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ABSTRACT
This paper reports on selection of suitable sensor fusion techniques for use in han mine

¿eteciloi ,yrtårn, for HOM-2000. Various techniques like Bayes, Dempster-Shafer, ks are

considered. Guidelines for selection of an appropriate fusion level are formulated. ted to

illustrate the advantages that can be obtained through the use of sensor fusion'
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1. INTRODUCTION

The use of multi-sensor technology has become part of a growing number of national and international resea¡ch programs

n techniques. The HOM-2000 project is a Dutch government

I and vehicle mounted mine detection systems that achieve

fferent sensor types. Various sensor combinations and sensor

/l-2000 project.
on techniques' Various aspects of sensor fusion are taken into

or signals, co-registration of sensor signals and sensor management'

fusion techniques that have been examined. Finally, we will present

rada¡), EMI (electromagnetic induction) and TIR (thermal infrared)

efits that can be obtained through sensor fusion.

2. FUSION MECIIANISMS

Sensor fusion is considered to be a method that can help to combine the strengths of individual sensors and to create a

sensing system that as a whole achieves better performance than any of the individual ted

advantages are improved detection, improved classification, wider sensing range, increased r tial

resolutiõn. In this section we will discuss these advantages and the mechanisms behind t ese

the sensor configuration w

or fusion, impro-vement of be obtained through

. The th¡ee most important

I ) The combined depth range that is covered by a set of sensc ge that is covered by any of

the individual sensors'

2) The mean value of .compatible' sensor readings will have on average a better signal to noise ratio than individual

sensors in situations where the individual sensors are comrpted by uncorrelated disturbances.

3) Classification can be improved if several different features of an object that together describe a unique object class can

be sensed simultaneouslY'

In the mine detection scena¡ios under study we expect that sensor fusion advantages are mainly achieved through

;""h;"ir; ii"¿i.This follows from the sensor characteristics that are shown in table l. TIR and GPR for example, will

in general observe different depth ranges. This means they are complementary sensors that can aid in fusion through

mechanism 1.

The. performance of all sensors is to some extend affected by the moisture content of the soil. A moderate moisture level can

decrease the performance of the GpR sensor severely while the impact on EMI performance is only small. Increased soil
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moisture content can either enhance or diminish the detection performance of the TIR camera. Small amounts of moisture

that easily evaporate on the surface under good weather conditions can help to increase the temperature contrast of the soil.

However, high soil moisture content will decrease the temperature cont¡ast of the soil. The differences in the way moisture

affects the performance of the three sensors, indicate that performance gain can be achieved through sensor fusion

mechanism 2.

Based on the performance of the sensors and feature extractors that a¡e currently being evaluated in the HOM-2000 project,

we expect that the number of features and the quality of the features that can be extracted is insufficient to enable reliable

object classification through fusion mechanism 3. If a more extensive training set of sensor data becomes available, the

feasibility ofobject classihcation can be reconsidered.

Table 1: Characteristics properties of EMI, GPR andTIR sensors.

EMI GPR TIR

Observed depth range above surface
surface interface
below interface

above surface

below interface

above surface

surface interface

Observed quantity elect¡ical conductivity dielectric constant thermal capacity
thermal emissivity

Influence of soil moisture decreased performance stron gly decreased performance decreased performance
or

imnroved ne¡formance

Extracted features object material
(object size)

object material
object size

object size

object shape
obiect surface structure

3. FUSION LEVELS
The choice of a suitable fusion level is important since it affects both the quality of the detection results and complexity of
the fusion process. Three different fusion levelsl can be discerned: data level, feature level and decision level. Information at

data level consists of pixel values in camera images and samples of raw waveforms early in the detector signal processing

chain. Information at feature level consists of object properties like size and material type. Information at decision level

consists of numbers that represent the probability of presence of a certain object type'

Fusion at data level is often applied to groups of similar sensors, such as cameras that are sensitive in different wavelength

ranges. Fusion at feature level is most suitable in object classification applications. Fusion at decision level can easily be

applied to very different sensors systems.

The choice of an appropriate fusion level is guided by the fotlowing observations. On the one hand, fusion at low level can

in some cases prevent information loss that might occur when moving up to higher fusion levels. On the other hand,

choosing a higher fusion level reduces the computational complexity ofthe fusion process and also eases the tasks offusing
information from very different sensor types. Therefore, sensor fusion should take place at the highest level at which the

amount of information loss is still acceptable.

Fusion mechanism I is important in the HOM-2000 project, In principle, it can take place at any level without loss of
information, so fusion should be done at the highest level, that is, the decision level. Fusion mechanism 2 applies both at

feature and at decision level, but moving to a higher level can mean information loss. However, in our case no suitable

features are identified for this fusion mechanism, so this leaves the option of fusion at decision level. Fusion mechanism 3

only applies at feature level, but since no suitable features are available to support this type of fusion we can rule out this

type of fusion. Based on these arguments we choose to focus on fusion at decision level in phase A of HOM-2000.

4. FIJSION ALGORITHM
Fusion algorithms can be divided into two classes, based on whether the decision process relies mainly on expert knowledge

and understanding of the physics that governs the detection processes, or on statistical modelling of experiment data. In the
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sensor fusion project we have taken into consideration the fusion techniques that are shown in lable 2. We will discus some
advantages and disadvantages that are related to these techniques.
The Bayesian approach guarantees, within the limitations that are dictated by the selected set of sensors and feature
extraction algorithms, an optimal estimate of the environment that is visible to the sensors, if a perfectly reliable model of
sensor and environment is available.

Table 2 : Sensor-ftrsion techniques.

STATISÏCAL /
BLACK-BOXMODEL

EXPERT KNOWLEDGE

Bayesian
Dempster-Shafer
Neural network
Weishted votins Drocedure

- Fuzzy logic
- Expert system

The Dempster-Shafer technique is very similar to the Bayesian approach, but it is more effective if information is available
about the relative accurateness of various parts of the statistical model that is used to describe the sensors. It can be shown
that under certain conditions the Dempster-Shafer approach and the Bayesian technique are identical. Also, the
Dempster-Shafer technique is very flexible since sensors can be easily added without adjusting the probability masses of the
remalnlng sensors.

Neural networks can be used to create arbitrary functional mappings. In order to achieve reliable performance a large
number of training samples has to be presented to a neural network. The need for large training sets is a serious drawback of
neural networks.
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Expert systems are tools that can be used to represent expert knowledge as a set ofrules. The set ofrules is applied to input
data by means of an interference mechanism in order to verify certain hypothesis. In a de-mining scenario a hypothesis
might for example state the existence of a mine at a celain locauon.

Fuzzy logic also relies on expert knowledge and a database of rules. A major difference between these two techniques is that
fuzzy logic does not use a forward or backward chaining interference mechanism that links rules in sequential manner.
Moreover, fuzzy logic is more suited to model continuous function mappings.

A weighted voting procedure6'7 incorporates the intuitive notion that a hypothesis becomes more likely if more supporting
evidence is available. The voting rules can be used to express that weak support of a hypothesis from several sensors is
equivalent to strong support from a single sensor. In addition, the relative reliability of sensors can be modelled by weight
coefficients.

Taking into account the advantages and disadvantages of va¡ious options that were described above, we think that a
weighted voting procedure is a suitable technique for our specific needs. This choice is motivated by the fact that it is the
most simple technique that can support the two basic fusion mechanisms that are involved in decision level fusion:
complementary sensing depth range and uncorrelated sensor disturbance. Both of these mechanisms lead to the notion that
strong evidence for the presence of a mine obtained from a single sensor should be sufhcient to trigger a positive output
from a sensor-fusion system that is tuned to achieve a high detection rate. The main processing steps that occur in the
sensorfusion system a¡e shown in Figure L

5. EXPERIMENTS
Part of the HOM-2000 project is the construction of an outdoor test facility containing various soil types in which realistic
surrogate mines and decoy objects are buriede'Io. The facility consists ofsix test lanes of3 x l0 m that are frlled respectively
with sand, clay, peat, high iron content soil, forest soil, and rocky soil. The groundwater level in each ofthe test lanes can be
adjusted automatically to a user defined level. A completely non-metal platform on which sensors are mounted can be
moved across the test lanes. Both mines and potential false alarms like tin cans, bottles, rocks, and metal fragments are
placed in the test lanes. The facility is used in the selection of suitable sensors and for the generation of test data sets that
can be used in the training and evaluation of sensor fusion technrques.

5.1 Thermal infrared sensors

Four different TIR FPA cameras, that are either sensitive in the 3-5 pm wavelength range or in the 8-12 ¡rm wavelength
range, are taken into consideration in the camera selection process. The spatial resolution of all detector Íurays is 256x256
pixels. In one camera model, microscanning is employed to enhance the spatial resolution. The noise equivalent temperature
difference is smaller than 25 mK.

Figure 2. Mosaic of TIR images (8-121n) from sanþ soil test lane.
Circles denote ground truth positions of mines.
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Automatic detection of mine-like targets is not an off-the-shelf technology for IR cameras. We have evaluated several
options to achieve automatic object recognition, among which are template matching and texture extraction. After this initial
processing step, size is used as an additional selection criterion to remove unlikely candidate image regions. Figure 2 shows
a mosaic of TIR images that were collected from the sandy soil test lane.

5.2 Ground penetrating radar
Two hand carried and two vehicle carried radar systems are evaluated. All systems use pulsed signals. The vehicle carried
systems consist of several send and receive antennas that enable beam forming and thus are likely to produce more detailed
images.

The first step in the GPR based detection process consists of background removal using a moving average filter. To some
extend the background removal is also helpful in suppression of reflections that occur at the air-ground interface. The
cumulative energy of all reflections is projected towards the surface plane. A typical image that results from this processing
step is shown in Figure 3. Finally, suspicious regions a¡e selected based on local contrast and size.

r IF{}¡
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Figure 3: Proiection ofreflected GPR energy on harizontal ground plane (s,ndy soil test lane).

Circles denote ground truth positions of mines.

5.3 Electromagnetic inductionsensons

Both pulse induction and continuous-wave sensors a¡e tested. In the pulse detection sensors, the decay time of the received
antenna signal is used as a discriminating feature. In the dual-frequency continuous-wave sensor the amplitude difference
between two received sinusoidal signals of different frequency is used to discriminate metallic objects from background.

5'

Figure 4: EMI data.fron sandy soil test lane. Circles denote ground truth
positions of mines
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Figure 4 shows a typical data set that was collected using the continuous wave, hand carried metal detector. The

anti-symmetric patterns that occur near target objects a¡e caused by the detector receiver coil geometry. Both handheld

systems that a¡e used, produce a signal that crosses zero when moved over an object. This property is used as the basis for
the detection algorithm.
The sensor data that are shown in Figure 2 through 4 illustrate the advantages that can be obtained through sensor fusion.

The non-metal mine that is buried just below the surface at position A is clearly visible in the infrared image, but it can be

barely discerned in GPR en EMI data. The non-metal mine that is buried l0 cm below the surface at position B is clearly
visible in the GPR data, but it can be barely discerned in the TIR en EMI data.

5.4 Sensor fusion parameter settings

The choice of suitable parameter settings is one ofthe rnain issues in the optimisation ofthe sensor fusion architecture that is

under development in the HOM-2000 project. Essential fusion parameters occur in confidence level discretisation and

voting logic fusion.

In order to reduce the complexity of the parameter optimisation process, only logic tables based on binary input and output

arguments a¡e evaluated. As a consequence, the confidence level discretisation process is reduced to a thresholding

mechanism. For each sensor, the threshold level is selected from a set of ten different values. These values a¡e chosen such

that conesponding points on the receiver operator curve of an individual sensor are approximately uniformly disributed
between maximum and minimum detection probability. This means that for each voting logic table approximately 1000

parameter combinations a¡e evaluated.

5.5 Results

The evaluation of sensor fusion results relies on automatic comparison of sensor fusion output and ground truth object
position information. In the evaluation of the performance of the mine detection system we have to take into account both
the number of correctly detected mines and the number of false alarms. According to our definition a mine is correctly
detected if an alarm is found within an ellipsoid a¡ea of predetermined size around the centre of a mine. The size of the

ellipsoid area depends on the size ofthe object and the accuracy ofsensor position measurements.
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Figure 5: ROC of GPR, EMl, TIR andfusion perfornvtnce
in sand lest lane. Fusion logic based on two out
of three sensors.
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Figure 6: ROC of GPR, EMI, TIR andfusion performance in
sand test lane. Fusion logic based on one out of
three sensors.
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The computation of false alänns is based on the following proceduret: In each detection region the number of mines is
calculated. for each mine the effective false alarm region size is reduced by the size of the standa¡d dig area. In our
experiment the standa¡d dig area measures 25 x 25 cm. If the effective size of a false alarm region is still above the standard
dig area, each dig area that fits in the detection region is counted as one false alarm. By using this false alarm counting
technique we can avoid misleading performance interpretations that would occur if large alarm regions were counted as
single false alarms.

An analysis of the mine detection performance that can be achieved on the sandy soil test lane is shown in Figure 5 and 6.
The analysis ofthe detector performance is based on the specific part of the test lane area that is covered by all of the three
sensors. In this part of the test lane 2l mines are buried. The dashed ROC (Receiver Operator Cha¡acteristic) curve in
Figure 5 is based on a fusion logic table that generates positive detection ouþut signals only in those situations were at least
two individual sensors provide supporting evidence. In the sandy soil test lane experiment, this type of fusion results in a
reduction of the false alarm rate as compared to the individual sensors. The dashed ROC curve in Figure 6 is based on a
fusion logic table that generates positive detection output signals if at least one individual sensor provides supporting
evidence. In the sandy soil test lane experiment, this type of fusion results in an improved detection rate as compared to the
individual sensors.

6. CONCLUSIONS
During HOM-2000 phase A, we have conducted a literature study on several different types of sensor fr¡sion techniques.
Based on theoretical arguments we have selected weighted voting as the most suitable core fusion algorithm. In addition to
the core fusion algorithm, feature extraction algorithms were developed. Based on the analysis of sensor data gathered at the
test facility, several situations have been identihed that illustrate the benefits of sensor fusion.
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