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Summary: In the field of underwater acoustics the signal processing technique “Matched Field
Inversion” (MFT) is an important research topic. This technique can be used for determining both target
location and parameters describing the ocean environment. For example, these parameters are needed as
input into models that are used on board Dutch navy vessels and for mine hunting operations. When using
MEFTI, the acoustic field that is measured with a sonar array is compared with the acoustic field that is
predicted by an acoustic propagation model for a certain set of the unknown model parameters, such as
target location and geo-acoustic ocean bottom parameters. An energy function providing a measure for the
similarity between the two acoustic fields is defined. By minimising this energy function, the set of input
parameters corresponding to the maximum similarity between both acoustic fields, i.e. the solution, is
found. Due to the extremely large number of possible parameter value combinations and the occurrence of
local minima, global optimisation methods are required to solve this inverse problem.

The developed MFI techniques are applied to shallow water experimental data. A genetic algorithm is used
for the global optimisation.

1 INTRODUCTION

During the last decade the “Matched Field Processing” (MFP) technique has become an
important research item in underwater acoustics. The main application of MFP is locali-
sation of underwater acoustic sources. When applying MFP, an acoustic field that is mea-
sured using an array of hydrophones, is correlated with acoustic fields that are calculated
on the hydrophone positions for different possible (or candidate) source ranges and
depths using an appropriate acoustic propagation model. This correlation as a function of
source depth and source range is called a range-depth ambiguity surface. The source
range and depth combination that results in the highest correlation should correspond to
the true range and depth of the source.

With MFP it is assumed that all ocean environmental (and other) parameters that are
needed as input into the acoustic propagation model are accurately known. However, in
practical conditions this is generally not the case, thereby prohibiting a successful source
location estimation. This problem is referred to as mismatch. In [1] the so-called focali-
sation approach is described. With this approach not only the source position, but also
the environmental (and other) parameters are the unknowns that have to be determined.
In this way the problem has become an optimisation problem where the function that has
to be optimised depends on many variables. This function is called the energy function
and represents a measure for the correlation between measured and modelled acoustic
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field. The number of possible parameter value combinations is extremely large as the
number of unknown parameters is in the order of ten. In addition, the parameter search
space can have a large number of local optima. Finding the global optimum of such an
energy function requires modern global optimisation methods, such as simulated anneal-
ing ({13, {4]) or genetic algorithms ([2], [5]). This process of finding the parameter value
combination that provides the maximum correlation is denoted by Matched Field Inver-
sion (MFI). Matched Field Inversion has been applied to experimental data acquired in a
shallow water ocean area.

A brief description of the experimental setup and the acoustic problem is given in sec-
tion 2. We have used a genetic algorithm as the global optimisation method. Section 3
provides a description of the basic principles of a genetic algorithm. It also provides the
specific setting of the algorithm for the current inversion, including the type of energy
function used. Results are presented and discussed in section 4.

2 THE ACOUSTIC PROBLEM

The data used in the inversion were obtained during an experiment in a virtually range-
independent shallow water area north of the island of Elba (October 1993) ([3]). Here,
range-independent means that the environmental parameters are independent of the dis-
tance to the sound source and the only variation is the variation with depth. The water
depth H,, amounts to approximately 127 m. We assume that the bottom in this ocean area
consists of a single homogeneous medium described by the following three geo-acoustic
parameters: the sound attenuation constant @, the density p, and the sound speed c,.
From previous experiments in the area rough estimates for these parameters were
obtained: 0.15 dB/A, 1.8 kg/m?® and 1600 m/s, respectively. These values are referred to
as the baseline values.

The receiving system is a vertical array consisting of 48 hydrophones with 2 meter
spacing between the succeeding hydrophones. The depth of the receiving array (d) is
defined as the depth of the deepest hydrophone, being 112.7 m. The source is deployed at
arange r; of 5.5 km from the receiving array at a depth z, of 75 m.

Figure 1 shows the assumed ocean environment. The sound speed profile, i.e. the
sound speed as a function of depth in the water column, used for calculating the
modelled acoustic fields is the sound speed profile as measured at the array site and is
schematically depicted in the figure. The water column mainly consists of two layers: a
warm upper layer having a sound speed of about 1525 m/s, on top of a colder layer with
a sound speed of 1510 m/s.
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Figure 1 The assumed ocean environment.

Figure 2 shows the range-depth ambiguity surface when use is made of the baseline
model input parameter values as given above. Notice we have chosen a dB scale for the
correlation. It is clear that there are many peaks and that the source is not localised, as the
highest peak does not occur close to the true source position of 5.5 km range and 75 m
depth. From this it can be concluded that there is a lot of mismatch.

source depth [m]

source range [km]

Figure 2 The range-depth ambiguity surface as obtained using the baseline values for the model input
parameters.
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It has already been mentioned that for mismatch conditions the focalisation approach has
to be applied. In this approach, not only the source range and depth, but also other envi-
ronmental and geometrical model input parameters are determined in the optimisation
process.

The vector containing the parameters for which the inversion is performed is

’h=[ab pb Cp Ts s Hw dR]

Due to array tilt and/or imprecise measurement of the water depth, the actual array depth
is not known exactly and therefore has to be determined in the optimisation.

The function that is optimised is a function that provides a measure for the difference
between a measured and a modelled acoustic field. Previously use was made of the
acoustic fields at a single frequency. However, from experience it is known that using
multiple frequencies for the inversion results in more accurately determined and more
realistic estimates for the unknown parameters. Therefore we use multiple frequencies
for the analysis, i.e. we apply multi-frequency MFL.

During the experiment the source transmitted broadband signals. The signal used in
our MFI analysis has a frequency band of 160-180 Hz. From the spectrum that is
obtained after Fourier transformation of 8.192 seconds of the data, six frequency bins are
selected for the analysis, i.e. the Fourier coefficients at 164.43, 166.87, 168.95, 171.14,
172.85 and 174.44 Hz. These Fourier coefficients as a function of depth give the complex
pressure fields. The 6 frequencies were selected such that the differences in the pressure
fields at six frequencies in the 160-180 Hz band are maximal. The expression for the
complex pressure on the k* hydrophone in the frequency domain is

M .
Pobs k(@ )= D5k (£, e D= M
1

i.e. the discrete Fourier transform of s, (¢,) at the selected frequency @,,. Here s, (¢,) is
the received (or observed) signal time sequence. M is the number of samples taken for
the Fourier transformation (being 8192).

For the modelled pressure field the so-called normal-mode solution of the wave equa-
tion is used. The complex pressure calculated for the parameter combination 7i; at the
k® hydrophone at a depth z, is then given by
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with y, solutions of the depth-dependent Helmholtz equation for the eigenvalues k,. N is
the number of normal modes and ¢, are the modal loss coefficients. Details of the nor-
mal-mode technique can be found in [6].

3 THE GENETIC ALGORITHM
We have used a genetic algorithm (GA) as the global optimisation method. The algo-

rithm is described below and is based on genetic processes of biological organisms, i.e. it
is an analogy with nature.
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The first step in a GA is to create an initial population consisting of g members. Each
member represents a possible parameter value combination ;, i.e. a possible solution
to the optimisation problem. This first generation is created randomly. The population
size g should be large enough to ensure that the problem space can be searched thor-
oughly. On the other hand the population size should be not too large, thereby limiting
the amount of energy function evaluations (i.e. the number of forward acoustic model
calculations). At this creation stage the members are in their binary encoded form, i.e. the
parameter value combinations are represented by a string of zeros and ones. In the fol-
lowing these strings are denoted as chromosomes. Each parameter is represented by a
certain part of the chromosome. These parts are called genes. The encoded form of the
parameter value combinations is needed when applying certain operators as will be
explained later. After decoding, the values for the energy function can be calculated for
all members of this first population. This is also referred to as assigning a fitness score to
each member. When the energy function E is normalised (O<E<1), the fitness ¢ is given
by

¢=1-FE

i.e. a low value for the energy function means a high value for the fitness.
The energy function we have selected is based on the incoherent multi-frequency linear
or Bartlett processor and is given by ([5])

K
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with m the vector containing the parameters for which the inversion is performed, K the
number of frequencies (being 6 in this study), P,y(f;) the measured (normalised) pres-
sure field at frequency f, and [)mlc( fk,rh) the (normalised) pressure field at frequency f;
calculated by the normal-mode model.

For the creation of the next generation, first a parental population is selected from the
initial population. This selection is based on the fitness values obtained for the different
chromosomes: a higher fitness implies a larger probability of being selected, thus result-
ing in a parental population with a higher proportion of fit members. The selection crite-
rion should be such that, on the whole, more opportunities to reproduce are given to the
population members that are the most fit. However, at the beginning the selection crite-
rion should not be chosen too strict as that would force the algorithm to converge to a
local minimum. On the other hand a criterion that allows nearly all members to repro-
duce will result in slow convergence. In our application the probability p; for the member
m ; to be selected is given by the Boltzmann distribution ([2])

~E(;)
p] q _E(';’l)

The temperature T is chosen equal to the lowest value of the energy function found in the
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entire current population. This choice results in a flat probability distribution at the
beginning, but as the optimisation process continues, the temperature will decrease,
resulting in a more peaked probability distribution and therefore more emphasis will be
put on the most fit members in later generations.

The following step is to create a population of g children. This is done by applying
different operators to the members of the parental population. These operators are cross-
over and mutation, and they are applied to the members when they are in encoded form.

In order to apply crossover the members of the parental population are paired ran-
domly. Crossover results in the exchange of corresponding chromosome parts between
the two chromosomes of each pair of parents. We have applied multiple point crossover:
a crossover point is selected at each gene, i.e. the number of crossover points is equal to
the number of parameters for which the optimisation is performed. Crossover is applied
with crossover probability p.. Using a value of p, less than one will allow genes to be
passed on to the next generation without the disruption of crossover (usually 0.6 < p, <
1.0). The crossover point, i.e. the location on the gene at which it is cut, is selected at ran-
dom. After crossover another operator called mutation is applied to the chromosomes.
Mutation changes each bit of the chromosome with a probability p,,.

Crossover is considered to be a mechanism for rapid exploration of the search space.
More crossover points or a higher crossover probability imply a more thorough search,
but also more disruption. On the other hand, mutation is a process that provides a small
amount of random search, ensuring that no point in the search space has zero probability
of being explored. However, the mutation probability should not be chosen too high as
then the search becomes effectively random (in general p,, < 0.1).

A new population (again consisting of ¢ members) is established by taking at random
f.q (0 <f< 1) members of the children population and the (1-f)¢g most fit members of the
original population. fis called the reproduction size. For values of f close to one, or even
equal to one (called generational replacement), convergence of the algorithm to the glo-
bal minimum might be slow. On the other hand, low values of f might promote the algo-
rithm to converge rapidly to a local minimum.

The new population is used as the next generation onto which the same procedure is
applied as described above. This process is continued for a certain amount of genera-
tions, which should be chosen large enough to allow convergence of the optimisation
process.

Most of the values for the GA parameters were taken equal to those used in [2], i.e. a
population size g of 64, a crossover probability p. of 0.8, a mutation probability p,, of
0.05 and a reproduction size fof 0.5. The number of generations is taken to be 400, hence
the number of forward model calculations per GA run amounts to approximately 13000
per frequency.

A genetic algorithm is a very powerful and robust technique as it can be applied to a
wide range of problems. However, the difficulty comes from finding the best setting for
the genetic algorithm for each specific optimisation problem, i.e. finding the best values
for the different GA parameters (g, p., p,, and f).
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4 RESULTS

The search bounds for the parameters, [B,, B,], can be found in table 1.

Estimates for the final values of the unknown parameters have to be derived from the
members of the final GA population. Several independent GA runs (in our case 5) have
been performed in order to increase the probability on finding the global optimum. At the
same time the parameter space close to the global optimum is explored more thoroughly,
thereby improving the accuracy of the parameter estimates.

The energy function values corresponding to the parameter value combinations of all
final populations are shown in Figure 3.
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Figure 3 Energy versus parameter values in the final populations.

Estimates for the unknown parameters can be obtained by simply taking the parameter
combination with the lowest energy function value. This solution to the inverse problem
is referred to as GA,.-

An alternative method to obtain estimates for the unknown parameters from the final
populations is to calculate the so-called a posteriori mean values ({2]). This solution to
the inverse problem is referred to as GA,,,, and is given by

ng
CAnean = 3, 71,0(; )
j=1

with
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with n the number of independent GA runs for the inversion. Here the temperature
parameter T” is taken equal to the lowest value of E in the final population ([2]).

Generally, it is useful to calculate both the GA,,,, and GA,,,, solution, since a signifi-
cant difference between the two solutions for a particular parameter indicates that the
acoustic field is hardly sensitive to corresponding changes in that parameter. This corre-
sponds to a flat or at least ambiguous distribution of energy function values for this
parameter, see Figure 3. This is only valid for a temperature 7" that is not too low as then
both solutions will coincide automatically.

Table 1 The search bounds, the baseline values and the values for the best and the mean,

m; B, B, Baseline Best mean
py(kg/m®) | 1.2 3.2 1.8 2.33 2.30
0,(dB/A) 0.0 1.0 0.15 0.05 0.11
¢, (m/s) 1550 1750 1600 1570 1575
r, (km) 0 11 5.4 5.441 5.451
2, (m) 1 120 75 76.0 759
H, (m) 125 135 127 129.5 129.9
dg (m) 110 114 112.7 112.5 112.9

Figure 4 shows for the different frequencies the absolute values for the measured pres-
sure fields and the pressure fields calculated for the parameter combination correspond-
ing to the lowest E, i.e. the GA,,, solution. It is clear that the optimisation has been
performed successfully as the measured and optimised fields are very similar. Finally,
Figure S shows the range-depth ambiguity surface when use is made of the optimised
parameter values. It is clear that now there is one clear peak that is at the correct source
position. This also indicates that the optimisation has been successful.
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Figure 4 Absolute values of the measured pressure fields (solid line) and calculated pressure fields
(dashed line) for the frequencies that were used for the optimisation.
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Figure 5 Range-depth ambiguity surface obtained when use is made of the optimised parameter values.
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5

SUMMARY AND CONCLUSION

It can be concluded that realistic estimates for the unknown parameters have been found.
The source range and depth in particular were accurately determined and are in excellent
agreement with the true source position. The GA,,.., and GA,,,, values do not differ sig-
nificantly for all parameters (except for ;) indicating that these parameter values are
well determined. The attenuation constant in the bottom, @, is less well determined. This
is due to the fact that this parameter has the least effect on the acoustic propagation.
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