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Summary

For a cylindrical woodwind and in particular for a clarinet, methods are derived to
calculate location and diameier of the holes. In a simple way the calculations are carried
out for each hole separately, and independently of the other holes.

Corrections are introduced for the influence on the resonance frequency of the over-
blowing hole and of the row of closed holes in the main tube.

The usefulness of the formulae is proved by calculating all holes of a B-flat-Bornm-

clarinet.

It appears that if the clarinet is assumed to be cylindrical from the top downwards, the
pressure antinode is located at 7 mm below the top.
Some phenomena accompanying tuning of the clarinet are clarified.

Zusammenfassung

Fiir zylindrische Holzblasinstrumente, und zwar speziell fiir Klarinetten, wurde eine
Methode zur Berechnung der Lage und des Durchmessers der Locher entwickelt. Die Berech-
nungen werden auf einfache Weise fiir jedes Loch einzeln und unabhéngig von den anderen

durchgefiihrt.

Fiir den EinfluB des Uberblasloches und der geschlossenen Locher im Hauptrohr werden

entsprechende Korrekturen angegeben.

Die Brauchbarkeit der Formeln wird durch die Berechnung aller Locher einer Boum-

Klarinette bestétigt.

Es scheint, dafl der Druckbauch etwa 7 mm vom oberen Ende entfernt ist, wenn man an-
nimmt, daf} die Klarinette zylindrisch geformt ist.
Einige mit -der Stimmung zusammenhéngende Erscheinungen werden ebenfalls auf-

geklart.

Sommaire

On expose des méthodes de calcul de la disposition et du diamétre des trous d’un instru-
ment & vent cylindrique et particuliérement d’une clarinette. Des calculs simples sont effec-
tués pour chaque trou séparément indépendamment des autres.

On introduit des corrections pour l'influence des trous trop résonnants et du souffle
bruyant de trous fermés dans le tube principal, sur la fréquence de résonance.

On vérifie 'utilité des formules en les appliquant au calcul de tous les trous d’une clari-
nette en Si Bémol. Il apparait que si la clarinette est cylindrique du sommet jusqu’en bas,
le ventre de pression se trouve a 7 mm au-dessous du sommet.

On explique quelques phénoménes relatifs a 1’accord de la clarinette.

1. Introduction

Knowledge about the acoustic behaviour of musi-
cal instruments is not very wide. Their construction
and use is merely based on experience. Highly em-
pirical are the position and sizes of the holes in
woodwind instruments. These holes act as an effec-
tive shortening of the main tube which allows the
playing of all tones situated between the natural
tones. Calculations with respect to these holes have
been carried out earlier [1], [2]; in this paper an
extension to these is given by deriving formulae for
the holes, which can be used in practice. As an
example the clarinet is chosen, although the calcula-
tions are not exclusively for clarinet or even for
cylindrical instruments.

A clarinet is a long cylindrical tube with
practically constant cylindrical cross-sectional area

[3]. At the lower end the tube has a horn-like ex-
pansion into the free air. At the top its diameter
diminishes conically and ends in a flat chink which
is formed between the tube and a flat wooden ton-
gue, the reed. The top of the instrument is placed
between the lips of the player, who presses air
through the chink. The pressure fluctuations in the
instrument cause the reed to close and open. the
chink successively, so that at the frequency of this
oscillation air is supplied into the instrument, by
which the oscillation is maintained. Acoustically it
appears that the instrument is closed at its top: it
overblows in uneven harmonics.

The cylindrical part of the tube is provided with
some twenty holes. These holes can be closed by
fingers or by keys. A calculation of the resonance
frequency could involve a calculation of the
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impedance of a very intricate pipe-combination.
Carefully neglecting unimportant quantities, it ap-
pears to be possible to simplify these expressions.

2. List of symbols

= radius of a tube,

velocity of sound,

diameter of a tube,

frequency,

cross-sectional area of a side-tube,

relative frequency shift,

length of a side-tube,

= effective length of a side-tube (including
end-corrections),

= Yy-1,

wave number,

geometrical length,

effective length (including end-corrections),

= vibrational mode,

cross-sectional area of main tube,

hole function,

frequency shift expressed in semitones,

hole function,

acoustical impedance,

— density.
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3. Condition for position and size of a hole

To start with, we consider the length-correction
for a cylindrical tube with an open end. In a loss-
free cylindrical tube with area S and length [, ter-
minated by an acoustical impedance Z; the input
impedance Z; is [4]:

oc ZySloc+jtankl (1)

S 1+j(Z,Sloc)tankl’ :
Here k denotes the wave number and ¢ the sound
velocity in free air of density 0. The acoustical im-
pedance of an open end, when losses are neglected
and if kéa<1, is equal to Z;= (0c/S)jkéa,
where a is the radius of the tube and & depends on
the surroundings of the end: 0.6<(<0.85 [4].
Because k & a is small it may be replaced by tan k& a
to a good approximation. Substitution into eq. (1)
gives Zy= (0c¢/S)jtank L, where L=1+ ¢ a. In this
way we have obtained a tube with effective length
L terminated by zero impedance, by correcting its
geometrical length [ with an end-correction & a.

In the following we shall denote geometrical
(measured) lengths in small print and effective
(corrected) lengths in capitals.

Consider a tube with a single hole of effective
length H and cross-sectional area F at an effective
distance L, from the open end (see Fig.1). The
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Fig. 1. Explanation of dimensions and locations of a
tube with a single side-hole.

terminating impedance Z; of the preceding tube-
piece [, is considered as a network with two parallel

branches H and L,
205 S F @)
Z, ocjtankL, ocjtankH °

For a clarinet the input impedance is infinite:

Zy= co. Insertion of this condition and of /=1 in
eq. (1) gives:

letankl1=0. (3)

oc

1+4j

Elimination of Z, from egs. (2) and (3) gives the
condition for the hole:

FcotkH+ScotkLy—Stankl,=0. (4)

This may be written as

coskL;=0, (5)
where
1 S
o 2 k arCtani"cotkH—i—ScotkL; : 6)

Apparently the tube-pieces L, and H form an end-
correction to the tube [;. L, and H are small with
respect to the wave-length. So it is useful to expand
the goniometric functions in power series and
neglect higher powers. This gives (cotk H=1/k H):

1 S
LFHHN(I 1,;;;'f)x
GRS R GE e
: &
o 3( F . i\_, ......
kH T kL)
or approximately:
SHL,
Lieth pr o
B ( SHL, (,, SHL, )]
X[l_ 3 (FL2+SH> Fhesn el D

If we neglect the frequency dependent term (with
k?) we get:
SHL,
s A R

(8)
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and have obtained an expression for the' effective
length of the tube of Fig. 1. This length is indepen-
dent of frequency provided the higher power terms
of eq. (7) may be neglected. We shall revert to this
validity later.

So far everything is known from the literature
[2]. We shall now make a useful change in eq. (8)
by introducing the relative frequency deviation g,

defined by
1 4 g= 27)/12 (9)

where v is the number of semitones with which the
pitch changes when the hole is opened. The fre-
quency then becomes (1 + g) times as high, as fol-
lows from eq. (9). In Table I the numerical value
of g for some values of v is given

Table I.
Relative frequency change g as a function of the
number of semitones v.

|
frequenc |
in(gerva,ly 5 ‘ 9

sémitone 1| 0059463
wholetone 2 | 0.122462
3 semitones 3 | 0.189207
fifth 76 0.498307
octave 12 1.000000

From eq. (8) L, is eliminated with Ly= Ly — L; and

Ly with Ly= (1 + g) L, . Solving for the hole area F

gives:

s gSHL,
(Ly+gLy—1y) (Ly—1)

The fact that H is dependent on F, because the end-

correction in H depends on the hole diameter, is
neglected here.

F (10)

Instead of solving for the hole area F, the hole
position /; may be calculated. The quadratic equa-
tion of /; has only one meaningful solution:

li=Ly(1-2), (11)
where
1 el
z= —2~g(V1 +4tlg—1) (12)
and
SH
t= F‘Lil . (13)

It will appear that z and ¢ are quantities with nume-
rical values around those of g. z, as a function of ¢
is calculated for three values of v according to eq.
(12) and given in Fig. 2.

Egs. (10) and (11) gave size in dependence on
location and location in dependence on size of a
single hole in a tube. When a second hole is made,
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Fig. 2. Correlation between the two hole-functions z
and ¢ for various values of the frequency shift v.

these formulas appear to maintain their validity.
We then replace the pipe with the first hole by a
tube without holes according to eq. (8), and cal-
culate the second hole according to egs. (10) or
(11). This procedure is repeated for every next
hole. We remark that it is not necessary to know
anything about any hole other than the one in con-
sideration.

4. Accuracy considerations

First we investigate, assuming eqs. (10) and (11)
to be exact, which frequency deviations will arise
when a hole is slightly displaced or varied in size.
We, therefore, calculate the influence on the fre-
quency of a small dimensional change of the hole.
After elimination of L, and L; from eq. (10) the
following relation between F, [, and g is found

W & gSHLo_vi
(Lo—Ly) (Ly—1;—gly) 3

where L, is a constant.
By partial differentiation we obtain

F (14)

(85) o By dgd v

ag 1,= constant g(Lo e l1 =g l1) ¢

(3g,> _ 2(Ly—l—gl) +gL
all F=constant (Lo e l1) 2 :

These expressions are only exactly valid for the
infinitesimal region. We will use them here assum-
ing they are still valid for finite frequency shifts
0g due to finite relative size and location deviations.
Therefore, we substitute Ly= (1 + g) L, and insert z
by means of eq. (11). In this way we obtain:

_ z8(g+1) OF
spi SR Geka W Ll

(z+g)2 L,
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In Fig.3 both functions are plotted against ¢
(t being a function of z) for JF/F=10% and
0l/L; =1% for three different values of v (v being
a function of g), under the assumption that the re-
lations are still valid. We shall assume that a mistun-
ing of 0.1 semitone is acceptable in practice, as such
a value may be compensated. by lip pressure of the
player. For values of ¢ between 0.03 and 3, which
will later appear to be most frequent (c.f. Fig.5)
it is visible from Fig. 3 that 0.1 semitone is caused
by a change in area of about 10% or a change in
location of about 1% (on clarinet about 2 mm).
This can be considered as an accuracy criterion in
its way.
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Fig. 3. Frequency shift dg as a function of hole-func-
tion ¢ for small alterations of hole dimensions
and location.

In the preceding Section we mentioned the
general validity of the formulas for the hole cal-
culation. This will be the case only if a tube with
one side hole may be replaced by a single, some-
what shorter, tube without a side hole. In other
words eq. (8) must be valid, or the higher order
term of (7) must be small. In order to get an im-
pression of its magnitude we substitute egs. (8) and
(11), Ly— L, +l,=gL, and kL, =3 mn into this
higher order term and get

&
lezﬁle(H’fi gz>. (17)

12
The higher order term shows frequency dependence
because of the presence of the mode-number m. This
term is to be found in a frequency-shift dg,, .

2 12
S ik :Mmﬂ
gm Ll

2 12’* 8 22 . (18)
Although the calculations are not exact, they give
a good indication to which limit the simple formulas
are valid. This is illustrated in Fig. 4, where the re-
lation between dg,, and ¢ is plotted, as calculated
with eq. (18) for various values of m and v. The
higher order corrections appear to become im-
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portant for increasing v, m and ¢. Translating this
into normal language it means that we may expect
to obtain too low an overtone for long, narrow
holes, near the top of the instrument, meant for
large frequency intervals. On clarinets with old key
mechanisms, where a hole is present for v =3, pre-
ceded by one for v =2, this effect is striking. Apart
from that these purities do not give much trouble
in practice, which is an indication that higher order
terms may be neglected and that the methods are
useful. Generally speaking # must be smaller than
0.2 to avoid impurities between ground-mode and
first overtone.

10"

[~ 1 semitone

T 107

by, Lo L
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Fig. 4. Higher order frequency shift dg», as a function
of hole-function ¢.

Introduction could have been considered of
length corrections according to eq. (18) or an ana-
logous formula. We abandoned this idea, because
that would become too intricate: when these cor-
rections are necessary for one hole, they are mostly
necessary for preceding holes also and we get an
avalanche of corrections, which partly reinforce one
another.

5. Comparison with a Boehm-clarinet

A “simple” or “plain” B-flat-Boenwm-clarinet,
made by Doixer (France) and bought new at
Rotterdam in 1951, was chosen as a specimen to
check the formulae. The dimensions of the instru-
ment were measured and are given in Table II. The
holes were numbered from top to bottom. The tone
sounding with opened hole is given in the second
column. The corresponding. effective length L, is
calculated with 340/(4 f), where 340 is the velocity of
air in m/s and f denotes the frequency. The walls
of the instrument are assumed to be hard. The fre-
quency decrease, when closing the hole, is expressed
in the number of semitones, v. The diameter of the
main-tube, dg, is practically constant. As the side
holes were more or less conical, for their diameter
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Table II.
Survey of measurements and some calculations on location and size of holes of a clarinet.
hole no. |tone with Iy ) ds dp R I Iy
hole min. max. min. max.
opened | mm mm des B mm mm S Th A Th mm
1 gl # 205 1 14.8 3.0 3.0 12.5 14.5 145 145 155
2 al 193 2 14.8 4.5 7 i 10 153 164 169
3 gl 4 205 1 14.8 6.2 8 7 11 183 186 194
4 yl 217 1 14.8 5.3 7.5 T 10 191 196 204
5a f1 4 230 1 14.8 5.0 8 T 10 202 207 215
b f1 | 244 2 14.8 206 217
6 f1 | 244 14.8 4.6 7k 4 f§ 218 224 231
7 el | 258 2 14.8 7.8 7.8 10 14 231 231 239
8 el 258 1 14.8 5.0 8.5 7 10 228 238 243
9a dl # [T 1 14.8 5.0 9 10 14 237 249 253
b dt 290 2 14.8 240 257
c cl # 307 2 14.8 256 202
10 dr 290 1 14.8 5.0 7.5 Vs 10 259 266 272
11 cl # 307 1 14.8 6.4 12 10 15 276 288 286
12 cl # 307 1 14.8 6.0 8.5 7 11 280 286 289
13 cl # 307 1 14.8 6.0 T 7 10 282 284 290
14 cl 325 2 14.8 el 11 ¢h 12 296 304 308
15 hi v 344 1 14.8 5.1 9 7 11 310 321 322
16 | ad 365 1 14.8 7.8 10.5 7 12 343 347 348
17 fir'-a, 386 2 14.8 8.7 11 9 14 360 365 364
18 | a 386 1 14.8 8.0 11 7 12 365 370 369
19 g # 410 1 14.8 7.8 11.5 9 14 385 392 388
20 g 434 2 14.8 9.2 11.56 9 14 410 414 412
21 f # 460 1 14.8 10.0 125 5 11 444 447 443
22 f 487 2 14.8 124 14 4 11 473 475 471
23 e 517 1 15.5 11.0 13 5 11 502 504 503
24 d # 546 1 16.8 1237 14 4 11 532 534 542
d 580 1

dp both minimum and maximum values are given.
The hole length is A, excluding, and H, including,
the end-correction. The magnitude of this end-cor-
rection is very uncertain because of this non-cylin-
drical course and the keys which are hanging above
most of the holes. The location of the hole on the
instrument is fixed by the length [, measured from
the top of the instrument to the center of the hole.

00

01 }(T"xx)l(ﬁ I Too
8 I | ___I_;I lll
' i
; iy

K

13

$1x
2
0,0
L) 5 10 15 20 : 25 30

hole number —»=

Fig. 5. Hole-functions ¢ (®) and z (x) and effective
lengths L; (©) (in m) for a clarinet.

The calculation of the hole location was carried
out according to eq. (11). First the quantity ¢ had
to be calculated. Because of the uncertainty of the
diameter of the holes, the two most probable ex-
treme values are calculated by choosing as hole dia-
meter the smallest and the mean value. The results
are given in Fig. 5, together with the value L; and
the value z calculated from ¢ with eq. (12). The two
extreme values of /;, calculated with eq. (11), are

20
mm

15

10
j !
: LT 11

(=)
J
%

10 5
hole number ——

20 25

Fig. 6. Difference between geometrical and calculated
length, l;—1;, for the various holes of the
clarinet.
® Smallest diameter,

O ' mean diameter.
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given in Table II. The difference between true loca-
tion [, and calculated location /; is plotted in Fig. 6
for thet wo extremes of ¢. A smooth curve is drawn
between the separate points.

Some holes perform more than one function. We
have marked then a, b and c in Table II and in the
figures. A multiple function means that the hole is
used for the forming of more tones and intervals. In
the opened position two or more frequencies may
sound. This is realised by closing one or more holes
directly beneath the hole in question. This is called
cross-fingering. In general, the frequency shift for
opening and closing the hole in question will be dif-
ferent for both functions. A double function fixes
the location and size of the hole completely. When
we provide the quantities of the cross-fingering with
a dash it follows by applying eq. (10) twice that:

2 8L Ty
HS (Li—l+gLy) (Li—1)
i g, L1' ;
(Ly —li+g L) (L =)
After substitution of L,'=(1+G)L;, where G

denotes the difference between both notes, ¢ and z
may be solved. For three cases results are given in

Table III.

(19)

Table III.
Calculated values of ¢ and z for holes with double
function (cross-fingering).

\ » Z
‘7; — | acoustical t examples
|G g |9 ohms
Tel | 1 ! 2 0.160 0.588 5a,b;9a, b
2411 ’ 2|3 0.272 0.878
32 L2 0.276 1.56 9a, ¢

If we look at the magnitudes of ¢ in this Table, we
see that these are larger than those on the instru-
ment, as is apparent from Fig. 5. Besides, they are
larger than is permitted with respect to the higher
order corrections (see Fig.4). It seems that cross-
fingering in the ideal way according to eq. (19) is
impossible because of impurities between the
registers. When the cross-fingering on the clarinet
is studied by blowing the corresponding notes, it
appears that the purity of cross-fingered notes is
often bad and especially very bad on the lower
register. On the high register, where help of higher
order corrections occurs, the purity is sometimes
better.

Apart from these elementary hole calculations,

some important corrections have been introduced.

For higher order effects no corrections are ap-
plied, because these would be doubtful, as was ar-
gued earlier. At high frequencies they could become
important, however. :

C. J. NEDERVEEN: CALCULATIONS OF CLARINET-HOLES

ACUSTICA
Vol. 14 (1964)

A correction which may be calculated to some
degree of accuracy, is that due to the row of closed
side-holes in the instrument. We follow a method
published earlier [5]. If in a cylindrical tube with
cross-sectional area S a side-tube is present with
volume AV at a distance z of the closed end, we
must introduce a positive virtual length-correction
Al to the main tube according to

Al= A?V (cos® kx —esin®kx). (20)
where 0 <e<1 depends on the shape of the side-
tube. Instead of calculating the influence of each
side-tube separately we imagine the volume of the
side-tube to be spread homogeneously over the main
tube, from a point l; to the end of the tube. The
length to the end of the tube will have some value
between l; and L, ; we choose L;. The total cor-
rection follows from

L,
Vv = e
Aly = f TASAY (cos?’kx—esin?kx)de, (21)
Uy

where 7 denotes the sum of the volumes of all side-
tubes between I; and L. This integration may be
carried out and gives after insertion of & L =% max:

sin(m ls/Ll)l
&l LT

In order to decide upon the validity of this proce-
dure for the clarinet, Fig. 7 shows the volume of all

8
cm3F /
6

Aly= 21/:9[(1—8) —(1+¢

T

0|
a

0
100 200 300 400

g~

500 mm 600

Fig. 7. Volume of closed side holes, V, as a function
of location of the highest opened hole, /.

holes above a certain hole against the location of the
hole. It appears that it is possible to a reasonable
approximation to draw a straight line through the
points so that integration is permissible. At the
same time we find from the intersection point with
the horizontal axis the best value for I3 to be
175 mm, which value was adopted for the calcula-
tions. To fix the magnitude of &, we calculated the
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quotient of diameter and length for each hole. The
mean value was 1.3. From eq. (20) in reference [5]
it follows that ¢ =0.128. The correction for the side
holes was now calculated according to eq. (22) and
is given graphically in Fig. 8.

30
mm
20 R
T ‘ 3 /
Al
i
1 m=1 ///////
0 A
0 5 10 15 20 25

hole number——-

Fig. 8. Length correction Aly against hole number due
to the closed side hole effect.

Another important correction must introduced
for the frequency alteration caused by the opening of
a so-called speaker-hole, which is meant to facilitate
the overblowing. When in eq. (4) one substitutes
Ly =Ly—1,, one obtains

cosk(Ly+ALy) =0, (23)
where :
1 —Fcos®kly
Bl l;arctanStankH—Fsinkl1 coskl ’

When the corrections are small, arc tan and tan
may be neglected and we get:

SR -1, cosik e s (24)
ElL [kl (SHIFL) —sinkl,coskl]

with kI, as variable quantity. When SH/FI, is
large (long, narrow holes) AL, is small and nega-
tive, so that we have a correction which gives a
frequency increase. This correction is calculated for
hole 1 at m =3 and m =5 and for hole 9 at m=5.
The results are plotted in Fig. 9.

ALO =

0 - ’
e
mm ,/,
Ity e 3 /
-10 //
T — hole 1 /
""" hole 9 III
AL
°-20 ,
m=5\/,
% 5 10 15 20 25

hole number ——

Fig. 9. Length correction AL, against hole number due
to opening of a speaker-hole.
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Finally the total result of all calculations is sum-
marized in Fig.10, where Alo=1,—1+Aly+
AL, is plotted against the hole number for modes
m=1, 3 and 5. for [,—1; we started from the
smooth curve of Fig. 6.

2 =
15 3
10 1
Bl ) L7 fat
I 7
o ", AN I
ot AL for 0,1 semitone / ; l
% sharp
-10
m=5
15
0 5 10 "5 20 25
hole number ——

Fig. 10. Difference between geometrical and calculated
length, Aliot, including corrections from Figs.
8 and 9, as a function of hole number.

First we observe from studying Fig. 10 that ap-
parently the clarinet is geometrically 7 mm longer
than is expected from calculations. This, however,
is not surprising as we completely neglected the
conical top of the instrument and assumed that the
input impedance at the top was real and infinite.
The conical top results according to Ravieicr [6]
in a frequency increase because one has a decrease
in diameter in a pressure antinode.

The impedance at the top is certainly not infinite
because the reed leaves at least half of the time a
chinkwise opening there [7]. Another striking fact
from Fig. 10 is that the notes in the lower part of
the lower register (m=1) are too sharp and in the
corresponding part of the high register (m=3) are
too flat. This phenomenon is well-known among
clarinet-players and is found by measurements too
[81, [9], [10]. A third fact is the course of the
curve of m =25, which seems to involve much too
sharp notes. This will, however, be compensated
to some extent by higher order effects. Besides, the
correction for the conical mouthpiece, which may
be assumed constant for low frequencies, will be-
come dependent on the frequency. This follows from
the wave length of the vibration being no longer
large with respect to the mouthpiece. That this ef-
fect is important is proved from the experience that
a differently shaped mouthpiece disturbs the tuning
completely. Apparently the clarinet-maker has found
by trial and error the best shape to compensate all
effects.

The difference between the pure fifth, which

arises in overblowing, and the tempered fifts, equal
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» to 0.5 —0.4983 = 0.0017 ~0.03 semitone can easily
be compensated by lip pressure. Therefore this ef-
fect has been neglected in all calculations.

6. Conclusions

(1]
(2]
(3]
(4]

Several investigations of the tuning of a cylin-
drical woodwind and especially of a clarinet were
carried out. It appears to be possible to calculate
the location of a hole in a clarinet with an accuracy
of some mm. If the instrument is assumed cylindri-
cal from top to bottem, the velocity node is located
about 7 mm from the top in the instrument.

When a hole is meant for a large frequency shift
and when it is long and narrow, it may be impos-
sible to tune the tone pure on more than one register.
As an approximation one may say that the hole
function ¢, defined in eq. (13) must be smaller than
0.2 to avoid impurities. Holes for large frequency
shifts are to be avoided!

A long and narrow speaker-hole, when opened,
will sometimes increase the frequency somewhat.

The large volume of the closed side-holes causes

(5]
(6]
[7]
(8]
[9]
[10]
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the notes in the lower register to be too sharp and
those in the high register too flat. By choosing shor-
ter holes this effect could be diminshed.

(Received July 20t8, 1963.)
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