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Summary
For a cylindrical woodwind and in particular for a clarinet, methods are derived to

calculate location and diameier of the holes. In a simple way the calculations are carried
out for each hole separately, and independently of the other holes.

Corrections are introduced for the influence on the resonance frequency of the over-
blowing hole and of the row of closed holes in the main tube.

The usefulness of the formulae is proved by calculating all holes of a B-flat-Bonuru-
clarinet.

It appears that if the clarinet is assumed to be cylindrical from the top downwards, the
pressure antinode is located at 7 mm below the top.

Some phenomena accompanying tuning of the clarinet are clarified.

Zusammenfassung
Fiir zylindrische Holzblasinstrumente, und zwar speziell fiir Klarinetten, wurde eine

Methode zur Berechnung der Lage uncl des Durchmessers der Lticher entwickelt, Die Berech-
nungen werden auf einfache Weise fiir jedes Loch einzeln und unabhlngig von den anderen
ilurchgefiihrt.

Fiir den Einflu8 des Uberblasloches und der geschlossenen Lijcher im Hauptrohr werden
entsprechende Korrekturen angegeben.

f)ie Brauchbarkeit der Formeln wird durch die Berechnung aller Liicher einer Biinu-
Klarinette bestiitigt.

Es scheint, daB der Druckbauch etwa 7 mm vom oberen Ende entfernt ist, wenn man an-
nimmt, daB die Klarinette zylindrisch gelormt ist.

Einige mit der Stimmung zusammenhdngende Erscheinungen werden ebenfalls auf-
gekkirt.

Sommaire
On expose des m6thodes de calcul de la disposition et du diamdtre des trous d'un instru-

ment d vent cylindrique et particulidrement d'une clarinette. Des calculs simples sont effec-
tu6s pour chaque trou s6par6ment ind6pendamment des autres.

On introduit des corrections pour l'influence des trous trop r6sonnants et du soufile
bruyant de trous ferm6s dans le tube principal, sur la fr6quence de r6sonance.

On v6rifie I'utilit6 des formules en les appliquant au calcul de tous les trous d'une clari-
nette en Si B6mol. Il apparait que si la clarinette est cylindrique du sommet jusqu'en bas,
Ie ventre de pression se trouve i 7 mm au-dessous du sommet.

On explique quelques ph6nomdnes relatifs A I'accoid de la clarinette.

l. Introduetion [3]. At the lower end the tube has a horn-like ex-

Knowledge about the acoustic behaviour of musi- l:":i:". into the free air' At the top its diameter

cal instruments is not very wide. Their construction diminishes.conically and ends in a flat chink which

and use is merely based on experience. Highly em- is formed between the tube and a flat wooden ton-

pirical are the position and sizes of the hoie, in gue, the reed. The top of the instrument is placed

woodwind instruments. These holes act as an efiec- between the lips of the player, who presses air

tive s,hortening of the main tube which allows the through the chink. The pressure fluctuations in the

playing of ali tones situated between the natural instrument cause the reed to close and open the

tones. Calculation,s with respect to these holes have drink successively, so that at the frequency of this

been carried out earlier tlj, t2]; in this paper an oscillation air is supplied into the instrument, by

extension to these is given by deriving fo.-rl'ae fo. which the oscillation is maintained. Acoustically it
the holes, which can be used in practice. As an appears that the instrument is closed at its top: it
example the clarinet is chosen, although the calcula- overblows in uneven harmonics'

tions are not exclusively for clarinet or even for The cylindrical part of the tube is provided with
cylindrical instruments. some twenty holes. These holes can be closed by

A clarinet is a long cylindrical tube with fingers or by keys. A calculation of the resonance
practically constant cylindrical cross-sectional area frequency could involve a calculation of the
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impedance of a very intricate pipe-com.bination.
Carefully neglecting unimportant quantities, it ap-

pears to be possible to simplify these expressions.

2. List of symbols

a : radius of a tube,
c : velocity of sound,
d : diameter of a tube,

I : frequency,
I : cross-sectional area of a side-tube,

I : relative frequency shift,
h : length of a side-tube,
H : efiective length of a side-tube (including

end-corrections) ,

j : y-1,
lr : wave number,
I : geometrical length,
L : efiective length (including end-corrections),
rn : vibrational mode,

S : cross-sectional area of main tube,

t : hole function,
V : frequency shift expressed in semitonos,

z : hole function,
Z : acoustical impedance,

S : density.

3. Condition for position and size of a hole

To start with, we consider the length-correction
for a cylindrical tube with an open end. In a loss-
free cylindrical tube with area S and length /, ter-
minated by an acoustical impedance Z, the input
impedance Zsis l4):

z _ Q" ZrSle:-t)]"nLl (1)"o- s l+j(zrSlpc)tankl'
Here /c denotes the wave number and c the sound
velocity in free air of density q. The acoustical im-
pedance of an open end, when losses are neglected
and if k € a 41, is equal to Zr: (p clS) j k I a,

where a is the radius of the tule and f depends on
the surroundings of the end:0.6<(<0.85 t4].
Because k € a is,small it may be replaced by tan & f o
to a good approximation. Substitution into eq. (l)
gives Zs: (gr/S)j tanltL, where L --l+€ o. In this
way we have obtained a tube with efiective length
Z terminated by zero impedance, by correcting its
geometrical length I with an end-correction f a.

In the following we shall denote geometrical
(measured) lengths in small print and efiective
(corrected) Iengths in oapitals.

Consider a tube with a single hole of efiective
length 11 and cross-sectional area F at an effective
distance L, lrom the open end (see Fig. l). The
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Fig. l. Explanation of dimensions and locations of a
tube with a single side-hole.

terminating impedance Z, of the preceding tube-
piece 11 is considered as a notwork with two parallel
branches H and L,

rsF
ir- n"1r^A* n":r^"nn ' Q)

For a clarinet the input irnpedance is infinite:
Zo: *. Insertion of this condition and of l:1, in
eq. (1) gives:

,..2,5I+i;tank\:o. (3)

Elimination oI Zr 1lo^ eqs. (2) anil (3) gives the
condition for the hole:

F cotlcH *Scot hLz-Stanlclr:0. (4)

This may be written as

cosle Lr:O, (5)
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Lo

where

Lr:lt+ | u."tu.,
F cotlt H +S cotk L, ' (6)

Apparently the tule-pieces 12 and I/ form an end-
correction to the tube l, . L, and I/ are small with
respect to the wave-length. So it is useful to expand
the goniometric functions in power series and
neglect higher powers. This gives (cotk H :llk H) |

rsLr:lr+f , s -,),. ir* ir,(,- ; b1,,...)

xlr+ -s, .......1t ,([,*,",)' ]

or approximately:

Lr:tr. ,iii;, x

, 
f ' - *(eo r,* h )Gor#;u- z',)]' rzi

If we neglect the frequency dependent term (with
l*) we get:

Lr:tr* o#*, (8)
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and have obtained an expression for the efiective
length of the hrle of Fig. I. This length is indepen-
dent of frequency provided the higher power terms
of eq. (7) may be neglected. We shall revert to this
validity later.

So far everything is known from the Iiterature
[2]. We ,shall now make a useful drange in eq. (8)
by introducing the relative frequency deviation g,
defined by

L + g:2at12 (9)

where u is the number of semitones with which the
pitdr changes when the hole is opened. The fre-
quency then becomes ( I + g) times as high, as fol-
lows from eq. (9) . In Table I the numerical value
of g for some values of o is given

Table I.
Relative frequency change 6 as a function of the
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(14)

AA1LZ

0.01 0,1

From eq. (B) Lz is eliminated wirh L2:Lo-21 and
Io with tro: (1 + dh. Solving for the hole area .F

gives:

F: gSH L1
(10)(Lt* B Lr- l) (Lt- lt)

The fact that Il is dependent on I, because the end-
correction in 11 depends on the hole diameter, is
neglected here.

Instead of solving for the hole area ,t', tle hole
position \ may be calculated. The quadratic equa-
tion of 11 has only one meaningful solution:

t+
Fig. 2. Correlation between the two hole-functions z

and t for various values of the frequency shift 2,.

these {ormulas appear to maintain their validity.
We then replace the pipe with the first hole by a

tube without holes according to eq. (B) , and cal-
culate the second hole according to eqs. (10) or
(11). This procedure is repeated for every next
hole. We remark that it is not necessary to know
anything about any hole other than the one in con-
sideration.

4. Accuracy considerations

First we investigate, assuming eqs. (10) and (11)
to be exact, which frequency deviations will arise
when a hole is slightly displaced or varied in size.
'We, therefore, calculate the influence on the fre-
quency of a small dimensional change of the hole.
After elimination of L2 and, Z, from eq. (10) the
following relation between F, l, and, g is found

number of semitones u.

semitone
wholetone

3 semitones
fifrh
octave

I
q

3
7

t2

0.059463
0.t22462
0.189207
0.498307
r.000000

where

and

SH,- FL,

It will appear that z and , are quantities with nume-
rical values around those of g. z, a$ a function of ,
is calculated for three values of o according to eq.
(I2) and given in Fig. 2.

Eqs. (10) and (1I) gave size in dependence on
location and location in dependence on size of a

single hole in a tube. When a second hole is made,

where 16 is a constant.
By partial difierentiation we obtain

/a{\ F (Lo- Lt)
\0g /, constant S(Lo-lr- glr) '

/Ag \ -.2(Lo-h-st) asLs
\ Ol1 /r:"on.tunt t (Lo - tr)'

These expressions are only exactly valid for the
infinitesimal region. We will use them here assum-
ing they are still valid for finite frequency shifts
dg due to finite relative size and location deviations.
Therefore, we substitute Lo: G*dLr and insert a

by means of eq. ( 1 1) . In this way we obtain :

o BSH Lo

' : (Lo- Lt) e;lr- sl) '

Ao: ZS(S+I) df 
."D z+g F )

A,: _ e(I +s) (22+g) 61,
-o (z -l g)z Lr'

h: Lt(l - z),

": f, s|r+dtls-rl

(11)

(12)

(13)

(1s)

(16)
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In Fig.3 both functions are plotted against I
(r being a function of z) f.or 6FlF:lO% and
6hlll:l% for three difierent values of o (o being
a function of g), under the assumption that the re-
lations are still valid. We shall assume that a mistun-
ing of 0.1 semitone is acceptable in practice, as sudr
a value may be compensated by lip pressure of the
player. For values of , between 0.03 and 3, whidr
will later appear to be most frequent (c.f. Fig. 5)
it is visible from Fig. 3 that 0.1 semitone is caused
by a change in area of about LO% or a change in
location of about t% (on clarinet about 2 mm).
This can be considered as an accuracy criterion in
its way.

10-3

0,01

t+
Fig.3. Frequency shift dg as a function of hole-func-

tion f for small alterations oI hole dimensions
and location.

In the preceding Section we mentioned the
general validity of the formulas for the hole cal-
culation. This will be the case only if a tube with
one side hole may be replaced by a single, some-
what shorter, tube without a side hole. In other
words eq. (8) must be valid, or the higher oa'der
term of (7) must be small. In order to get an im-
pression of its magnitude we su-bstitute eqs. (B) and
(ll), Lz-Lt*h:BLr and kLr:',**x into this
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portant for increasin1 u, tn and ,. Translating this
into normal langugge it means that we may expect
to obtain too low an overtone for long, narrow
holes, near the top of the instrument, meant for
large frequency intervals. On clarinets with old key
mechanisms, where a hole is present for a:3, pre-
ceded by one for o:2, this efiect is striking. Apart
from that these purities do not give mudr trouble
in practice, which is an indication that higher order
terms may be neglected and that the methods are
useful. Generally speaking , must be srnaller than
0.2 to avoid impurities between ground-mode and
first overtone.

t+
Fig. 4. Higher order frequency shilt 6ga as a function

of hole-function r.

Introduction could have been considered of
length corrections according to eq. (18) or an ana-
logous formula. We abandoned this idea, because
that would become too intricate: when these cor-
rections are necessary for one hole, they are mostly
necessary for preceding holes also and we get an
avalanche of corrections, whidr partly reinforce one
another.

5. Comparison with a Boehm-clarinet

A o'simple" or'oplain" B-flat-Bonnu-clarinet,
made by Dor,Npt (France) and bought new at
Rotterdam in I95I, was chosen as a specimen to
check the formulae. The dimensions of the instru-
ment .were measured and are given in Table II. The
holes were numbered from top to bottom. The tone
sounding with opened hole is given in the second
column. The corresponding efiective length Z1 is
calculated with 340/(4 f), where 340 is the velocity of
air in m/s and f denotes the frequency. The walls
of the instrument are assumed to be hard. The fre-
quency decrease, when closing the hole, is expressed
in the number of semitones, o. The diameter o{ the
main-tube, ds, is practically constant. As the side
holes were more or less conical, for tleir diameter

C. J. NEDERVEEN: CALCULATIONS OT CLARINET.HOLES
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I ,o,
6g

4,1

10-'r
0,01

higher order term and get

L1xt1+,Lt(t+\d s,) (17)

The higher order term shows frequency dependence
because of the presence of the mode-number nz. This
term is to be found in a frequency-shift dgr,.

' 6I'' - * *l!' nr'. (I8)dg*,=- L;-* t2 Bz'.

Although the calculations are not exact, they give
a good indication to which limit the simple formulas
are valid. This is illustrated in Fig.4, where the re-
Iation between 69* and I is plotted, as calculated
with eq. (lB) for various values of rn. arld o. The
higher order corrections appear to become im-

-- -l--l/-- ',' :/ /
i' ./r/ * r'./'

,t // 4/,/

'ii'.,firg
OJsemiione / t' )'{ t7-- --- --i -! z1-h'- -- z

,q&ii+,i



ACUSTICA
YoL 14 (1964)

hole no. tone with
hole

opened

,- 0,1

J8
6

11

2

Fig. 5. Hole-functions
lengths 1,, (o)
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Table II.
Survey of measurements and some calculetions on location and size oI holes of a clarinet.

231

and calculated
holes of tle

L1

mm

ils

mm

14.8
14.8
14.8
14.8
r4.8
14.8
14.8
14.8
14.8
I4.8
14.8
14.8
14.8
14.8
14.8
14.8
14.8
14.8
14.8
14.8
I4.8
14.8
14.8
14.8
14.8
15.5
16.8

itp lc

mm

155
169
194
204
215

231
235
243
253

onq

286
289
290
308
322
348
364
369
388
412
M3
47t
503
542

145
I64
r86
196
207
2t7
224
231
238
245
257
272
266
288
286
284
304
321
347
365
370
892
414
&7
475
504
534

t45
t53
183
191
202
206
2L8
231
228
237
240
256
259
276
280
282
296
3r0
343
360
365
385
410
M
473
502
532

t4.5
10
ll
t0
l0

t4
l0
t4

I max.l--
3.0
7
8
'1.5

8

7
7.8
8.5
I

205
r93
205
2r7
230
244
2U
258
258
274
290
307
290
307
307
307
325
3M
365
386
386
4I0
434
460
487
517
546
580

gr+
&1

91 +
ol
fl +
f1
f1
e1
e1
d1 +
dr
c1 #
d1
cl +
c1 +
c1 *
c1
b
a+
a,

mrn.
mm

I
2
3
4
6a

b
6
7
8
9a

b
c

l0
l1
t2
13
L4
15
t6
L7
l8
19
20
2t
22
23
24

I
2
I
I
I
2
I
2
I
I
2
2
I
I
I
I
2
I
1
q

I
I
2
I
2
I
I

3.0
4.5
6.2
5.3
5.0

4.6
7.8
5.0
5.0

5.0
6.4
6.0
6.0
7,L
5.1
7.8
8.7
8.0
7.8
o.)

r0.0
t2.4
I r.0
t2.3

7.5
t2
8.5

II
I

10.5
lt
II
11.5
Il.5
L2.5
t4
t3
L4

t2.5
7
7
7

4
10
7

l0

&

c+
f+
f
e
d+
d

7
l0

7

7
,
I
7
I
I
5
,4

5
4

l0
15
1l
t0
12
lt
t2
T4
t2
L4
L4
II
l1
1I
11

dp both minimum and maximum values are given.
The hole length is i., excluding, a\d. H, including,
the end-correction. The magnitude of this end-cor-
rection is very uncertain because of this non-cylin-
drical course and the keys which are hanging above
most of the holes. The Iocation of the hole on the
instrument is fixed by the length lo measured from
the top of the instrument to the center of the hole.

a

t
l?, II tr.I 1-

I
I ,iI

ll'r'l ?--?
I la

J+-+
Jt t1

inil I
'.J:tri"

JItr

00lL,0 10 15 20 25 30

holenumben+

I (o) and z (x) and efiective
(in m) Ior a clarinet.

The calculation of the hole location was carried
out according to eq. (I1). First the quantity I had
to be,calculated. Because of the uncertainty of the
diameter of the holes, the two most probable ex-
treme values are calculated by droosing as hole dia-
meter the smallest and the mean value. The results
are given in Fig. 5, together with the value Z1 and
the value z calculated from I with eq. (12). The rwo
extreme values of lr, calculated with eq. (11), are

1

8

1'
J

051015
hole number+

Fig. 6. Difierence between geometrical
length, lc-lr, for tle various
clarinet.
o Smallest diameter,
o , mean diameter.
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given in Table II. The difierence between true loca'
tion l, and calculated location 11 is plotted in Fig.6
for thet wo extremes of l. A smooth curve is drawn
between the separate points.

Some holes perform more than one function. We
have marked then a, b and c in Table II and in the
figures. A multiple function means that the hole is

used for the forming of more tones and intervals. In
the opened position two or more frequencies may
sound. This is realised by closing one or more holes
directly beneath the hole in question. This is called
cross-fingering. In general, the frequency shift for
opening and closing the hole in question will be dif'
ferent for both functions. A double function fixes

the location and size of the hole completely. When
we provide the quantities of the cross-fingering with
a dash it follows by applying eq. (I0) twice that:

F rLr _:
H S (h-h*sL)(LL-t)

: 
1r; -t,a{s:Ll;1G; -ts (Ie)

After substitution of Lr' - (l + G) Lt, where G

denotes the difierence between both notes, I and' z

may be solved. For three cases results are given in
Table III.

Table III.
Calculated valucs of t and. z for holes with double

If we look at the magnitudes of , in this Table, we

see that these are larger than those on the instru-
ment, as is apparent from Fig. 5. Besides, they are

larger than is permitted with respect to the higher
order corrections (see Fig. )' It seems that cross'

fingering in the ideal way according to eq. (19) is

impossible because of impurities between the

registers. When the cross-fingering on the clarinet
is studied by blowing the corresponding notes, it
appears that the purity of cross-fingered notes is
often bad and especially very bad on the lower
register. On the high register, where help of higher
order corrections occurs, the purity is sometimes
better.

Apart from these elementary hole calculations,
some important corrections have been introduced.

For higher order efiects no corrections are ap-

plied, because these would be doubtful, as was ar-
gued earlier. At high frequencies they could become

important, however,

ACUSTICA
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A correction which may be calculated to some

degree of accuracy, is that due to the row of closed
side-holes in the instrument. We follow a method
published earlier t5]. II in a cylindrical tube with
cross-sectional area S a side-tube is present with
volume LV at a distance r of the closed end, we

must introduce a positive virtual length-correction
Al to the main tube according to

C. J. NEDERVEEN: CALCULATIONS OF CLARINET.HOLES

(20)

where O<e<I depends on the shape of the side-
tube. Instead o{ calculating the influence of each

side-tube separately we imagine the volume of the
side-tube to be spread homogeneously over the main
tube, from a point l, to the end of the tube. The
length to the end of the tube will have some value
between 11 and L, ; we choose I, . The total cor-
rection follows from

I,I

Orr: I n!*, (coszkr_esinzft r)dr, (2r)
l.

where V denotes the sum of the volumes of all side-
tubes between l, and Z1 . This integration may be

carried out and gives after insertion ol kL:f mx:

V I , ^,, 
sin(rnn lrlLr) 

1Ltv: zsf 
(t-e) - (l+e) *"O_irtirll. Q2)

In order to decide upon the validity of this proce-

dure {or the clarinet, Fig. 7 shows the volume of all

200 300 400 600
Lg-

Fig.7. Volume of closed side holes, V, as a function
oI location of the highest opened hole, ls.

holes above a certain hole against the location of the

hole. It appears that it is possible to a reasonable
approximation to draw a straight line through the

points so that integration is permissible. At the

same time we find from the intersection point with
the horizontal axis the best value for l, to be

175 mm, which value was adopted for the calcula-
tions. To fix the magnitude of e, we calculated the

O, : Y (cosz lt r - e sinz k a).

function (cross-fingering).

500 mm
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quotient of diameter and length for eadr hole. The
mean value was I.3. From eq. (20) in reference [5]
it follows that e:0.128. The correction for the side
holes was now calculated according to eq. (22) and
is given graphically in Fig. B.
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Finally the total result of all calculations is sum-
marized in Fig. 10, where A[o1 :lo-lr*Llya
Alo is plotted against the hole number for modes
rn:I, 3 and 5. {or lo-1, we started from the
smooth curve of Fig. 6.

C. J. NEDERYEEN: CALCULATIONS OF CLARINET.HOLES

i
ILv

25?0
0L
0

hole number+

Fig.8. Length correction Al7 against hole number due
to the closed side hole efiect.

Another important correction must introduced
for the frequency alteration caused by the opening of
a so-called speaker-hole, which is meant to facilitate
the overblowing. $rhen in eq. (4) one su-bstitutes
Lz: Lo- 11 1 on@ obtains

cos/c(Zs+AIr1 :9, (23)

where

1 -Fcoszkl,L'Lo: -rc arc tan 
stan fr H - F sink ir-cos k rr'

When the corrections are small, arc tan and tan
may be neglected and we get:

A r - l1cosz kl1oto: irrlr-;.s nlr t)-sinfr tlcoskllf Q4)

with /cl1 as variable quantity. When SIflI( is
Iarge (long, narrow holes) Atr6 is small and nega-
tive, so that we have a correction whidr gives a

frequency increase. This correction is calculated for
hole 1 at nz:3 and m:5 and for hole 9 at m:5.
The results are plotted in Fig. 9.

0510152025
hole number ---->

Fig. 9. Length correction A,L6 against hole number due
to opening of a speaker-hole.

0510152015
holenumben+

Fig. 10. Difierence between geometrical and calculated
length, A/161, including corrections from Figs,
8 and 9, as a function of hole number.

First we observe from studying Fig. 10 that ap-
parently the clarinet is geometrically 7 mm longer
than is expected from calculations. This, however,
is not surprising as we completely neglected the
conical top of the instrument and assumed that the
input impedance at the top was real and infinite.
The conical top results according to Revlrrcn [6]
in a frequency increase because one has a decrease
in diameter in a pressure antinode.

The impedance at the top is certainly not infinite
because the reed Ieaves at least half of the tirne a
chinkwise opening there [7]. Another striking fact
from Fig. 10 is that the notes in the lower part of
the lower register (m:L) are too sharp and in the
corresponding part of the high register (m:3) are
too flat. This phenomenon is well-known among
clarinet-players and is found by measurements too

[B], [9], [I0]. A third fact is the course of the
curve of m:5, which seerns to involve mudl too
sharp notes. This will, however, be compensated
to some extent by higher order effects. Besides, the
correction for the conical mouthpiece, which may
be assrimed constant for low frequencies, will be-
come dependent on the frequency. This follows from
the wave Iength of the vibration being no longer
large with respect to the mouthpiece. That this ef-
fect is important is proved from the experience that
a difierently shaped mouthpiece disturbs the tuning
completely. Apparently the clarinet-maker has found
by trial and error the best shape to compensate all
efiects.

The difierence between the pure fifth, whidr
arises in overblowing, and the temperod fifts, equal

t
alo

Al for 01 semitone
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to 0.5 - 0.4983:0.0017=v0.03 semitone can easily
be compensated by lip pressure. Therefore this ef-
fect has been neglected in all calculations.

6. Conclusions

Several investigations of the tuning of a cylin-
drical woodwind and especially of a clarinet were
carried out. It appears to be possille to calculate
the location of a hole in a clarinet with an &ccuracy
of some mm. If the instrument is assumed cylindri-
cal from top to bottem, the velocity node is located
about 7 mm from the top in the instrument.

When a hole is meant for a large frequency shift
and when it is long and narrow, it may be impos-
sible to tune the tone pure on more than one register.
As an approximation one may say that the hole
function l, defined in eq. (I3) must be smaller than
0.2 to avoid impurities. Holes for large frequency
shifts are to be avoided!

A long and narrow speaker-hole, when opened,
will sometimes increase the frequency somewhat.

The large volume of the closed side-holes causes
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the notes in the lower register to be too sharp and
those in the high register too flat. By droosing shor-
ter holes this efiect could be diminshed.
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