les dimensions du trou
dans les bois coniques. Par une simple expression algébrique, on détermine la position des
trous, indépendamment les uns des autres. Seules les fréquences pour les positions ouvertes
et fermées doivent étre précisées.

On tire une solution approximative de 1’équation des ondes dans un tube conique, com-
prenant 'amortissement visqueux et thermique le long des parois et une impédance com-
plexe & I'entrée du tube. On détermine les variations de tons dues a ces influences. On
présente des corrections pour les écarts du cone idéal et pour la rangée des trous en posi-
tion fermée.

On fait le relevé de la différence entre les positions calculées et mesurées des trous et
on trace une courbe lissée au milieu de la dispersion des points expérimentaux de 0,1 a
0,2 demi-tons. L’écart au zéro de la courbe lissée indique qu’on peut s’attendre a ce que le
registre grave soit plat par rapport au registre aigu.

1. Introduction The present paper is a continuation of the one [7]
on hole calculations for a clarinet, and concerns

analogous investigations for an oboe. Whereas the
clarinet is a cylindrical instrument, the oboe is essen-
tially conical. It will appear that the method for the
clarinet can be adapted to conical instruments. This
means that each hole can be calculated separately,
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and independently of all others, only when the fre-
quencies for both the open and the closed position
of the hole are specified.

A number of corrections to these calculations
need to be introduced which, all together, lower the
pitch about one half to a whole tone. This makes
theory and practice coincide within acceptable
limits. When these corrections are not applied, the
oboe is 2cm to 5cm shorter than expected from
simple theory, a phenomenon already observed by
Repriewp [11].

Roughly speaking, the internal diameter of an
oboe follows the course of a truncated cone closed
at its narrow end by two flat wooden platelets, the
reeds. By pressing air between these reeds, the
player excites the air column into longitudinal vibra-
tions [3]. These vibrations are damped by friction
along the walls and by radiation from the holes and
the open end.

RusserL [5] measured very accurately the dia-
meters of a great number of oboes, and showed that
the conicity of oboes is far from perfect. An example
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Fig. 1. Diameter d as a function of distance to the reed
tip for a Mo6nnich oboe. Dashed line is the ideal
bore according to RusseL [5]. The rapidly
flaring bell is plotted on another scale.
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is presented in Fig.1, where a plot is given of the
diameter as a function of the distance to the reed
tip for a Ménnich oboe. Near top and bottom, con-
siderable departures from a cone are observed. Also
the middle part shows deviations, though on a much
smaller scale. To vizualize these, a plot is made of
the deviations from a “standard cone”, as intro-
duced by RusseLL [5]. The diameter of this standard
cone is 0.025 times the distance to the top of the
cone. In Fig.2, the quantity d —0.025(l;—1,) is
plotted versus (l;—1[4); the diameter is denoted by
d, l; is the distance to the top of the instrument
without staple and reed, and [y is an auxiliary
constant to keep the curves separated. Three curves
are given, (1) for a Marigaux (no. 3614, Paris,
bought new in 1965), [y = zero; (2) for a Lorée
(no. AS17/AAS 17, Paris, 1954), I, 25 mm;
(3) for a Monnich (no. 1055, Markneukirchen,
1962), [, =50 mm.

The points refer to measurements obtained by
carefully inserting cylindrical calibers of perspex in
the wide end of the tube. Approximate curves or
straight lines are drawn through the points. Oblique
lines indicating the diameters are drawn, so that the
diameter can be read at every place.

From studying Fig.2, we conclude that besides
some scatter (which is not due to measurement er-
rors) each of the oboes shows a different trend in its
diameter. A constriction at the top is present in all
three of them. Somewhere near the joint of upper
and lower part, the conicity changes rather abruptly.
The Monnich shows a wavery irregularity in the

middle.

Before dealing with all these perturbations, we
shall now determine the resonance frequency of a
perfect cone where reed action, wall friction and
radiation are taken into account.

4.5
40 A8mm
Marigaux
35 A0t
/Loree
3.0 4 Fig. 2.
Mirniok For three current oboes, the difference with
Gy Russery’s Standard Cone d=1/40 is plotted
23 against (lt—Ia). Iy is the distance to the top
of the instrument, /A is a constant for keeping
20 the curves separated. For the Marigaux, /5 =0,
for the Lorée /ao =25 mm, for the Monnich /x =
50 mm.
1.5 L ® = upper part,
~200 600 M0 O — lower part,
gl A _ bell.
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2. Theory of damped waves in a conical tube

At the walls, two effects can be distinguished:
First, the gas layer at the wall does not move, so the
viscosity of the gas will cause viscous friction.
Secondly, the heat conductivity of the wall is good
as compared with that of the gas, so it has a constant
temperature, whereas compressions and expansions
in the gas are adiabatic, and are accompanied by
temperature fluctuations. An exact theory taking
into account both effects simultanuously was given
by Kircuuorr. For musical instruments, the thermal
and viscous influence of the walls is only found in
a thin layer along the walls. In this special case, the
results can be described by correcting the density
with a viscous term and correcting the bulk modulus
with a term for thermal forces. It is now seen that
after all a rather simple solution is possible; it will
be given here.

As only studies are known for a cylindrical tube
[12], [13], [14], we shall start with this tube and
later modify the formulas to fit the conical tube.
The equations of motion and continuity for longitu-
dinal air motions in a cylindrical tube are given by
Zwikker and Kosten [14] and read in a slightly
modified notation:

iy
gradp:—ngull 2,,,!,1,(,,[,]“),] 1)

~ Ha Jy(Ha)
viec 12 [1 e ) Tl (2)
¥ Do Ha Jy(H a)
where:
p»py = excess respectively equilibrium pressure,
) = 2 times frequency,
0 = equilibrium density,
u = particle velocity,
y = ratio of specific heats,
Jo, ], = Besser functions of zero respectively first
order,
H =YV-jwen,
H = V—joroCyh,
7 = coefficient of viscosity,
/) = thermal conductivity,
a — tube radius,
(& = heat capacity at constant pressure.

A development in series gives [15]

L(B1(B) =j+1/(28) +11j/(645%) + ...

(3)
When @ is larger than thermal and viscous penetra-
tion depths, a good approximation is J;/Jy=j. Here-
with, the equations are simplified considerably.
Elimination of u between eqs. (1) and (2) gives the
wave equation for longitudinal waves in the z-direc-
tion:

92p/9z2 + K*[1 + (1-j)/Q]p=0 (4)
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where: k=w/c is the wave number, and c is the
sound velocity in free space. The resonator quality
Q is found from '

Q 1=V2yw/ypy[l+ (y—1) (4C, 77)5]/1“1-
(5)

In a conical tube, the radius @ is dependent on
the distance r to the top according to a= 6@ r. The
conicity @ is small in musical instruments, and the
wave fronts may be assumed to be flat. The tube
radius is small as compared to the wavelength every-
where. Egs. (1) and (2), given for a cylindrical
tube maintain their validity for a conical pipe, pro-
vided the dependence of the radius on r is inserted.
Just as before we assume /;/J,=] and we get:

gradp= —jwo(l+Dy/z)u (6)
divu= — (j /y py) (1 +Di/z)p (7)
where: x=Fkr and

D,=(1-j)D,/=(1-j) (20n/yp)?O~"
Dy=(1-j)D/ = (1-j) (y—1) (4/C, )2 Dy (8)

D,” and D, are real quantities and will be used
later.

In the following derivation, these quantities are
assumed to be small everywhere, so that quadratic
and higher powers can be neglected. For a conical
tube grad p=dp/dr and divu=dr?u/r*dr. Elimi-
nation of u between eqs. (6) and (7) then gives:

T42e %) vl homo
where Dyt=D,+Dy. (10)
Assume a solution

p=(p/v) [1+g@lexp(£jz). = (11)

Substitution into eq. (9) and multiplication with
exp(Ejz) gives:
d |[dg

i L9
iz e T )

e
x x=

D ;
— 'ig—')exp(i2jx).

Integrating two times, one gets, apart from con-
stants:

dg/dx= — Dy Ei(+2jz)exp (F2j2) —Dv/2x2_

(12)
g=FjDulEi(£2jz)exp (F2jz) —Inz]/2+
Dl 2w A1)

where

Ei(£2jz)=Ci(22) £jSi(2x)
Ci(2z) = —2}0(005 t/t)de

Si(2z) =jw(sin t)/tde.
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These functions are tabulated [16], [17], so that a
first order approximation of the pressure is deter-
mined explicitly. It is interesting to compare the
results with those of Benabe [1], who derived in a
much simpler way the influence of wall damping
and only found a logarithmic term. This term is
present in eq. (13), and it can be shown to be the
largest term in most cases.

The entire derivation is based upon the assump-
tion that Dy and Dy are small. To verify this, the
following numerical values are used, as given for
instance by Fay [18].

n = 1710 (1+0.00288 T)10~5 Ns/m?,
po = 101400 N/m?,

il a1 408,

V) = 0.0223 (1+0.0028T)J/ms °C,
& ' =10t )kg oC,

1 e = 1 06

¢ = 340m/s.

Herewith D, (theory) =2.9 x 1074kt @1

Dy =0.46D,’ . (14)

These numbers refer to the theoretical case of very
smooth walls. However, in musical instruments the
walls are far from smooth, and they are provided

with holes. For a clarinet, radius 7.5 mm, the

theoretical quality ) as found from eq. (5) ranges
from 30 to 53 for the low register, and from 53 to
75 for the high register. Backus [3] found from
experiments 20 to 25 and 40 to 45, respectively.
This corresponds with an increase with respect to
the theoretical value of D of about 60%. BexapE [1]
reported augmentations of about 70% for a plastic
tube with artificially closed holes.

From these results we estimated, rather arbitrari-
ly, that for conical instruments both D, and D, are
about 60% larger than according to the theory. So:

Dy =45%x1074k05 071, (15)

The oboes lowest fundamental is 233 Hz, so k=
4.31. From Fig. 1 we find ry=86 mm and 6 *~80
(RusseLr’s Standard Cone [5]). This gives zy=
0.372 and D;"=0.075. For higher frequencies D,’
increases with the square root of the frequency. The
quantity D,/z,, frequently occurring in the formu-
las, is 0.20 for the lowest fundamental and decreases
with the square root of the frequency. So the first
order terms are small, but not very small with
respect to unity. An estimate of the accuracy of the
solution with only a first order term is attained by
looking at the quadratic term. This appears to
amount to about 10% of the linear term in D, .
Comparing this with the uncertainty caused by the
wall roughness and the presence of holes, we con-
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clude that the first order approximation is sufficient-
ly accurate for a first order study.

By summation, respectively subtraction, of the
solutions for p given by eq. (11), two new in-
dependent solutions can be formed. They are pro-
vided with (complex) constants 4 and B and are
combined to the general solution:

p= (4/z){sinz+M +B (cosz+N)}  (16)

where
M:=Dyicosz(Inz—Ci2x—Si2ztanz)/2 +
+Dysinz/2z
N=Dysinz(—Inz—Ci2x +Si2zcotz)/2+
+Dycosz/22 .(17)

The particle velocity « is found from eq. (6). When
we denote by S the area of the cross section, the
acoustic impedance Z = p/Su becomes:

7 jeoc x4+ Dy

S 1-2G(Ba) ° G
where
cosz+M +B(—sinz+N')
b ffa = sinz+ M + B(cos x + N) y (2
M =dM/dz, N’ =dN/dz. (20)

The resonance condition for the tube is found after
inserting the two boundary conditions into eq. (18).

3. Resonance conditions for a conical woodwind

At the open end with radius a, r=ry, =24,
S=35;, the radiation impedance is denoted by

Zi=joc(ka—j1)/S4, (21)

where & and 7 are quantities somewhere in between
the values for a circular cylinder with infinite
flange: £=8/3 7w ~ 0.85, v =a®k>/2, and those for
a cylinder without flange & =0.65, v =a? £%/4 [19].
In any case, Z; is small with respect to unity. Con-
sequently, the expression which is obtained upon
inserting eq. (21) into eq. (18) can be simplified
with a good approximation into:

tka—jr=1/G(B, z,). (22)

For open ends like this, a length correction will be
introduced onto the preceding tube-piece. Small
print will be used for the geometrical length, and
capitals for the corrected length, i.e. the length of an
imaginary tube with zero terminating impedance
resonating in the same frequency. As Z; is small, the
process 1is very simple here; to a high accuracy

Ri=ri+&a or X;=2,+¢ka. (23)
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Herewith B is solved from eq. (22) :

—sin Xy —M; +jtcos,
cos Xy + Ny +jrsinz,

(24)

At the throat of the tube (r=ry, z=1,, S=35,)
we find a reed with an effective impedance Z, and,
in most cases, an irregularity in the diameter which
is described as a cavity V, in excess over the ex-
tended main tube. As this cavity is located in a
velocity antinode, it acts as a compliance. The im-
pedance Z, looking down the tube must obey the
condition

1/Zy=1/Z,—jkValoc. (25)

Into this we substitute eq. (18) with =, and S=
SO:

(j+90)oc/Zy Sy—1/an=—G(B,x), (26)

where
. ; Dy \ joc Vi |\
(J+‘a)‘QC/Z0 S(}:(]'T ai) >ZrSO+Dv<Soro )!
(27)
T =/ [1 — 262 Viu/So rol- (28)

As was found experimentally by Backus [3], the
tangent of the phase angle, ¢, is mainly due to the
reed action and is around unity. Z," is real and
consists mainly of the real part of the reed im-
pedance. From eqs. (24) and (26), a rather intri-
cate expression for the resonance condition can be
found. The meaning of this expression can be clari-

fied, when taking V=0 =D, =D;=0. Then:

_jecxo/So

1 — x4 cot (zg — X;) (29)

o=
Two extreme cases can be distinguished. For an
open end, Z, is very low and the solutions are of the
type (X;—=z,) =nm, n integer. Because for a reed
closure one always finds |Zy|>0¢c/Sy, these solu-
tions do not occur in reality. For very large values
of Z,, to a first approximation for small z,, X, =
n, n integer. This solution is closer to reality, and
we use its result for some simplifications, namely
sin X; ~sina; ~ 0 and cos X; = cos ;. The reso-
nance condition as found from eqs. (24) and (26)
then takes on the form:

(j +‘6)‘Q C/ZOI SO - 1/xm= (1 - @) COt(Xl ——:120),
(30)
where

D = (M secX;—j) (tanz, + cotz,) +

+ M, sec xyg— My coseczy . (31)

Using eqs. (8) and (17), @ may be separated in
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real and imaginary parts:

D=0, P,
D, =Dy (In2,/zy— Ci 22, +Ci2 7) X
X (tan zy+ cotzy) /2 — Dy’ tan /2 2
Dy =D, +7(tan 2y + cotz;) .

(32)

Now eq. (30) can be separated into real and imagi-
nary parts too. Elimination of Z; between those
parts leads to an expression for the resonance fre-
quency:

tan (zy — X;) =2 (1 + D, + 6 D) (33)

or:
X,=nn—2zy—arctan[zy (1 4+ P, +0 Dy)]. (34)

So indeed to a first approximation X;=nm, con-
firming the assumption made above. This means that
the oboe oscillates in the same frequency as a cy-
lindrical tube, open at both ends, which has a length
equal to the oboe cone from the extrapolated top on.

The imaginary part of eq. (30) delivers the real
part of the impedance at the throat:

Zy = (0¢/ Dy Sy) tan (zg — Xy). (35)

The deviations from the “ideal”” behaviour can be
described as length corrections to the ideal length R,
of the tube to its apex. We may distinguish a mouth-
piece cavity correction Al , a wall friction correc-
tion Al , and a correction due to complex impedance
at the tube entrance, Als;. They are —more or less
arbitrarily — defined from:

k(ro+ Aly) =arc tan 2y,
k(ro+ Alp +Aly) = arctan[zn (1 + D4) 1,
k(rg+Aly+ Al + Als) =arc tan[zg (1 + Dy + -

+0 D,)]
or:
Al = (rofx,) arc tan zy, — ry =~
25 (V/So 7o — 1/3) xo2 1g; (36)
s (‘Dl Tm 3 5
AL, = % arc tan B T B ] ; (37)
0 Dyx
Aly= T01%: 2¥m }
) Zo arc tan 1 +Im2(1+¢1) (1 +Q51+6 @2)
(38)

The absolute value of the mouthpiece cavity cor-
rection Al remains smaller than 0.02 ry for xy < 1.5,
when V1,/S, ry = 0.35, which is very plausible from
eq. (36). As was calculated before, for the lowest
fundamental z,=0.372 which means that about two
octaves are reasonably pure. According to eq. (32),
using eqs. (14) and (15), P, is calculated and
plotted in Fig.3 as a function of z,. The corre-
sponding R, =730 x 0.372/n 2, (n=mode number)
is indicated on the horizontal scale too. From this,
Al is determined with eq. (37), and plotted in
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Fig. 4. In Fig. 3, Aly/r, is plotted. It can be verified
easily that 1 < @, so that @y~ P, and Al ~
0 Al . So for Als, the same curve may be used as
for Al,. We remark that both effects apparently
have the tendency to lower the pitch.

04

0.3

0.2

=
~

0 0.5 1.0 4.5

kro= xo—>

Fig. 3. Function @; and length correction relative to
cone truncation Aly/ry, both for wall damping,
plotted as a function of £ ry .

RS s

10—
AL, |

O300 400 500 600 mm 700

R==>

Fig. 4. Length correction due to wall damping Aly for
first (n=1) and second (n=2) vibrational
mode of an oboe, as a function of effective re-
sonating length R, .

4. Calculation of the hole position

For a hole calculation we used the same method
as described earlier [8]. The throat of the tube is
assumed to be closed (infinite impedance), and

Sy
T
g SV | e
e $
r— o —>L——h~—4
‘ r,l L24"

Fig. 5. Explanation of nomenclature for a tube with a
single side-hole.
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losses are neglected. The tube with a row of opened
holes is replaced by one without holes, and reso-
nating in the same frequency. Then a single hole is
drilled (see Fig.5). The terminating impedance Z
of the preceding tube-part /; is considered to consist
of two impedances in parallel, use eq. (29) :

SR i Sgcotk Ly
Zy joc

1+ cotkL,

jocx /S,
Zy is found from eq. (18), in which the boundary
condition Z= co for a=z; gives B=tan({,—x),
where &y=arctanz,. So:

(39)

_ _Jecxm/S,
4= 1=z, cotsy,’ (40)

where & =xz;+& —2,. Deviations from the as-
sumption 2; < 1 have been dealt with before, so we
put &=z . Then Z; is eliminated from eqs. (39)
and (40), and the resonance condition is written in
the form:

tan X; =0,

where

X;=a;+arccot[cotk L, + (Su/S;)cotk Ly]. (41)

L, and Ly are sufficiently small, so

Ry=ry+ (S;LuLs)/(SuLy+S;Ly). (42)

By substitution of
(1+g)=2"12 and Ly=(1+g)R,— 1y

where v =number of semitones of the shift, when
the hole opens, we may solve eq. (42) for Ry —ry
which leads to an expression for the hole position:

v A8 by
en- 4o 252 1]

R, is the effective length corresponding to the fre-
quency with open hole. This expression is exactly
the same as was derived for a cylindrical tube [7],
and it is generally valid, for any hole in a row. The
effective length of the side hole is the sum of the
geometrical length and an end-correction: Ly=ly
+Alg . Recently, Lounex published investigations
concerning the magnitude of this end-correction
[20]. It appeared to be independent of the hole
length, but to depend on the ratio of the diameters
of hole and main tube, d/D. The end-correction was
expressed as ALy=mnr?y/C, [20], page 32, where
ri is the radius of the hole and C; was determined
experimentally. The seven experiments of Lounen as
combined from his Tables on pages 37 and 40 are
given in Table I. Lounen described the results with

Cy=0.57(d/D) +5.78(d/D)2. (44)

(43)

A serious objection against this expression is that
it is dimensionless, ALy becoming an area instead
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of a length. Therefore, we tried to interpret Loubpen’s

measurements on the basis of an assumption that
Aly =& d, where £ =nd/4C, and dependent on

Table I.

Survey of Loupex’s measurements [20] concerning end-
corrections of side-holes. !

d

cm AR Co
1.5 0.54 2.00
1.75 0.62 2.21
2.0 0.59 2.45
2.0 0.71 3.55
2.5 0.66 291
2.5 0.73 3.62°
2.5 0.89 5.03

d/D. From a plot of & versus d/D in Fig.6 we see
that 0.3 <& <0.8. The upper limit for a shallow
hole can be expected to be 0.85 because the velocity

0.8
o 4
2R
%S
3
0.7 A
3 N
\Cxo
T 0.6 [e) \
\
\9
§ 05
N
o5\
S
0.4 o\
0.3
0 0.5 10

e

Fig. 6. End-correction for a hole, £, expressed in units
hole diameter, as a function of the ratio of hole
and main-tube diameter, d/D, after measure-
ments of Loupex [20].

profile has to change twice, so that twice the correc-
tion for a normal flanged open end is reasonable.
For wider holes, corrections amount to about half as
much, indicating that at the inside of the hole none or
a small correction appears when d/D is unity. In the
oboe mostly d/D =~ 0.5 so that our choice is:

Aly = 0.8 dy . (45)

5. Corrections

As can be seen from Fig.1, and as has been
mentioned before, the diameter of the oboe is far
from a perfect cone. The conicity changes several
times, and at the end of the staple even with a sud-
den diameter decrease. These deviations can be ac-
counted for in corrections with respect to one of the
cones. The resonance condition for two succeeding
cones, the first one closed at the throat and the
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second one open at the bottom, can be determined
by equating impedances at the junction point. The
nomenclature is explained in Fig.7. When using

Fig. 7. Two succeeding cones with different conicity and
diameter. Double subscripts refer to the first,
and single subscripts to the second cone.

eqs. (29) and (40), the condition Z;; =Z, leads to:

/Sy /S

1—z, coté;  1—zcot(z,— Xe) g

We first apply this to the situation at the mouth-
piece. As was argued before, a positive mouthpiece
cavity is a necessity for obtaining pure overtones.
From Fig. 1, however, we see that there is no cavity
at the tip of the reed. Instead of that there is a
widening in the bore at a place somewhat further
down the tube. The diameter follows more or less
the course of a cone deviating markedly from that of
the main tube. The dimensions of this horn, together
with those of the extrapolated main tube, are listed
in Table II. The volumes of the cone approximation

Table II.
Survey of dimensions of the two cones at the top of the
oboe.
diameter distance
mm i mm
main tube | do =1.11 ‘ ro = 86
dl =920 rL, = 154
staple and = dg1 = 0.87 o1 =30
reed di11=24 rii= 91

and the extrapolated main tube can be calculated,
and they are both about 0.52 cm®. A measurement
of the volume of staple and reed with a calibrated
injection needle yielded 0.55cm?® to 0.61 cm?, de-
pending on the lip pressure on the reeds. This means
that a mouthpiece cavity, in the sense as discussed
before, hardly exists. The same effect for overtones,
however, is performed by the conical irregularity.
To show this, eq. (46) is written as follows:

24y Sy %y tan &gy

t ~Kg) i onri ]
Aoy~ 2e) (Sy 2y — Syy ) tandyy + Syy 21 2y

(47)
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A power series development of than &;; up to third
power terms gives:

tan Ell =.’l‘11+ (x:]gl —x?o)/S .

As w4 =~ 3 245, the third power of the latter is
neglected. Then eq. (47) becomes:

g (1+24,°/3)

tan(z; — X,) = ———— - 48
% 2 1 +?5112/3—511 3 244/3 S (%)
We find, accurate to quadratic terms,
Zy
X, =nm+ 2z, — arctan . (49)

1 — (Syy211/3 Sy 2y) 24

Using numerical values from Table II, we find that
the factor in front of x,% is about 0.3. Eq. (49) is
similar to eq. (34) and for the same reason the
coefficient of the quadratic term here should be
about 0.35 for a best approximation of the reso-
nance condition X,=nmn. We conclude that the
sense of the peculiar cone at the top of the instru-
ment is mainly purity of overtones.

At the bottom of the tube, a very rapidly ex-
panding conical horn is found. We use the same
nomenclature as before. The horn is very short, so
tan(z; — X,) =2, — X, 2y/x;; is neglected and
S1=3S41 . Now from eq. (47) :

tan &= —2,(1 — 2/ X,).

(50)

This means a length correction of r;{ (1 —r,/R,) onto
the preceding tube, or a correction to the tube the
horn including, of:

Aly=ri(2—r4/Ry) —r15. (51)

The lower part of the oboe is a slightly sharper
cone than the upper part, and a correction will be
applied to the extrapolated upper part. We use eq.
(46), with S; =S, , replace (z; — X,) by (#3; — X12)

and take &;; =4, . Then:
— 1 /2y 4 1/2; + cot 241 = cot (21, — Xq0) + (52)

This can be reshaped in functions of tanx;; and
tan X4 so as to lead to the condition sin (X5 + &k Al,)
=0, where approximately

Ve BN e S
s :
%y Zyy/sin® gy — (24 — Tyy) cOt 24y

When (r; —ryy) (sin224;) /(213 244) < 1:

. 2

sin @49\~
r{—r = :
(ry 11)( x )

11

Aly=

Al B Vrll

Ty

(53)

This formula can be used for the three oboes of
Fig. 2. After extrapolating the straight lines to the
line d =0, we obtain for the Monnich r; =337 mm,
r1; =320 mm, for the Lorée r;=328 mm, ry;=
304 mm, for the Marigaux r{=456 mm, ry;=
418 mm.
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In Fig.8 the corrections as calculated with eq.
(53) are given for the three oboes. It can be seen
that the influence for the second vibrational mode is

10
mm n=2
0 e T o
Alc 10 " e _o/}/.,
n= |10
e
0 M%z/
300 400 500 600 mm 700
0} e

Fig. 8. Length correction Al. due to the conicity change
in the middle for the three obees of Fig. 2. The
correction is plotted against the effective re-
sonating length R, for two vibrational modes

n=1 and n=2.
® Marigaux,
/A Lorée,

O Ménnich.

small, but that the ground-mode is flattened some
tenths of a semitone.

The influence of the row of closed side-holes in a
conical tube is accounted for in an analogous way
as was done for a cylindrical tube in a previous
paper [8]. From eqs. (1), (8) and (13) of that

paper we derive, changing the sign of Z; because

I iZy
Vy
e S
I
SR duERs ry——
R -

Fig. 9. Nomenclature as used with the calculation of
the influence of a closed side-hole on the re-
sonance frequency.

here (cf. Fig.9) both impedances are taken looking
down the tube,

Zy=2y—kVu(ZyZsJoc+e0c/S?). (54)

Vi denotes the volume of the side hole, ¢ is a factor
dependent on the shape:

e= (2/m)arctan(2 b/13 a), (55)

where b/a is the ratio width-depth of the hole. Im-
pedance Z; is given by eq. (40) with & =z, and
Z, is found from eq. (29) by replacing x, and X,
by x; and X,. Proceeding in the same way as be-
fore, we obtain a resonance condition tank(Rs+

Al) =0, where for small Al:
Al= (Vg/S) [sin® z; — & (cos x; — 2, "L sin 2;) 2].
(56)

For a row of side-holes for which 2 (V'y/S) is pro-
portional to R, the total correction can be found by
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integration (x=£kr)

R,
2(Va/S) [ sin?z — r(

Ry—ry

Aly =

When using the approximate relation sin X; =0, we
find, n integer,

b <P

2 1l—e—(1+¢)-

sing _ 4e(1— 09,5,179)}
@ P(2nm—p)

p=2nmn(l—rg/R,). (57)

Finally some miscellaneous irregularities in the
bore are dealt with by using eq. (56). The volume
of the constriction in the top divided by the local
area for respectively the Monnich, Lorée and Mari-
gaux is about Vj/S = 0.6 mm, 3.0 mm and 2.6 mm;
ry is assumed 200 mm. The corrections are largest
for the Lorée, and these are plotted in Fig. 10. For

10
T m T 0 e L
0t ——
Alt n=14
-10
300 400 500 600 mm 700
i o

Fig. 10. Length correction Aly due to the constriction
at the top of the Lorée oboe, plotted against
the effective resonating length R, for two vibra-
tional modes n=1 and n=2. For the Mari-
gaux and the Monnich this correction is 0.87,
respectively 0.2 times, as much.

the other instruments, they are smaller to the ratio
of Vu/S. The constriction and expansion in the
middle of the Ménnich can be assumed to have a
negligible influence, because V' /S = 0.9 mm.

On comparing Figs. 8 and 10 we conclude that to
some extent the effects of the sharpening conicity
and the constriction just below the staple compen-
sate each other. If there would be no other reason
for their existence, it seems they could be left out
both. According to Bate [6], page 83, modern
oboes show fewer deviations from conicity than
older ones, and one might suggest that this has
something to do with it.

6. Application

RusseELL’s extensive measurements on oboes [5]
cannot be used here, because these mainly concern
the diameter and only occasionally hole diameters.
For comparison with reality, we investigated the
Ménnich oboe, conservatory system, in the posses-
sion and played by pe Brumn. Its lowest fundamen-
tal is 233 Hz (B-flat). The specifications pertinent
to the holes are listed in Table I1I. The tones sound-
ing with closed and opened hole are given. Holes 1
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to 11 are located in the upper joint, 12 to 21 in the
lower branch, hole 22 in the bell. The lowest note
sounding with all holes closed is listed at the bottom
of the Table. Holes 1, 2 and 5 serve as an aid for
overblowing and have no specific tuning function.
Some holes serve two purposes, and are consequent-
ly calculated for both. Due to the intricacies of the
mechanism, in certain situations two keys move
together. So the notes wich belong with a given hole
are flat or sharp, as indicated with a minus or plus
sign. The deviations are perceptible, but small, and
it suffices to apply the formula for the full shift. The
diameter of a hole, dy, is not always defined uni-
quely. Some holes, indicated in the second column
with “u” show so-called undercutting, i.e. the hole is
conically widened from the inside. Also, the length
of the hole Il;, is not defined. The outer end may
be curved. Mostly, however, some wall material is
removed so as to obtain a circular end for a better
fit onto fingers and pads. The inside end is always
curved, especially in case of undercutting. We chose
to specify the shortest length of the hole. [, is the
distance measured from the reed tip to the centre of
the hole. d; was found from Figs. 1 and 2.

The calculation of the hole position to the apex
of the horn, r;, was performed with eq. (43). The
results are given in Table III. For R; was used
170/f where frequencies f were chosen according to
equal temperament.

For the lowest note, the correction in the bell is
introduced, see eq. (51), with ry = 70 mm, r, =
160 mm and R, =170 mm, Al = — 49 mm. Hole 22
is located in the horn and we applied a correction
for this, using eq. (56); it simplifies for this case
into Al = —AV/S,; and we find Al = — 4 mm. The

differences between calculated and measured posi-

-80 =
o geometrically)
ol = ILITILL 1Y, YA
0. semitone
-100 flat I
T o\\'\ Shaf‘p
= g et S
=-120 vy
o \I\\QD\ A
\\
-140
300 400 500 600 mm 700
Ry7 s

Fig. 11. Difference between real and calculated hole
position including the bell-horn correction, as
a function of effective length R;. A shaded
area indicates a 0.1 semitone shift. Triangular
symbols refer to holes with undercutting, filled
circles refer to holes for which the frequency
shift differs slightly from that assumed in the
calculations.
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Table III.
Survey of hole specifications.
ey ((lf))) tona with kol R ds det R (N B R
hole ‘ gk IR nt 3 SRR i §
cutting (u) closed ‘ open mm ‘ mm mm | mm mm Alp | "
1 i | 03 | 73
200 L ke 1 0.3 129
& sk Eann dt 289 6.7 3.1 6 158 | 265
T T [ el L 307 6.7 3.0 6 170 | 286
4b li7b L4 307 | {7298
Bis R ; 7.2 4.2 6 182 |
6 k Vb cl 325 7.6 3.6 6 201 | | 305
7 0o ‘ a b 344 7.9 48 8.5 213 \ | a1
8l e ast | 365 8.3 4.2 6 230 | 346
B bk | a at | 365 8.3 4.2 6 230 346
100 .o el a | 386 8.7 4.7 8.5 246 364
11 Kivu eitg g4 | 409 9.5 5.0 6 275 | 389
12 k,u | f# g 434 10.2 70 1788 304 | | al9
13 k (i f 460 10.6 46 | 6 S [438
14a ol /e f+ 486 11.0 Bi6E B 337 | | 463
14b | L d# f 486 | ] 459
TR OO B f 486 11.3 7:3 6 351 | 468
16 Gl d e 516 11.7 6.7 8.5 365 | | 492
17 k i d d# 546 12.6 7.6 5.5 401 | 526
18 Ik d 546 12.6 8.5 4.8 403 | 529
19 k ¢ d 579 13.3 9.7 4.5 431 } 560
20 k, u ¢ it 613 14.0 7.6 5.4 463 | | 589
Y e B ¢ 650 14.8 9.8 4.5 499 | ‘ 631
e T A% B 688 16.5 10.8 45 530/ =il an
it A | 130 | 3 634 | —40 | 730

tions, corrected for the horn in the bell, l;—r;
+Al,, are plotted in Fig.11 as a function of R, .
Points referring to double functions of the same hole
are connected with a vertical line. A scatter is ob-
served. Some of this is due to undercutting (triangu-
lar symbols). If we should correct for this, triangu-
lars and black circles are expected to move down-
wards some mm in the diagram. This would reduce
the scatter somewhat. Taking this effect into account,
a smooth curve was drawn through the separate
points. The remaining scatter is £ 0.1 semitone (0.1
semitone is about 0.006 R;), which is often con-
sidered as admissible for practice [4], as it can be
corrected by lip pressure.

The smooth curve was used as a basis to which
the corrections were applied as derived in the pre-

il Swls |~
l‘»o / T
5 o
B /"/ ALy for n=1
20 /"' e
[ ’((8)’/7‘ Alv for n=2
A et e .
300 400 500 600 mm 700
R4—"

Fig.12. Sum of closed side-hole volume divided by
main tube area, X (Vu/S), for the row of
closed side-holes, Aly, as a function of the
effective resonating length R;. Curves are
given for vibrational modes n=1 and n=2.

ceding paragraphs. To determine the closed side-
hole correction, X V'yy/S was plotted in Fig. 12 as a
function of R;. The mean value of b/a was found
to be 0.7, so with eq. (55), ¢ =0.07. The correction
Al; calculated with eq. (57) taking rg =275 mm is
plotted in Fig.12 for two vibrational modes, n=1
and n=2. The final deviation from real and calcu-
lated position

Alygy=1lg —ri + Al + 1o+ Alg+ Aly + Al + Als
(57)

is plotted in Fig. 13 forn=1 and n=2 and for 6 =0

PR R T D RS T
20
mm
T 10F
ki 0
S -0F
_20_
n=2,d=0
L 1 1 1 1 1 1 1 1 1
300 400 500 600 700 mm 800
R4—>
Fig. 13. Difference Altot between real and calculated

hole positions, including the most important
corrections, is plotted versus effective length
R; for first and second mode, n=1 and n=2
and for tangent of the phase angle at the reed
0=0 and d=1. Sounding tones in the first
mode are indicated. A shaded area indicates a
0.1 semitone shift.
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and 0 = 1. In the diagram, a shaded area indicates a
shift of 0.1 semitone. A first impression, ‘when ob-
serving Fig. 10 is that the lowest group of notes is
flat. This corresponds with the findings of Younc
[4], who concluded that in particular an inexperien-
ced player (who is supposed not to correct errors
automatically with his lips) tends to intonate low
notes up to half a semitone flat, which is about the
amount theoretically found here. It is a known fact
that oboe troubles always concern a flatness in low
notes, contrary to the clarinet where low notes tend
to be sharp. It is striking that clarinet and oboe cal-
culations both predict deviations in the same direc-
tions as where practice finds these [8], [9]. On the
other hand, we may imagine that there might be a
reason for this flattening of a whole region, because
this effect could easily have been compensated for
by widening the lower part of the oboe instead of
narrowing it. From Fig. 8 it can be seen that such a
measure will have the right effect. The sharpening
conicity, however, seems to be a feature of an oboe;
most of the oboes investigated by Russerr [20]
showed it. We can imagine that it has some func-
tion, for instance tone colour, tuning of high notes,
ease of embouchure.

7. Conclusions

The oboe bore approximates to a truncated cone
and is effectively closed at the top and open at the
bottom. Its resonance frequency is about equal to
that of an open-open cylindrical tube with a length
equal to the cone extrapolated to its apex.

The wave equation in a conical tube, when solved
up to first order terms, yields corrections due to
radiation, wall damping and complex reed im-
pedance. Other corrections due to deviations of the
ideal cone, and the closed side-holes, are introduced.
The effect of all corrections together is a flattening
of the resonance frequency by one half to a whole
tone.

The position of a hole can be predicted with
respect to neighbouring holes within 0.1 to 0.2 of a
semitone. Predicting the hole position without know-
ledge of its neighbours is less accurate, but still
reasonable, except that the theory calculates the
lowest notes up to about half a semitone flat.

The reported investigations may help to indicate
an individual impure note, and permit its correction.
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They may also assist in efforts to change the bore for
retuning part of a register of a conical woodwind.
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