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Abstract. Different correction formulae for the influence of shear and rotatory 
inertia on flexural vibrations of freely supported beams are compared with the exact 
solution. It appears that in most cases a simple formula is sufficient because of the 
appearance of a constant which is not accurately known, viz. the shear deflection 
coefficient. 

One method for the determination of Y oung's modulus consists in subjecting a beam of 
the material to bending vibrations. The modulus is calculated from the resonance fre
quency, when the mass and dimensions of the specimen are given. For beams which are 
thick compared with the wavelength shear and rotatory inertia must be taken into account. 
In practice these effects are accounted for by the application of corrections according to a 
simple theory. In these correction formulae an empirical constant appears, viz. the shear 
deflection coefficient s which accounts for the non-uniform distribution of shear stresses 
over the cross section. The value of this coefficient is not accurately known. Because 
of this uncertainty the region of applicability of the correction formulae is restricted, as 
will be shown. 

In simple theory the lateral dimensions of the beam are assumed to be small with respect 
to wavelength. Then the vibrations are governed by (Rayleigh 1945) 

i2£ (34y (32y 

p ox4 + ot2 = 0 (1) 

where i = radius of gyration of cross section, E = Y oung's modulus, p = density, 
y = lateral deflection, x = distance along the beam and t = time. Solutions of equation 
(1) are of the form 

y = cos wt exp [ ±(± 1)112 ~x] (2) 

where w is the angular frequency and I the beam length; m, positive and real, is fixed by 

(3) 

where index 0 indicates 'according to simple theory'. The boundary conditions for a 
beam free at x = 0 and x = I are o2y/ox2 = 0 and o3y/ox3 = 0. Substitution in a linear 
combination of the four solutions (2) gives as a condition form : 

cos m cosh m = 1 ; 

to a good approximation this yields 

m1 = 1 · 5056 TT 

mp = ! (2p + 1) 7T 

(4) 

p > 1. (5) 
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The complete differential equation including shear and rotatory inertia is (Timoshenko 
1921 , 1953) 

(6) 

where G denotes the shear modulus and s is the shear deflection coefficient. An exact 
solution for the boundary conditions mentioned was carried out by Goens (1931) and was I 
round to be k, the solution of the transcendental equation : 

( 
tan tf3k + f3ri) ( tan -tf3k _ aE) _ 0 

tanh -!ak aE tanh -!ak f3ri , - (7) 

a, f3 = [(B2k4 + 1)1/2 ± Ak2p12 

E, TJ = (B2k 4 + 1)112 ± Bk2 

i2 ( E ) A, B = -t /2 s G ± 1 . 

Modulus Ethen follows from 

(8) 

For practical calculations a very good approximation for Young's modulus EG was 
given by Goens (1931): 

[ 
(A2 _ B2) m4] 

EG = E 0 1 + 2Am2cp2 + 4(A - 2B) mcp - l + 2Am2 (9) 

where cp = 0·9825 p = 1 

"' = 1 . 0008 p = 2 "' = 0·99997 p = 3 "' = 1·0000 p > 4. 

A simple approximation is found when, following Timoshenko (1921, 1953), the function 
y = cos wt exp(± jmx/l) is substituted in equation (6). If we neglect psi2w 2/G with respect 
to unity and consider E/G as constant, the resulting equation can be solved for ET : 

ET = £ 0 [ 1 + ~ ( 1 + s g) m2
] = E 0(l + 2Am2

) . (LO) 
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Figure 1. Exactness of the corrections as a function of their magnitudes. 
E = exact solution, EG = Goens' approximation, ET = Timoshenko's approximation, E0 = ap

proximation neglecting shear and rotatory inertia. 
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For comparison the two corrections and the exact solution have been calculated, using a 
ZEBRA computer, up top = 15 for two values of A and two values of sE/G. The results 
are shown in figure 1, where the reciprocal relative deviations of the modulus with respect to 
the exact modulus are plotted against the magnitude of the correction terms of equations 
(9) and (10). As may be seen from the diagram, the approximation of Goens agrees with 
the exact solution to within 1 % for corrections up to a factor of 4. The approximation of 
Timoshenko already gives deviations of 1 % with a correction of 20 %. These deviations 
may be compared with deviations in the result due to the uncertainty in the value of s. 
For wood, measurements by Hearmon (1958) resulted in s = l ·06 ± 0 ·05. Different 
theories have led to a great variety of calculated s values, from 1·0 up to 1·5 depending 
on line of attack, type of boundary conditions, shape of cross section, Poisson's ratio and 
wavelength (Hearmon 1958). For the case considered here, viz. a rectangular beam with 
both ends free, the most probable value of s seems to be 1· 15 with an uncertainty of about 
10 %. The influence on Young's modulus of a variation of - 10 % in s is given in figure 2 
as a function of the magnitude of the correction. 
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Figure 2. Deviation of the correction as a fu nction of its magnitude for a 10 % decrease in s. 
ET = Timoshenko's approximation, ET' = Timoshenko's approximation with a 10 % decrease in s, 

£ 0 = approximation neglecting shear and rotatory inertia. 

Comparing figures 1 and 2 we conclude that the deviations from the exact value of 
Timoshenko's approx imation are about as large as the deviations caused by inexact know
ledge of the shear deflection coefficient. Thus there is obviously no reason to use a more 
intricate formula than the simple one proposed by Timoshenko. 

We express our thanks to Dr. W. H. Muller of the Statistics Department T.N.O. for his 
valuable help in solving the equations. 
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