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Summary
Methods are derived to calculate the required positions and sizes of holes in a conical

woochvind. With a simple algebraic expression, the holes are located, independently of on-e

another. Only the frequenciei for the opened and the closed positions need to be spe_cified.

An approximative iolution of the wave equation in a conical tube is derived including
viscous and the.mal damping along the walls and a complex impedance at the entrance of
the tube. Pitch variatiorri dr" to these efiects are determined. Corrections are introduced
for departures from the ideal cone and Ior the row of closed side holes.

The difierence between calculated and rneasured hole positions is plotted, and the

separate points scatter 0.1 to 0.2 semitone around a smooth curve drawn through-them.
The deviition from zero of the smooth curve indicates that the low register may bo ex-

pected to be flat with respect to the high register.

Berechnung der Liidrer on einer Oboe

Ztsammenfassung
Es werden Verfahren zur Berechnung der erforderlidren Lage und GriilJe der L6cher

in einem konischen Holzblasinstrument hergeleitet. Mit Hilfe eines einlachen algebraisdren
Ausdruckes wird die Lage der Liicher unabhdngig voneinander bestimmt. Nur die Frequen-

zen fiir die geiiffneten und geschlossenen Lijcher miissen angegeben werden.
Unrer B;i.icksichtigung von viskoser und thermischer D6mpfung an den Wdnden und

einer komplexe, I-peda,rz am Eingang wird eine NHherungsliisung der Wellengleidrung
Iiir ein koniscl,es Rohr hergeleitet.-DiJ durdr solche Einfliisse hervorgerufene Anderung
der Tonhiihe wird bestimmt. Schlie8lich werden Korrekturen fiir Abweichungen vom

idealen Konus und fiir die Reihe der geschlossenen Seitenliicher eingeliihrt.
Der Unterschied in der errechneten und gemessenen Lage der Liicher wird aufgetragen,

wobei die einzelnen Punkte um 0,1 bis 0,2 Halbtiine um eine durch sie gezeicrhnete glatte
Kurve srreuen. Die Abweichung dieser Kurve von NulI liif3t darauf schlieBen, daB das

niedrige Register in bezug auf das hohe flach sein wird.

Calculs des trous pour un hautbois

Sommaire
On a 6tabli des m6thodes pour calculer les positions requises et les dimensions du trou

dans les bois coniques. Par une simple expression alg6brique, on d6termine la position des

trous, ind6pendamment les uns des autres. Seules les fr6quences pour les positions ouvertes
et ferm6es doivent 6tre pr6cis6es.

On tire une solution approximative de I'6quation des ondes dans un tube conique, com-

prenant I'amortissement visqueux et thermique le long des parois et une imp6dance com-

plexe i l'entr6e du tube, On d6termine les variations de tons dues i ces influences. On
pr6sente des corrections pour les 6carts du c6ne id6al et pour Ia rang6e des trous en posi-
tion ferm6e.

On fait le relev6 de la diff6rence entre les positions calcul6es et mesur6es des trous et

on trace une courbe liss6e au milieu de Ia dispersion des points exp,irimentaux de 0,1 i
0,2 demitons. L'6cart au z6ro de la courbe liss6e indique qu'on peut s'attendre i ce que le
registre grave soit plat par rapport au registre aigu.

1. Introduction

Though the behaviour of woodwind instruments
is far from unterstood, a gradual increase in know-
ledge may be observed. A few studies have appeared

[1] to [8], but this subject seems to lag behind de-

velopments in other fields of acoustics [9], [10].

The present paper is a continuation of the one [7]
on hole calculations for a clarinet, and concerns
analogous investigations for an oboe. Whereas the

clarinet is a cylindrical instrument, the oboe is essen-

tially conical. It will appear that the method for the
clarinet can be adapted to conical instruments. This
means that each hole can be calculated separately,
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and independently of all others, only when the fre-
quqncies for both the open and the closed position
of the hole are specified.

A number of corrections to these calculations
need to be introduced whidr, all together, lower the
pitch about one half to a whole tone. This makes
theory and practice coincide within acceptable
Iimits. When these corrections are not applied, the
oboe is 2 cm to 5 cm shorter than expected from
simple theory, a phenomenon already observed by
Rrorruro IlI].

Roughly speaking, the internal diameter of an
oboe follows the course of a truncated cone closed
at its narrow end by two flat wooden platelets, the
reeds. By pressing air between these reeds, the
player excites the air column into longitudinal vibra-
tions [3]. These vibrations are damped by friction
along the walls and by radiation from the holes and
the open end.

Russnr,r, [5] measured very accurately the dia-
meters of a great number of oboes, and showed that
the conicity of oboes is far from perfect. An example

Fig. l. Diameter d as a function of distance to the reed
tip for a Miinnich oboe. Dashed line is the ideal
bore according to Russnrr [5]. The rapidly
flaring bell is plotted on another scale.
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is presented in Fig. l, where a plot is given of the
diameter as a function of the distance to the reed
tip for a Mtinnidr oboe. Near top and bottom, con-
siderable departures from a cone are observed. Also
the middle part shows deviations, though on a mudr
smaller scale. To vizualize these, a plot is made of
the deviations from a oostandard cone", as intro-
duced by Russrr,r, [5]. The diameter of this standard
cone is 0.025 times the distance to the top of the
cone. In Fig.2, the quantity d-0.025(lt-la) is
plotted versus (11 - h) ; the diameter is denoted by
d, \ is the distance to the top of the instrument
without staple and reed, and la is an auxiliary
constant to keep the eurves separated. Three curves
are given, (1) for a Marigaux (no. 3614, Paris,
bought new in 1965), lt : zero; (2) for a Lor6e
(no. AS17/AAS17, Paris, 1954),la : 25mm;
(3) for a Miinnidr (no. 1055, Markneukirchen,
1962), 11:50 mm.

The points refer to measurements obtained by
carefully inserting cylindrical calibers of perspex in
the wide end of the tube. Approximate curves or
straight lines are drawn through the points. Oblique
lines indicating the diameters are drawn, so that the
diameter can be read at every place.

From studying Fig.2, we conclude that besides
some scatter (which is not due to measurement e-r-

rors) each of the oboes shows a difierent trend in its
diameter. A constriction at the top is present in all
three of them. Somewhere near the joint of upper
and lower part, the conicity changes rather abruptly.
The Miinnidr shows a wavery irregularity in the
middle.

Before dealing with all these perturbations, we
shall now determine the resonance frequency of a
perfect cone where reed action, wall friction and
radiation are taken into account.
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Fig.2.
For three current oboes, the difierence with
RusSnr,r,'s Standard Cone d,:440 is plotted
against (11-1il. 11 is the distance to the top
of the instrument, /A is a constant for keeping
the curves separated. For the Marigaux, ltr:0,
for the Lor6e lt:25 mm, for the Miinnich /a:
50 mm.
o : upper part,
O : lower part,
A : bell.
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2. Theory of damped waves in a conical tube

At the walls, two efiects can be distinguished:
First, the gas layer at the wall does not move, so the

viscosity of the gas will cause viscous friction.
Secondly, the heat conductivity of the wall is good

as compared with that of the gas, so it has a constant

temperature, whereas compressions and expansions

in the gas are adiabatico and are accompanied by
temperature fluctuations. An exact theory taking
into account both efiects simultanuously was given
by Krecuuonr. For musical instruments, the thermal
and viscous influence of the walls is only found in
a thin layer along the walls. In this special case, the

results can be described by correcting the density
with a viscous term and correcting the bulk modulus
rvith a term for thermal forces. It is now seen that
after all a rather simple solution is possible; it will
be given here.

As only studies are known for a cylindrical tube

[I2], [13], [14], we shall start with this tube and

later modify the formulas to fit the conical tube.

The equations of motion and continuity for longitu-
dinal air motions in a cylindrical tube are given by
ZwrxxnR and Kosrru [14] and read in a slightly
modified notation:
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p (2)

where: k:otf c is the wave number, and c is the

sound velocity in free space. The resonator quality

Q is found from

q2 r:y-zqot11,p0[I + (/ -l)().1C1,?iL]Ika,.
(s)

In a conical tube, the radius a is dependent on

the distance r to the top according to a:@ r. The
conicity @ is small in musical instruments, and the

wave fronts may be assumed to be flat. The tube

radius is small as compared to the wavelength every-

where. Eqs. (I) and (2), given for a cylindrical
tube maintain their validity for a conical pipe, pro'
vided the dependence of the radius on r is inserted.

Just as before we assume lrl lo:j and we get:

gradp: - jcogQ+D"lx)u (6)

divu: - (i 
^lY 

po) Q+DJI)P (7)

rvhere: r: Jc r and

D": (1 - j)D"': (1- j) (2aqlypollg-r
Dt: (t - j)Dr': (1- j) (z- D ()'lC?n)LD"'(B)

Dr' and D1' are real quantities and will be used

later.
In the following derivation, these quantities are

assumed to be small everywhere, so that quadratic
and higher powers can be neglected. For a conical
tube grad p: dpldr and div u -- drz uf r2 dr. Elimi-
nation of u between eqs. (6) and (7) then gives:

gradp: -ia gu

i t,t I
divn:-'- l1lPo I

where:

, 2 Jr@")' Ha tnlHa)
2(Y -l) IJH' a)

I{ o 7o1H'o1 0'p , 12,A - tl tot" \r
where

'; )Zi +(r+ ';')r:o (e)

* [i: exp(* 'id): - (': ri 
.D,"

D"t: D" I Dt . (10)

H
H,
q
).

cl,

cp

P,Po : €xc€ss respectively equilibrium pressuie,

a : 2 tt times frequency,

S : equilibrium densitY,

u : particle velocity,
y : ratio of specific heats,

ls, l1 : Bnssar, functions of zero respectively first
order,

/-letl-z-: /-jav,9colL,
: coefficient of viscosity,

- thermal conductivity,

- tube radius,
: heat capacity at constant pressure'

A development in series gives [15]

r,(illlo(,fr):i+UQf) +rr ilrc4P') * ..i,
When o is larger than thermal and viscous penetra'
tion depths, a good approximation is l1f ls: j. Here-

with, the equations are simplified considerably.
Elimination of zr between eqs. (I) and (2) gives the

wave equation for longitudinal waves in the z-direc-

tion:
02pf0zz +kzlr + (1 - il lQlp:o (4)

Assume a solution

i: tpl*l[1 +s(r)]exp(+jz). (11)

Substitution into eq. (9) and multiplication with
exp( *j r) gives:

'; )exp(*21'1'
Integrating two times, one gets, apart from con-
stants:

dsldr: - D,.tEi(1'2ir)exp(+2ir) -D,f 2rz
(12)

s: + j D"r[Ei( + 2j s)exp ( T 2 j *) -lnr]l 2 +
+ D"f2 r (I3)

where
Ei(+2 jr):Ci(2c) + j Si(2r)

Ci(2 r) : -i1co, tlt) d,t,;.

Si(2r):J(sin t)ltdt.



These functions are tabulated [16], [17], so that a

first order approximation of the pressure is deter-
mined explicitly. It is interesting to compare the
results with those of Buveop [l], who derived in a

much simpler way the influence of wall damping
and only found a logarithmic term. This term is
present in eq. (I3), and it can be shown to be the
largest term in most cases.

The entire derivation is based upon the assump-
tion that D, and D1 are small. To verify this, the
following numerical values are used, as given for
instancebyFev [18].

: 1.710 (I + 0.00288 I) rO-r Ns/m2,
: 101400 N/m2,
: 1.408,
: 0.0223 (r + 0.0028 7) J/m s oC,

l0l0 J/ks oC,

: 20 0c,

: 340 mis.

Herewith D,'(theory) : 2.9 x lO 1 kL @-1

Dr --0.46 D,." (14)

These numbers refer to the theoretical case of very
smooth walls. However, in musical instruments the
walls are far from smooth, and they are provided
with holes. For a clarinet, radius 7.5 mm, the
theoretical quality Q as {ound from eq. (5) ranges
from 30 to 53 for the low register, and from 53 to
75 for the high register. Becxus [3] found from
experiments 2O to 25 and 40 to 45, respectively.
This corresponds with an increase with respect to
the theoretical value of D of about 6O%. BrNeon []
reported augmentations of about 7O% for a plastic
tube with artificially closed holes.

From these results we estimated, rather arbitrari-
ly, that for conical instruments both D,' and Di' are
abort 60% larger than according to the theory. So:

D"':4.5 x I0-4 ko.i @-1. (lS)

The oboes lowest fundamental is 233 Hz, so k:
4.31. From Fig. I we find rs:86mm and @-r:80
(Russrr,l's Standard Cone [5] ). This gives ro :
0.372 and D"':0.075. For higher frequencies D,'
increases with the square root of the frequency. The
quantity Du'lro,Irequently occurring in the formu-
las, is 0.20 for the lowest {undamental and decreases
with the square root of the frequency. So the first
order terms are small, but not very small with
respect to unity. An estimate of the accuracy of the
solution with only a first order term is attained by
Iooking at the quadratic term. This appears to
amount to about 1O% oI the linear term in D,.
Comparing this with the uncertainty caused by the
wall roughness and the presence of holes, we con-

AC USTICA
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clude that the first order approximation is sufficient-
Iy accurate for a first order study.

By summation, respectively subtraction, of the
solutions for p given by .q. (11), two new in-
dependent solutions can be formed. They are pro-
vided with (complex) constants A and B and are
combined to the general solution:

p: (Ald{sinr+M aB (cos r+N) } (t0l

rvhere

M ': Dutcos a (ln s - Ci 2 r - Si 2 r tan *) f 2 +
+ Du sinxf 2 r

N:Dotsinz(-ln r-Ci2r -tsi2rcotx) f 2a
* D, cos rlz r .1t21

The particle velocity u is {ound from eq. (6). When
u,e denote by S the area of the cross section, the
acoustic impedance Z : pl Su becomes:

- jQc r+Dvz: '\- -r-;'i('1,*l i (18)

where

G@.x) : cos ,+ M' + B(- sinr+/V')
' srnx+M+B(cosr+/V) ' (I9)

M':,lMldx, N':dNf M. (20)

The resonance condition for the tube is found after
inserting the tuo boundary conditions into eq. (18).

3. Resonance conditions for a conical woodwind

At the open end with radius &1 r:r1 , r:tt,
S: Sr , the radiation impedance is denoted by

zr:j'sc(Eka-jr)/Sr, (2t)

where ,,t and z are quantities somewhere in between
the values for a circular cylinder with infinite
flange: E:Bl3 n : 0.85, r : a2 h212, and those for
a cylinder without flange et:0.65, t:a2k2f4 ll9l.
In any case, Z, is small with respect to unity. Con-
sequently, the expression which is obtained upon
inserting eq. (2f ) into eq. (IB) can be simplified
with a good approximation into:

ika-jr:llG(B,rr). (22)

For open ends like this, a length correction will be
introduced onto the preceding tube-piece. Small
print will be used for the geometrical length, and
capitals for the corrected length, i.e. the length of an
imaginary tube with zero terminating impedance
resonating in the same frequency. As 21 is small, the
process is very simple here; to a high accuracy

ftt:rr*sEa or Xr:xr+€ka. (23)

C. J. NEDERVEEN and A. DE BRUIJN: HOLE CALCULATIONS FOR OBOE
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Herewith B is solved from eq. (22) :

D -sin Xr-Mr* jzcosr',
B-- cosXl+/Y1+jzsinr, Q1)

At the throat of the tube (r : rs, fi: ts t S: So)

we find a reed with an efiective impedance Z, and,
in most cases, an irregularity in the diameter which
is describecl as a cavity Z. in excess over the ex-

tended main tube. As this cavity is located in a

velocity antinode, it acts as a compliance. The im-
pedance Zo looking down the tube must obey the

condition

rlZo:llZ,- jkV*f,9c. (25)

Into this we substitute eq. (18) with r:no and S:
so:

(j + d) Q clZo'So- I/r. : - G(B,xs), (26)

where

r^:qfll-rs2V*fStrrf. (28)

As was found experimentally by Bacxus [3], the

tangent of the phase angle, d, is mainly due to the

reed action and is around unity. Zo' is real and

consists mainly of the real part of the reed im-
pedance. From eqs. (24) and (26), a rather intri'
cate expression for the resonance condition can be

found. The meaning of this expression can be clari-
fied, when taking V^:6:D*:Dt:0. Then:

z^_: ilcrolqr_ eg)"o- I-16cot(ro-X1)

Two extreme cases can be distinguished. For an

open end, Zois very low ancl the solutions are of the

type (X1 -ro) : nx, n integer. Because for a reed

closure one always finds I Zol)'g c/Ss, these solu-
tions do not occur in reality. For very large values

of Zo, to a first approximation for small rs, Xr:
n. n, n integer. This solution is closer to reality, and

we use its result for some simplifications, namely

nance condition as found from eqs. (24) and (26)
then takes on the form:

(l +d1 Qclzo' Ss- t/r.: (r + @)cot(X1-16),
(30)

where

@ : (Mtsec X1 - j z) (tan ro + cot no) +
a Ms' secrs- Mscosecxs. (3I)

Using eqs. (B) and (17), aD may be separated in
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real and imaginary parts:

@:Qt-jQ, l
@r:D''rllnrtlro-Ci2ar+Ci2re) x lfszl

X (tan r6 -t cotr) f 2 - Du' tannof 2 q2 l'- 
'

Oz: @t 1z (tan ro t cot rs) )

(j+d)e cfzs' ss: (, * 

") 

l:;,.r"({; )'
(27)

Now eq. (30) can be separated into real and imagi-
nary parts too. Elimination of Zo between those
parts leads to an expression for the resonance fre-
quency:

tan(ro -Xr):r^(l + iDr+6<Dr1 (33)

or:

Xr:njt- ro-arc tan[rr,(1 * @r*d @r)]. (34)

So indeed to a first approximation Xr:nfi' con'
firming the assumption made above. This means that
the oboe oscillates in the same frequency as a cy-

lindrical tube, open at both ends, which has a length
equal to the oboe cone from the extrapolated top on.

The imaginary part of eq. (30) delivers the real
part of the impedance at the throat:

Zo' : (gc/rnrSo)tan(ro-Xt). (35)

The deviations from the "ideal'; behaviour can be

clescribed as length corrections to the ideal length R1

of the tube to its apex. We may distinguish a mouth-
piece cavity correction AJ., a wall friction correc-

tion A/." , and a correction due to complex impedance

at the tube entrance, Alo . They are - more or less

arbitrarily - defined from:

k(rs* Al-) : arc tan 0.,
k(rs-l Al.1Al*) : arc tan[cm(1 + @r) ],

k(rs -+Al- 1 Al." + 416) : arc tan[r. (1 + @r *
+d@,)l

Ll^: (rsf xs) arc tan xn- ro -o(V^f Ssro-lf3)xoz ro;

- t' @rf,n, I .41.., : 'o arc tan I -a&w- uo [I+r,,,2(l+@,) l'

(36)

(37)

| 6@rr^ Iou- :: arc tan] 
r -,.,,,21r+ol) (r +@r+d@r)l

(38)

The absolute value of the mouthpiece cavity cor'
rection Al^ remains smaller than 0.02 rs for x0 < I.5,
when I'./Ss rs : 0.35, which is very plausible from
eq. (36). As was calculated before, for the lowest

fundamental ro:0.372 which means that about two
octaves are reasonably pure. According to eq. (32),
using eqs. (I4) and (I5), @1 is calculated and
plotted in Fig.3 as a function of rs. The corre-
sponding R1 : 730 x 0.3721n ro (n -- mode number)
is indicated on the horizontal scale too. From this,
Alu is determined with eq. (37), and plotted in
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Fig.4. In Fig. 3, Al*/rq is plotted. It can be verified
easily that t 4 @1, so that @2= Q1 and A/o:
d Ar". . So for A/0, the same curve may be used as

for A/*. We remark that both efiects apparently
have the tendency to lower the pitch.

0 0.5 1,0 ,1.5

kr6= ro+
Fig. 3. Function @1 and length correction relative to

cone truncation Al*/re, both for wall damping,
plotted as a function oI k rn .

600 mm 700

Fig.4. Length correction due to wall damping Al* for
fi.rst (": 1) and second (":2) vibrational
mode of an oboe, as a function of effective re-
sonating length R1 ,

4. Calculation of the hole position

For a hole calculation we used the same method
as described earlier [8]. The throat of the tube is
assumed to be closed (infinite impedance), and

Fig.S. Explanation of nomenclature for a tube with a
single side-hole.

AC U STI CA
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Iosses are neglected. The tube with a row of opened
holes is replaced by one without holes, and reso-
nating in the same frequency. Then a single hole is
drilled (see Fig. 5). The terminating impedance 21
of the preceding tube-part 11 is considered to consist
of two impedances in parallel, use eq. (29) :

C. J. NEDERVEEN and A. DE BRUIJN: HOLE CALCULATIONS FOR OBOE

] :_SucothLs + I*t1cotkL2
Zr jq" jScqfSl (3e)

(40)

21 is found from eq. (lB), in which the boundary
condition Z:a fior r:so gives B:tan(fr-rq),
where f6: arc tan ro . So:0.3

0.2

. j,pcr1fs,
L1- , ,I-Jf1COtf1

where f1 :q*€s-ro. Deviations from the as-

sumption 16 ( I have been dealt with before, so we
put fr : cr . Then 21 is eliminated from eqs. (39)
and (40), and the resonance condition is written in
the form:

tan Xr: Q ,

where

Xr:xra arc cot[cot k Lr+ (Snl Sr)cot]ZHl. (41)

L2 and Ls are sufficiently small, so

ftr : rr * (Sr Zn Lr) l6alg + Sr Iu). @2)

By substitution of

(1+g):2ot12 and Lr: (I+B)ftr-rr,
where o: number of semitones oI the shift, when
the hole opens, we may solve eq. (42) for R1 - r,
whidr leads to an expression for the hole position:

rr:Rr [,- g{/,.;*o,- -,}] (n,)

rt1 is the efiective length corresponding to the fre-
quency with open hole. This expression is exactly
the same as was derived for a cylindrical tube [7],
and it is generally valid, for any hole in a row. The
efiective length of the side hole is the sum of the
geometrical length and an end-correction: Zs:lt
+ AIE . Recently, LouoBtt published investrgations
concerning the magnitude of this end-correction

[20]. It appeared to be independent of the hole
length, but to depend on the ratio of the diameters
o{ hole and main trbe, df D. The end-correction was

expressed as AZs:trzalCo [20], page 32, where
rs is the radius of the hole and Co was determined
experimentally. The seven experiments of Louonn as

combined from his Tables on pages 37 and 40 are
given in Table I. Louonx described the results with

C o 
: 0.s7 (d I D) + s.7 B (iil D)z (44)

A serious objection against this expression is that
it is dimensionless, AZs becoming an area instead

400 500
Rl....*

5H

O

E',=27'

\ - --.2

!

\,,
\ t Qa ,n= 4

J-

l1*
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of a length. Therefore, we tried to interpret LoupnN's
measurements on the basis of an assumption that
AJs:.t'd, where [':ndl4C6 and dependent on

Table I.
Survey of LouoaN's measurements [20] concerning end-

corrections of side-holes.
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df D.From a plot of f'versus dlD in Fig.6 we see

that 0.3<rt'<0.8. The upper limit for a shallow
hole can be expected to be 0.85 because the velocity

0 0.5 1.0

dlD-
Fig.6. End-correction for a hole, f', expressed in units

hole diameter, as a function of the ratio of hoie
and main-tube diameter, dfD, after measure-
ments of Louow [20].

profile has to drange twice, so that twice the correc-

tion for a normal flanged open end is reasonable.
For wider holes, corrections amount to about half as

mudr, indicating that at the inside of the hole none or
a small correction appears when df D is unity. In the

oboe mostly dlD ,= 0.5 so that our droice is:

Als:0.8 dn . (45)

5. Corrections

As can be seen from Fig. I, and as has been

mentioned before, the diameter of the oboe is far
from a perfect cone. The conicity dranges several

times, and at the end of the staple even with a sud'
den diameter decrease. These deviations can be ac-

counted for in corrections with respect to one of the

cones. The resonance condition for two succeeding

cones, the first one closed at the throat and the

second one open at the bottom, can be determined
by equating impedances at the junction point. The
nomenclature is explained in Fig. 7. When using

Fig.7. Two succeeding cones with difierent conicity and
diameter. Double subscripts refer to the first,
and single subscripts to the second cone.

eqs. (29) and (40), the conditiot Zr:2, leads to:

- ttlfr, : "rls,L-rrrcotfr, l-x1cot(r1-X) (46\

We first apply this to the situation at the mouth-
piece. As was argued before, a positive mouthpiece
cavity is a necessity for obtaining pure overtones.
From Fig. l, however, we see that there is no cavity
at the tip of the reed. Instead of that there is a

widening in the bore at a place somewhat further
down the tube. The diameter follows more or less

the course of a cone deviating markedly from that of
the main tube. The dimensions of this horn, together
with those of the extrapolated main tube, are listed
in Table IL The volumes o{ the cone approximation

Table II.
Survey of dimensions "t tl'""ll" cones at the top of the

i diameter i distance'--mm

main tube do :l.ll ro : 86
dr -2.O rr :154

staple and dot:0.87 ror: 33
reed ilt::2.4 rrr: 9l

and the extrapolated main tube can be calculated,
and they are both about 0.52 cm3. A measurement
of the volume of staple and reed with a calibrated
injection needle yielded 0.55 cm8 to 0.61 cmso de-

pending on the lip pressure on the reeds. This means

that a mouthpiece cavity, in the sense as discussed
before, hardly exists. The same efiect for overtones,
however, is performed by the conical irregularity.
To show this, eq. (46) is written as follows:

tan(*1 - xr) :(sr 
rrr_ sr{.Lqr;+H+-+srr rr r,'(47)

CIn

1.5
t.75
2.0
2.O
2.5
2.5
2.5

d,lD

o.54
0.62
0.59
0.71
0.66
0.73
0.89

2.00
2.2r
2.45
3.55
2.91
3.62'
5.03

Cs

106
I

I

c nl

0.4

0.3

\o

1

o
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A power series development of than ;1, up to third
power terms gives:

tan .'t11 : rt * (zi, - e?o) /S .

As r11 : 3 116, the third power of the latter is
neglected. Then eq. (47) becomes:

tan(r,-X2): tt(L1x"2f3)
, * rr;1g - S,uririrrls S, ' (48)

'We find, accurate to quadratic terms,

Xr:nnl xt-arc tan ?t
I - (Srr r11f3 Slrrlrrz-'(49)

Using numerical values from Table II, we find that
the factor in front of zr2 is about 0.3. Eq. (49) is
similar to eq. (34) and for the same reason the
coefficient of the quadratic term here should be
about 0.35 for a best approximation of the reso-
nance condition X, : n n. We conclude that the
sense of the peculiar cone at the top of the instru-
ment is mainly purity o{ overtones.

At the bottom of the tube, a very rapidly ex-
panding conical horn is found. We use the same
nomenclature as before. The horn is very short, so

tan(c, - Xz) :xr- Xz, rtlxt is neglected and
S, : Sr, . No'rv from eq. (47) :

tan qtll - - rt(l - qlXr). (50)

This means a length correction of 11 (1 - rr/,R2) onto
the preceding tube, or a correction to the tube the
horn including, of:

Al5 : 7, (2 - r1f R) - 12. (sl )

The lower part of the oboe is a slightly sharper
cone than the upper part, and a correction will be
applied to the extrapolated upper part. We use eq.
(46), with Sr : Srr , replace (rr- Xr) by (rrr - Xrr)
and take 5rr:rrr. Then:

- llrrr+ lfxr+cotr11 : cot(rr, - Xrr). (52)

This can be reshaped in functions of tan rr1 and
tan X* so as to lead to the condition sin (Xr, + * Al")
: 0, where approximately

A, - 
rt-rl!

6'c - ttrrlf sinz rr - lx t - x rr) cot xr,'
When (r1 - rrr) (sin 2 rrr) I (2 11 r1r) ( l:

This formula can be used for the three oboes oI
Fig. 2. After extrapolating the straight lines to the
line d:0, we obtain for the Miinnich rr:337mm,
rt:320 mm, for the Lor6e rt:328 rlrn2 ir11 :
304 mm, for the Marigaux 11:456 r1rl, i'11 :
4,18 mm.
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In Fig. B the corrections as calculated with eq.
(53) are given for the three oboes. It can be seen

that the influence for the second vibrational mode is

300 400 500 600 mm ?00
Rn...*

Fig. B. Length correction A/s due to the conicity change
in the middle for the three oboes of Fig. 2. The
correction is plotted against the effective re-
sonating length -R12 for two vibrational modes
n:L and n:2.
a Xl[arigaux,
A Lor6e,
C Miinnich.

small, but that the ground-mode is flattened some
tenths of a semitone.

The influence of the rorv of closed side-holes in a

conical tube is accounted for in an analogous way
as was done for a cylindrical tube in a previous
paper [B]. From eqs. (1), (B) and (13) of that
paper we derive, changing the sign of Z, because

lt Zz

Vs

s

Fig. 9. Nomenclature as used with the calculation of
the influence of a closed side-hole on the re-
sonance frequency.

here (cf. Fig. 9) both impedances are taken looking
down the tube,

Zr: Zz- j kVHQ.Zrfg c+e 9c/S2). (54)

211 denotes the volume of the side hole, e is a factor
dependent on the shape:

e: (2ln) arc tan (2 bll} a), (55)

where bf a is the ratio width-depth o{ the hole. Im-
pedance Z, is given by 

"q. 
(40) with fr: or , and

22 is found from eq. (29) by replacing ru and X1

by 11 and Xo . Proceeding in the same way as be-
{ore, we obtain a resonance condition tanA(Rs+
Al) :0, where for small Al:

Ll: (VEl S) [sin2 z, - s (cos tr- xr-7 sin rr) 2] .

(56)

For a row of side-holes for whic,h Z(VEIS) is pro-
portional to ft, the total correction can be found by

C. J. NEDERVEEN and A. DE BRUIJN: HOLE CALCULATIONS FOR OBOE
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integration (x: k r)
,n,

When using the approximate relation sin X1 : 0, we

find, n integer,

AL t '"^lr_e- (r +.) ti^? 4e(l -cosq)l..\r\ _ 2sL,-(-\Itr,, j pQnn_dl
,t-2n r(I -rr/Rr). (57)

Finally some miscellaneous irregularities in the

bore are dealt with by using eq. (56). The volume
<if the constriction in the top divided by the local
area for respectively the Mijnnich, Lor6e and Mari'
gaux is aboutVyfS:0.6mm,3.0mm and 2.6mm;
11 is assumed 200 mm. The corrections are largest
for the Lor6e, and these are plotted in Fig.10. For

3oo u* 
''--ro 

600 mm 7oo

Iig. 10. Length correctiott A1t due to the constriction
at thc top of the Lor6e oboe, plotted against
the effective resonating length rR1 for two vibra-
tional modes n:1 and n:2. For the Mari'
gaux and the M6nnich this correction is 0.87,
respectivelY 0.2 times, as much.

the other instruments, they are smaller to the ratio
oI Vtf S. The constriction and expansion in the

middle of the Miinnich can be assumed to have a

negligible influence, because V"lS:0'9 mm.
On comparing Figs. B and 10 we conclude that to

some extent the efiects of the sharpening conicity
and the constriction just below the staple compen'

sate each other. If there would be no other reason

for their existence, it seems they could be left out
both. According to Bern [6], page 83, modern
oboes show fewer deviations from conicity than
older ones, and one might suggest that this has

something to do with it.

6. Application

Russlitt,'s extensive measurements on oboes [5]
cannot be used here, because these mainly concern

the diameter and only occasionally hole diameters.

For comparison with reality, we investigated the

N{ijnnich oboe, conservatory system, in the posses'

sion and played by or Bnur.rN. Its lowest fundamen-

tal is 233 Hz (B-flat) . The specifications pertinent
to the holes are listed in Table III. The tones sound-

ing rvith closed and opened hole are given. Holes I

C. J. NEDERVEEN and A. DE BRUIJN: HOLE CALCULATIONS FOR OBOE
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1

ait

to 1l are located in the upper joint, 12 to 2I in the
lower branc.h, hole 22 in the bell. The Iowest note
sounding with all holes closed is listed at the bottom
of the Table. Holes 1,2 and 5 serve as an aid for
overblowing and have no specific tuning function.
Some holes serve two purposes, and are consequent'
ly calculated for both. Due to the intricacies o{ the

mechanism, in certain situations two keys move
together. So the notes wich belong with a given hole
are flat or sharp, as indicated with a minus or plus
sign. The deviations are perceptible, but small, and
it suffices to apply the formula for the full shift. The
diameter of a hole, ds, is not always defined uni-
quely. Some holes, indicated in the second column
with "u" show so-called undercutting, i.e. the hole is
conically widened from the inside. Also, the length
of the hole 111 , is not defined. The outer end may
be curved. Mostly, however, some wall material is
removed so as to obtain a circular end for a better
fit onto fingers and pacls. The inside end is always
curved, especially in case of undercutting. We chose

to specify the shortest length of the hole. l* is the

distance measured from the reed tip to the centre of
the hole. d1 was found from Figs. I and 2.

The calculation of the hole position to the apex

of the horn, 11 ; was performed with eq. (43). The

results are given in Table III. For R, was used

170fl where frequencies f were chosen according to
equal temperament.

For the Iowest note, the correction in the bell is
introduced, see eq. (51), with rr:70 mm, 12 :
160 mm and Rr: 170 mm, Alh : - 49 mm. Hole 22

is located in the horn and we applied a correction
{or this, using eq. (56) ; it simplifies for this case

into A16 - - LV lSo; and we find Alr, : - 4 mm. The

difierences between calculated and measured posi-

300 [00 500 600 mm ?00

Rt_*

Fig.11. Difference between real and calculated hole
position including the bell-horn correction, as

a function of e{Iective length rR1, A shaded
area indicates a 0.1 semitone shift. Triangular
symbols refer to holes with undercutting, filled
circles refer to holes for which the frequency
shift difiers slightl,v from that assumed in the

' calculations.
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Table III.
Survey of hole specifications.

tone with hole ds

mm

0.3 73
129
158
170

.A,CUSTICA
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key (k) 
|

hole (o)

i under-
jcutting (u)
.-ik

k
k
k

ilr

mmI

I

Rr

mm

285
307
307

325
344
365
365
386
409
434
460
486
486
486
5I6
546
546
575
613
650
688
730

c7

b
a++
a++
a
s+
s
l+
l+
I
t
e

d+
d+
d
c+
c
B

D+
&
a
a
g

s
l+
l+
e

d,+
e

d
d
d
c
c
B
A+
A+

k
k
o
k
k
o
k, tr
k,u
k
o.u

ls

mm

calculated
hole

I
.)

3
4a
4b
5
6
7
8
I

10
II
t2
I3
14a
14b
I5
l6
17
l8
l9
20
2t
a)4,

dt
cr+
cl#

cl
cl
b

6.7
6.7

0.3
3.1
3.0

6
6

6
6
8.5
6
6
8.5
6
5.5
6
6

6
8.5
5.5
4.8
4.5
5.4
4.5
4.5

265
286
282

305
3t2
346
346
364
389
419
433
463
459
468
492
526
529
560
589
631
667
730

182
201
2r3
230
230
246
275
304
32t

351
365
40I
403
431
463
499
539
634

k,u
o,tr
k
k,u
k
k,u
k
k

1.2
7.6
7.9
8.3
8.3
8.7
9.5

to.2
r0.6
ll.0

I1.3
I1.7
t2.6
t2.6
13.3
14.0
14.8
16.5

4.2
3.6
4.8
4.2
4.2
4.7
5.0
7.0
4.6
5.6

tions, corrected for the horn in the bell, Iu-r1
+Alh, are plotted in Fig. ll as a function of Rl .

Points referring to double functions of the same hole
are connected with a vertical line. A scatter is ob-
served. Some of this is due to undercutting (triangu-
lar symbols). If we should correct for this, triangu-
Iars and bla& circles are expected to move down-
wards some mm in the diagram. This would reduce
the scatter somewhat. Taking this efiect into account,
a smooth curve was drawn through the separate
points. The remaining scatter is *0.1 semitone (0.1
semitone is about 0.006R1), which is often con-
sidered as a.dmissible for practice [4], as it can be
corrected by lip pressure.

The smooth curve was used as a basis to which
the corrections were applied as derived in the pre-

300 400 500 600 mm ?00

Rt...*
Fig.lZ. Sum of closed side-hole volume divided by

main tube area, 2 (VsfS), for the row of
closed side-holes, A/y, as a function of the
efiective resonatirg length R1. Curves are
given for vibrational modes n:1 and z:2.

l.J

6.7
7.6
8.5
9.7
/.o
9.8

10.8

ceding paragraphs. To determine the closed side-
hole correction, 2 Vyf S was plotted in Fig. 12 as a
function of R1 . The mean value of b/a was found
to be 0.7, so with eq. (55), e:0.07. The correction
Alo calculated with eq. (57) taking rs:275 mm is
plotted in Fig. 12 for two vibrational modes, n: I
and n:2. The final deviation from real and calcu-
lated position

A4ot: le - 11* AIr, + rs + AJ" * AIy 1AI* + Aro
(s7)

is plotted in Fig. 13 for n: I and n--2 arrd for d:0

300 lr00 500 600 700 mm 800

R{.....*

Fig.13. Difierence A/61 between real and calculated
hole positions, including the most important
corrections, is plotted versus efiective length
.R1 for first and second mode, n:I and z:2
and for tangent oI the phase angle at the reed
d:0 and d:1. Sounding tones in the first
mode are indicated. A shaded area indicates a
0.1 semitone shift.

I
I

I

-j

d cb a g f e d c A#
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and d: l. In the diagram, a shaded area indicates a

shift of 0.1 semitone. A first impression, when ob'

serving Fig. l0 is that the lowest group of notes is

flat. This corresponds with the findings of YouNt;

[4,] , who concluded that in particular an inexPerien-

ced player (who is supposed not to correct errors
automatically with his lips) tends to intonate low

notes up to half a semitone flat, which is about the

amount theoretically {ound here. It is a known fact

that oboe troubles always concern a flatness in low

notes, r:ontrary to the clarinet rvhere low notes tend

to be sharp. It is striking that clarinet and oboe cal-

culations both predict deviations in the same direc'
tions as where practice finds these [B], [9]. On the

other hand, we may imagine that there might be a

reason for this flattening of a whole region, because

this efiect could easily have been compensated for
by rvidening the lower part of the oboe instead of

narro'ning it. From Fig.8 it can be seen that such a

measure will have the right eflect. The sharpening

conicity, however, seems to be a feature of an oboe;

most o{ the oboes investigated by Russnr,r, [20]
showed it. We can imagine that it has some func-

tion, {or instance tone colour, tuning of high notes,

ease of embouchure.

7. Conclusions

The oboe bore approximates to a truncated cone

and is effectively closed at the top and open at the

bottom. Its resonance {requency is about equal to

that o[ an open-open cylindrical tube with a lengtl-r

equal to the cone extrapolated to its apex.

The wave equation in a conical tube, rvhen solved

up to first order terms, yields corrections due to
radiation, wall damping and complex reed im-
pedance. Other corrections due to deviations of the

ideal cone, and the closed side-holes, are introduced.
The eflect of all corrections top;ether is a flattening
of the resonance frequency by one half to a whole

tone.
The position of a hole can be predicted rvith

respect to neighbouring holes within 0.1 to 0.2 of a

semitone. Predicting the hole position rvithout know-
ledge of its neighbours is less accurate, but still
reasonable, except that the theory calculates the

lowest notes up to about hal{ a semitone flat.
The reported investigations may help to indicate

an individual impure note, and permit its correction.

C. J. NEDEIiVEIiN and A. DE BRUIJN: HOLE CALCULATIONS FOlt OBOE 57

They may also assist in efforts to change the bore for
retuning part of a register of a conical woodwind.
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