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Chapter 1
Introduction

1.1 From Photographs to Features

In the past, photographers needed to make many preparations before they could take
a good photograph. They had to take into account the time of day, season of the
year, the cloudiness, and the type of scene, before putting in the right type of film,
and setting the right aperture and exposure time. In other words, photographers
were dependent on the material quality, and on the uncontrollable environmental
conditions. Over the years, cameras have improved, and nowadays even commodity
cameras are able to adjust automatically their sensitivity to suit the conditions at
hand. To take a good photograph, one has become less and less dependent on the
accidental conditions.

Camera hardware has become widely available. Photographs are taken with a
wide variety in scene content and in conditions in which the photographs are taken,
as illustrated in Figure 1.1. If we look more closely, the objects designated in the

Figure 1.1: Examples of scene photographs.

scene are recorded under various settings of the illumination and under varying cam-
era viewpoints. Object appearance is heavily affected by such settings. For instance,

1



2 Introduction

an object that is in the picture, changes appearance as it is recorded in the afternoon
and at dusk. At dusk, the light from the sky turns reddish, which affects the ob-
served color of the object. Even for pictures taken right after each other, the object
appearance deviates when the pose of the object has changed. Examples of appear-
ance variation of a single object are depicted in Figure 1.2. The figure illustrates
the dominating appearance variations: changes of the illumination direction, of the
illumination intensity and color, and a change of the camera viewpoint.

Figure 1.2: Example object with various appearances. Before an object can be recognized from

any arbitrary angle and under any arbitrary illumination, these accidental conditions need to be

removed without knowing a priori what the parameters of viewpoint and illumination are.

Nowadays, often the photographs are taken by digital cameras, or photographs
are digitized afterwards as, for instance, to preserve cultural heritage. Digital pho-
tographs, or images for short, have become ubiquitous. This has led to a demand
for (semi-) automated analysis of images, for instance to retrieve them from a large
collection, or to indicate whether a particular object is present in the given image.
Automated analysis carried out by vision systems is expected to give similar results
independent of the varying scene conditions under which the objects of interest are
recorded. This implies the need for measurements that are robust, in the ideal case
even invariant, to appearance changes. Humans are able to distinguish between ob-
jects very well in a large variety of circumstances. We are able to observe differences
between two appearances of the same object, i.e. we never see the object without
environmental determinants. Yet, we are able to classify or identify effortlessly the
object. In analogy, for artificial vision systems, the challenge is to abstract from the
distorted input such that different appearances of the same object are taken as one
and the same.

The image measurements are a first step to determine the similarity between im-
ages or objects designated therein. The more invariant a measurement, the more
robustness is gained as unimportant details are discarded, but also more information
is lost. With a more invariant measurement, objects become more similar. The choice
of measurement affects the level of detail retained hence the similarity. Therefore, in
order to measure similarity adequately, the level of invariance needs to be balanced
with discriminative power. Here, besides the scene variation that is anticipated, also
task-specific requirements need to be taken into account. For instance, object shading
is an irrelevant property if one aims to order objects according to their color, but it
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is important if one aims to determine object shape. Thus, to determine similarity, an
important choice is to select the measurements that take into account only the prop-
erties that matter to the vision system. For various computer vision tasks, the notion
of similarity has proven to be very crucial. For example, in image segmentation the
objective is to separate homogeneous regions, where the homogeneity may be defined
by color independent of shading and shadow effects. Likewise, to recognize an object
recorded under various illumination directions, illumination colors and camera view-
points, similarity should be determined independently of appearance effects. If one
knows the accidental conditions under which objects are viewed, see Figure 1.3, then
one can design classes of image measurements that are variant or invariant to these
accidental conditions. These examples clarify that the choice of image measurements
is important to subsequently determine the similarity between objects.

Figure 1.3: When the accidental conditions are ordered with respect to their driving force, then

one can design classes of image measurements that are variant or invariant to these accidental

conditions. To order variants and invariants and to measure their quality of measuring object

properties is the goal of the thesis.

This thesis addresses the quality of image measurements, or features. Quality will
be established by determining a feature’s invariance and its retained discriminative
power for a large dataset of real-world objects and realistic scene variation, and in-
vestigate the notion of similarity between objects in that dataset.

In computer vision, a fundamental choice is to take the picture as a starting
point, or to take the objects in the real world represented in the picture as a starting
point. A large part of image processing methods is intensity specific in that it deals
with the intensities as they appear in the image. This is the preferred strategy for
general-purpose compression and communication. For other image processing tasks as
image segmentation, interpretation, and object-identification the heart of the matter
is in the properties of the objects represented by the picture. The objects are not
seen as a pictorial depiction of the scene but rather as a pictorial representation
of the scene [112]. As laid down above, in object-specific image processing, it is
important first to remove the accidental conditions introduced into the image at the
moment of recording. For object-specific image processing, invariant features have to
be considered. In this thesis, we consider a set of image features each with a tailored
degree of invariance. For each feature we establish the quality, such that the feature



4 Introduction

suited for the computer vision task at hand can be chosen.

1.2 Variants and Invariants for Computer Vision

Both the variant and invariant approaches to computer vision will start with the
intensity-specific approach as the image intensities are the only information at the
start. A starting point for intensity-specific image measurements are Gaussian-shaped
filters for many, well-documented reasons. Among them we note their ability not to
introduce new peaks in the image field [67], the capability to process the dimen-
sions separately by subsequent one-dimensional filters, the ability to steer them to
a preferred orientation [41], the fact that the Gaussian filters slope towards zero at
the tails, the ability of the Gaussian filter and its derivatives to represent a signal
completely by means of a Taylor series [40] and their robustness to image noise.
These and other reasons assure that the Gaussian filters are commonly used these
days [20–22, 46, 72, 74, 77, 103]. Pixel properties can be measured in the one color
dimension (sampled by usually three filters), the two spatial dimensions, and/or the
one time dimension in case of video, yielding a complete Gaussian-based measurement
set including zeroth and higher order derivatives to measure also differential structure
in the image [3]. Generally, we denote a Gaussian filter G(a) to measure a variable a,
and its i-th order derivative Gai(a); this notation is used throughout the thesis. With
the color dimension parameterized by wavelength λ, the Gaussian color (derivative)
filters are denoted Gλi(λ), and correspond to Koenderink’s Gaussian opponent color
model [46]. Spatial and temporal (derivative) filters are denoted Gxiyj (x, y) [67] and
Gti(t) [2], respectively. A Gaussian in the Fourier domain results in a spatial Gabor
filter, hence the Gabor filter can be considered as part of the Gaussian measurement
framework. For the measurement of spatial regularity, the Gaussian filter needs to be
tuned to a central frequency Ω0, resulting in a spatial Gabor filter G̃Ωx0 ,Ωy0 (x, y) [14].
Likewise, a temporal frequency filter G̃Ωt0 (t) may be derived. The complete Gaussian
measurement set is obtained from combining the separable filters from each dimen-
sion. For instance, color edges are measured by subsequent application of a specific
color filter and a spatial derivative filter, while for color texture a spatial frequency
filter may be applied rather than a derivative filter. Motion information of objects
may be measured from subsequently filtering of the result by a temporal derivative
or frequency filter. We refer to these measurements as variant features.

To measure object-specific properties, the intensity-specific variant features need
to be combined in image invariants that are independent of the sources of variations
in the scene. Throughout this thesis, we consider features that are invariant to the
most important scene parameters: varying illumination color, intensity and direction,
and varying object position and pose (or, alternatively, varying camera viewpoint).
These accidental settings of the scene are illustrated in Figure 1.3. We give preference
to photometric invariant features from physical principles, see e.g. [36–38,42,50,123].
We leave the machine learning approach to invariants out of consideration, that is
to record the values under all possible conditions from extensive experimenting over
representative datasets. Such an approach will yield robust invariant features only if
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Table 1.1: Filters, observables, unwanted scene variations, and invariants.
Physical variable Filter set Observable Disturbance(s) Invariant(s)

Wavelength spec-
trum

Gλi (λ)
Geusebroek [46]

Object color Illumination
intensity

Geusebroek [46]

Illumination in-
tensity, shadow,
shading, high-
lights

[46]

Illumination in-
tensity and spec-
trum, shadow,
shading

[46]

Local geometry G
xjyk (x, y)

Koenderink [71]

Object shape Object pose Florack [39]

Object distance Lindeberg [77]

Spatial frequency G̃Ωx0,Ωy0 (x, y)
Bovik [14]

Shape regularity Object pose and
distance

Jain [61]

Time Gti (t)
Adelson [2]

Object motion Object distance −

Temporal Fre-
quency

G̃Ωt0 (t)
Burghouts [18]

Object motion
periodicity

Object distance Burghouts [18]

To measure object properties, Gaussian-shaped image and video filters are denoted by G. For mea-
surements of regularity in space or time Gabor functions are used, indicated by G̃. Accidental
settings of the scene are categorized into varying lighting conditions (illumination color, intensity
and direction), and object pose, rotation of distance (or camera viewpoint), as illustrated in Figure
1.3. To remove scene disturbances, invariants have been proposed in literature.

the dataset is large and representative, but for general conditions, features derived
from a precise physical model of the image formation will yield similar results with-
out extensive learning. Further, we consider local features in the image, to achieve
robustness to object occlusion and image clutter.

Color measurements are affected by changing illumination color, intensity and
direction. To counteract these appearance deviations locally, we adopt the photomet-
ric invariants of Geusebroek et al. [46], which are based on the Gaussian derivative
framework. From the framework, we consider features that are increasingly invariant:
features invariant to illumination intensity, additional invariance to shadow and shad-
ing, and additional invariance to highlights (specularities). The spatial measurements
are disturbed by changing orientation and distance of the viewed object. To obtain ro-
tation invariant measurements, we consider the framework of Florack et al. [40], while
for scale-invariant application of features we adopt the framework of Lindeberg [77].
Measurements of motion are also affected by a change of object distance. To derive
an invariant for motion directly, multiple cues have to be considered to disambiguate
the distance and size of the object. An alternative is to measure motion from quasi-
periodically moving objects, for which a feature invariant to object distance can be
constructed directly as will be proposed by the author. In recapitulation, the local
measurement framework is extended with invariant features. The variant features to
measure particular observables, and the invariants that can be constructed from them
in order to counteract particular disturbing appearance variations, are considered in
this thesis are summarized in Table 1.
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1.3 Central Questions of the Thesis

The choice of image feature is very important for the design of vision systems, as
it determines the input for subsequent analysis. The suitability of a feature for the
task at hand depends on a feature’s intrinsic properties such as the reliability and
accuracy of its values. Furthermore, feature suitability depends on the given dataset:
both the amount of objects that are to be discriminated as well as the amount of
object appearance variation need to be taken into account. The objective of this
thesis is to enable the designer of a vision system to select a suitable feature for the
problem at hand. The central problem addressed in this thesis is: Which image
feature should be chosen for the problem at hand?

Throughout the thesis, local features of object color, shape and motion are con-
sidered. We start with establishing the quality of features that can be measured in
still images. The problem addressed in Chapter 2 is: What is the quality of a
feature to measure object properties in a single image? We investigate qual-
ity of variant and invariant features by measuring invariance under the various scene
disturbances.

In Chapter 3 we consider the following problem: What is the quality of a fea-
ture to distinguish between many real-world objects? We establish the quality
of variant and invariant features for the description of object parts by evaluating the
matching accuracy. The matching quality is measured for various imaging conditions
and for image transformations that occur frequently in practice: compression and
blurring of the image.

As can be concluded from Section 1.2, the Gaussian/Gabor measurement frame-
work is not complete: a temporal frequency measurement is missing. For the offline
case, a temporal frequency measurement is performed trivially by a temporal Gabor
filter. For the online case, only image frames from the past are available. This requires
a different approach, as the filter needs to be reshaped. In Chapter 4 we therefore
provide a solution to the question: In the Gaussian framework, what is the
temporal frequency filter?

In computer vision, many methods are based on grey-value images. A well-known
example is the model of Varma and Zisserman [120] to model materials. In Chapter
5, we consider the problem of incorporating color information a posteriori such that
the original grey-value models are left untouched: How can grey-value histogram
features be extended a posteriori to include color information?

Commonly, a fixed feature (set) is used to model a dataset of objects, while objects
may have different distinctive properties. In Chapter 6, we consider materials, and we
propose a framework to model material-specific properties. The problem addressed is:
How can variant and invariant features be selected or combined for each
material specifically?

One step beyond feature measurement, towards their employment in the context of
a specific problem, is to measure goal-oriented features, here referred to as similarities.
At the end of this thesis, in Chapter 7, we investigate similarity between objects in
a large dataset to facilitate their search. We investigate the problem: How are
similarities between objects distributed across a large dataset?



Chapter 2
Quality of Variant and Invariant

Features for Color Image Processing∗

2.1 Introduction

In image and video processing, a fundamental choice is to take the picture as a starting
point, or to take the objects in the real world represented in the picture as a starting
point. A large part of image processing methods is intensity specific in that it deals
with the intensities as they appear in the image. This is the preferred strategy for
general-purpose compression and communication. For other image processing tasks as
image segmentation, interpretation, and object-identification, the heart of the matter
is in the properties of the objects represented by the picture [112]. In object-specific
image processing, it is important first to remove the accidental variation introduced
into the image at the moment of recording. For one, viewpoint has a distinct effect on
the image and should be removed before one would like to deal with object-specific
properties. The same holds for the color, direction and intensity of illumination,
introducing shadows in the image. Again, this introduces many scene-dependent
effects into the image to be removed before object-specific analysis may proceed.
Hence, for object-specific image processing image invariants have to be considered.

Any of two approaches will start with the intensity-specific approach as the im-
age intensities are the only information at the start. A starting point for intensity-
specific image processing is Gaussian-shaped filters for many, well-documented rea-
sons. Among them we note their ability not to introduce new peaks in the image
field [67], the capability to process the dimensions separately by subsequent one-
dimensional filters, the ability to steer them to a preferred orientation [41], the fact
that the Gaussian filters slope towards zero at the tails, the ability of the Gaussian fil-
ter and its derivatives to represent a signal completely by means of a Taylor series [40]
and their robustness to image noise. These and other reasons assure that the Gaussian

∗Appeared partially in Proceedings of the European Cognitive Vision Conference, 2004.

7
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filters are commonly used these days [20–22, 46, 72, 74, 77, 103]. The pixel properties
can be measured in the two spatial dimensions, the one color dimension (sampled
by usually no more than three values), and/or the one time dimension yielding a
complete and exhaustive point-based measurement set. An immediate advantage of
the Gaussian filter is evident here, as any combination of a dimension with any of
the other dimensions is separable, computationally as well as analytically. In the fol-
lowing, we will use a complete set of Gaussian filters to measure all intensity-specific
variant image properties.

To measure object-specific properties, the intensity-specific properties need to be
combined in image invariants that are independent of the sources of variations in the
scene. Invariant features require a proper balance between constancy of the object
measurement regardless of the disturbing scene parameters on the one hand, and
retained discriminating power between truly different states of the objects on the
other. Hence, both invariance and discriminative power of object-specific measure-
ments should be investigated simultaneously. We provide a complete set of invariant
image features to measure object properties independent of the most important scene
parameters: varying illumination direction, illumination color and varying viewing
directions.

We give preference to invariant features from physical principles. We leave the
machine learning approach to invariants out of consideration, that is to record the
values under all possible conditions from extensive experimenting over representative
datasets. Such an approach will yield robust invariant features only if the dataset is
large and representative, but for general conditions, features derived from a physical
model of imaging will yield similar results without extensive learning.

Starting from the complete sets of variant (intensity-specific) and invariant (object-
specific) feature sets, our contribution is to assess the quality of variants and invari-
ants. We determine the quality of the features according to their robustness, in-
variance, information content and discriminative power. Finally, we demonstrate the
merit of using invariant features rather than variants for real-world imaging condi-
tions.

First, we give a complete set of Gaussian filter families to measure intensity-specific
entities in the spatial, color and temporal dimensions (Section 2.5). We combine
systematically the intensity-specific measurements such that object-specific properties
can be measured independent of disturbing scene parameters (Section 2.5). We list
quality measures for variant and invariant features (Section 2.4) and validate the
quality of variant and invariant features in Section 2.5. We wrap up with conclusions
on the suitability of the features for image processing applications.

2.2 Variants: Measurable Pictorial Properties

Measurements of a picture signal imply integration over a spatial, spectral and tempo-
ral region. The visual measurement Ê : R

4 7→ R of the color video signal E(x, y, λ, t)
is the linear correlation of E with a Gaussian filter type G : R

4 7→ R:

Êxiyjλktl(x, y, λ, t) ≡
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∫ ∫ ∫ ∫

E(x, y, λ, t)G
x0,y0,λ0,t0;σx,σy,σλ,σt

xiyjλktl (x, y, λ, t) dx dy dλ dt, (2.1)

with (σx, σy, σλ, σt) ∈ R
4 the scales of the filters in each dimension and (x0, y0, λ0, t0) ∈

R
4 its location. The superscript indices in the subscripts denote the order of differ-

entiation. We drop the location parameters. Using the separability of the Gaussian,
we list the filters that measure spatial, color and temporal properties in the image
independently.

The measurement of local geometry in the image is equivalent to a filter that
measures the change in the intensity structure at (x, y) at scale σxy [71]:

G
σxy

xiyj , (2.2)

of which the measurements are given by Êxiyj = G
σxy

xiyj ∗ E. As an example, image
edges are represented by Gx. Up to second order, 6 spatial derivative filters can be
constructed.

For the measurement of local regularity, the filter needs to be tuned to a central
frequency Ω0. A Gaussian in the Fourier domain results in a Gabor filter in the spatial
domain. In two dimensions, the Gabor filter is given by [14]:

G̃σxy,Ωx0 ,Ωy0 (x, y) ≡ Gσxy (x, y) e
2πi (

Ωx0
Ωy0

) · ( x
y )

, i2 = −1, (2.3)

where
√

Ω2
x0

+ Ω2
y0

is the radial central frequency and tan−1(
Ωy0

Ωx0
) the orientation.

The frequency may be zero in one dimension, yielding a combined Gaussian-Gabor
filter.

These measurements can also be applied to multi-valued images, where RGB-color
values are a sampling of the color dimension yielding three values per pixel. Embedded
in the Gaussian framework, color filters have been proposed [46] as an opponent color
system which is approximately colorimetric with human vision. The three filters that
measure wavelength λ are given by:

Gσλ(λ), Gσλ

λ (λ), Gσλ

λλ(λ). (2.4)

In practice, the Gaussian opponent color values are obtained from linear combina-
tion of RGB color values that approximate the sensitivity curves of the filters from
Equation 2.4:

2

4

Ê(x, y)

Êλ(x, y)

Êλλ(x, y)

3

5 =

2

4

E(x, y) ∗ G(λ)
E(x, y) ∗ Gλ(λ)
E(x, y) ∗ Gλλ(λ)

3

5 =

0

@

0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.60 0.17

1

A

2

4

R(x, y)
G(x, y)
B(x, y)

3

5 .

(2.5)

The colored spatial differential image structure, for instance, the measurement of color
edges, is given by combination of the spatial derivative filters and the color filters [46]:

G
σλ;σxy

λixjyk = Gσλ

λi ∗ G
σxy

xjyk . (2.6)

In the same way as in Equation 2.3, regularity can be measured in the color intensity
fields by [58,61]:

G̃
σλ;σxy,Ωx0 ,Ωy0

λi = Gσλ

λi ∗ G̃σxy ;Ωx0 ,Ωy0 . (2.7)
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Figure 2.1: The family Gxiyjλk (x, y, λ) of 18 color differential filters up to second differential

order in wavelength. Yellow and red have negative values, blue and green positive.

For temporal analysis in online video only the past is available. A logarithmical
reparameterization of the time axis solves this, yielding the measurement to determine
temporal change [69]:

Gσt

ti (t) =
1√

2π σt

e
−

log

 

t′−t′0
σt

!2

2 σ2
t , (2.8)

where response time delay is denoted σt. Analogous to the spatial frequency do-
main, the temporal frequency can be measured by a temporal Gabor filter. As with
Equation 2.8, its envelope is logarithmically rescaled for online filtering [18]:

G̃σt,σt′ ,Ωt0 (t) ≡ Gσt(t) e
2πiΩt0

t
σ

t′ , i2 = −1, (2.9)

where Ωt0 denotes the temporal frequency, and Gσt(t) the time filter of Equation 2.8.
By the separability of the Gaussian filter any spatial or color filter can be combined

with a time filter. For instance, the filter that determines temporal changes in the
color differential structure is given by:

G
σλ;σxy;σt

λixjyktl = Gσλ

λi ∗ G
σxy

xjyk ∗ Gσt

tl . (2.10)

Likewise, to measure regularity rather than differential structure, the spatial and
temporal derivative filter can be substituted respectively by a spatial frequency filter
(Equation 2.3) and temporal frequency filter (Equation 2.9):

G
σλ;σxy,Ωx0 ,Ωy0 ;σt

λitl = Gσλ

λi ∗ G̃σxy,Ωx0 ,Ωy0 ∗ Gσt

tl (2.11)

G
σλ;σxy;σt,Ωt0

λixjyk = Gσλ

λi ∗ G
σxy

xjyk ∗ G̃σt,σt′ ,Ωt0 (2.12)

G
σλ;σxy,Ωx0 ,Ωy0 ;σt,Ωt0

λi = Gσλ

λi ∗ G̃σxy,Ωx0 ,Ωy0 ∗ G̃σt,σt′ ,Ωt0 (2.13)

In recapitulation, the complete set of all reasonable point-based properties that
can be measured in an image is given in Table 2.1. The last column specifies a
family of differential filters one to each box. As an example, we depict in Figure
2.1 the color differential filter family defined by Equation 2.6 truncated at second
order, yielding 3 color filters × 6 spatial derivative filters, or 18 filters in total. For
the 3 color Gabor filters, a filter family is constructed by variation over orientations
and center frequencies. A good coverage of the spatial frequency domain is obtained



2.3. Invariants: Measurable Object Properties 11

Table 2.1: Measurable point-based properties in images and corresponding filters.

Measurable image
property

Description Variables Refs Gaussian filter
family

Eq.

Differential structure in the
intensity field

Local geometry, e.g.,
edges, curvature

x, y [71] Gxiyj (x, y) (2.2)

∼ color intensity
fields

Local color geometry x, y, λ [46] G
xiyjλk (x, y, λ) (2.6)

∼ and temporal
change

Motion of local color
geometry

x, y, λ, t [2] G
xiyjλktl (x, y, λ, t)(2.10)

∼ and temporal pe-
riodicity

Periodic motion of lo-
cal color geometry

x, y, λ, Ω(t) [18,
74]

G̃
Ωt

xiyjλk (x, y, λ, t) (2.12)

Regularity in the
intensity field

Regular texture Ω(x), Ω(y) [14] G̃Ωx,Ωy (x, y) (2.3)

∼ color intensity
fields

Regular color texture Ω(x), Ω(y), λ [61] G̃
Ωx,Ωy

λk (x, y, λ) (2.7)

∼ and temporal
change

Motion of regular
color texture

Ω(x), Ω(y), λ, t − G̃
Ωx,Ωy

λktl (x, y, λ, t) (2.11)

∼ and temporal pe-
riodicity

Periodic motion of
regular color texture

Ω(x), Ω(y), λ, Ω(t) − G̃
Ωx,Ωy,Ωt

λk (x, y, λ, t)(2.13)

Gaussian-shaped image and video filters are denoted G. For measurements of regularity in space or
time Gabor functions are used, indicated by G̃. We have dropped the scale parameters in the table.

Figure 2.2: The family G̃
Ωx,Ωy

λk (x, y, λ) of 3 colored Gabor filters up to second differential order

in wavelength. The filter banks are obtained from varying the orientation and center frequency

parameters.

by 24 orientation-frequency selective filters [72], see Figure 2.2 for the Gabor filter
family. In as much as human vision is limited to wavelength derivative filters up to
second order [57], and considering spatial derivatives up to order four [130], we obtain
3 × 24 color geometry filters for a total of 144 spatial filters. Independent to all
of this, temporal differential order is truncated at first order for human vision [31],
yielding 2 derivative filters (zeroth and first order) over time which can be replaced
by a temporal frequency filter.

2.3 Invariants: Measurable Object Properties

In this section, we regard object-specific measurements. We consider the most impor-
tant object-specific properties which can be measured at a point such as local shape,
texture and color of the object. Object rotation, pose and distance to the observer
are scene-dependent and hence not considered here.

To eliminate the effects generated by the scene that are disturbing the analysis
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of object-specific features, we start from physical models that capture the image for-
mation at different stages. We distinguish the stages in which the light irradiates the
object under consideration and the reflected light is projected onto the image plane.
In the following, we extend the initial framework presented in [112].

We start with the illumination irradiating the scene. The illumination has a direction
relative to objects in the scene as well as a spectral composition and intensity. The
light reflected from an object onto the image plane depends on geometry and the
object reflectance function. The formation of the color image is modelled by means
of the Kubelka-Munk theory [63,73]. The reflected spectrum in the viewing direction
is given by:

E(λ, x, y) = e(λ, x, y)(1 − ρ(x, y))
2
R(λ, x, y) + e(λ, x, y)ρ(x, y), (2.14)

where e(λ, x, y) denotes the illumination spectrum, ρ(x, y) the Fresnel reflectance and
R(λ, x, y) the object reflectance function.

When deriving object-specific hence invariant features, the rationale is to form
groups by image formation parameters (for instance, the object has a matte sur-
face). The assumption simplifies the reflectance model. From the simplified model
expressions can be derived for the invariant features.

With white illumination and intensity variations, the reflectance model for matte
surfaces reduces to:
E(λ, x) = i(x)R(λ, x). The expression Ex

E = 1
R(λ,x)

∂R(λ,x)
partialλ depends on object re-

flectance R(λ, x) only, hence: it is an object reflectance property independent of
shadow and shading [46]. Differentiation of this expression yields a complete set of
invariants [95], Cλmxn :

Cλmxn =
∂n

∂xn

{Eλn

E

}

. (2.15)

Substitution of Eλmxn by measurements of the spatiospectral filter family given in
Equation 2.6, Êσ

λmxn = E ∗ Gσ
λmxn , yields the object-specific measurement. The fam-

ily Cσ
λmxn contains chrominant geometrical descriptors, robust to changes of shadow

and shading.

To measure object-specific measurements of regular color patterns, the Gabor
filters from Equation 2.3 are convolved with shadow and shading invariant measure-
ments that are again obtained from the variants Êσ

λmxn = E ∗ Gλmxn from Equation
2.6 [58]:

T Ω,φ
λ = G̃Ωx0 ,Ωy0 ∗ (

Êλ

Ê
), T Ω,φ

λλ = G̃Ωx0 ,Ωy0 ∗ (
ÊÊλλ − Ê2

λ

Ê2
). (2.16)

In analogy to the shadow and shading invariant family Cσ
λmxn , a family invariant to

illumination intensity, Wσ
λmxn , is derived from normalization by the local energy [46],

where the object-specific measurements are given by:

Wσ
λmxn =

{ Êσ
λmxn

Êσ

}

m≥ 0, n≥ 1
. (2.17)
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Finally, an invariant family robust to shadow, shading and highlight effects, Hσ
xn , is

obtained from the variant spectral measurements Êσ
λm = E ∗ Gσ

λm from Equation 2.4:

Hσ
xn =

∂n

∂xn

{

arctan(
Êσ

λ

Êσ
λλ

)
}

n≥ 0
. (2.18)

We consider geometric variation and deal with translation, rotation and scale
effects. When convolving the image with local geometry filters at dense spatial lo-
cations, object measurements are translation invariant [67]. By considering local
geometry filters in a systematic manner in local gauge coordinates, measurements
of object geometry are rotation invariant [39]. Fixing local gauge coordinates (v, w)
aligns the original coordinate system (x, y) to the local image structure. For instance,
measurements from Equation 2.6 or any invariant from the same differential order
can be aligned to the isophote, that is, the gradient: ~w = (Êλix, Êλiy), where the

perpendicular direction is given by ~v =
(

0
−1

1
0

)

· ~w. The rotation invariant family of

object shape measurements is given by:

Iσ
vmwn = {F̂ σ

vmwn}m,n≥0,m 6=1, (2.19)

where the measurement F̂ σ
vmwn is obtained from any measurement (variant or invari-

ant) from the same differential orders. For instance, the gradient magnitudes of the
photometric invariants Wxiyjλk , Nxiyjλk and Hxiyj is given by:

Wσ
λiw =

√

(Wσ
λix)2 + (Wσ

λiy)2 (2.20)

Cσ
λiw =

√

(Cσ
λix)2 + (Cσ

λiy)2 (2.21)

Hσ
w =

√

(Hσ
x)2 + (Hσ

y )2. (2.22)

Scale invariant object shape measurements are obtained from maximizing the scale-
normalized invariants from Equation 2.19 [77]:

Ivmwn = max
σxy

Iσ
vmwn . (2.23)

Object texture measurements are also disturbed by rotational variation. Rotation
invariant texture measurements are obtained from integration of the Gabor measure-
ments over the rotation group Wφ = ~x′ = ( cos φ

− sin φ
sin φ
cos φ ) ~x . The family

of rotation invariant object texture measurements SΩ
λi is given by [19]:

SΩ
λi = 1

|Wφ|
∫

Wφ
ŜΩ,φ

λi dφ

≈ 1
n

∑n−1
i=0 ŜΩ,φi , φi = tan−1(

Ωy0

Ωx0
) = i π

n ,
(2.24)

where color Gabor measurements are denoted ŜΩ,φ
λi = E ∗ G̃Ω,φ

λi (Equation 2.7). To
combine rotation and photometric invariance, the color Gabor measurements may be
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replaced by the shadow and shading invariant measurements of object texture from
Equation 2.16 to obtain the rotation invariant texture family T Ω

λi :

T Ω
λi =

1

|Wφ|

∫

Wφ

T̂Ω,φ
λi dφ. (2.25)

Additionally, the rotation invariant texture measurements may be maximized over
various center frequencies Ω [61] to obtain the rotation and scale invariant families
Sλi and Tλi , where the latter is also photometric invariant:

Sλi = max
Ω

SΩ
λi (2.26)

Tλi = max
Ω

T Ω
λi . (2.27)

In summary, the object-specific measurements that are invariant to irrelevant scene
variations when determining object color, shape or texture are given in Table 2.2. The
last column specifies a family of differential invariants one to each row. We consider
photometric invariants Wviwjλk , Nviwjλk , Hviwj up to to second order. The number
of invariants in gauge coordinates (v, w) add up to 5 rotation invariants for each
spectral derivative order for each invariant. The family Wviwjλk contains derivatives
up to second spectral order. The family Nviwjλk is only defined for spectral first
and second order derivatives, whereas the hue family Hviwj does not contain spectral
derivatives. For the 3 photometric invariant families we obtain 5 rotation invariants
times respectively 3, 2 and 1 spectral variations, yielding 15 + 10 + 5 adding up to
30 invariants up to second order measuring object reflectance and local shape. The
invariant families Wviwjλk , Nviwjλk and Hviwj all contain less measurements than
the variant family from which the invariants are obtained: 18 variants compared to
respectively 15, 10 and 5 invariants.

2.4 Quality Measures

Quality measures can be distinguished into reproducibility and discriminative power
of features. We measure the quality of a feature by considering the mean and standard
deviation of its measured value, {q̂i}, relative to its expected value, m̂i. Without prior
knowledge of the feature values, we normalize the (Euclidean) feature value differences
by the reference value,

d̂i =
||m̄i − q̄i||

m̄i
. (2.28)

As a measure of quality, the set of differences are summarized in terms of the mean
and standard deviation,

Q = {µ(d̂i), σ(d̂i)} . (2.29)

In the following we identify for each of the proposed quality measures the actual
measurements m̂i and q̂i.
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Table 2.2: Measurable point-based properties of objects and corresponding invariants.

Measurable object
property

Description Irrelevant scene pa-
rameter

Refs Invariant fam-
ily

Eqs

Local geometry Edge properties Object pose
[39]

Iσ
viwj (2.19)

Object pose and dis-
tance [77]

Iviwj (2.23)

Color local geom-
etry

Object reflectance
and shape

Illumination inten-
sity [46]

Wσ

xiyjλk (2.17)

Object reflectance
and shape

Illumination inten-
sity and object pose
and distance

− W
viwjλk (2.20)

Object reflectance
and shape

Illumination in-
tensity, shadow,
shading

[46]
Cσ

xiyjλk (2.15)

Object reflectance
and shape

Illumination inten-
sity, shadow, shading
and object pose and
distance

− C
viwjλk (2.21)

Object reflectance
and shape

Illumination inten-
sity, shadow, shading
and highlights

[46]
Hσ

xiyj (2.18)

Object reflectance
and shape

Illumination in-
tensity, shadow,
shading, highlights
and object pose and
distance

− Hviwj (2.22)

Regularity Object texture Object rotation
[19]

SΩ
λi (2.24)

Object texture Object distance
[61]

Sλi (2.26)

Color regularity Object color texture Shadow and shading
[58]

T Ω,φ

λi (2.16)

Object color texture Shadow and shading
and object rotation

− T Ω
λi (2.25)

Object color texture Shadow and shad-
ing and object rota-
tion/distance

− Tλi (2.27)

2.4.1 Displacement

Displacement of a feature indicates the reproducibility of locations where the value of
the feature is expected to be found. That is, smaller localization errors of a feature
indicate better reproducibility. We measure the displacement of the location of the
maximum response of a feature, q̂i = arg(x,y) max F̂ (x, y) relative to the location of
the entity to be measured mi = (x, y). The omission of the hat sign indicates that it

is absolute information, i.e. the ground truth. Then, d̂i = ||mi − q̂i||. Larger spatial
scales of features introduce more uncertainty in the localization of the measured entity
[14]. Hence, for fair comparison between features, q̂i should be measured at fixed scale.
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2.4.2 Stability

Stability is the reproducibility of a measurement when measured over several instances
of the same but noisy or transformed data. At a straight color transition Ti, we
measure the feature values F̂ij = F̂ (x, y)(x,y)∈Ti

along the transition. First, as an

indication of image noise sensitivity, we consider the differences of the values q̂ij = F̂ij

to the mean value m̂i = µ(F̂ij). We accumulate the sets of differences over multiple
transitions. Second, we reduce the intensity of the transition image, T ′

i , to establish
feature sensitivity to low hence noisier pixel values. To that end, we repeat the
setup but now with q̂ij = F̂ ′

ij and m̂i = µ(F̂ ′
ij). As an indication of the feature

sensitivity to compression, we consider the JPEG compression of the color transition,
T ′′

i . We consider the difference between the mean values obtained from Ti and from

T ′′
i , q̂i = µ(F̂ ′′

ij) and m̂i = µ(F̂ij).

2.4.3 Invariance

Invariance is the reproducibility of a measurement when measured over the same
image data but recorded under truly different imaging conditions. For a point in the
image, (x, y), we measure the feature value m̂i = F̂i. Fixing the camera, we consider
the recording of the same scene, but with a different imaging condition, i′. Measuring
the feature at the same position (x, y), we obtain m̂j = F̂ ′

i .

2.4.4 Discriminative Power

Discriminative power is the contrast of a measurement to other measurements of truly
different data. For a point in the image, (x, y), we measure the feature value m̂i = F̂i.
For other points, we measure the feature values, and keep the one that is most similar
to m̂i: q̂i. We count the number of points that can be discriminated when requiring

that d̂i = ||m̄i−q̄i||
m̄i

is equal or higher to a predefined contrast value δ: Q = #(d̂i ≥ δ).

2.5 Experiments

In this section, we evaluate the quality of the Gaussian features overviewed in Sections
and . We do not report the quality of Gabor features, as their quality proved to be
very similar to Gaussian features with similar degrees of invariance (data not shown).
In the experiments, we consider two datasets to establish the quality measures:

• Displacement, stability and discriminative power. To establish displacement,
stability and discriminative power of the variant and invariant features, we
consider images taken from PANTONE patches [96]. The images contain on
the left side one patch, and on the right side an other. Hence, we have a ground
truth for each image of the line that represents the color transition. Image
features are computed along this line, which we repeat for 1,000 random patch
combinations.
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Figure 2.3: The reference image is on the left, with consecutive images illustrating reddish

illumination and illumination from the side of the example object.

• Invariance. To establish invariance, we consider the object images from the
ALOI database [47]. For 1,000 objects, a large number of images are recorded,
each under a different imaging condition. We consider various imaging condi-
tions, of which the camera viewpoint is kept fixed such that we have a ground
truth. Image features are computed from Harris interest points [54], which have
been determined for the reference image (white and hemispherical illumination)
and have been copied to the other conditions (reddish illumination, and white
illumination from right side only). Figure 2.3 illustrates Harris points for images
of an example object.

The integral testsuite including technical details is publicly available from our web-
site†. All variants and invariants are computed from Gaussian filters with σ = 1
pixels. For all quality measures, we reduce the feature values obtained from multiple

color channels to a single value, by considering the total gradient: F̄w =
√

∑

i F̂ 2
λiw.

See the previous section for details on the normalization of the image features.

2.5.1 Displacement

For the variant feature Ēw and the invariant features W̄w and C̄w the average dis-
placement is low: 0.9±0.3 pixels. For the invariant H̄w the displacement is somewhat
higher: 1.0±0.5 pixels. Measuring at a scale of σ = 2 pixels, the displacements become
larger. For increasingly invariant features Ēw, W̄w, C̄w and H̄w, the displacement is
increasingly large: 0.8 ± 0.4, 1.1 ± 0.5, 1.5 ± 0.7 and 1.4 ± 1.0 pixels. The invariants
C̄w and H̄w involve more nonlinear combinations of spatially smoothed images, hence
their displacement is higher than of Ēw and W̄w. For all features, the displacement
is on average smaller than the spatial scale.

2.5.2 Stability

The instability of the variant feature Ēw to image noise is marginal: on average
1% ± 1% change of the feature value, while for the invariants W̄w, C̄w, and H̄w the
noise sensitivity is larger: respectively 2% ± 2%, 2% ± 2%, and 2% ± 3%. When

†http://www.science.uva.nl/∼burghout/isis; will be put there as soon as the manuscript becomes
publicly available.
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decreasing the intensity to 10% of the original image intensity, the noise sensitivity of
the feature values does not increase significantly. For Ēw and W̄w the noise sensitivity
has not increased: respectively 1%± 1% and 2%± 2%. For the invariant C̄w the noise
sensitivity has increased marginally: 3% ± 3%. For the invariant H̄w, the sensitivity
under low intensity is unacceptable: 8% ± 13%.

The invariant H̄w is based on a color ratio, hence it is also very sensitive to
JPEG compression: 4%± 11%. The features Ēw, W̄w, and C̄w are much more stable:
2% ± 1%, 2% ± 1%, and 2% ± 2%. For all features except H̄w, we conclude that the
stability to image noise, low image intensities and compression is reasonable.

2.5.3 Invariance

The dataset contains reference images, i.e. objects recorded under white and hemi-
spherical illumination, and experimental images, i.e. reddish illumination, and white
illumination from right side only. With reddish illumination, the features Ēw and W̄w

perform well, the deviations are on average: 7%±3% and 3%±2%. W̄w is somewhat
more stable than Ēw, due to the non-equal intensities in the image to which it is in-
variant. The features C̄w and H̄w perform significantly less with colored illumination,
respectively 14%±7% and 20%±11%. The invariants C̄w and H̄w are computed from
combinations of multiple color derivatives, increasing the effect of color deviations.

For white illumination from the side, the increasingly invariant features Ēw, W̄w

and C̄w perform increasingly well as deviations become smaller: 19%±14%, 16%±12%
and 14% ± 10%. The exception here is H̄w, which is designed to be most invariant
but it has the largest deviation: 20% ± 14%. We conclude that H̄w is not a good
invariant feature.

2.5.4 Discriminative Power

For the feature Ēw, the most similar feature value to each feature value is at least
2.5% larger or smaller. For W̄w and C̄w the discriminative power is somewhat less:
respectively 98% and 97% have a nearest neighbor that differs more than 2.5%. For
H̄w, the discriminative power is lowest: 90%. Requiring that the feature values
differ more than 10% of the original feature value, yields lower discriminative power.
For increasingly invariant features Ēw, W̄w, C̄w and H̄w, the discriminative power
decreases more: respectively 95% (−5%), 91% (−6%), 90% (−7%) and 81% (−10%).
As expected, the more invariant, the less discriminative power is maintained.

2.6 Conclusions

In this chapter, we have considered image features with various degrees of invariance,
i.e. robust to shadowing, shading, and highlights. We have proposed a set of measures
to determine their quality. The established quality of variant and invariant image
features is summarized in Table 2.3. For increasingly invariant features Ēw, W̄w, C̄w

and H̄w the displacement increases. But, the displacement of all features is on average
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less than the filter scale, hence the errors are acceptable. However, if the localization
accuracy is an important issue, as it is with the Hough transform for shape detection,
Ēw is the preferred choice to minimize shape misdetections.

Variant feature Ēw and invariant features W̄w and C̄w are very stable when the
image intensity decreases or even the image is compressed. The invariant H̄w is very
unstable to both low intensities and compression. The features W̄w, Ēw, C̄w and
H̄w are in decreasing order robust to a change of illumination color. In fact, none
is invariant to a change of illumination color, and C̄w and H̄w perform worse due to
the many color derivatives that they are based on. The increased robustness of W̄w

compared to Ēw is due to additional invariance to the intensity level. For varying
the illumination direction, increasing the invariance is beneficial: C̄w has the lowest
deviation. H̄w is not a good invariant: although it is designed to be very invariant,
its values deviate under changes of the imaging conditions.

The discriminative power of the variant feature Ēw is best. For increasingly in-
variant features W̄w, C̄w and H̄w, the discriminative power decreases. This result
indicates that discriminative power is indeed inversely related to invariance. Hence,
for any image processing application, both qualities should be investigated simulta-
neously. The preferred choice of balancing the invariance and discriminative power
depends on the imaging conditions. When only changes of the illumination color are
to be expected, Ēw is the preferred feature. With additional changes of illumination
directions, C̄w is the preferred feature as its loss in discriminative power compared
to Ēw is marginal. If additionally low image intensities may be observed, W̄w is the
preferred feature as it is more stable than is C̄w.
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Table 2.3: Quality of Variant and Invariant Features

Instability Invariance Discr.

Fea-
ture

Inva-
riance

Displa-
cement
[pixels]

Low
energy
[%]

Com-
pression
[%]

Illumina-
tion color
[%]

Illumina-
tion dir-
ection [%]

power
[%]

Ēw not
inv.

0.5± 0.5 1 ± 1 2 ± 1 7 ± 3 19 ± 14 100

W̄w i 1.0± 0.5 2 ± 2 2 ± 1 3 ± 2 16 ± 12 98

C̄w +s 1.5± 0.5 3 ± 3 2 ± 2 14 ± 7 14 ± 10 97

H̄w +h 1.5± 1.0 8 ± 13 4 ± 11 20 ± 11 20 ± 14 90

Summary of the measured quality over the ALOI [47] dataset (invariance)
and the PANTONE [96] dataset (other). Abbreviations of invariance: il-
lumination intensity (i), shadow and shading (s), and highlights (h). For
increasing invariance, the displacement and instability increases somewhat,
while the highlight invariant is very unstable. The shadow/shading and high-
light invariant are sensitive to color effects, while for a change of illumination
direction the shadow/shading invariant remains most stable. Increasing order
of invariance implies descreasing discriminative power.



Chapter 3
Performance Evaluation of Local Color

Invariants

3.1 Introduction

Many computer vision tasks depend heavily on local feature extraction and match-
ing. Object recognition is a typical case where local information is gathered to obtain
evidence for recognition of previously learned objects. Recently, much emphasis has
been placed on the detection and recognition of locally (weakly) affine invariant re-
gions [79,84,93,101,109]. The rationale here is that planar regions transform according
to well known laws. Successful methods rely on fixing a local coordinate system to
a salient image region, resulting in an ellipse describing local orientation and scale.
After transforming the local region to its canonical form, image descriptors should be
well able to capture the invariant region appearance. As pointed out by Mikolajczyk
and Schmid [83], the detection of elliptic regions varies covariantly with the image
(weak perspective) transformation, while the normalized image pattern they cover
and the image descriptors derived from them are typically invariant to the geometric
transformation. Recognition performance is further enhanced by designing image de-
scriptors to be photometric invariant, such that local intensity transformations due
to shading and variation in illumination have no or limited effect on the region de-
scription. State-of-the-art methods in object recognition normalize mean intensity
and standard deviation of the intensity image [75, 79, 83]. Moreover, image measure-
ments using a Gaussian filter and its derivatives is becoming increasingly popular as
a way of detecting and characterizing image content in a geometric and photometric
invariant way. Gaussian filters have interesting properties from an image processing
point of view, among others, their robustness to noise [40], their rotational steerabil-
ity [41], and their applicability in multi-scale settings [77]. Many of the intensity
based descriptors proposed in literature are based on Gaussian (derivative) measure-
ments [35, 54, 84, 103, 104], a well engineered exponent being Lowe’s SIFT descrip-

21



22 Chapter 3. Performance Evaluation of Local Color Invariants

tor [79]. Indeed, for grey-value descriptors, the detection of affine regions combined
with the SIFT descriptor is demonstrated to be better than many alternatives [84].

In this chapter, we consider the extension to color-based descriptors. Color has
high discriminative power; in many cases, objects can well be recognized merely by
their color characteristics [20,42,50,87,113,117]. However, photometric invariance is
less trivial to achieve, as the accidental illumination and recording conditions affect
the observed colors in a complicated way. Photometric invariance has been inten-
sively studied for color features [36–38, 42, 50, 123]. Geusebroek et al. [46] derived a
set of color invariant features based on the Gaussian derivative framework, facilitated
by Koenderink’s Gaussian color model. The important research question is if color-
based descriptors indeed improve upon their grey-based counterparts in practise. The
answer depends on the stability of the non-linear combinations of Gaussian deriva-
tives necessary to achieve a similar level of invariance as implemented in grey-value
descriptors. For instance, the values of photometric invariants are distorted when the
image is JPEG compressed, as the compression distorts the pixel values and spatial
layout, and more for the color channels than for the intensity. Therefore, we aim at a
comparative study of local color descriptors, in comparison to grey-value descriptors.

To be precise on the scope of the chapter, there is no need to address the issue
of (affine) region detection, as many well performing methods exist [56, 65, 78, 81,
83, 119, 122]. Hence, we will concentrate on descriptor performance. Furthermore,
to enable a fair comparison between intensity based descriptors and color based de-
scriptors, we demand identical geometric invariance for both intensity based features
and color based features. This requirement is conveniently fulfilled by the Gaussian
measurement framework.

For the evaluation of local grey-value and color invariants, we adopt the extensive
methodology of Mikolajczyk and Schmid [84]. In this chapter, the authors propose
the evaluation of descriptor performance by the matching of regions from one image
to another image. Correct matches are determined using the homography between
the two images. From [84], we adopt the measures to evaluate discriminative power
and invariance. Also, we adopt variety in recording conditions, being changes of
illumination intensity, of the camera viewpoint, blurring of the image, and JPEG
compression. We go beyond [84] by extending this set with images recorded under
different illumination colors and illumination directions. These conditions induce a
significant variation in the image recording. For an illustration of images recorded
under varying illumination directions, see Figure 3.1.

We extend the number of images used in the evaluation framework [84] to 26, 000
images, representing 1, 000 objects recorded under 26 imaging conditions. Moreover,
we further decompose the evaluation framework in [84] to the level of local grey-value
invariants on which common region descriptors are based. We measure the perfor-
mance of photometric invariants for the detection of color transitions only. Hence, we
evaluate the performance of the Gaussian grey-value and color invariant derivatives,
to indicate the merit of the invariant when plugged into a region descriptor. Finally,
we establish performance criteria that are specific to color invariants, indicating the
level of invariance with respect to photometric variation, and evaluating the ability
to distinguish between various photometric effects.
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(a) Example im-
age

(b) 90◦ (c) 60◦ (d) 30◦

Figure 3.1: Example object recorded under semi-hemispherical illumination, and images

recorded under an illuminant at decreasing altitude angles. Illuminant azimuth is to the right of

the object.

The chapter is structured as follows: In Section 3.2, we shortly overview grey-value
and photometric invariants and we discuss previous work on the evaluation of grey-
value image invariants, which we relate to the evaluation of photometric invariants
as proposed in this chapter. Section 3.3 describes the invariant features used in our
comparison. Section 3.4 discusses the performance measures and the datasets, and
presents the experimental results. For a realistic application of the invariants, we
evaluate the performance on the VOC dataset [134] in Section 3.5. Conclusions are
drawn in Section 3.6.

3.2 Previous Work

3.2.1 Grey-value Invariants

Many techniques for the description of images have considered local features. Meth-
ods based on local intensity values in the image, see e.g. [62, 131], are successfully
applied to image matching. A considerable step forward was the work by Schmid and
Mohr [104]. They combined Gaussian derivative measurements in a multi-scale and
rotation invariant descriptor. The Gaussian derivatives were computed at Harris cor-
ner points [54], achieving general recognition under occlusion and clutter. The choice
for the Gaussian filter was fundamental in there method, allowing their descriptor
to capture the local differential structure of the image [67] such that scale-invariance
was achieved.

To identify an appropriate and consistent scale for Gaussian-based image measure-
ments, Lindeberg [77] determined local maxima over scale. This scheme determines
the characteristic scale for the local differential image structure, and has been success-
fully applied to detect keypoints [79] and multiscale Harris detectors [83]. To achieve
invariance to affine planar transformations, Lindeberg and G̊arding [78] considered a
local affine adaptation. Such an affine adaptation has recently been incorporated in
Harris-affine and Hessian-affine detectors [83].
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The use of the local Gaussian differential structure has received considerable in-
terest. Gaussian derivative based descriptors have been proven to be very distinctive
for matching, see e.g. [5,7,102]. Schiele and Crowley [103] modelled differential struc-
ture across an image by accumulating image derivatives into histograms, effectively
capturing texture information. Belongie et al. [9] accumulated image derivatives in
a regional grid with multiple bins to model both shape and location information, re-
sulting in the so-called shape-context. Varma and Zisserman [120] modelled texture
appearance by accumulation of the Gaussian-based MR8 filterbank. Winn et al. [125]
are using a Gaussian filterbank for object recognition by a visual dictionary approach.

The most successful local image descriptor so far is Lowe’s SIFT descriptor [79].
The SIFT descriptor encodes the distribution of Gaussian gradients within an image
region. The SIFT descriptor is a 128-bin histogram that summarizes local oriented
gradients over 8 orientations and over 16 locations. This represents the spatial in-
tensity pattern very well, while being robust to small deformations and localization
errors. Nowadays, many modifications and improvements exist, among others, PCA-
SIFT [66], GLOH [84], Fast approximate SIFT [52], and SURF [8]. These region-based
descriptors have achieved a high degree of invariance to overall illumination conditions
for planar surfaces. Although designed to retrieve identical object patches, SIFT-like
features turn out to be quite successful in bag-of-feature approaches to general scene
and object categorization, see e.g. [64].

3.2.2 Photometric Invariants

Color invariants have received extensive theoretical and experimental treatment, due
to the additional discriminative power that comes with color information in com-
parison to grey-value information. Additionally, color information enables one to
distinguish between true color variation and photometric distortions, as pointed out
by Gershon [45]. Indeed, for color information to be useful, Slater and Healey [110],
Finlayson [36], and Gevers and Smeulders [50], have all stressed the importance of
achieving invariant color measurements to varying lighting conditions such as a change
in illumination color, illumination direction, or camera viewpoint.

Photometric invariants can be derived from the physical laws of light reflection.
Methods which normalize mean intensity and standard deviation for grey-value de-
scriptors are assuming Lambert’s law of light reflection, I = ρln. Here, the observed
image I is the result of a multiplicative formation process, for which ρ represents the
surface albedo, l the light source direction and intensity, and n the surface normal.
Normalization of the (local) standard deviation removes the contribution of l in the
image descriptor, whereas the mean normalization counteracts the camera sensitivity
offset. However, the normalized result still depends on both the surface reflectance
ρ and the geometry of the surface represented by it’s normal n. Hence, shadow and
shading edges are coded by image descriptors. This very effect causes nowadays image
descriptors to be effective for planar patches only.

Color images convey more information about the image formation process, and
hence may improve on the features which can be discriminated. Inspired by the success
of color indexing [117], Funt and Finlayson [36, 42] use the Lambertian assumption
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to arrive at photometric invariant indexing of images. Although the methodology to
achieve photometric invariance is essentially similar to the grey-value case outlined
above, they improve in discriminative power by adding the extra color information
availably from the image. Furthermore, by exploiting the extra information which
comes with color, they discount the effects of shadow and shading on their image
descriptor. Gevers and Smeulders [50] elaborate on this work by deriving several
sets of invariants. These sets are invariant under the more complicated photometric
model proposed by Shafer [106]. In this way, they arrive at features invariant for
highlights and for colored illumination. In consecutive work [51], shadows, highlights,
and true color boundaries are separated in practise, based on a pixel-wise comparison
of invariant values.

Geusebroek et al. [46] extended photometric invariance to Gaussian-based deriva-
tives, facilitated by Koenderink’s Gaussian framework. Hence, effectively combining
photometric color invariance with the highly successful Gaussian geometric invariants.
The pixel-based invariants can still be represented by considering the limiting case
of the spatial scale for the Gaussian filters small, such that single pixels are covered.
However, tuning the filters to a larger scale allows for the more interesting class of
geometric and photometric invariant features.

Promising recent methods aim at combining color and shape description of the
local neighborhood. Mindru et al. [86] have considered color moments, which are
invariant to illumination color. However, in [84], local moments-based descriptors were
found to be relatively unstable. Van de Weijer and Schmid [124] augmented the SIFT
descriptor with a histogram of photometric invariant values, effectively combining
color and shape information. They have shown that adding color information to the
SIFT descriptor improves its discriminative power. Likewise, Geodeme et al. [44]
have used localized color moments to reduce a posteriori the mismatches of SIFT
descriptors. Other recent approaches have altered the SIFT descriptor itself. Abdel-
Hakim and Farag [1] have based the SIFT descriptor on the hue gradient rather than
the intensity gradient. Bosch and Zisserman [13] have computed SIFT from the HSV
representation to provide a richer descriptor. Unfortunately, the improvement in
performance for such descriptors is unclear, as no well established evaluation method
is available for color based descriptors.

3.2.3 Performance Evaluation

For the evaluation of discriminative power of local descriptors, an extensive evaluation
framework has been proposed by Mikolayzcyk et al. [84, 85]. They aimed at evaluat-
ing the different stages of an nowadays object recognition framework, by decomposing
the benchmark in the separate evaluation of keypoint detection and local image de-
scriptors. Furthermore, they realized the importance of evaluating robustness against
geometric and photometric distortions of the target image. They evaluate the dis-
criminative power and invariance of descriptors over various imaging conditions. Dis-
criminative power for any of the detector-descriptor combinations is evaluated over:
illumination intensity, of the camera viewpoint, blurring of the image, and JPEG
compression. Invariance is measured by the performance degradation over increas-
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ingly hard imaging conditions, e.g. increasing JPEG compression rates. Moreels and
Perona [88] elaborated on this framework by considering descriptor evaluation for 3D
objects, and included three different lighting directions in their setup.

3.2.4 The Contribution of This Chapter

With the increasing interest in distinctive and robust local features, we propose in this
chapter a benchmark for the evaluation of local color invariants. The contribution of
this chapter is three-fold:

• We establish a framework for the evaluation of color image descriptors, in-
cluding a suitable dataset and three measures of performance: discriminative
power, constancy under irrelevant image distortions or imaging conditions, and
the ability to distinguish true (object) variation from irrelevant (photometric)
variation.

• We include color information in SIFT descriptors, and propose three color SIFT
methods each having different characteristics with respect to photometric vari-
ation.

• We evaluate the performance of these descriptors together with the performance
of the Gaussian color invariants on which they are based. We compare with
alternative color SIFT implementations from literature.

Regarding the first contribution, we adopt the setup from [84, 85] to evaluate
descriptor performance over increasingly hard imaging conditions. We consider the
ALOI database [47] to match regions that are computed from 26, 000 images of 1, 000
objects in total. Ground truth is obtained by manual selection of stable Harris-affine
regions inside the objects. The dataset contains both image transformations as well
as photometric variation in imaging conditions, and is considered more suitable for
evaluation of color descriptors than the original database proposed by Mikolayzcyk
et al. [84, 85] or the one proposed by Moreels and Perona [88]. For example, the
database contains six different lighting conditions and, very important for assessing
color descriptors, variation in illumination color. Hence, allowing the assessment of
color constancy for color image descriptors.

With respect to our second contribution, we will include the Gaussian color invari-
ant gradients proposed in [46] into the SIFT descriptor [79]. We will evaluate their
performance with respect their grey-value counterparts, and with respect to color
SIFT descriptors from literature [1, 13].

Finally, our third contribution further decomposes the evaluation framework pro-
posed in [84, 85]. Mikolayzcyk et al. evaluate discriminative power and invariance
of region descriptors. SIFT-based descriptors consist of a set of Gaussian derivative
image measurements and a well-designed histogram description thereof. The per-
formance of the Gaussian filter and the non-linear combinations to obtain geometric
invariance are well known and taken for granted. However, for photometric invariance,
non-linear combinations may significantly alter its performance. Hence, we decom-
pose the benchmark proposed by Mikolayzcyk et al. further in order to address this
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issue separately. We abstract from the descriptors here, and evaluate the underlying,
local invariants only. The discriminative power and invariance will be established for
local grey-value invariants, and for the Gaussian color invariants of [46]. Further-
more, following [51], we will assess the power of an invariant to distinguish object
color variation from photometric variation.

3.3 Invariants

We will evaluate the performance of Gaussian-based invariant features. For complete-
ness, and to introduce notation, we shortly rehearse grey-value differential invariants
and color invariants in this section.

3.3.1 Grey-value Invariants

We denote a grey-value image E(x, y), with a scalar value at pixel location (x, y). The
filtering of a grey-value image by an (isotropic) Gaussian Gσ(x, y) at scale σ is given
by (leaving out pixel position parameters): Êσ = E ∗ Gσ, where ∗ is the convolution
operator. The notational use of the hat symbol (̂·) implies dependence on the scale
parameter σ, hence we leave the scale parameter out in the following and simply use
·̂. More generally, we consider the filtering of an image E(x, y) by a Gaussian filter G
and its x- and y-derivatives,

Êj = E ∗ Gj , (3.1)

where subscript j ∈ {∅, x, y} indicates either smoothing or spatial differentiation.
The gradient is a rotation invariant derivative measurement, given by

Êw =
√

Ê2
x + Ê2

y . (3.2)

Normalizing each gradient value by the local intensity suppresses regional intensity
variations [46],

Ŵw =
Êw

Ê
. (3.3)

3.3.2 Color Invariants

We consider the color-based photometric invariants from [46], which are derived from
the Gaussian opponent color model. First, we recap this color model. Three op-
ponent colors are obtained per pixel: E(x, y), Eλ(x, y) and Eλλ(x, y), representing
respectively the intensity, the yellow-blue channel, and the red-green channel. These
color channels are obtained per pixel directly from RGB values according to a linear
transformation [46]. The transformation effectuates the decorrelation of RGB values.

Gaussian (derivative) filtering and construction of the gradient for each oppo-
nent color channel is similar to the grey-value case. The color-based counterpart of
Equation 3.2 becomes

Êλiw =
√

Ê2
λix + Ê2

λiy . (3.4)
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Likewise, the color invariants Ŵλw and Ŵλλw are a generalization of the grey-value
invariant Ŵw from Equation 3.3,

Ŵλiw =
Êλiw

Ê
. (3.5)

Note that for i = 0 in λi, the results for Equations 3.4 and 3.5 indeed is exactly the
grey-value invariants Êw and Ŵw (Equations 3.4 and 3.5) by the very construction
of the opponent color space: the first channel (i = 0) is the intensity channel. The
photometric invariants Ŵw, Ŵλw and Ŵλλw are invariant to regional variations of the
intensity.

Likewise, other photometric invariants can be constructed. The invariants Ŵλix

compute first the gradient and normalize it by the local intensity later. Alternatively,

the intensity normalized color values Êλ(x,y)

Ê(x,y)
and Êλλ(x,y)

Ê(x,y)
can be differentiated with

respect to x or y, which, using the chain rule for differentiation, yields

Ĉλj =
Êλj Ê − Êλ Êj

Ê2
, (3.6)

Ĉλλj =
Êλλj Ê − Êλλ Êj

Ê2
, (3.7)

where subscript j ∈ {x, y} indicates spatial differentiation. Under Lambertian reflec-
tion, the normalization of color values by the local intensity results in color values
independent of the intensity distribution. Hence, Ĉλj and Ĉλλj and their derivatives
are invariant to shadow and shading. The shadow and shading invariant gradients

are obtained from: Ĉλw =
√

Ĉ2
λx + Ĉ2

λy) and Ĉλλw =
√

Ĉ2
λλx + Ĉ2

λλy.

A next step is to include the Fresnel reflectance, hence additionally modelling

highlights. In this case, the local color ratio, Êλ(x,y)

Êλλ(x,y)
, is invariant to the intensity

distribution and the Fresnel coefficient (see [46] for details). Invariance to the Fresnel
coefficient implies invariance to highlights in the image. Again applying the chain
rule to obtain spatial derivatives yields

Ĥj =
ÊλλÊλj − ÊλÊλλj

Ê2
λ + Ê2

λλ

, (3.8)

where subscript j ∈ {x, y} indicates spatial differentiation. This yields the gradient

Ĥw =
√

Ĥ2
x + Ĥ2

y , which is invariant to shadow, shading and highlights.

To illustrate the gradient measurements by the photometric invariants, we combine
the invariants in each of the sets {Ŵw, Ŵλw, Ŵλλw} and {Ĉλw, Ĉλw} to obtain a
single value per pixel (Ĥw already yields a single value per pixel). The combined
edge strength is measured by root of the squared sum. For W we compute W̄w =
√

Ŵ 2
w + Ŵ 2

λw + Ŵ 2
λλw, whereas for C we have C̄w =

√

Ĉ2
λw + Ĉ2

λλw. Furthermore,

we define Ēw as the non-normalized combined edge strength over all color channels,
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(a) Example
image

(b) Ēw (c) W̄w (d) C̄w (e) H̄w

Figure 3.2: Photometric invariant gradients. Ēw is not photometric invariant, W̄w is invariant

to illumination intensity, C̄w is invariant to shadow and shading, H̄w is invariant to shadow,

shading and highlights.

that is, similar to W̄w but without the local intensity normalization. The total edge
strengths Ēw, W̄w, C̄w, H̄w ≡ Ĥw, each illustrating one set of photometric invariants,
are depicted in Figure 3.2. Note that the shading is removed by C̄w (d), and that the
non-saturated highlights are removed by H̄w (e).

3.4 Performance Evaluation

We compare the local grey-value and color invariants based on three evaluation cri-
teria:

• Discriminative power. We establish the power of each invariant to discriminate
between image regions. Discriminative power is measured by the quality of
region matching, similar to [84]. The successful matching strategy as proposed
by Lowe [79], is based on the rationale that for the recognition of an object, it
suffices to correctly match only a few regions of that object. In our experimental
framework, we push this to the extreme, and consider the matching of one region
of an object against a database of 1, 000 regions: one noisy realization of the
same object matched against 999 of other objects. Under noisy conditions we
consider image deformations caused by blurring, JPEG compression and out-
of-plane object rotation (viewpoint change), and photometric variation induced
by changes in illumination direction and illumination color. Precision and recall
characteristics reflect the discriminative power of the invariant under evaluation.

• Invariance or robustness. As above, but now we establish the degradation of
the number of correct matches as function of an imaging condition or image
transformation which increasingly deteriorates, similar to [85]. As with dis-
criminative power, the conditions we test are: blurring, JPEG compression,
illumination direction, viewpoint change, illumination color. The degradation
in the recall reflects the constancy of the invariant under examination.
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• Information content. We establish the power of each invariant to discriminate
between true color transitions while remaining constant under non-object re-
lated transitions induced by shadow, shading, and highlights. Hence, we assess
simultaneously for each invariant its power to discriminate between color tran-
sitions, and its invariance to photometric distortions. Note that this is different
from the two experiments above, as here we evaluate the property to distinct
between the variant and invariant aspects in the photometric condition, in iso-
lation of a possible effect on recognition performance.

3.4.1 Experimental Setup

We consider for 1, 000 objects from the ALOI database [46], the following imaging
conditions: JPEG compression, blurring, and changes of the viewpoint, illumination
direction and illumination color. Figure 3.3 illustrates the imaging conditions for
some of the objects.

For each object image, we determine its regions. To be consistent with literature,
we determine Harris-affine regions [83]. As pointed out in [84], to establish the cor-
rect matching of regions, one should either fix the camera viewpoint, or one should
consider the homography limiting oneself to more or less flat scenes. For 3D objects,
the assertion of a flat scene fails. To overcome this problem, we consider images that
have been recorded with fixed camera viewpoint. However, the condition of viewpoint
change has to be settled. Therefore, for each object, we manually selected the single
region inside the object which is most consistent between the original and the image
recorded under a viewpoint change. We copied the region from the original to all
remaining imaging conditions, see Figure 3.4 for an example. Note that, as we are
dealing with regions inside objects only, the black background does not affect the
experiments. Furthermore, trying to find one region from the 1,000 selected regions
could be seen as searching the one region in an image of 1,000 cluttered objects, for
which all selected regions are visible. Together with the variation in image transfor-
mations and imaging conditions, a total of 26,000 regions are available. The regions
vary significantly in size and anisotropy, see Figure 3.4a and b, respectively. The
ground truth of regions is publicly available on the website of the ALOI database∗.

Next, we compute the invariants from each region. To be consistent with literature,
we normalize the regions as in [83]. We consider two experiments:

• Single location computation. In the first experiment, we compute the invariant
gradients from one location. We do so by computing them at a fixed scale (i.e.
one third of the region size). For each region, we determine the location in
which the image gradient Ēw is maximum. For all copied regions (see for region
extraction the description above), this location is identical. From this location,
we compute all invariants.

• SIFT-based computation. In the second experiment, we compute the SIFT
descriptor from the normalized region identical to Mikolayzcyk’s computation

∗http://www.science.uva.nl/∼aloi; will be put there as soon as the manuscript becomes publicly
available.
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(a) 100 example objects

(b) Reference image and testing conditions

Figure 3.3: Randomly selected objects from the ALOI collection are depicted in (a). Imaging

conditions are shown in (b), respectively: the reference image, blurring (σ = 2.8 pixels, image

size 192 × 144), JPEG compression (50%), illumination direction change (to 30◦ altitude, from

the right), viewpoint change (30◦), illumination color change (3075K → 2175K).

[84], but with the grey-value gradient inside the SIFT descriptor replaced by
one of the invariant color gradients †.

For the performance evaluation, we consider the following sets of invariant gra-

†software available at: http://www.science.uva.nl/∼mark; will be put there as soon as the
manuscript becomes publicly available.
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(a) Example regions
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Figure 3.4: (a) Image regions for respectively: the reference image, blurring, JPEG compression,

illumination color change, illumination direction change, and viewpoint change. For all imaging

conditions except the change of viewpoint, the camera is fixed, so the regions are set identical.

For the camera viewpoint change, we have manually selected the most stable region. Histogram

of (b) the size of the region surfaces, and (c) of the anisotropy (where anisotropy= 1 indicates

isotropy).

dients, see Table 3.4.1. The appendix -SIFT implicates SIFT-based computation,
otherwise single location Gaussian invariants are considered. Original SIFT is also
included in the experiments and is equivalent to W-grey-SIFT. To ensure results
improve in discriminative power with respect to intensity based descriptors –one of
our goals in adding color information–, we include the intensity gradient Ww in the
H and C color based descriptors. Although this seems contradictory at first sight,
the orthogonalization of intensity and intensity-normalized color information proofs
effective in matching.

For fair comparison to the original SIFT descriptor, we reduce the dimensionality
of all color SIFT descriptors to 128 numbers using PCA reduction (the covariances
have been determined over 200 example regions computed from the reference images).
Furthermore, we will evaluate the hue-based SIFT descriptor of Abdel-Hakim and
Farag [1], termed hue-color-SIFT, and the HSV-based SIFT descriptor of Bosch
and Zisserman [13], termed hsv-color-SIFT.
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Table 3.1: Grey-value and color invariants

Invariant Gradients Property Eq. color-SIFT
name

E-grey {Ew} Not photometric invari-
ant

3.2 –

E-color {Ew, Eλw, Eλλw} Not photometric invari-
ant

3.4 –

W-grey {Ww} Invariant to local inten-
sity level

3.3 (W-color-)
SIFT

W-color {Ww,Wλw,Wλλw} Invariant to local inten-
sity level

3.5 W-color-

SIFT

C-color {Ww, Cλw, Cλλw} Invariant to local inten-
sity level, plus invariant
to shadow and shading

3.6 C-color-

SIFT

H-color {Ww, Hw} Invariant to local inten-
sity level, plus invariant
to shadow and shading,
and highlights

3.8 H-color-

SIFT

Grey-value and color invariants used in the experiments.

3.4.2 Discriminative Power

The objective of this experiment is to establish the distinctiveness of the invariants.
To that end, we match image regions computed from a distorted image to regions
computed from the reference images as in [84]. The discriminative power is measured
by determining the recall of the regions that are to be matched, and the precision of
the matches:

recall =
#correct matches

#correspondences
, (3.9)

precision =
#correct matches

#correct matches + #false matches
. (3.10)

Here, recall indicates the number of correctly matched regions relative to the ground
truth of corresponding regions in the dataset. Precision indicates the relative amount
of correct matches in all the returned matches. The definition of recall is specific
to the problem of matching based on a ground truth of one-to-one correspondences,
hence it deviates from the definition as used in information retrieval. The aim in our
experiment is to match correctly all regions (recall of one) with ideally no mismatches
(precision of one).
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We consider the nearest-neighbor matching as employed in [84]. Distances be-
tween values of photometric invariants are computed from the Mahalanobis distance
(the covariances have been determined over 200 examples computed from reference
images). Over various thresholds, the number of correct and false matches are evalu-
ated to obtain a recall vs. precision curve. A good descriptor would produce a small
decay in this curve, reflecting the maintainance of a high precision while matching
more image regions.

We randomly draw a test set of regions and use 1,000-fold cross validation to
measure performance over our dataset. The number of regions to which a single region
is compared is set to 20 for the invariants computed from one location. We consider
a successful distinction between 20 image points to be the minimal requirement of a
point-based descriptor. For the SIFT-based computation of invariants, we increase
this number, as the region-based description is more distinctive. The number of
regions to which one region is compared is between 100 or 500, depending on the
hardness of the imaging condition. We consider a successful distinction between 100
regions to be the minimal requirement of a region-based descriptor. We consider a
successful distinction between 500 regions to be sufficient for realistic computer vision
tasks, this is in line with validation in [84,85].

Experimental Results: Discriminative Power

The results of the region matching for invariant gradients are shown in Figure 3.5.
The organization of all figures is as follows, see also the legends. All photometric
invariants are plotted using solid lines. All color-based invariants are plotted using
red lines, opposed to grey-value invariants which are plotted in black lines.

Overall, the performance of H-color is disappointing and apparently lacks dis-
criminative power. Two effects play a role. First, this descriptor misses one color chan-
nel of information, and better discriminative power could be achieved when adding a
saturation channel. However, in that case one would, at best, expect a performance
similar to W-color. We will see a comparison later on when establishing performance
for the color SIFT descriptors. A second effect is the instabilities caused by the nor-
malization in the denominator of Equation 3.8. The expression becomes unstable for
colors which are unsaturated, hence being greyish. Blurring by the Gaussian filter
enhances this effect, as color at boundaries –which we are evaluating in this setup–
are mixed. Hence, H-color seems unsuitable for region descriptors based on Gaussian
derivatives.

Furthermore, grey-value derivatives E-grey and W-grey are outperformed by color
based descriptors, except when illumination color is changed (Figure 3.5e). In that
case, normalized intensity W-grey performs reasonable, but is still outperformed by
many color based invariants.

In detail, the effect of blurring, shown in Figure 3.5a, causes the image values to
be smoothed. Hence, details are lost, but no photometric variation is introduced.
The color gradient with no photometric invariant properties, E-color, performs best.
Besides the decay in performance due to additional blur, the graph clearly illustrates
the gain in discriminative power when using color information.



3.4. Performance Evaluation 35

The compression of images by JPEG, shown in Figure 3.5b, causes the color values
to be distorted more than the intensity channel. Still, color information is distinctive,
as the color gradient that is invariant to the intensity level, W-color, performs best.
At the beginning of the recall-precision curves, one clearly sees the advantage of
orthogonalizing intensity and color information, as W-color, C-color, and H-color

perform significantly better than E-color, for which all channels are correlated with
intensity. In the latter case, all values of the SIFT descriptor will be severely corrupted
by the JPEG compression. For the invariant color descriptors, the intensity channel
will be relatively mildly corrupted by the compression, whereas the color channels
still add extra discriminative power. Compression effects become more influential at
the tail of the recall-precision curves, where one sees H-color to drop off quit early
due to instability of the descriptor, followed by C-color. Although W-color had a
slower start, it ends up doing quite well due to the more stable calculation of the
non-linear derivative combination.

For changes of the illumination direction, Figure 3.5c, the main imaging effects
are darker and lighter image patches, and shadow and shading changes. However, for
the small scale at which we measure the Gaussian derivative descriptors, we expect
intensity changes to dominate over shadow and shading edges. Shadow and shading
(geometry) edges are expected to become more important when assessing SIFT based
descriptors, which capture information over a much larger region. Hence, both color
gradients that are invariant to intensity changes, W-color and C-color, are perform-
ing well. Clearly, the color invariant descriptors outperform grey-value descriptors
and non-invariant color descriptors.

The results of a change in viewpoint, Figure 3.5d, clearly demonstrate the ad-
vantage of adding color information. The patches, manually indicated to be stable,
merely contain a change in information content due to an projective transformation
and small errors in the affine region detection. Furthermore, the light field will be dis-
tributed somewhat different over the image, causing W-color and C-color to perform
superior over grey-value descriptors, non-invariant color descriptors, and the H-color
descriptor.

For varying illumination color, Figure 3.5e, obviously the color values become
distorted. The color gradient invariant to shadow, C-color, shows to be very robust
here. Although C-color is based on color, its gradients are computed in such a way
that can be shown to be reasonably color constant [46]. Furthermore, one would
expect the grey-value descriptors not to be affected by illumination color changes.
However, a change in overall intensity is also present, making direct use of E-grey

infeasible. The intensity normalized invariant W-grey performs reasonable, but lacks
the discriminative power which comes with the use of color.

Experimental Results: Discriminative Power for color-SIFT descriptors

Figure 3.6 shows the discriminative power of the invariants when they are plugged into
the SIFT descriptor. The figure has an identical organization as Figure 3.5. The only
exception in the experimental setup is that the number of regions, to which a single
region is matched, is increased. This number varies over the imaging conditions,
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0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

isi
on

E−grey
E−color
W−grey
W−color
C−color
H−color

(c) Illumination direction (30◦), 1 vs 20

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

isi
on

E−grey
E−color
W−grey
W−color
C−color
H−color

(d) Viewpoint change (30◦), 1 vs 20
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Figure 3.5: Discriminative power of photometric invariant gradients.
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and is either 100 or 500, to obtain suitable resolution in the performance graphs.
Furthermore, note that two extra methods from literature have been added, being
the hue-color-SIFT descriptor [1], and the hsv-color-SIFT descriptor [13].

Overall, the relative performance of SIFT-based computation of invariants corre-
sponds largely to relative performance of invariants from single points. Color-based
SIFT invariant to shadow and shading effects, C-color-SIFT, performs best.

Generally, the SIFT-based computation improves significantly the discriminative
power compared to single-point computation. Almost all color and grey-value descrip-
tors perform well under blurring (Figure 3.6a), JPEG compression (Figure 3.6b), and
illumination color changes (Figure 3.6e). Note that the C-color-SIFT descriptor per-
forms equally well as the intensity based SIFT descriptor in the last case, implying a
high degree of color constancy for this descriptor.

Discriminative power drops when considering illumination direction or viewpoint
changes, see Figure 3.6a,b. These cases are much harder to distinguish using a SIFT
descriptor. In these cases, the grey-value based SIFT is outperformed by the color-
based SIFT descriptors. In particular, the color-based SIFT invariant to shadow and
shading effects, C-color-SIFT, is very discriminative in these cases. This can be
explained by the large spatial area over which the SIFT descriptor captures image
structure. Hence, shadow and shading (object geometry) effects are more likely to be
captured by the SIFT descriptor, but the effects being cancelled by the C invariant.

The shadow and highlight invariant H-color-SIFT is generally not very distinctive
compared to W-color-SIFT and C-color-SIFT. Lack of discriminative power affects
the performance for hue-color-SIFT, H-color-SIFT, and SIFT under blurring. Fur-
thermore, the hue-based descriptors hue-color-SIFT and H-color-SIFT are affected
by JPEG compression, and by illumination color changes. The distinctiveness of
hue-color-SIFT is generally much less than of H-color-SIFT. Hence, using the hue
alone is not a distinctive region property. The distinctiveness of hsv-color-SIFT is
generally somewhat higher than of H-color-SIFT. Thus, the saturation s in the hsv
color space is a distinctive property. But, the distinctiveness of hsv-color-SIFT is
generally less than of W-color-SIFT and C-color-SIFT, due to instability as argued
before.

3.4.3 Invariance

The objective of this experiment is to establish the constancy of the invariants against
varying imaging conditions. Likewise [85], we measure the degradation of recall (Equa-
tion 3.9) over increasingly hard imaging conditions. The experimental setup is iden-
tical to the previous experiment. The aim in this experiment is to minimize the
degradation over more distorted images.

Experimental Results: Invariance

The results of the region matching over increasingly hard imaging conditions is shown
in Figure 3.7. The organization of the figure is identical to Figures 3.5 and 3.6. The
present graphs are orthogonal to Figures 3.5 and 3.6, in that now the amount of
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Figure 3.6: Discriminative power of photometric invariant gradients, when plugged into the

SIFT descriptor.
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degradation is varied, at a fixed recall which corresponds to the end-point of the
curves in Figures 3.5 and 3.6. Any decline in performance indicates lack of constancy
with respect to the tested condition. Ideally, the decline would be zero (horizontal
line), indicating perfect invariance to the set of imaging conditions.

For image blurring, Figure 3.7a, no significant imaging effects are observed. Hence,
all descriptors have equal performance with respect to constancy, although initial
discriminative power varies from a recall of 0.2 for grey-value derivatives to more than
0.7 for color based derivatives. For JPEG compression, Figure 3.7b, the grey-value
invariants I-grey and W-grey are slightly more constant than the color invariants, as
the image intensity is less affected by JPEG compression than the image chromaticity.
For changes in the illumination direction, Figure 3.7c, due to the small scale of the
derivative descriptors, the main imaging effect is the change of region intensity. Hence,
W-grey, W-color, C-color and H-color are very stable. For a viewpoint change,
Figure 3.7d, only marginal imaging effects are observed. Hence, all measures perform
equally well with respect to constancy. For varying illumination color (e), besides
the intensity based measures E-grey and W-grey, C-color is very invariant. This
measure has theoretically been shown to be reasonably color constant [46].

Experimental Results: Invariance for color-SIFT descriptors

We repeat the invariance experiment but now the invariants are plugged into the
SIFT descriptor. The results are shown in Figure 3.8.

Overall, most descriptors are performing well for blurring (Figure 3.8a), JPEG
compression (Figure 3.8b), and illumination color change (Figure 3.8e). Exceptions
again are the hue based descriptors H-color-SIFT and hue-color-SIFT, which lack
discriminative power, and are more affected by these conditions. A change in illumi-
nation direction or viewpoint is much harder for the SIFT descriptor to deal with,
even with color invariance build in. Overall, the C-color-SIFT seems the best choice,
for which shadow and shading edges are discounted. This descriptor has invariance
comparable to the intensity based SIFT descriptor, but gains considerably in discrim-
inative power.

3.4.4 Information Content

The objective of this final experiment is to establish the information content of the
photometric invariants. Information content refers to the ability of an invariant to
distinguish between color transitions and photometric events such as shadow, shading
and highlights. Ideally, the invariant’s values covaries with color transitions and it’s
value is constant to photometric events to which it is designed to be invariant. We
illustrate the information content of W-color and C-color, see Figure 3.9. For the
first object, new image edges are introduced by changing the illumination direction
in Figure 3.9b and c. Hence, the matching is better with the shadow and shading
invariant descriptor C-color-SIFT. Figures 3.9e and f show an example where no
shadow/shading invariance performs better. Here, no new edges are introduced by
the change in illumination direction, and only the local intensity is affected due to
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Figure 3.7: Invariance of photometric invariant gradients over increasingly hard imaging con-

ditions.
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Figure 3.8: Invariance of photometric invariant gradients over increasingly hard imaging con-

ditions, when plugged into the SIFT descriptor.
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Figure 3.9: Illustration of matching for two objects. One is better matched with C-color-SIFT,

the other with W-color-SIFT, respectively. Correct matches are shown in yellow, false matches

are shown in blue.

relatively large-scale shading effects.

To establish the information content, we measure the discriminative power and
invariance over individual image regions. Each image region is labelled whether it
contains a color transition, or a shadow, shading or highlight transition. In this way,
the information content evaluates the invariant’s discriminative power and invari-
ance over various photometric events. To that end, we construct a large annotated
dataset. This dataset contains tens of images with in the order of hundreds of labelled
image points located at the various photometric events. The images are selected from
the CURET dataset [30]. The selected texture images contain many edges, where
we annotated for each image whether the texture was generated mainly by either
shadow/shading (sponge, cracker b, lambswool, quarry tile, wood b, and rabbit fur)
or highlight effects (aluminium foil, rug a, and styrofoam). From these images, re-
gions have been detected by applying a Harris corner detector [54]. Figures 3.10a
and b illustrate, for two fragments of texture images, shadow/shading and highlight
edges, respectively. In addition, we have collected image points located at color tran-
sitions. To that end, images have been taken from PANTONE color patches [96], see
Figure 3.10c for an illustration. From the PANTONE patch combinations, we have
selected the 100 combinations that have the largest hue difference, hence selecting
patches which reflect true changes in object color rather than intensity or saturation
differences.
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Figure 3.10: Examples of the photometric events dataset. Detected points are given a label

whether the point is located on a (a) shadow/shading edge, (b) highlight edge, or (c) color edge.

We measure an invariant’s power to distinguish between color transitions and dis-
turbing photometric events by the Fisher criterion. From many color transitions, we
compute a first cloud of points; from transitions of a particular disturbing photo-
metric event, we compute a second point cloud. The Fisher criterion expresses the
separation between the two clouds of points, termed {x1} and {x2} respectively:

information =
|µ({x1}) − µ({x2})|2
σ2({x1}) + σ2({x2})

. (3.11)

Experimental Results: Information Content

The values of photometric invariants to various photometric events are shown in Fig-
ure 3.11. The plots show values relative to the total color edge strength W̄w. We
do so, to express simultaneously the power of W̄w and of the shadow and shad-
ing invariants C̄w and H̄w to distinguish between photometric events and true color
edges. As expected, the values of the invariants C̄w and H̄w are close to zero for
shadow/shading edges (note that values of the reference invariant W̄w are indeed
significant to shadow/shading edges). For shadow/shading disturbances, we obtain
information(C̄w) = 2.6, and information(H̄w) = 4.9. Thus, the invariant H̄w sep-
arates shadow/shading from object transitions much better than C̄w. Furthermore,
the value of H̄w is also low for highlights, see Figure 3.11b. However, as expected, not
all of the values are close to zero due to pixel saturations at highlights. As a result,
the invariance and the information content of H̄w are somewhat lower for highlight
disturbances than for shadow/shading disturbances, information(H̄w) = 2.9.

Overall, the photometric invariant H-color is more constant to shadow and shad-
ing than C-color. Both perform well when separating color transitions from shadow
and shading transitions. The separation of color transitions and highlights by H-color

is harder due to saturated highlights. As a consequence, most of the highlights are
separated well, but some highlights are misclassified as color transitions.
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Figure 3.11: Scatter plots of invariant values to photometric events. The figures depict (a)

C̄w vs. W̄w and (b) H̄w vs. W̄w. All invariants are sensitive to color edges. C̄w and H̄w are

invariant to shadow and shading, where H̄w is additionally invariant to highlights. The horizontal

lines describe a 90% interval of the invariant values. This gives an indication of the invariant’s

ability to distinguish between values to color edges and to disturbing photometric events.

3.5 Experimental Results

In this final experiment, we evaluate the performance of the color-SIFT descriptors
on the VOC dataset [134] containing 10 categories of natural and man-made objects
in realistic settings. As an experimental framework, we consider the bag-of-feature
approach, see e.g. [64]. We outline the approach shortly. Images are encoded by
vector quantizing the appearance space by mapping descriptor vectors obtained from
the image onto a codebook. The codebook contains descriptor vectors that are repre-
sentative of the dataset. A common scheme is to construct the codebook by storing
the cluster centers obtained from k-means clustering [27, 109]. We create codebook
representations according to the method of Perronnin textitet al. [99]. They have
proposed a distinctive histogram representation that is tuned to the categories to be
classified. The codebook is constructed by clustering 50,000 descriptor vectors into
256 cluster centers.

It is important to notice that we deviate from [99] only in that we do not obtain
cluster centers from Gaussian-mixture modelling, but from k-means. We do so for
reason of speed, and also to prevent reduction of the dimensionality of the descriptors
to 50 as done in [99]. As a consequence of the different clustering, a lower perfor-
mance is achieved with our implementation than reported in [134]. Even though the
performance may be less, our main point here is a relative performance of the grey
and color-based SIFT descriptors.
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Figure 3.12: VOC classification results obtained with gray (SIFT) and color-SIFT (C-SIFT)

descriptors.

The VOC dataset consists of a training, validation and testing set. We prefer
the k-nearest neighbor classifier as it performs best (tested among the linear SVM,
nearest mean, Fisher and logistic regression classifiers). Optimal k is determined from
performance on the validation set. The performance for the SIFT and C-color-SIFT

descriptors is determined from the test set. The objective is to compare qualitatively
the performance of the SIFT and C-color-SIFT descriptors within a successful bag-
of-feature approach.

The performance of the SIFT and C-color-SIFT descriptors for codebook-based
classification is depicted in Figure 3.12. As a classification performance measure, we
consider the area under the curve (auc). For the cat, car and horse categories, the
classification accuracy of SIFT and C-color-SIFT is similar, while for one category
(cows) the performance of C-color-SIFT is somewhat less than of SIFT (3%). For
the other categories, C-color-SIFT classifies the images significantly better than does
C-SIFT, up to approximately 10% improvement for the bike, bus and sheep categories.
We conclude that for this realistic categorization task, the C-color-SIFT descriptor
is the preferred choice over the traditional SIFT descriptor.

3.6 Conclusions

In this chapter, we have presented an experimental evaluation of local color invariants
in the presence of realistic geometric transformations and photometric changes. The
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goal was to compare local invariants computed on regions from 3D objects. The eval-
uation was designed to assess performance of local invariants, which can be directly
plugged into many of the descriptors that are available from literature. The setup is
to evaluate of each invariant its distinctiveness, invariance, and information content.
The evaluation protocol, together with test data and ground-truth, is available from
the internet, allowing evaluation and comparison of future color descriptors.

We have considered the grey-value based gradient I-grey. The grey-value pho-
tometric invariant W-grey is derived from I-grey by locally normalizing it by the
image intensity. We have considered their extensions to color, yielding I-color and
W-color. Further, we have taken into account more advanced photometric invari-
ants, being the shadow and shading invariant C-color, and the shadow, shading and
highlight invariant H-color.

Our experimental evaluation showed the most distinctive color invariant to be
C-color, which is designed to be constant to changes in illumination conditions, and
to the geometry of the object. That is, shadow and shading effects are ignored.
Furthermore, the invariant is reasonably color constant. Our experiments showed the
descriptor to outperform alternatives with respect to discriminative power, while being
more constant to illumination direction, viewpoint, and illumination color changes.
Hence, the C-color based invariant is applicable in many computer vision tasks.

We have plugged the local invariants into the SIFT descriptor. Our experiments
showed the C-color-SIFT based descriptor to outperform the traditional intensity
based SIFT, due to it’s significant increase in discriminative power, while being equally
constant to the tested conditions as traditional SIFT. Furthermore, C-color-SIFT
outperforms hue-based SIFT [1] and HSV-based SIFT [13] proposed in literature. The
usefulness of C-color-SIFT for realistic computer vision applications is illustrated
for the classification of object categories from the VOC challenge [134], for which a
significant improvement is reported.



Chapter 4
Quasi-periodic Spatio-temporal

Filtering∗

4.1 Introduction

The temporal frequency of a moving object may be an important property of that
object. Real world applications illustrate this, for instance when monitoring the os-
cillatory beating of a heart. Further, for periodically moving objects, the temporal
frequency of the periodic motion directly relates to the velocity of the motion [23].
The velocity of waves propagating through water follows directly from its motion pe-
riodicity and its spatial frequency [108]. The velocity of waves is a direct consequence
of an harmonic mechanical system, described by the wind force and the depth, width
and mass of the water, which is in equilibrium. The measurement of an object’s
periodic motion hence may enable the estimation of both the object’s velocity and
environmental properties derived thereof. Estimating velocity from motion periodic-
ity is robust, since periodicity is invariant to the object’s distance. On the contrary,
estimated motion from optical flow [59] varies with the object’s distance. In addition,
periodic motion has proven to be an attentional attribute [127], which may facilitate
target detection in video (see e.g., visual surveillance in [29]).

To measure the periodicity of object motion, we propose a temporal frequency
filter that measures the reoccurrence of an object’s surface during a time interval.
Note that the class of periodic temporal events is more rigid than the class of stochas-
tically defined dynamic textures [32]. The temporal frequency filter cannot measure
both the frequency and the timing of an occurrence of periodic motion with arbitrary
precision [14]. The challenge for detecting and identifying temporal frequency is thus
to find the right trade-off between timing and frequency analysis. Time-frequency
analysis based on the Fourier transform of the video signal [29,100,118] ignores tem-
poral discrimination. However, the Fourier transform extracts maximum information

∗Appeared in IEEE Transactions on Image Processing, 15 (6), 1572-1582, 2006.
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about the frequency composition of the signal. Gabor filtering provides the optimal
joint resolution in both time and frequency, obtaining equal temporal width at all
frequencies [14, 94]. Hence, the Gabor temporal frequency filter measures both the
frequency identification (“what”) and the frequency detection (“when”).

We embed a temporal frequency filter in the Gaussian scale-space paradigm [67]
to incorporate the spatial and temporal scale in its measurement. Larger spatial
scales incorporate contextual information, hence avoiding pixel matching. A temporal
scale allows the periodicity of object motion to be resolved in suitable time windows.
For the analysis of temporal frequency, it is natural to measure the temporal signal
in the Fourier domain. A Gaussian measurement in the Fourier domain, tuned to
a particular frequency, boils down to a Gabor measurement [14] in the temporal
domain. For online filtering, only the past is available. We deal with this restriction
by a logarithmical mapping of the filter onto the “past” only [68]. However, the
sinusoidal sensitivity curve of the temporal Gabor filter becomes logarithmical hence
not suitable for frequency measurements. We reparameterize the temporal Gabor
filter to optimize it for the local and online measurement of temporal frequency. We
introduce color to increase discriminative power when measuring the reoccurrence of
a particular surface.
In this chapter, we derive an online temporal frequency filter and demonstrate the
filter to respond faster and decay faster than Gabor filters. Additionally, we show
the online filter to be more selective to the tuned frequency than Gabor filters (Sec-
tion 4.2). In color video, the filter detects and identifies the periodicity of natural
motion. Further, we determine the velocity of moving gratings in a real world example
(Section 4.3). We demonstrate the general applicability of the proposed filter. Con-
sequently, we do not attribute specialized topics that analyze motion of specific kinds
in depth, such as motion-based recognition [23, 100, 118]. The experiments include:
(a) stable and changing periodic motion of (b) stationary and non-stationary objects
with (c) smooth and regularly textured surfaces.

4.2 Temporal Frequency Filter

4.2.1 Derivation

We consider color video to be an energy distribution over space, wavelength spectrum
and time. A spatiospectral energy distribution is only measurable at a certain spatial
resolution and a certain spectral bandwidth [46,63]. Analogously, the temporal energy
distribution is only measurable at a certain temporal resolution. Hence, physical
realizable color video measurements inherently imply integration over spectral, spatial
and temporal dimensions. Based on linear scale space assumptions [67], we consider
Gaussian filters and their derivatives to measure color video. We generally define
an i-th order Gaussian derivative filter Gai(a) probing a variable a at scale σa and
location a0:

Gσa,a0

ai (a) =
∂iGσa,a0(a)

∂ia
=

Hi(
a−a0

σa
)

√
2π σa

e
− (a−a0)2

2 σ2
a , (4.1)
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where the i-th order Hermite polynomial with respect to a−a0

σa
, Hi(

a−a0

σa
), determines

the shape of the i-th order Gaussian derivative filter. For orders i ∈ {1, 2, 3} the Her-

mite polynomials Hi are given by: { 2(a−a0)
σa

, 4
(

a−a0

σa

)2

− 2, 8
(

a−a0

σa

)3

− 12(a−a0)
σa

}.
For notational convenience, we omit the scale and location parameters where possible.

An object’s surface is defined by its reflectance function R(x, y, λ) at a spatial location
(x, y), where λ denotes the wavelength [63]. Furthermore, the temporal periodicity
of the object is measured in time t [2]. The temporal frequency measurement hence
requires a simultaneous measurement of these variables to determine whether an ob-
ject’s surface has reoccurred at a certain spatial location. The periodic reoccurrence
of an object’s surface at a constant time period p is defined as:

Ê(x, y, λ, t) = Ê(x + x′, y + y′, λ, t + p), (4.2)

with Ê the measurement of the color video signal and (x′, y′) the translation of the
point due to object movement relative to the camera. In the sequel, we consider
the temporal frequency measurement at a spatial location (x, y), and correct for the
object’s translation by tracking the object. The temporal frequency measurement
Ê(x, y, λ, t) of the color video signal E(x, y, λ, t) is performed by a filter F (x, y, λ, t),
yielding:

Ê(x, y, λ, t) ≡ E(x, y, λ, t) ∗ F (x, y, λ, t), (4.3)

with (∗) the convolution operator as we consider linear measurements.

For convenience, we first concentrate on the measurement of the wavelength distri-
bution. To measure wavelength in color video, we consider the advantage to separate
the luminance from the color channels. The opponent color system used in this chap-
ter is formalized by measuring with 3 spectral Gaussian derivative filters [46]: Gλi .
The zeroth order derivative filter measures the energy over all wavelengths (the lu-
minance), whereas the first order derivative filter compares the first half (blue) and
second half (yellow) of the spectrum and the second order derivative filter compares
the middle (green) and two outer (red) regions of the spectrum. To obtain colorime-
try with human vision, the Gaussian filters are to be tuned such that the filters
span the same spectral subspace as spanned by the CIE 1964 XYZ sensitivity curves.
The location λ0 and scale σλ of the Gaussian spectral filters are optimized such that
approximate colorimetry is obtained by setting the parameters to σλ = 55nm, and
λ0 = 540nm [46]:

Gσλ=55nm,λ0=540nm
λi (λ).i ∈ {0, 1, 2}, (4.4)

See Figure 4.1 for the sensitivity curves of the spectral filters.

Spectral derivative filters G(λ), Gλ(λ) and Gλλ(λ) yield respectively the measure-
ments Ê, Êλ, and Êλλ. In practice, the values are obtained by a linear combination
of given RGB sensitivities [46]:
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Color can only be measured by integration over a spatial area and a spectral band-
width. Hence, a color measurement requires a combination of the spectral filter
(Equation 4.4) and a spatial filter. For simplicity, we select a zeroth order, isotropic,
2-dimensional spatial filter [67]:

Gσxy (x, y) =
1

2π σ2
xy

e
− x2+y2

2 σ2
xy , (4.6)

where σxy indicates the spatial extent of the filter. To measure elongated shapes,
we refer to oriented anisotropic spatial filters [49]. Alternatively, spatial Gabor fil-
ters [14] can be applied. Combining the spectral filters (Equation 4.4) and the spatial
filter (Equation 4.6), we construct the spatiospectral filter [46] to probe the object’s
reflectance:

G
σxy

λi (x, y, λ) = Gλi(λ) ∗ Gσxy (x, y). (4.7)

We consider the online measurement of temporal frequency, hence we cannot access
information about the “future”. Consequently, only a half-axis is available: [−∞, t0],
with t0 the present moment. Measuring in the domain t > t0 violates causality; a
temporal Gaussian filter has infinite extent and, consequently, is only causal over a
complete t-axis. A reparameterization s(t) of the time axis t is required, such that the
filtering of the s(t) domain with a Gaussian is uniform and homogeneous [68]. The
requirement of uniform and homogeneous sampling should be independent of the unit
of time. Therefore, sampling in the s-reparameterized time axis should be uniform and
homogeneous for both clocks t and at, where a is a constant representing a different
time scale. Now consider a periodic generator of events, of which the periodicity is
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estimated in the two time scales s(t) and s(at). On beforehand, no periodicity is
more likely than any other. In other words, the probability density function (pdf) f
of periodicities as a function of the reparameterized time s(t) in a finite time window
is a constant: f(s(t)) = c. Further, we require the pdf in the s(t) domain, f1(s(t)),
and the pdf in the s(at) domain, f2(s(at)) to be equal: f1(·) = f2(·), or, applying

the substitution rule when swapping variables: f1(s(t)) = ∂s(at)
∂s(t) .f2(s(at)). From the

latter equation it follows that the mapping function s(t) must be logarithmic [68]:

f1(log(t)) = ∂ log(at)
∂ log(t) .f2(log(at)) = ∂ log(a)+log(t))

∂ log(t) .f2(log(a) + log(t)) = f2(log(a) +

log(t)), thus f1(·) equals f2(·) except for a shift log(a). Requiring f1(·) ≡ f2(·)
implies that both pdf’s are constant. Hence, the reparameterization s(t) = log(t)
satisfies the real-time requirement. Note that we do not single out any position or
visible wavelength in the spatiospectral measurements. In analogy, we do not single
out any range of time.

For temporal frequency analysis, it is natural to turn to the Fourier domain.
With the logarithmic rescaling s of the time dimension t, the Fourier transform of

a periodic function in t, f(t), becomes in the s domain:
∫

f(t(s)).∂t(s)
∂s .e−2πit(s) uds,

where t(s) is the inverse of s(t), t(s) = es. Locally weighing the function f with a
kernel g, to obtain a joint representation in time and temporal frequency, results in:
∫

f(es).g(es − es′

).∂es

∂s .e−2πiesuds′, where g is the logarithmically rescaled Gaussian
filter from the t domain. The Fourier transform can thus be rewritten:

∫

f(es).G(s−
s′).es.e−2πies uds′, with G(s) a Gaussian function. Thus, in the s domain we get a
convolution of the es transformed periodic signal f with a kernel G(s).es.e−2πies u.
Translating back to the time domain t, the kernel results in the temporal frequency

filter: G(log(t)).t.e−2πitu.∂s(t)
∂t = G(log(t)).e−2πitu. In full form, we get the temporal

frequency filter:

G̃u0;σt,τ (t) ≡ 1√
2π σt

e
− log(

t0−t
τ

)2

2 σ2
t e2πiu0t, (4.8)

with t0 the present moment and where τ scales the logarithmic reparameterization
hence determines the position of the maximum of the temporal frequency filter. The
scaling of the filter determines its extent and is given by σt. The shape of the obtained
filter resembles auditory temporal frequency filters [12,60,94]. Figure 4.2 depicts the
temporal frequency filter, together with its logarithmically rescaled Gaussian enve-
lope.
The combination of the spatiospectral filters (Equation 4.7) and the online temporal
frequency filter (Equation 4.8) yields the online temporal frequency filter for color
video:

G̃
σxy ;u0;σt,τ

λi (x, y, λ, t) ≡ G
σxy

λi (x, y, λ) ∗ G̃u0;σt,τ (t). (4.9)

The spatial scale parameter σxy of the filter determines its spatial extent. Although
dependent of the distance between the camera and the object, we will in general
consider the object’s surface at a coarse scale. The temporal frequency selectivity
of the filter depends on the frequency tuning parameter u0. We do not change the
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Figure 4.2: Reparameterized temporal Gabor component of the temporal frequency filter.

Tuning the parameters σt and τ determine the shape of the temporal component; we leave the

temporal frequency parameter unchanged. Note that (a) has a smaller delay than (b), but a

larger temporal extent.

time unit: for the temporal scale parameter σt we simply choose σt = 1 frame. As
a consequence, the other temporal scale parameter, τ , can be directly related to the
tuned temporal frequency. We select the temporal scale a multiplicative of the inverse
temporal frequency: τ = c 1

u0
frames, with c a constant. As a result, the temporal

shape of the filter does not depend on the tuned temporal frequency. Further, the
effective temporal extent of the filter directly relates to the temporal frequency, based
on the Nyquist theorem that frequency can only be determined if a period of the
signal can be resolved.
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Figure 4.3: Temporal frequency filters for u0 = 1

20
cycles/frame. The time windows of the

online and offline filter differ due to the delay τ = 2 frames of the online filter (a). Note the

resemblance in the shapes of the online and offline filter for the past time axis, while the constraint

of online filtering is fulfilled. The integral of the filters is normalized to unity, which for the online

filter yields a maximum of approximately twice the maximum of the offline filter. Consequently,

the online filter will have a faster and higher response than the offline filter.

4.2.2 Properties

For color video that is integrally available, the temporal frequency filter is not re-
stricted to a half time axis. As a consequence, the temporal frequency filter does not
have to be reparameterized and periodicity can be measured by a temporal Gabor
filter, see Figure 4.3 (b). We consider the properties of the offline and online temporal
frequency filters, which have different shapes (see Figure 4.3; the filters have identical
parameters).

The temporal frequency measurement is a local correlation of the periodical color
video signal and the temporal Gabor filters. The response of the online filter is
asymmetric in time with a fast rise and a slow decay. The online filter hence provides
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Figure 4.4: Response delays (thick lines) and decays (thin lines) of online (solid lines) and

offline (dotted lines) temporal frequency filters tuned to signals with various frequencies. The

online filters respond and decay approximately after one period of the signal plus the delay of

the filter τ , see indication at u0 = 0.05 cycles/frame ≡ 20 frames/period. In contrast, the

offline filters respond and decay approximately after 2.25 periods, being 45 frames at u0 = 0.05

cycles/frame. Hence, the online filter reacts significantly faster than the offline filter.

a better fit to an onset of a periodic event in the video data than the offline filter.
Figure 4.4 demonstrates that the online temporal frequency filters respond faster and
decay faster than the offline filters. The online filters respond and decay approximately
after one period of the signal plus the delay of the filter τ , see indication at u0 =
0.05 cycles/frame ≡ 20 frames/period in Figure 4.4. In contrast, the offline filters
respond and decay approximately after 2.25 periods, being 45 frames at u0 = 0.05
cycles/frame. Hence, the online filter reacts significantly faster than the offline filter.

To determine the temporal frequency selectivity of the filters, we turn to the Fourier
domain. See Figure 4.5 for the Fourier transforms of the online and offline filter. The
online filter is not well localized in the Fourier domain. As a consequence, the online
filter yields a low response to higher frequencies than the frequency it is tuned to.
However, the Fourier transform of the online filter shows a narrow peak at the tuned
frequency. Hence, the online filter is more narrowly tuned to frequencies than the
offline filter.

The narrow frequency selectivity of the online filter is demonstrated in Figure 4.6. The
online filter bank is tuned to dense temporal frequencies. We relate the discrimination
quality of the filter bank to the variance of its responses. The variance of the online
temporal frequency filter bank is lower than the variance of offline filter responses.

We conclude that the online temporal frequency filter achieves higher acuity as it 1)
responds and decays faster and 2) can be narrowly tuned to a particular frequency.

4.2.3 Algorithm

In the sequel, we define the online temporal frequency measurement for a particular
color channel, Ê

σxy;u0;σt,τ

λi , as the magnitude of the complex response of the filter.
Filter responses to different color channels are combined by considering their magni-
tude:
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Figure 4.5: Fourier transforms of the online (a) and offline (b) temporal frequency filters from

Figure 4.3. Note the narrow peak and the heavy tail of the online filter, compared to the Gaussian

shape of the Fourier transformed offline filter.
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Figure 4.6: Frequency selectivity of the online (solid bars) and offline (dotted bars) filter.

Frequency selectivity is derived from the variance of the responses of a bank of online and offline

filters tuned to dense frequencies (the bars indicate a magnification of 200 times the variance of

responses).

Êσxy;u0;σt,τ =

√

√

√

√

2
∑

i=0

(Ê
σxy;u0;σt,τ

λi )2. (4.10)

We consider multiple temporal frequency filters, tuned to dense but fixed frequencies,
ranging from 1

75 to 1
7 cycles per frame. To prune the filter bank, for instance to a

range of temporal frequencies that was observed last, a gradient ascent method may be
used, taking a filter’s response (i.e., its correlation with the signal) as input. Further,
the filter is parameterized with a spatial scale. In the experiments, we will preselect
a particular spatial scale dependent of the size of the object and the “smoothness”
of its motion. Alternatively, the scale of the spatial filter may be derived from scale
selection. A common practice is to select the scale according to the maximum of the
Laplacian filter [77].
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The response of the temporal frequency filter is inherently delayed, depending
on the temporal shape of the filter. Responses of filters tuned to lower temporal
frequencies are longer delayed. In the experiments, we will both illustrate the delays
of different filters and responses where we have aligned filter response delays. The
temporal frequency filters primarily respond at half-periods of the periodic motion,
with alternating magnitudes. We therefore integrate the filtering result over a past
time window of one period of the filter. Further, we normalize this integration for
the size of the time window. We assume the reoccurring surface to have a large
spatial extent. Therefore, we spatially pool the responses of the temporal frequency
filter. The pooled measurements are thresholded to determine periodicity detection.
We identify the frequency as the tuned frequency u0 of the filter that, after spatially
pooling by summation, yields the maximum. As a consequence, we constrain ourselves
to the periodic motion of one object. Further, we assume that the maximum spatially
pooled response is representative of the periodicity of the object under investigation.
Segmenting a frame based on spatially localized responses of temporal frequency filters
would overcome the problem of measuring motion periodicity of multiple objects. In
the experiments, we will constrain ourselves to demonstrating the robustness of the
temporal frequency filter for both stationary and nonstationary single objects moving
periodically and quasi-periodically.

4.3 Application to Color Video

In this section, we apply a bank of temporal frequency filters to color video of nat-
ural scenes. We consider: (a) stable and changing periodic motion of (b) stationary
and non-stationary objects with (c) smooth surfaces and regularly textured surfaces
(gratings). For all experiments, the color video is recorded by a RGB digital video
camera (JVC GR-D72) at 768× 576 pixels video frame transfer sampled at 25 frames
per second.

4.3.1 Periodic Zoological Motion

In this experiment, we detect the temporal frequency of the periodic motion of two
(stationary) anemones.

Figure 4.7 shows a fragment of color video of the periodic motion of a large
anemone and a small anemone. The frames are shown in increasing order, from left to
right, indicating quarter-periods of the motion of the large anemone. The frames are
represented by the 3 color channels Ê (a), Êλ (b) and Êλλ (c). The large anemone
is located in the center and visible in all color channels (a-c). The small anemone is
located in the lower left region, and is only visible in the “green-red” opponent color
channel Êλλ (c, indicated with a circle). The large anemone moves periodically at
1
18 cycles per frame, whereas the small anemone moves periodically at 1

8 cycles per
frame. Note that the area over which the anemones move are marginal, which makes
the detection of the anemones’ periodic motion non-trivial.
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Figure 4.7: Color video of the periodic motion of a large anemone and a small anemone. The

frames are shown in increasing order, from left to right, indicating quarter-periods of the motion

of the large anemone. The frames are represented by the 3 opponent color channels Ê (a), Êλ

(b) and Êλλ (c). The large anemone is located in the center and visible in all color channels

(a-c). The small anemone is located in the lower left region, and is only visible in the “green-red”

opponent color channel Êλλ (c, indicated with a circle). The large anemone moves periodically

at 1

18
cycles per frame, whereas the small anemone moves periodically at 1

8
cycles per frame.

Note that the areas over which the anemones move are marginal, which makes the detection of

the anemones’ periodic motion non-trivial.

We analyzed the frequencies of the anemones’ periodic motion at a spatial scale σxy =
2 pixels to moderately smooth the signal.

Figure 4.8 again depicts a fragment of the color video of the periodic motion of the
large anemone and small anemone. The frames cover 1 period of the motion of the
large anemone. The frames are represented by the color channel Êλλ (a), which has
most discriminative power. Responses of temporal filters tuned to various frequencies
are shown (b-g). The filter in (d) is tuned to the frequency of the large anemone.
Its response is higher than the responses of filters tuned to temporal frequencies that
are slightly lower (b and c) and higher (e and f). We emphasize the inherent delays
of the filter: a filter tuned to a lower frequency has a longer delay. The response
shown in (d) is higher than the threshold set to determine periodicity. This is also
the case for the response of the filter tuned to the periodicity of the small anemone (g,
indicated). Despite the isoluminance and weak contrast between the small anemone



58 Chapter 4. Quasi-periodic Spatio-temporal Filtering

and its background, the proposed filter strategy was able to detect and identify its
periodicity. Note that the filter responds to the periodic motion of both the large and
small anemone. The ambiguity in the filter’s response is caused by the approximate
harmonics formed by the frequencies of the motion of the two anemones.
In the description of the algorithm (Section 4.2.3), we mentioned the integration of
filter responses over a small time window. As the temporal frequency filter responds
maximally at half-periods of a periodic event, integration over a half-period provides
a stable response. In the sequel, we consider integrated responses. For convenience
of display, we will align the filter delays with the present moment such that the
responses can be compared at single time instances. Figure 4.9 (a) shows frames at
full-periods of the periodic motion of the large anemone. Figures 4.9 (b) and (c)
depict the integrated and aligned responses of the filters tuned to the frequencies of
the large and the small anemone, respectively. Integrating the responses of a filter
over a half-period of the filter provides stability, as demonstrated by the detection of
the periodicity of motion in Figures 4.9 (b) and (c).
The spatial extent over which the two anemones move, pops out from the responses
of the filters tuned to their periodic motion. The high responses of the temporal
frequency filters evidently reflect the periodicity of the objects under investigation.

4.3.2 Periodic Animal Motion

In this experiment, we identify the temporal frequency of the periodic motion of a
flying bird. The frequency of the bird’s wings are a measure of its velocity. Figure 4.10
shows a fragment of color video of the periodic motion of a flying bird. The frames
cover one period and are represented by the intensity channel Ê, which contains most
discriminative power. Note the variation in the location of the bird.
The bird’s motion inherently causes a translation. To correct for the bird’s translation
in subsequent frames, we apply kernel-based tracking with scale adaptivity [24]. We
thus exploit a prior model of the bird. For approaches that include automatic motion
segmentation we refer to [90, 100, 115]. The bird’s distance, hence its perceived size,
is normalized by a scaling of the tracked kernel regions, before applying the online
temporal frequency filter to the obtained regions. We emphasize that the following
experiment’s robustness to, for instance, clutter and occlusion, heavily depends on the
tracking of the object. However, tracking objects is not our primary concern here,
and therefore we will not elaborate on this part of the experiment. Figure 4.11 shows
the tracking results at half-periods of the bird’s motion.
In the frames that differ exactly one period in time (for example, images 1 and 3), the
bird has not the same pose. The “misalignment” of the bird’s wings is caused by the
low sampling rate compared to the high frequency of its moving wings. Due to the
misalignment of the bird’s wings, the problem of identifying the temporal frequency
of the bird’s motion is not trivial.

In the sequel, we only depict the zeroth order spectral derivative measurement
(i.e., the luminance) for display convenience. Further, due to the relatively large
spatial extent of the bird, we analyzed the temporal frequency of its surface at a
fairly large spatial scale σxy = 5 pixels. The advantage of the spatial extent of the
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a) Êλλ

b) u0 = 1

14
c/f

c) u0 = 1

16
c/f

d) u0 = 1

18
c/f: detection of periodic motion of small anemone

e) u0 = 1

20
c/f

f) u0 = 1

22
c/f

g) u0 = 1

8
c/f: detection of periodic motion of small anemone

Figure 4.8: Color video of the periodic motion of a large anemone and a small anemone. The

frames cover 1 period of the motion of the large anemone. The frames are represented by the

color channel Êλλ (a), which has most discriminative power. Responses of temporal filters tuned

to various frequencies are shown (b-g), where high responses are indicated white. The filter in

(d) is tuned to the frequency of the large anemone. Its response is higher than the responses of

filters tuned to temporal frequencies that are slightly lower (b and c) and higher (e and f). The

response shown in (d) is higher than the threshold set to determine periodicity. We emphasize

the inherent delays of the filter: a filter tuned to a lower frequency has a longer delay. The

response of the filter tuned to the periodicity of the small anemone (g, indicated) is higher than

the threshold set to determine periodicity. Despite the isoluminance and weak contrast between

the small anemone and its background in the color video fragment (a), the proposed filter strategy

was able to detect and identify its periodicity.
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(a) Êλλ

(b) u0 = 1

20
c/f (c) u0 = 1

8
c/f

Figure 4.9: Color video of the periodic motion of a large anemone and a small anemone. The

frames are randomly selected and represented by the color channel Êλλ (a). Two temporal filters

(b and c) are tuned to the respective frequencies of the large and small anemone. For convenience

of display, we have aligned the longer delay (b) and smaller delay (c) of the filter responses with

the moment at which the frames were presented. Integrating the responses of a filter over a

half-period of the filter provides stability over frames within this half-period, as demonstrated by

the detection of periodicity at randomly selected frames. The spatial extent over which the two

anemones move is detected. See “Supplemental Material” [16] for the original color video plus

overlayed responses.

Figure 4.10: Color video of the periodic motion of a flying bird. The frames cover one period

and are represented by the intensity channels Ê, which contains most discriminative power. Note

the variation in the location of the bird.

Figure 4.11: Normalized frames as a result of tracking the bird. The frames are taken at

half-periods of the periodic motion.

filter is that contextual information is incorporated, making the filter robust to the
“misaligned” pose of the bird (see “Supplemental Material” [16]).

Figure 4.12 (a) shows frames at full-periods of the flying bird. The temporal
frequency of the bird’s periodic motion changes within these samples, i.e. the motion
is quasi-periodic. We annotated the temporal frequencies at the full-periods. Note
that the frequencies differ only 1 frame per period. At the full-periods, we measured
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a) Ê (resp. u0 = 1
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) c/f

b) u0 = 1

6
c/f

c) u0 = 1

7
c/f: identification of periodic motion of flying bird

d) u0 = 1

8
c/f: identification of periodic motion of flying bird

e) u0 = 1

9
c/f

Figure 4.12: Color video of the periodic motion of a flying bird. The frames represent full-

periods of the motion. The frames are represented by the intensity channel Ê. The frequency

of the motion changes throughout the represented fragment. We annotated the frequency in a

time window around the frames as shown in (a). Responses of temporal filters tuned to various

frequencies are shown (b-e). The filters in (c) and (d) are tuned to two frequencies present in the

fragment. At frames 1, 3 and 5, the filter tuned to the annotated frequency of 1

7
c/f responds

maximally (c). Its response is slightly higher than the responses of filters tuned to temporal

frequencies that are slightly lower (b) and higher (d and e), see indications. At frames 2 and 4,

the filter tuned to the annotated frequency of 1

8
c/f responds maximally (d). Again, its response

is slightly higher than the responses of filters tuned to temporal frequencies that are slightly lower

(b and c) and higher (e), see indications. For the identification of temporal frequency of the

bird’s motion in color video, we refer to “Supplemental Material” [16].

and identified the temporal frequency of the periodic motion. The responses depicted
in Figures 4.12 (c) and (d) identify alternatively the temporal frequency of the bird’s
motion, see the indication. Due to the small differences in the actual frequencies
apparent in the bird’s motion, the responses do not differ much. Nonetheless, the
identification resembles the annotation. Lower responses of filters tuned to slightly
different temporal frequencies are included in Figures 4.12 (b) and (f).

4.3.3 Velocity of Moving Gratings

In this experiment, we measure the velocity of a moving grating. A moving grating
may be characterized by its orientation, spatial frequency and temporal frequency.
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The grating velocity is determined by its temporal frequency divided by its spatial
frequency [108]. We therefore identify both the temporal and spatial frequency.

Analogously to the temporal frequency filter derivation, we analyze spatial fre-
quency in the Fourier domain. When translating back to the spatial domain, we
obtain the 2-dimensional spatial Gabor filter [14]:

G̃σxy,v0,w0(x, y) ≡ Gσxy (x, y) e2πi (v0x+w0y), i2 = −1. (4.11)

with (v0, w0) the frequency in cycles per pixel for 2 dimensions. The radial center
spatial frequency

√

v2
0 + w2

0 is given in cycles per pixels and tan−1(w0

v0
) represents the

orientation of the filter.
We substitute the spatial component of the spatiospectral filter (Equation 4.7) by

the spatial frequency component:

G
σxy ;v0,w0

λi (x, y, λ) = Gλi(λ) ∗ G̃σxy,v0,w0(x, y). (4.12)

For a particular color channel, we obtain the spatial frequency measurement Ê
σxy;v0,w0

λi

by considering the magnitude of the complex filter response. Note that the spatial
frequency measurement does not incorporate time as we consider it at a particular
moment.

The color video contains waves propagating through water. Let us define the velocity
v of the waves as the ratio of the measured temporal frequency Êσxy;u0;σt,τ and the
measured spatial frequency Êσxy;v0,w0(x, y, λ). Consequently, for a particular location
(xi, yi) with reflectance λi at time ti, we obtain the velocity:

v =
Êσxy;u0;σt,τ (xi, yi, λi, ti)

Êσxy;v0(xi, yi, λi)
. (4.13)

The propagation of the waves has an orientation of approximately 284◦, see the frag-
ment of color video in Figure 4.13 (a). Therefore, we tuned the spatial frequency filter
to an orientation of tan−1(w0

v0
) ≡ 284◦, such that the frequency parameters v0 and

w0 yield a radial center frequency of
√

v2
0 + w2

0 cycles per pixel. Further, we selected
a spatial scale of σxy = 8 pixels, to cover a sufficient area to robustly measure the
occurring frequencies, which are approximately in the range of 〈 1

14 , . . . , 1
8 〉 cycles per

pixel. Responses of the oriented spatial frequency filter responses to this grating are
shown in Figure 4.13 (b-g). In analogy to temporal frequency identification, the iden-
tified frequency corresponds to the frequency of the filter with a maximum spatially
pooled response, see indications. For instance, the filter response in Figure 4.13 (f)
to the second frame is higher than filters tuned to slightly different frequencies in
Figures 4.13 (e) and (g). Assigning a maximum response to the first frame is more
ambiguous: filter responses in Figures 4.13 (b), (c) and (d) seem very similar. For
the first frame, the algorithm appointed Figure 4.13 (c) as the maximum response,
whereas for the third frame (e) gives the maximum response.
Combining the identified spatial and temporal frequency of these moving gratings, we
obtain the velocity of the grating, see Table 4.1 for randomly selected frames.
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(d)
1
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(e)
1

11

(f)
1
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(g)
1

13

Figure 4.13: Color video of waves propagating through water. The frames are randomly

selected and represented by the intensity channel Ê (a). The spatial frequency of surface of the

water changes throughout the represented fragment. Responses of spatial filters tuned to various

frequencies (in cycles per pixel) are shown (b-g). In analogy to temporal frequency identification,

the identified frequency corresponds to the frequency of the filter with a maximum spatially

pooled response, see indications. For instance, the filter response in (f) to the second frame is

higher than filters tuned to slightly different frequencies in (e) and (g). Assigning a maximum

response to the first frame is more ambiguous: filter responses in (b), (c) and (d) seem very

similar. For the first frame, the algorithm appointed (c) as the maximum response, whereas for

the third frame (e) gives the maximum response.

The velocity measurements confirm that the velocity of the grating changes gradually.
The spatial frequency of the water, and the temporal frequency of its speed change
throughout the video. However, the velocity measurements in random frames reflect
that the velocity is more or less stable throughout the video fragment (mean µ = 2.0
and standard deviation σ = 0.8 pixels per frame, whereas for the whole video fragment
µ = 1.8 and σ = 1.0 pixels per frame).

4.3.4 Temporal Frequency as an Attentional Attribute

This final experiment illustrates the periodicity of an object’s motion to be an at-
tentional attribute. Motion periodicity, like flicker, is a probable attribute to guide
visual attention [127]. Debate exists whether only luminance polarity or both lumi-
nance and color polarity draws the attention towards the object [127]. Therefore, we
only consider temporal regularity apparent in the luminance channel. Recall that the
zeroth order spectral derivative filter measures the luminance.

We analyzed a color video fragment showing both stochastically moving leaves
in the wind and one periodically moving leaf. The temporal regularity in the latter
leaf guides the attention towards that leaf (see “Supplemental Material” [16]). In
Figure 4.14, frames {0, 5, . . . , 40} depict half-periods of the periodically moving leaf.
The initial amplitude of the leaf is indicated by dashed vertical lines. Frames 0-40
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Table 4.1: Velocities of the moving gratings.

Subsequent frames

(random starting point) 150 151 152 153 154 155 156 157 158 159

Spatial frequency

(cycles per pixel) 8 6 7 13 10 13 13 10 13 13

Temporal frequency

(cycles per frame) 13 6 6 7 7 7 7 7 7 7

Velocity

(pixels per frame) 0.6 1.0 1.2 1.9 1.4 1.9 1.9 1.4 1.9 1.9

Random frames 33 36 78 115 132 147 158 162 169 183

Spatial frequency

(cycles per pixel) 10 13 6 8 13 8 13 13 10 10

Temporal frequency

(cycles per frame) 4 4 5 8 8 3 7 7 3 8

Velocity

(pixels per frame) 2.5 3.3 1.2 1.0 1.6 2.6 1.9 1.9 3.3 1.3

Velocity of moving gratings. The moving gratings are taken from color video of
waves propagating through water (samples are depicted in Figure 4.13). Hence,
the gratings exhibit a temporal frequency. The ratio of the measured spatial and
temporal frequency determines the velocity of the grating [108].

show 4.5 periods of the moving leaf, thus the leaf moves approximately at a frequency
of 1

10 cycles per frame. We overlayed the response of the temporal frequency filter
tuned to u0 = 1

10 cycles per frame. The highlighted regions in Figure 4.14 indicate
the detection of periodicity. Note that the temporal frequency filter responds well
after one period, that is, after frames 0-5 have occurred. Frames 45-55 are included
to illustrate the immediate decay in the filter’s response after the leaf starts to move
slower and with less amplitude.

Since the leaves themselves only differ in their motion, and not in luminance, color,
shape, size, texture, or velocity [127], and the object of attention is not in the center
of the color video, we conclude that the attention is only due to the object’s tempo-
ral regularity. Hence, when temporal regularity is considered in isolation, temporal
frequency detection draws the focus of attention.

Real-Time Performance
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(a) 0 (b) 5 (c) 10 (d) 15

(e) 20 (f) 25 (g) 30 (h) 35

(i) 40 (j) 45 (k) 50 (l) 55

Figure 4.14: Color video of the periodic motion of one leaf, in the midst of stochastically

moving leaves. The frames represent half-periods of the motion and are represented by the

intensity channel Ê. The subscripts denote the frame offset from the first frame that is displayed.

When temporal regularity is considered in isolation, temporal frequency detection draws the focus

of attention [127]. The maximum response among different temporal frequency filters detects

the temporal regularity (filter frequency: u0 = 1

10
c/f) and is overlayed as a highlight area.

Hence, the periodically moving leaf hence guides the attention towards itself. See “Supplemental

Material” [16] for the original color video plus overlayed responses.

The filter was applied to color video using a Pentium XEON processor at 2.4 GHz.
The computation time of the recursive spatial convolutions described in [128, 129] is
independent of the scale σxy and relates only to the recursion order of the filter and
the dimensions of the video. We set the recursion order to 3. For the European PAL
and American NTSC MPEG video standard the dimensions are: 720×578 pixels at 25
Hz, and 720×480 pixels at 30 Hz, respectively. Spatial convolutions for PAL (NTSC)
consume 21 (17) ms/frame. Computing 3 periods spanning 3 seconds in total, the
temporal convolution consumes an additional 18 (15) ms. Total computation thus
takes 40 (33) ms, achieving real-time performance. However, these real-time results
were obtained for one filter with a large temporal extent. To meet the real-time
requirement for multiple and simultaneous filters as described in Section 4.2.3, parallel
computation [105] is required.
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4.4 Conclusions and Discussion

In this chapter, we have derived an online, real-time temporal frequency filter. The
filter measures in space and wavelength spectrum to estimate the object’s surface re-
flectance. The filter measures temporal frequency to determine the periodicity of the
reoccurrence of the surface. Embedded in the scale-space paradigm, the measurement
boils down to a 4-dimensional filter, representing a Gaussian filter in the spatiospec-
tral domain and a Gabor filter in the temporal domain. When measuring online, only
the past information can be accessed. We therefore have applied a reparameteriza-
tion of the temporal filter to deal with this constraint. We have introduced color to
increase discriminative power to determine the reoccurring surface. Additionally, we
introduced spatial extent thereby incorporating local information. We have demon-
strated that with moving objects that do not periodically exhibit exactly the same
pose, spatial contextual information makes the filter more robust. The constructed
online temporal frequency filter measures both frequency identification (“what”) and
frequency detection (“when”).

For simplicity, we have assumed that the spectrum that is reflected from the ob-
ject does not change under object movement. In general, this assumption does not
hold for a moving object. A translation of the object relative to the light source
causes primarily shadow and shading deviations. Under the Lambertian reflection
model [63], the color video signal E(x, y, λ, t) may be decomposed into an intensity
component i(x, y, t) and the spectral distribution e(x, y, λ, t) representing the color at
each location: E(x, y, λ, t) = i(x, y, t) e(x, y, λ, t). A local normalization of the simul-
taneous measurement of color and temporal frequency, Ê

σxy;u0;σt,τ
λ and Ê

σxy;u0;σt,τ
λλ ,

by the intensity measurement Ê, are robust against shadow and shading [46,58].

In our experiments, we have restricted ourselves to the measurement of temporal
frequency of periodic events and the velocity of periodic motion. We demonstrated
the general applicability of the proposed filter. Further, we have demonstrated that
the online temporal frequency filter is more selective for frequency measurements than
the offline filter, as it responds and decays faster.

We have left specialized topics that analyze motion of specific kinds in depth out
of consideration. We consequently have not attributed motion-based recognition and
gait analysis. The experiments incorporate both the detection and identification of
temporal frequency of stationary and nonstationary objects moving periodically and
quasi-periodically. In color video, the proposed filter has proven to robustly measure
the periodicity of natural motion of objects isoluminant with their background hence
only visible in color. The filter has shown to segment the periodically moving object
from its background. Although dynamic texture algorithms [32] do not extract ex-
plicit frequency information, these algorithms are very efficient in detecting temporal
regularity. Hence, dynamic texture segmentation [33] may be useful to determine ini-
tially a region of interest to initialize the spatial parameters of the temporal frequency
filter. Further, we demonstrated the filter, in combination with a spatial frequency
filter, to estimate the velocity of moving gratings well. The estimation of velocity from
the periodicity of an object’s motion is robust due to its invariance to the object’s
distance. Although with varying distance the spatial scale of the filter has to be up-
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dated by either scale selection or tracking kernel normalization, the frequency of the
object does not change. On the contrary, motion estimation from optical flow varies
with an object’s distance. Further, we illustrated the attentional attribute of periodic
motion. Determining the focus of attention is important as it may detect targets for
surveillance video. Finally, we provided examples where periodical events are direct
consequences of harmonic mechanical systems in equilibrium. The measurement of
an object’s periodic motion hence may enable a vision system to estimate parameters
of the harmonic mechanism under investigation.





Chapter 5
Color Textons for Texture Recognition∗

5.1 Introduction

The appearance of rough 3D textures is heavily influenced by the imaging conditions
under which the texture is viewed [30, 116]. The texture appearance deviates as a
consequence of a change of the recording setting. Among others, the imaging condi-
tions have an influence on the texture shading, self-shadowing and interreflections [30],
contrast and highlights. Texture recognition [15,116,120] and categorization [55] algo-
rithms have been proposed to learn or model the appearance variation in order to deal
with varying imaging conditions. In this chapter, we consider the challenge of recog-
nizing textures from few examples [120], for which discriminative models are needed
to distinguish between textures, but also invariance of models is required to generalize
over texture appearances. Note that texture recognition differs from texture catego-
rization [55], where also generalization is needed over various textures belonging to
one category.

Texture recognition methods based on texture primitives, i.e. textons, have suc-
cessfully learned the appearance variation from grayscale images [120]. Although color
is a discriminative property of texture, the color texture appearance model of [116]
was tested on the Curet dataset [30] and has been outperformed by the grayvalue-
based texton model [120]. This can be explained partly from the use of color image
features that are not specific for texture, e.g. raw color values [116], and partly from
using color features that are not robust to the photometric effects that dominate the
appearance variation of textures. In this chapter, we aim at describing robustly both
spatial structure and color of textures to improve the discriminative power for learn-
ing textures from few examples. Due to their high discriminative power, we extend
the texton models of Varma and Zisserman (VZ) [120] to incorporate robustly color
texture information.

Textons are typical representatives of filter bank responses. The MR8-filterbank [120],

∗Appeared in Proceedings of the British Machine Vision Conference, 2006.

69
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on which VZ is based, is designed such that it describes accurately the spatial struc-
ture of texture appearances [120]. A straightforward extension of the grayvalue-based
MR8 filterbank would be to apply it to each channel of a multivalued image to de-
scribe the spatial structure of color images. However, the true color variations and
the appearance deviations due to e.g. shading, interreflections and highlights are
manifold. Hence, incorporating color information directly in the filter bank requires
many examples to learn the color textons well. Moreover, color textons that are
learned directly from the data may not be representative for all appearance devia-
tions in the dataset, with the consequence that the representation of each texture
will become less compact. Color invariants (e.g. [42]) have provided means to capture
only object-specific color information which simplifies the learning and representation
of appearances. However, this leaves one with a suitable choice of color invariant
features. This is a nontrivial problem as most color invariants aim to disregard inten-
sity information [42], which is a very discriminative property of textures [116, 120].
A change of the local intensity level is a common effect when textures are viewed
under changing settings of the illumination and camera viewpoint [116]. Our first
contribution is to propose color texture invariants that are largely insensitive to the
local intensity level, while maintaining local contrast variations.

The learning of representatives of the spatial structure and colors of textures
may be hampered by the wide variety of apparent structure-color combinations. An
alternative approach to incorporate color directly, would be to incorporate color in-
formation in a post-processing step, leaving VZ intact. We propose a color-based
weighting scheme for the coloring of grayvalue-based textons. The weighting scheme
is based on the characteristics of color invariant edges, based on non-linear combina-
tions of Gaussian derivative filters [46]. The Gaussian filter provides robustness to
image noise. The quality of the color images may be poor, hence uncertainties are in-
troduced in the extraction of color edge information. We characterize locally the color
edges by their magnitude and direction, where we propagate magnitude and direction
uncertainties to obtain a robust color edge model. We exploit this model to provide
an efficient color-weighting scheme to extend VZ to incorporate color information.

We consider the recognition of textures from few examples, for which challenging
datasets, containing a wide variety of appearances of textures, have been recorded.
The Curet dataset [30] contains color images of textures under varying illumination
and viewing direction. Recognition rates of 77% have been reported when textures are
learned from two images only [120]. In this chapter, we improve VZ’s discriminative
power to increase recognition performance when learning Curet textures from few
images.

The chapter is organized as follows. In Section 5.2 we shortly overview the original
texton algorithm by Varma and Zisserman [120]. To incorporate color, we consider
two alternative modifications of the VZ algorithm, as introduced above. In Section
5.3, we repeat the experiments of [120] to investigate the discriminative power of (a)
the grayvalue-based textons, (b) the grayvalue-based textons plus weighting, and (c)
color invariant textons.
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5.2 Combining Textons and Color Texture Information

5.2.1 VZ

Before we propose two alternative modifications of the original grayvalue-based tex-
ture recognition algorithm of Varma and Zisserman (VZ) [120], we briefly overview
it.

The VZ algorithm normalizes all grayvalue images to zero mean and unit variance.
The MR8-filterbank is convolved with a train set of grayvalue images. The filters are
L2-normalized and their outputs are rescaled according to Weber’s law. See [120] for
details.

From the filterbank-responses, textons are learned by performing k-means cluster-
ing (Euclidean distance), yielding a texton dictionary. The texton dictionary is found
to be universal: a different learn set achieves similar results.

Next, each image is represented as a texton model. To that end, each image
is filtered with the MR8 filter bank and at each pixel the texton that is closest in
feature space is identified. The texton model of an image is a histogram, where each
bin represents a texton and its value indicates the number of occurrences of the texton
as it occurs in the image.

5.2.2 VZ-color

As a first attempt to extend the VZ algorithm to use color information, we incorpo-
rate color directly at the filterbank level [125]. Here, we extend the original MR8-
filterbank [120] to filter color channels directly, where we manipulate the color chan-
nels to obtain invariance to intensity changes. First, each image is transformed to
opponent color space. Using opponent color space, we benefit from the advantage
that the color channels are decorrelated. As a consequence, the intensity channel is
separated from the color chromaticity values. The transformation from RGB-values
to the Gaussian opponent color model is given by [46]:

2

4
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where Ê, Êλ and Êλλ denote the intensity, blue-yellow and green-red channel.
The VZ-algorithm has shown to deal with intensity information in a very robust

manner, by normalizing the grayvalue image first to zero mean and unit variance,
thereby obtaining a large degree of invariance to changes of the viewing or illumination
settings. We normalize the intensity channel in the same way.

We propose a physics-based normalization of the color values, such that the color
values are invariant to local intensity changes, we term this scheme VZ-color. Here,
the color values are rescaled by the intensity variation, but not normalized to zero
mean to avoid further loss of chromaticity information. We start with the model: for
direct and even illumination, the observed energy E in the image may be modelled
by:

E(x, λ) = i(x)e(λ)R(x, λ), (5.2)
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where i(x) denotes the intensity which varies over location x, effectively modelling
local intensity including shadow and shading. Further, e(λ) denotes the illumination
spectrum, and R(x, λ) denotes object reflectance depending on location x and spectral
distribution which is parameterized by λ. Depending on which parts of the wavelength
spectrum are measured, E(x, λ) represents the reflected intensity, and Eλ(x, λ) com-
pares the left and right part of the spectrum, hence may be considered the energy in
the “yellow-blue” channel. Likewise, Eλλ(x, λ) may be considered the energy in the
“red-green” channel. The actual opponent color measurements of E(x, λ), Eλ(x, λ)
and Eλλ(x, λ) are obtained from RGB-values by Equation 5.1.

A change of the region’s intensity level is a common effect when textures are
viewed under changing settings of the illumination and camera viewpoint. We con-
sider manipulations of E(x, λ), Eλ(x, λ) and Eλλ(x, λ) to obtain some invariance to
such appearance changes. With the physical model from Equation 5.2, the measured
intensity Ê can be approximated by:

Ê(x, λ) ≈ i(x)e(λ)R(x, λ). (5.3)

For the spectral derivatives, we obtain the approximations:

Êλ(x, λ) ≈ d

dλ
i(x)e(λ)R(x, λ) = i(x)

d

dλ
e(λ)R(x, λ), (5.4)

Êλλ(x, λ) ≈ i(x)
d

dλλ
e(λ)R(x, λ). (5.5)

We obtain the color measurements Êλ(x) and Êλλ(x) directly from RGB-values ac-
cording to Equation 5.1. The global variation in these color measurements due to
variations of illumination intensity, shadow and shading is approximated by i(x).
The intensity measurement Ê(x), also directly obtained from Equation 5.1, is a di-
rect indication of the intensity fluctuation. Therefore, the standard deviation of Ê
over all pixels is used to normalize globally each of the color measurements Êλ(x)
and Êλλ(x), thus dividing by σ(Ê), to obtain better estimates of the actual color
variation. We do a global normalization here, and not per pixel, as local intensity
variation in the color channels is considered important texture information. Finally,
the MR8-filterbank is applied to these 3 color invariant signals.

5.2.3 VZ-dipoles

As an alternative to incorporating color at the level of the filterbank, the VZ algorithm
is extended by a post-processing step where textons are weighted according to the
color edge at the location of a particular texton. Color edges are measured by color
gradients, of which the magnitudes and directions are used to characterize texture
edges (subsection 5.2.3). The directions of color gradients are taken relative to the
direction of the intensity gradient. Weights are computed to determine to which
degree the color gradient direction corresponds to the intensity direction. The weights
are combined to obtain an indication of the color transition at the location of a
particular texton (subsection 5.2.3), with which the texton is weighted when adding
it to the texton histogram (subsection 5.2.3). This process is outlined in Figure 5.1.
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Figure 5.1: The color dipole framework. The three images denote the color representation of

a color texture. For each color channel, the gradient is computed, depicted by the arrows. The

direction of the opponent color gradients (dλ and dλλ) are taken relative to the direction of the

intensity gradient (d). For both the same (+) and opposite (−) direction, weights are determined.

The smaller the weight gets for one direction, the larger it gets for the opposite direction. To

obtain a combined weight for each combination of directions, the weights are multiplied.

Color Invariant Gradients

To exploit color information in a robust fashion, we base ourselves on noise-robust
Gaussian image measurements. From these measurements, we extract color invariant
gradients that are robust to changes of the intensity level [46], to achieve the same
level of invariance as in the previous subsection. We overview shortly the derivation
of color invariant gradients. First, we consider the transformation of RGB-values to
opponent color space, yielding opponent color values E, Eλ and Eλλ to represent
the intensity, blue-yellow and green-red channel, respectively, likewise the previous
subsection (Equation 5.1) . From the opponent color values, spatial derivatives in
the x-direction are computed by convolution with Gaussian derivative filters Gσ

x(x, y)
with scale σ:

Êσ
x (x, y) = E(x, y) ∗ Gσ

x(x, y), (5.6)

Êσ
λx(x, y) = Eλ(x, y) ∗ Gσ

x(x, y), (5.7)

Êσ
λλx(x, y) = Eλλ(x, y) ∗ Gσ

x(x, y), (5.8)

where (∗) denotes convolution. The spatial derivatives of opponent color values, Êσ
x ,

Êσ
λx and Êσ

λλx, are transformed respectively into color invariants Ŵσ
x , Ŵσ

λx and Ŵσ
λλx
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providing robustness to changes of the intensity level by normalizing by the local
intensity Êσ:

Wσ
x (x, y) =

Êσ
x (x, y)

Êσ(x, y)
, Wσ

λx(x, y) =
Êσ

λx(x, y)

Êσ(x, y)
, Wσ

λλx(x, y) =
Êσ

λλx(x, y)

Êσ(x, y)
. (5.9)

This normalization may become unstable for low pixel values, but with the local
smoothing some robustness to noise is obtained.

The color invariant features are computed at multiple scales to obtain scale in-
variance. We compute each scale-normalized invariant at 3 scales (σ ∈ {1, 2, 4}
pixels) and select the scale of the invariant that maximizes the response. Next,
the color invariant gradients are computed. The gradient magnitude is determined

from: Ŵλiw =
√

Ŵλix(x, y)2 + Ŵλiy(x, y)2, whereas its direction is determined from:

arctan(
Ŵλiy(x,y)

Ŵλix(x,y)
). We obtain per pixel the color and scale invariant gradients Ŵw,

Ŵλw and Ŵλλw. After application of the color invariants to the image set that is
used for training (see Experiments), we learn their standard deviation. We normalize
each invariant by its standard deviation, which effectively boosts color information.

Color Dipoles

An edge in a color image may be characterized by measuring for each color channel
the energy gradient, as outlined in [132]. In order to exploit the a-priori structure
in texture images, we investigate the correlation between intensity edges and color
edges. Therefore, we determine at each pixel the orientation of intensity and color
gradients, and measure the correlation between the orientations of intensity and color
gradients over all pixels in the Curet dataset [30]. To measure the correlation between
orientations at edge locations only, we determine the weighted correlation, where
weights are provided by the total gradient magnitude at a particular pixel, measured
by

√

Ww(x, y)2 + Wλw(x, y)2 + Wλλw(x, y)2. The orientations of intensity and color
gradients are strongly correlated: r(Ww,Wλw) = 0.77, r(Ww,Wλλw) = 0.81 and
r(Wλw,Wλλw) = 0.82.

We have observed that edges are largely characterized by color gradient magni-
tudes, and whether these gradients are directed in the same or opposite direction as
the intensity gradient. The characterization of a color edge by a dichotomic frame-
work is termed a color dipole. An example of a color dipole is displayed in Figure 5.1.
The figure also displays poor image quality, indicating that robust modelling of color
information is required.

We start with the alignment of the color dipole framework to the direction of the
intensity gradient Ww. The direction of Wλw is compared to the direction of Ww.
Two Gaussian kernels in direction-space measure the certainty that the direction is
the same or opposite to the intensity gradient direction, see Figure 5.2. The choice
of the size of the kernels has no significant effect on texture recognition results (data
not shown). The kernels in direction-space yield 2 direction weights, one for the
same direction as the intensity gradient and one for the opposite direction. The more
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Figure 5.2: Two Gaussian kernels in direction-space measure the certainty that the direction

is the same or opposite to the intensity gradient direction.

the direction and opposite direction differ with respect to the direction and opposite
direction of the intensity gradient, the lower the weight. Also, the smaller the weight
gets for one direction, the larger it gets for the opposite direction. Analogously, two
direction weights are determined for the gradient Wλλw.

In total, we obtain for each feature two direction weights per pixel, which for two
features yields 2 × 2 = 4 combinations. For each of the four combinations, we obtain
a single weight by multiplying the two corresponding feature direction probabilities,
see Figure 5.1. For each of the four dipole possibilities, we have obtained a single
weight representing the probability that the edge under investigation is characterized
by it.

To ensure that the feature directions are stable, we weight the dipole framework
per pixel by the total edge strength

√

Ww(x, y)2 + Wλw(x, y)2 + Wλλw(x, y)2 at that
pixel. We normalize the sum of all weights over the image to unity. The dipole
framework provides robustly the probability for each of the four color dipoles per
pixel.

Color-weighted Textons

The color-weighting scheme only extends the VZ-algorithm in the way in which the
occurrences of grayvalue-based textons contribute to the histogram bins of the texton
model. Rather than accumulating a unity weight for each occurrence of a particular
texton, we add weights according to the dipole measured at the location of interest.
Since we have four weights, each of the original histogram bins of VZ are split into
four, such that each of the four weights per texton can be added to the four bins that
correspond to the particular texton. Like VZ, the histograms are normalized to unity,
and compared using the χ2-statistic.

In recapitulation, the VZ-dipole algorithm affects only the cardinality of the tex-
ton model. Hence, VZ-dipole is a low-cost strategy to obtain colored textons, while
avoiding the introduction of essentially different textons for the learning and represen-
tation of textons in the image. The color invariant textons, VZ-color-norm, affects
the cardinality of the filterbank. In addition, the learning of textons from the color-
based VZ-color-norm filterbank requires a learn set that is both representative of the
texture shape primitives in the dataset as well as their colors. Table 2 summarizes
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the proposed modification of and extension to the original grayvalue-based texture
recognition VZ algorithm [120].

Table 5.1: Characteristics of the VZ algorithm and proposed modifications of VZ.

Texton learn set representative of Size of fil-
terbank

Size of represen-
tation

VZ texture shape primitives 8 # textons

VZ-color texture shape primitives and col-
ors

24 # textons

VZ-dipoles texture shape primitives 8 4 × # textons

5.3 Texture Recognition Experiment

In this section, we demonstrate the discriminative power of colored textons for texture
recognition. We follow the experimental setup of Varma and Zisserman [120] to
classify the 61 textures of the Curet dataset [30]. Textons are learned from the
same 20 textures as used in [120] and [28]. For each texture, 13 random images are
convolved with the MR8-filterbank [120], from which all responses are collected and
10 cluster means are learned to obtain 10 textons. Hence, using 20 textures to learn
textons from, 200 textons are learned; this is the texton dictionary. For each of the
61 textures in the Curet dataset, 92 images have been selected by [120] to obtain a
total of 5612 images. Each image is represented by a histogram of grayvalue-based
texton frequencies [120].

For the recognition of textures, we also follow [120]. To classify textures, each
texture is represented by 46 models obtained from alternating images in the total of
92 images per texture. These 46 models are the learning set; the remaining 46 images
are test images.

5.3.1 Baseline Performance

We consider the recognition of only 20 textures as used in [120] and [28], based on
all 46 models. The VZ algorithm, termed VZ, based on grayvalue-textons achieves a
recognition performance of 97.8%. With the physics-based normalization of opponent
color values, exploited in VZ-color, the results are better: 98.4%. With the dipole-
weighted textons, VZ-dipoles, the highest performance is achieved: 98.7% of the 20
textures is classified correctly.

Due to their improvement in recognition performance over grayvalue-based tex-
tons, we consider VZ-color and VZ-dipoles in comparison to VZ for the recognition
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of all 61 textures from the Curet dataset. As a baseline, with VZ, the accuracy of
classifying all 61 textures is: 96.4%.

With VZ-color, a recognition accuracy of 97.1% is achieved. This is a good result,
but we want to know the effect of the choice of the image set to learn textons from.
To that end, we have selected randomly alternative sets of images to learn the textons
from. We have conducted 10 trials, for each trial random images are taken from the
textures used in [120] and [28]. For VZ-color, the texture recognition results depend
significantly on the texton learn set: recognition accuracy varies from 92.7% to 97.1%,
while for the grayvalue-based textons the results vary mildly from 96.0% to 96.4%.
We conclude that the learning of discriminative color textons is more sensitive to the
choice of the learn set.

Because for grayvalue textons the choice of the learn set is of much less importance,
the results obtained with VZ-dipoles are stable under the choice of the learn set:
recognition accuracy varies from 96.1% to 96.5%. It should be noted that 200 textons
are used, identical to the textons used in VZ, but with 4 weights attached to each
texton. Increasing the number of textons to 800 increases only very marginally the
performance of VZ [120].

5.3.2 Reducing the Learn Set

To test the recognition accuracy when fewer models are incorporated in the learn
set, we start to decrease the number of learn models, likewise [120]. The learn set is
reduced by discarding models that contribute least to the recognition performance.
Models were discarded in each iteration step based on a greedy reduced nearest-
neighbor algorithm.

We emphasize that, by reducing the number of models, first the noisy models are
discarded, improving the texture recognition performance. Here we consider the per-
formance of the algorithms VZ and VZ-dipoles, which have demonstrated most stable
under the choice of the texton learn set (see above). Experiments over all 61 textures,
where models are removed from the learn set by means of the reduced nearest neigh-
bor rule, the best recognition accuracy obtained with the color textons of VZ-dipoles
is 98.3%. Thus, the best results obtained with VZ-dipoles are somewhat lower than
achieved by Broadhurst: 99.2% [15]. Broadhurst modelled filterbank responses di-
rectly, i.e. without the abstraction step of modelling textons, by a 26-dimensional
Gaussian, which was subsequently used in a Bayes recognition framework. It is inter-
esting that the compact texton models achieve a performance that is almost similar
to the performance of the elegant models proposed by Broadhurst.

It is interesting how the recognition accuracy decreases when using only few learn-
ing models. When 2 models are used, the texture recognition performance increases
from 77.1% (VZ) to 85.6% (VZ-dipoles) when including color information. We con-
clude that exploiting color information facilitates the learning of texture appearances.

The results can be summarized as follows. VZ-dipoles outperforms consistently
both the original VZ textons as well as the color textons obtained from color invariant
filterbank responses, see Table 3. Interestingly, the results obtained with the color-
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weighted textons (VZ-dipoles) are most stable over: (a) image sets to learn textons
from, and, more importantly, (b) image sets to learn textures from.

Table 5.2: Performance of the VZ algorithm and proposed modifications of VZ.

Textures: 20 61 61

Textons: 20 20 20

Models: 46 46 2

Algorithm best worse

VZ 97.8% 96.4% 96.0% 77.1%

VZ-color 98.4% 97.1% 92.7% −
VZ-dipoles 98.7% 96.5% 96.1% 85.6%

5.4 Conclusion

In this chapter, we have proposed methods to incorporate robustly color information
in VZ textons [120] to model the appearance of textures. The textons are learned
from filterbank responses. First, we have incorporated color directly at the level of
the filterbank. We have shown that the learning of discriminative color textons that
are representative of both the textures’ shape primitives and colors is not trivial and
the recognition accuracy is very dependent on the set of images to learn the color
textons from.

As an alternative to incorporate color directly at the filterbank, we have proposed
a color weighting scheme to weight grayvalue-based textons by the color edges that
generate the texture. This framework captures robustly essential color texture infor-
mation, is efficient to compute, and provides a simple extension to the original texton
model.

In the experiments, we have modelled color texture images from the Curet dataset
by the traditional textons and the color-weighted textons. With color-weighted tex-
tons, the texture recognition performance is increased significantly, up to ten percent
when only two texton models per texture are used. Incorporating color in a robust
manner by means of the proposed dipole model adds discriminative power for texture
recognition, which facilitates the learning of color textures.



Chapter 6
Material-specific Adaptation of Color

Invariant Features

6.1 Introduction

The appearance of materials change significantly under different imaging settings,
depending on the settings themselves [30] and also on the physical properties of a
material [70]. Hence, materials-specific image representations may improve on the
recognition performance, as they capture properties that are distinctive to the ma-
terial and are balanced with the variation of imaging settings. For instance, for one
material the intensity variation is a distinctive property, while the other is distin-
guished best from other materials based on its color properties. Figure 6.1 depicts
some materials from the ALOT dataset∗. The first and second material are distin-
guished best when comparing their colors, more specifically, the red channel. For the
third and fourth material, the most discriminative feature is the amount of intensity
edges, while the fifth image in the first row and the second image in the third row are
distinguished best when comparing the information in the green channel. These ex-
amples illustrate the advantage of material-specific representations. The objective in
this chapter is to learn material-specific representations for more than 250 materials.

For material recognition [76, 120] and classification [55], but also for object and
scene classification [133], the mapping of image features onto a codebook of feature
representatives [64,92] has received extensive treatment. Commonly used features are
the class of SIFT-based features [79,84], see e.g. [75]. Alternatively, filterbank outputs
are in use as features. Promising methods that use filterbanks to model object and
scenes, have been proposed by Winn et al. [125] and by Shotton et al. [107].

In previous work by the author [17], image edges were filtered by a filterbank
and subsequently annotated by their color improving the discriminative power of

∗http://www.science.uva.nl/∼aloi/public alot

79
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Figure 6.1: Example materials from the ALOT dataset.

filterbanks further. The objective of [17] was to extend a method that was originally
proposed for grey-value images to include color information. The extension works
well for images with many edges, and we do not expect it to work for more general
images. Furthermore, the purpose of this chapter is broader: we will integrate various
ways of measuring color by filterbanks. We consider filterbanks for reason of their
discriminative power, simplicity and generality.

To adapt the representation to a particular material, we consider various ways
to represent an image. To that end, consider various intensity and color filterbanks.
They are adapted from the MR8-filterbank which performs well in a recent evalua-
tion [120]. Each of the filterbanks measures different color channels, and each achieves
a different degree of photometric invariance. We adopt techniques from the literature
on invariant feature design, see e.g. [37, 46, 50]. The general scheme to construct a
representation of a filtered image, typically a histogram, is to first establish representa-
tives of the filter outputs, or textons [76]. A standard solution that aims to minimize
the average reconstruction error is the k-means algorithm, employed originally by
Sivic and Zisserman [109] and Csurka et al. [27]. Alternatively, Winn et al. [125]
employed an information-maximization approach. For any of these approaches to es-
tablish textons, the problem is how to arrive at a representation that is specific to
the material at hand.

A recent method proposed by Perronnin et al. [99] establishes class-specific textons
for each of N classes. As the authors point out, the straightforward accumulation of
all textons into one large codebook is not feasible, as the learning of materials will
be hampered as a result of the large histograms representing the images (curse of
dimensionality). To avoid this problem, they suggest to use the N sets of class-specific
textons to create respectively N codebooks. Each image is subsequently represented
by the N codebooks resulting in N histograms. Elegantly, for each image the N
histograms are fed to N class-specific classifiers. Classification of the image is based
on the N thus obtained posterior probabilities. In [99], high performance is reported
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for the classification of 7− 10 categories. However, for the classification of more than
250 materials, the method in [99] will be hampered by the creation of more than 250
histograms for each image. With 24 images per class, over 24 · 250 · 250 histograms
need to be constructed, which is not feasible in practice. Rather, we will propose
a scalable alternative to construct material-specific representations, by representing
the image by M << N histograms. The M histograms are obtained from M color
invariant codebooks, each learned from one filterbank with specific color and invariant
properties. As a result, the class-specificity of codebooks is not in the learned textons,
but in their color and invariance properties.

The chapter is organized as follows. In Section 6.2, the MR8 filterbank and its color
invariant versions are introduced. We propose the framework to learn material-specific
color information and invariance in Section 6.3. In Section 6.4, we evaluate first the
performance of the intensity and color filterbanks on the CURET [30] and ALOT
datasets based on discriminative power, invariance to image settings and clutter.
Second, we evaluate the framework to adapt the use of filterbanks to the material.
Conclusions are drawn in Section 6.5.

6.2 Color Invariant Filterbanks

In this section, we introduce the MR8 filterbank and several extensions to color. The
MR8 filterbank is shown in Figure 6.2a. Typically, before the image is convolved
with the MR8 filterbank, the image is normalized to zero mean and unit variance
to achieve to a large extent invariance to imaging conditions, see e.g. [120]. In the
following subsections, we extend the MR8 filterbank to incorporate color information,
and we consider various transformations to achieve color invariance from literature.

6.2.1 MR8-NC

In a first modification of the MR8 filterbank to extend it to use color information, we
apply the filterbank to the image’s color channels directly. This is a straightforward
extension that is also employed by Winn et al. [125], who have applied the MR8
filterbank to Lab color values. We largely follow [125] here. However, we restrain
to a linear subspace of RGB, and apply the filterbank to the three opponent color
channels of the image. Opponent colors have the advantage that the color channels
are largely decorrelated. Here, we consider the Gaussian opponent color model, which
is computed from RGB values directly by [46]:

2

4

Ê(x, y)

Êλ(x, y)

Êλλ(x, y)

3

5 =
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@
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4

R(x, y)
G(x, y)
B(x, y)

3

5 , (6.1)

where Ê, Êλ and Êλλ denote the intensity, blue-yellow and green-red channel.

Likewise the usage of the MR8 filterbank in the VZ algorithm [120], we normalize
each of the color channels Ê, Êλ and Êλλ, to zero mean and unit variance. Next,
each of the normalized color channels is convolved with the MR8 filterbank, yielding
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24 filter outputs per pixel. This first extension of the MR8 filterbank is termed MR8
with normalized colors, or MR8-NC, which is formalized as:

MR8 − NC = {MR8(
Ê − µÊ

σÊ

), MR8(
Êλ − µÊλ

σÊλ

), MR8(
Êλλ − µÊλλ

σÊλλ

)},

where µÊλi
denotes the mean of the i-th color channel, and σÊλi

the standard devia-

tion.

6.2.2 MR8-INC

In a second modification, we normalize the color channels such that they maintain
more color information than is the case with MR8-NC. With MR8-NC, the means of
the yellow-blue and red-green channels are normalized to zero, effectively discarding
the actual chromaticity in the image, and only considering the variation. The color
channels will be affected mainly by the lighting direction relative to the object and
to the camera [116], which are mostly characterized by intensity fluctuations. Hence,
we propose to normalize the three opponent color channels only by the standard
deviation of the intensity. Here, the intensity variation over the pixels in the image
is measured directly from the first opponent color channel Ê(x, y). Normalizing the
intensity channel by the standard deviation of intensity, σ(Ê), sets the variance of this
channel to unity. Normalizing the yellow-blue and red-green channels by σ(Ê) yields
a more stable responses when the intensity variation fluctuates as a consequence of
lighting or viewpoint changes. At the same time, it maintains information about the
chromaticity in the image. Likewise MR8-NC, each of the normalized color channels is
convolved with the MR8 filterbank, yielding 24 filter outputs per pixel. We refer to
this filterbank as MR8 with intensity-normalized colors, or MR8-INC:

MR8 − INC = {MR8(
Ê − µÊ

σÊ

), MR8(
Êλ

σÊ

), MR8(
Êλλ

σÊ

)},

with µÊ and σÊ the mean and standard deviation of the intensity channel.

6.2.3 MR8-LINC

In a third modification, we modify the MR8-filterbank to achieve invariance to local
intensity changes by a local color normalization rather than a global one. We follow
closely the invariant Gaussian features developed in [46]. In [46], each of the local
image measurements is normalized by the intensity in a small neighborhood. This
achieves invariance to the local intensity level.

We propose to filter for each pixel the non-normalized opponent color values using
the MR8-filterbank, to obtain 24 filter outputs per pixel. Also, for each pixel, we
measure the local intensity with a Gaussian kernel. Per pixel, we normalize each
output of the MR8 filterbank by the local intensity which is measured by a Gaussian
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at the same scale, see Figure 6.2. Obviously, the zeroth order Gaussian filter from the
MR8-filterbank is not normalized by the local intensity, otherwise its output would be
constant. We refer to this final color filterbank as MR8 with local intensity-normalized
colors, or MR8-LINC.

(a) Intensity (MR8 − LINC[0] ≡ MR8)

(b) Opponent color 1 (MR8 − LINC[1])

(c) Opponent color 2 (MR8 − LINC[2])

Figure 6.2: MR8-LINC: a color invariant filterbank. The original MR8-filterbank (a – top row)

is convolved with each of the image’s opponent colors channels (a-c – upper rows), to yield

24 responses per pixel. Each of the 24 filter outputs is normalized by the local intensity as is

measured by a Gaussian kernel of the same size of the MR8 filter (a-c – lower rows). The only

MR8 filter that is not normalized is the Gaussian kernel that measures intensity (otherwise it

would yield a constant output). The normalization achieves invariance to local intensity changes.

Formally, for the MR8-LINC filterbank, each of the filter outputs is normalized
by the measured intensity Ê. Let F̂λixj denote the filter output, with i ∈ {0, 1, 2}
the opponent color channel (Equation 6.1), and j ∈ {0, 1, 2} indicating smoothing
or spatial differentiation up to first or second order. The scheme of MR8-LINC is
formalized as:

MR8 − LINC = {MR8(Ê)

Ê
, MR8(Êλ)

Ê
, MR8(Êλλ)

Ê
}.
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6.2.4 MR8-SLINC

Finally, we construct a shadow and shading invariant filterbank, termed MR8-SLINC.
Similar to MR8-LINC, the invariance is achieved locally. With MR8-LINC, first the filter-
bank outputs are computed before normalization by the local intensity. Alternatively,

the color values Êλ(x, y) and Êλλ(x, y) can be normalized locally first, Êλ(x,y)

Ê(x,y)
and

Êλλ(x,y)

Ê(x,y)
, before filtering the thus obtained images. Under Lambertian reflection, the

normalization of color values by the local intensity results in color values independent
of the intensity distribution. Hence, the filterbank outputs of MR8-LINC are invariant
to shadow and shading:

MR8 − SLINC = {MR8(Ê)

Ê
, MR8(

Êλ

Ê
), MR8(

Êλλ

Ê
)}.

6.2.5 Filterbank Properties

Similar to MR8, the color-based filterbanks MR8-NC and MR8-INC involve a global color
normalization. In other words, the normalization is dependent on the contents of the
image. Hence, clutter will affect the normalization. This makes the output of MR8-NC
and MR8-INC scene-dependent. In contrast, the local normalizations that are employed
in MR8-LINC and MR8-SLINC are not scene-dependent, but only locally dependent on
the actual color values.

Further, the filterbanks can be ordered by their degree of invariance. MR8-SLINC is
most invariant as its color channels aim to discard intensity variation. MR8 and MR8-NC

retain respectively the intensity and color variation, but they discard their mean and
variance. MR8-LINC retains more of the intensity and color variations, as it discards
locally the variance due to intensity fluctuations. Finally, MR8-INC is less invariant
than MR8-LINC, as it discards only the global variance due to intensity fluctuations.

6.3 Color Invariant Codebooks and Material-specific

Adaptation

In this section, we consider the construction of color invariant codebooks from the
several filterbanks, and the methodology to apply the codebooks in a material-specific
setting. First, we formalize the color invariant filterbanks as follows: MR8-X = {
MR8-X[0], MR8-X[1], MR8-X[2]}, where X ∈ {NC, INC, LINC, SLINC}. To avoid the
joint learning of color channels, we learn one codebook for each color channel MR8-X[i],
with i ∈ {0, 1, 2}. For codebook construction, we follow the common scheme of
learning textons by k-means clustering of filterbank outputs [27, 76, 109, 120]. We
consider a single set of 20 images randomly drawn from the learning set of material
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images. Each is filtered by one of the filterbanks MR8-X[i], and from each filtered
image we store 10 cluster centers. As a result, for each filterbank MR8-X[i], we obtain
a codebook of 200 textons. For the filterbank MR8-X, we have obtained 3 codebooks
of length 200. For fair comparison with the single-channel MR8 filterbank, the length
of the MR8 codebook is increased to 600 by storing 30 instead of 10 cluster centers per
learning image.

To represent an image in terms of codebooks, it is filtered by each of the color
channel filterbanks MR8-X[i] first, before mapping the filter outputs onto the corre-
sponding codebook and counting the most similar occurrences. For each MR8-X[i], a
histogram of length 200 is obtained; hence for MR8-X three histograms are obtained.
After concatenation of the histograms per color channel, a histogram of length 600
is obtained that corresponds to the filterbank MR8-X. The codebook representation is
outlined in Figure 6.3. 
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Figure 6.3: Color codebook approach where the three color channels are separately filtered and

represented by a histogram. Subsequently, the histograms are combined into one.

6.3.1 Material-specific Adaptation

The limitation of the color codebook representation as proposed above, is that the
discriminative power of the color channels is averaged by using a single histogram
comparison measure. For instance, the intensity information may be less distinctive
for a given material than is the color information. The averaging of the information
in the color channels may lead to incorrect classification of materials. The misclassi-
fication of an image of the blueish material, mistakenly considered to be more similar
to the pink material, is illustrated in Figure 6.4a. To overcome the limited resolving
power of the direct combination of the three color channels, we start with classifica-
tion of a material at the level of individual color channels and to give preference to
a distinctive combination thereof. Figure 6.4b illustrates that the blueish material is
well separated from the pink material using the information in the third color channel.

We propose to train one classifier per color channel per filterbank to discriminate
one material from all other materials. Hence, with I filterbanks, F1...I , and J color
channels, c1...J , we obtain I × J classifiers. With N materials, each classifier outputs
N posterior probabilities. With this procedure, I × J × N values are produced by
the first classifier stage. This procedure is illustrated for material 1 in Figure 6.5,
where each of the I × J axes represents a classifier trained to distinguish material 1
from materials 2 − 6 given a filterbank and an (invariant) color representation. The
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Figure 6.4: Separation of two images of the same material from one image of an other material.

The fixed representation in (a) is not able to distinguish correctly between the two, while the

material-specific representation is able to distinguish between the two (third color channel).

values plotted in this material-specific feature space represent the N = 6 posterior
probabilities assigned to the materials by the individual classifiers.

In the combination stage, one classifier is trained using the I × J × N values ob-
tained for each material image. This one versus all classifier learns per material the
discriminant function from the posterior probabilities assigned to each material by the
individual classifiers. In Figure 6.5, this is indicated by the dashed line. As a result,
the combined classifier learns the filterbank and color channel that is most distinc-
tive for the specific material. In the example of Figure 6.5, the most discriminative
combination of filterbank and color representation is (Fi, cj) to distinguish material
M1 from materials M2...6 is represented on the x-axis.

To infer from the material-specific discriminant function provides information
which filterbank and color representation combination is most distinctive for a given
material, we determine for each material which of the individual classifier’s outputs
approximates the normal to the discriminant function of the combining classifier best.
This measure indicates the importance of a particular filterbank for the classification
of the given material.
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Figure 6.5: Material-specific feature space. The axes represent invididual classifiers trained

to distinguish material M1 from materials M2...6 given a filterbank Fi and an (invariant) color

representation cj . The values P (M1; Fi, cj) plotted in this new feature space represent the

posterior probabilities assigned to the materials M1...6 by the individual classifiers. The dotted

line indicates the best discriminating function to distinguish material M1 from materials M2...6.

The combination of filterbank and color representation (Fi, cj), on the x-axis, is most in alignment

with the discrimination function hence (Fi, cj) is most discriminative in this example.

6.4 Experiments

In the experiments, we evaluate the color filterbanks and their combination. We take
two datasets into account to cover a wide range of real-world materials and imaging
conditions under which they can be viewed. First, we consider the well-known CURET
dataset [30]. This dataset enables one to test the robustness under varying imaging
conditions, i.e. changes of the illumination direction and of the camera viewpoint.
For color-based methods, a critical issue is whether the method is robust to color
transformations in the image as a consequence of varying illumination color. Second,
we consider the ALOT dataset [48] to also include variations of the illumination
color. Additionally, this dataset contains more color and 3D variation. Some of the
materials that are included in the ALOT dataset are illustrated in Figure 6.1, while
some test images are shown in Figure 6.6. In total, we evaluate the filterbanks on 61
textures of the CURET dataset and on 200 textures of the ALOT dataset. In total,
in the experiments we use in total 5, 612 CURET images and 7, 200 ALOT images,
respectively. For CURET, the train, test and texton learn sets are mentioned in [120];
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Figure 6.6: Test images for an example ALOT material.

for ALOT the sets are publicly available on the website of the ALOT database. In
the experiments, the number of textons is always set to 200 (as shown in [120] this
parameter does not affect the results significantly). For the individual and combined
classifiers, we prefer respectively the nearest mean classifier (Euclidean distance) and
the linear Bayes-normal classifier [34], as these are performing best.

6.4.1 Color Invariant Codebooks

Random Images

We start the performance evaluation by establishing the classification accuracy when
selecting randomly the learning images. This experiment gives an indication of the
discriminative power and robustness of each of the color filterbanks. We include the
original MR8 as a baseline comparison. We consider the mean and standard deviation
of classification accuracy over 1,000 repetitions (random selections).

Figures 6.7 (a) and (b) show the recognition results for the CURET and ALOT
datasets, respectively. First, we discuss the results for the CURET dataset. The
filterbanks with most invariant properties, MR8, MR8-NC and MR8-SLINC filterbanks
perform less than the less invariant MR8-INC and MR8-LINC filterbanks. MR8 performs
somewhat better than MR8-NC and MR8-SLINC, as it’s nearest mean classifier puts
all emphasis on the intensity information. With MR8-NC and MR8-SLINC, emphasis
of the nearest mean classifier is also put on the color channels, of which almost all
information is lost due to the normalization of the mean and variance. The MR8-LINC
filterbank performs better than does MR8-INC, as it provides a better approximation
of the changing intensity effects by doing so locally.

As expected, for ALOT the performance of the filterbanks is different, as this
dataset contains more color and 3D variation. The severe 3D variations causes the
intensity to change in such a way that it cannot be approximated well globally. This
explains the low performance of the MR8-INC filterbank. At the same time, with much
more colorful materials, the global normalization of image colors makes sense: local
color variations in the image are now kept albeit relative to each other. Also, the
severe 3D variations across materials causes their appearance to change significantly
with different illumination. Keeping color variations while being very invariant, ex-
plains the good performance of the MR8-NC filterbank. The MR8-INC and MR8-LINC

filterbanks are less invariant, hence they perform somewhat less than MR8-NC. The dis-
tinctive color information maintained by MR8-INC and MR8-LINC explains their better
performance compared to the MR8 filterbank.
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Figure 6.7: Accuracy of material recognition for various filterbanks with randomly selected

images of (a) the CURET dataset and (b) the ALOT dataset. The vertical bars indicate standard

deviation over 1,000 repetitions.

Cluttered Images

Robustness to clutter is of importance for image modelling where the image frame is
not fixed, or/and where no image segmentation is available. The setup of the previous
experiments involves images that contain no clutter, as the image frames are fixed and
each image captures one material only. In this experiment, we evaluate the sensitivity
of the color-based filterbanks MR8, MR8-NC, MR8-INC and MR8-LINC to clutter.

First, we select randomly one learning image for each texture. Second, we simulate
clutter by concatenating the learning image with a randomly selected image of an
other texture. For the first cluttered test image, the percentage of original vs. clutter
is 90% vs. 10%. To simulate various degrees of clutter, we increase the clutter
percentage, up to 40% (note: with 50%, the classification would become chance).
The cluttered images are publicly available on the website of the ALOT database†.
Obviously, for generalization purposes, we use the texton dictionary from the previous
experiment (i.e. we do not learn new textons from cluttered images).

Figures 6.8 (a) and (b) show the results for increasingly cluttered images of the
CURET and ALOT datasets, respectively. The MR8-LINC filterbank performs sig-
nificantly better than the other filterbanks, MR8, MR8-NC, and MR8-INC, over various
degrees of clutter. The low performance of MR8, MR8-NC, and MR8-INC is due to the
global normalization schemes that they employ. A global normalization is distorted
by clutter, so the filterbank input is different when dealing with variations of clutter.
The local normalization employed in MR8-LINC is not distorted by clutter. The small
performance drop here is due to ambiguity in the images themselves as a result of the
cluttering. However, even with 40% clutter, the MR8-LINC filterbank achieves a clas-

†http://www.science.uva.nl/∼aloi/public alot
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Figure 6.8: Accuracy of material recognition for various filterbanks with increasingly cluttered

images of (a) the CURET dataset and (b) the ALOT dataset.

sification accuracy of 75.5% on the ALOT dataset, while the runner-up (MR8-LINC)
has an accuracy of 39.0% only.

The results of individual filterbanks are summarized as follows. From the previous
two experiments, we conclude that the locally-invariant MR8-LINC and MR8-SLINC

filterbanks are very robust to clutter, and that they perform well on different datasets.
The MR8-LINC is performing best on the CURET dataset (limited 3D variation),
whereas MR8-SLINC performs second-best on the ALOT dataset (severe 3D variation).

6.4.2 Adaptive Color Invariant Codebooks

Since MR8-LINC and MR8-SLINC perform well but on different datasets, and given that
the datasets contain very different types of materials, we establish in this experiment
whether the tuning of each of the filterbanks to a particular material is beneficial.

As expected, Figures 6.9a and c indicate that the classification accuracy is in-
creased by combining the MR8-LINC and MR8-SLINC filterbanks. While the classifi-
cation accuracy of MR8-LINC is almost saturated for the CURET dataset, 0.96, the
combination achieves a marginal improvement, 2%. For the ALOT dataset, the per-
formance is increased from 0.35 to 0.42 achieving an improvement of 19.8%.

Indeed, as laid down in Figures 6.9b and d, the most distinctive filterbank per ma-
terial varies significantly across the datasets, and also across the individual materials.
The CURET dataset contains many materials of which the structure is similar. Hence,
the intensity variation, although very discriminative (see previous experiments), is not
most discriminative. Rather, color information is most discriminative, as the color
channels of the filterbanks are often most distinctive. The information in the fil-
terbanks that are not invariant to shadow and shading, MR8-LINC, is in 56% most
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distinctive. Most CURET materials are uni-colored, hence the color information is
distinctive. With uni-colored materials, too much information is lost when discarding
shadow and shading variation. Hence, the shadow and shading invariant filterbank
MR8-SLINC is in less cases, 27%, most distinctive.

For the ALOT dataset, the performance improvement due to filterbank tuning
is significant. As this dataset contains more variation of the material properties,
and because more materials are included, the results generalize better. For ALOT
the most distinctive filterbanks corresponds to intensity information. This can be
explained from the fact that intensity variation rather than color variation is the
dominating factor in material appearance [70]. The information in the filterbanks
that are not invariant to shadow and shading, MR8-LINC, is in 28% most distinctive.
The shadow and shading invariant filterbank MR8-SLINC is in 25% most distinctive.
We conclude that MR8-LINC and MR8-SLINC are discriminative for large but different
sets of materials, respectively.

Finally, we stress that the recognition of materials from the ALOT dataset is
obviously a far from solved problem. Here, we have demonstrated the merit of auto-
matically tuning filterbanks with different invariant properties to individual materials
with different physical properties.

6.5 Conclusion

In this chapter, we have proposed a framework to learn for each material specifically
the most distinctive filterbank from a set of intensity and color invariant filterbanks.
The considered filterbanks are adopted from the distinctive MR8 filterbank of Varma
and Zisserman, from which color invariant filterbanks are constructed using techniques
from literature. First we have established the distinctiveness, and the robustness to
image settings and clutter, for individual filterbanks for the classification of more than
250 materials from the CURET and ALOT datasets, recorded under various illumi-
nation directions, viewpoints, and illumination colors. MR8-NC is the straightforward
extension of MR8 to color, and likewise it normalizes the mean and variance per color
channel. We have shown that this proves to be a good strategy if multiple colors are
apparent. MR8-INC normalizes each color channel by the variation of the intensity
channel. This is a good strategy if the 3D variation of materials is limited. Two color
filterbanks normalize locally the filterbank outputs. MR8-LINC normalizes locally by
the intensity level to counteract intensity fluctuations, whereas MR8-SLINC aims at
shadow and shading invariant filterbank output. The locally-invariant filterbanks
perform on average best, where MR8-LINC (MR8-SLINC) distinguishes better between
materials with limited (significant) 3D variation. Additionally, we have demonstrated
that the locally-invariant filterbanks are significantly more robust to image clutter
than are filterbanks that involve global normalizations.

Second, we have considered the performance of adapting filterbank combinations
to each material specifically. This allows to tune for each material the color channel(s)
and invariant properties that discriminates it best from other materials. We have
proposed a scheme to do so by learning automatically the best discriminant function
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Figure 6.9: Accuracy of material recognition for the best performing filterbanks and their

combination for the CURET dataset (a) and the ALOT dataset (c). Percentages indicate how

often a particular filterbank is most distinctive (b,d).

in joint filterbank space. Indeed, we have shown that the most distinctive filterbank
differs across the CURET and ALOT datasets and across their individual materials.
We have demonstrated that this automated tuning of color information and invariance
to individual materials results in performance improvements of up to 20%. This result
illustrates the merit of tuning a set of invariants to instances that have different
physical properties.



Chapter 7
The Distribution Family of Similarity

Distances∗

7.1 Introduction

In this chapter we derive theoretically and validate experimentally the probability
density function family to which similarity distance measures on feature vectors ad-
here. Knowing the distribution of similarities across between database instances facil-
itates their search. Databases of documents, images, sounds and other types of data
become increasingly large [126]. For images, the commercially available COREL col-
lection [26] of 40,000 images is a well-known example. Also, benchmarks to evaluate
content-based retrieval techniques are becoming larger, for instance, the TREC-Video
dataset of 184 hours of video [111]. With such large amounts of data, a fundamental
issue for retrieval tasks is to index the database contents accurately yet efficiently.
To compare database instances, a similarity measure needs to be defined between the
descriptors or feature vectors of the instances. The distribution of the similarities
from one to other feature vectors is of great practical importance when indexing the
dataset [121]. It enables one to confine the search for nearest neighbors of a given
feature vector within a given tolerance [4]. This example makes clear that it is fruit-
ful to have a reliable estimation of the range and distribution of similarity values to
a feature vector. In this chapter, we derive theoretically under specific but rather
general assumptions the distribution family that describes similarity distances from
one to other feature vectors. In the experiments, we will limit the scope to feature
vectors computed from image and image region descriptors, and we establish whether
their distances adhere to the Weibull distribution indeed. We consider SIFT-based
features [84], computed from various region types [85]. Furthermore, we consider a
global image feature [43] as is used in the TREC-Video benchmark of [114].

This chapter is structured as follows. In Section 2, we overview literature on

∗To appear in Advances in Neural Information Processing Systems, 2007.
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similarity distances and distance distributions. In Section 3, we discuss the theory of
distributions of similarity distances from one to other feature vectors. In Section 4,
we validate the resulting distribution experimentally for image feature vectors, and
in Section 5 experiments are conducted to illustrate consequences of the resulting
distribution. The conclusions are given in Section 6.

7.2 Related Work

7.2.1 Similarity Distance Measures

To measure the similarity between two feature vectors, many distance measures have
been proposed [82]. A common metric class of measures is the Lp-norm [6]. The
distance from one reference feature vector s to one other feature vector t can be
formalized as:

dp(s, t) = (

I
∑

i=1

|si − ti|p)1/p, (7.1)

where n and i are the dimensionality and indices of the vectors. Let the random
variable Dp represent distances dp(s, t) where t is drawn from the random variable
T representing feature vectors. Independent of the reference feature vector s, the
probability density function of Lp-distances will be denoted by f(Dp = d).

7.2.2 Distance Distributions

Ferencz et al. [35] have considered the Gamma distribution to model the L2-distances
from image regions to one reference region: f(D2 = d) = 1

βγ Γ(γ) dγ−1 e−d/β , where γ

is the shape parameter, and β the scale parameter; Γ(·) denotes the Gamma function.
In [35], the distance function was fitted efficiently from few examples of image regions.
Although the distribution fits were shown to represent the region distances to some
extent, the method lacks a theoretical motivation.

Based on the central limit theorem, Pekalska and Duin [98] assumed that Lp-

distances between feature vectors are normally distributed: f(Dp = d) = 1√
2π β

e−(d2/β2)/2.

As the authors argue, the use of the central limit theorem is theoretically justified
if the feature values are independent, identically distributed, and have limited vari-
ance. Although feature values generally have limited variance, unfortunately, they
cannot be assumed to be independent and/or identically distributed as we will show
below. Hence, an alternative derivation of the distance distribution function has to
be followed.

7.2.3 Contribution of This Chapter

The existing models will be shown to describe the similarity distances not very ac-
curately. Our contribution is to derive a parameterized distribution for Lp-norm
distances between feature vectors. And, as a consequence we arrive at a different
family of distributions.
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7.3 Theory

In this section, we derive the distribution function family of Lp-distances from a
reference feature vector to other feature vectors. We consider the notation as used
in the previous section, with t a feature vector drawn from the random variable
T . For each vector t, we consider the value at index i, ti, resulting in a random
variable Ti. The value of the reference vector at index i, si, can be interpreted as a
sample of the random variable Ti. The computation of distances from one to other
vectors involves manipulations of the random variable Ti resulting in a new random
variable: Xi = |si − Ti|p. Furthermore, the computation of the distances D requires

the summation of random variables, and a reparameterization: D = (
∑I

i=1 Xi)
1/p.

In order to derive the distribution of D, we start with the statistics of the summation
of random variables, before turning to the properties of Xi.

7.3.1 Statistics of Sums

As a starting point to derive the Lp-distance distribution function, we consider a
lemma from statistics about the sum of random variables.

Lemma 7.3.1 For non-identical and correlated random variables Xi, the sum
∑N

i=1 Xi,
with finite N , is distributed according to the generalized extreme value distribution,
i.e. the Gumbel, Frechet or Weibull distribution.

For a proof, see [10, 11]. Note that the lemma is an extension of the central limit
theorem to non-identically distributed random variables. And, indeed, the proof
follows the path of the central limit theorem. Hence, the resulting distribution of
sums is different from a normal distribution, and rather one of the Gumbel, Frechet
or Weibull distributions instead. This lemma is important for our purposes, as later
the feature values will turn out to be non-identical and correlated indeed. To confine
the distribution function further, we also need the following lemma.

Lemma 7.3.2 For Y an upper-bounded random variable, the generalized extreme
value distribution is the Weibull distribution:

f(Y = y) =
γ

β
(
y

β
)γ−1 e−( y

β )γ

, (7.2)

with γ the shape parameter and β the scale parameter.

For a proof, see [53]. Figure 1 illustrates the Weibull distribution for various shape
parameters γ. This lemma is equally important to our purpose, as later the feature
values will turn out to be upper-bounded indeed.

The combination of Lemmas 1 and 2 yields the distribution of sums of non-
identical, correlated and upper-bounded random variables, summarized in the fol-
lowing theorem.

Theorem 7.3.3 For non-identical, correlated and upper-bounded random variables
Xi, the random variable Y =

∑N
i=1 Xi, with finite N , adheres to the Weibull distri-

bution.
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Figure 7.1: Examples of the Weibull distribution for various shape parameters γ.

The proof follows trivially from combining the different findings of statistics as laid
down in Lemmas 1 and 2. Theorem 1 is the starting point to derive the distribution
of Lp-norms from one reference vector to other feature vectors.

7.3.2 Lp-distances from One to Other Feature Vectors

Theorem 1 states that Y is Weibull-distributed, given that {Xi = |si − Ti|p}i∈[1,...,I]

are non-identical, correlated and upper-bounded random variables. We transform Y
such that it represents Lp-distances, achieved by the transformation (·)1/p:

Y 1/p = (

N
∑

i=1

|si − Ti|p)1/p. (7.3)

The consequence of the substitution Z = Y 1/p for the distribution of Y is a change of

variables z = y1/p in Equation 7.2 [97]: g(Z = z) = f(zp)
(1/p−1)z(1−p) . This transformation

yields a different distribution still of the Weibull type:

g(Z = z) =
1

(1/p − 1)

γ

β1/p
(

z

β1/p
)pγ−1 e

−( z

β1/p
)pγ

, (7.4)

where γ′ = pγ is the new shape parameter and β′ = β1/p is the new scale parameter,
respectively. Thus, also Y 1/p and hence Lp-distances are Weibull-distributed under
the assumed case.

We argue that the random variables Xi = |si − Ti|p and Xj (i 6= j) are indeed
non-identical, correlated and upper-bounded random variables when considering a set
of values extracted from feature vectors at indices i and j:

• Xi and Xj are upper-bounded. Features are usually an abstraction of a partic-
ular type of finite measurements, resulting in a finite feature. Hence, for general
feature vectors, the values at index i, Ti, are finite. And, with finite p, it follows
trivially that Xi is finite.
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• Xi and Xj are correlated. The experimental verification of this assumption is
postponed to Section 7.4.1.

• Xi and Xj are non-identically distributed. The experimental verification of this
assumption is postponed to Section 7.4.1.

We have obtained the following result.

Corollary 7.3.4 For finite-length feature vectors with non-identical, correlated and
upper-bounded values, Lp distances, for limited p, from one reference feature vector
to other feature vectors adhere to the Weibull distribution.

7.3.3 Extending the Class of Features

We extend the class of features for which the distances are Weibull-distributed. From
now on, we allow the possibility that the vectors are preprocessed by a PCA trans-
formation. We denote the PCA transform g(·) applied to a single feature vector as
s′ = g(s). For the random variable Ti, we obtain T ′

i . We are still dealing with upper-
bounded variables X ′

i = |s′i − T ′
i |p as PCA is a finite transform. The experimental

verification of the assumption that PCA-transformed feature values T ′
i and T ′

j , i 6= j
are non-identically distributed is postponed to Section 7.4.1. Our point here, is that
we have assumed originally correlating feature values, but after the decorrelating PCA
transform we are no longer dealing with correlated feature values T ′

i and T ′
j . In Sec-

tion 7.4.1, we will verify experimentally whether X ′
i and X ′

j correlate. The following
observation is hypothesized. PCA translates the data to the origin, before applying an
affine transformation that yields data distributed along orthogonal axes. The tuples
(X ′

i, X
′
j) will be in the first quadrant due to the absolute value transformation. Ob-

viously, variances σ(X ′
i) and σ(X ′

j) are limited and means µ(X ′
i) > 0 and µ(X ′

j) > 0.
For data constrained to the first quadrant and distributed along orthogonal axes, a
negative covariance is expected to be observed. Under the assumed case, we have
obtained the following result.

Corollary 7.3.5 For finite-length feature vectors with non-identical, correlated and
upper-bounded values, and for PCA-transformations thereof, Lp distances, for limited
p, from one to other features adhere to the Weibull distribution.

7.3.4 Heterogeneous Feature Vector Data

We extend the corollary to hold also for composite datasets of feature vectors. Con-
sider the composite dataset modelled by random variables {Tt}, where each random
variable Tt represents non-identical and correlated feature values. Hence, from Corol-
lary 7.3.5 it follows that feature vectors from each of the Tt can be fitted by a Weibull
function fβ,γ(d). However, the distances to each of the Tt may have a different range
and modus, as we will verify by experimentation in Section 7.4.1. For heterogeneous
distance data {Tt}, we obtain a mixture of Weibull functions [80].
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Corollary 7.3.6 (Distance distribution) For feature vectors that are drawn from
a mixture of datasets, of which each results in non-identical and correlated feature
values, finite-length feature vectors with non-identical, correlated and upper-bounded
values, and for PCA-transformations thereof, Lp distances, for limited p, from one
reference feature vector to other feature vectors adhere to the Weibull mixture distri-
bution: f(D = d) =

∑c
i=1 ρi · fβi,γi

i (d), where fi are the Weibull functions and ρi are
their respective weights such that

∑c
i=1 ρi = 1.

7.4 Experiments

For experimentation, we consider image features. First, we validate assumptions
and Weibull goodness-of-fit for the region-based SIFT, GLOH, SPIN, and PCA-SIFT
features. We include these features for two reasons as: a) they are performing well for
realistic computer vision tasks and b) they provide different mechanisms to describe
an image region [84]. The region features are computed from regions detected by the
Harris- and Hessian-affine regions, maximally stable regions (MSER), and intensity
extrema-based regions (IBR) [85]. Also, we consider PCA-transformed versions for
each of the detector/feature combinations. Later, we consider also a global image
feature. For reason of its extensive use, the experimentation is based on the L2-
distance. We consider distances from 1 randomly drawn reference vector to 100 other
randomly drawn feature vectors, which we repeat 1,000 times for generalization. In all
experiments, the features are taken from multiple images, except for the illustration
in Section 7.4.1 to show typical distributions of distances between features taken from
single images.

7.4.1 Validation of the Corollary Assumptions for Image Features

Intrinsic Feature Assumptions

Corollary 7.3.5 rests on a few explicit assumptions. Here we will verify whether the
assumptions occur in practice.

• Differences between feature values are correlated. We consider a set of feature
vectors Tj and the differences at index i to a reference vector s: Xi = |si−Tji|p.
We determine the significance of Pearson’s correlation [25] between the differ-
ence values Xi and Xj , i 6= j. We establish the percentage of significantly
correlating differences at a confidence level of 0.05. We report for each fea-
ture the average percentage of difference values that correlate significantly with
difference values at an other feature vector index.

As expected, the feature value differences correlate. For SIFT, 99% of the dif-
ference values are significantly correlated. For SPIN and GLOH, we obtain 98%
and 96%, respectively. Also PCA-SIFT contains significantly correlating differ-
ence values: 95%. Although the feature’s name hints at uncorrelated values, it
does not achieve a decorrelation of the values in practice. For each of the fea-
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tures, a low standard deviation < 5% is found. This expresses the low variation
of correlations across the random samplings and across the various region types.

We repeat the experiment for PCA-transformed feature values. Although the
resulting values are uncorrelated by construction, their differences are signifi-
cantly correlated. For SIFT, SPIN, GLOH, and PCA-SIFT, the percentages of
significantly correlating difference values are: 94%, 86%, 95%, and 75%, respec-
tively.

• Differences between feature values are non-identically distributed. We repeat
the same procedure as above, but instead of measuring the significance of cor-
relation, we establish the percentage of significantly differently distributed dif-
ference values Xi by the Wilcoxon rank sum test [25] at a confidence level of
0.05. For SIFT, SPIN, GLOH, and PCA-SIFT, the percentages of significantly
differently distributed difference values are: 99%, 98%, 92%, and 87%. For
the PCA-transformed versions of SIFT, SPIN, GLOH, and PCA-SIFT, we find:
62%, 40%, 64%, and 51%, respectively. Note that in all cases, correlation is
sufficient to fulfill the assumptions of Corollary 7.3.5.

We have illustrated that feature value differences are significantly correlated and sig-
nificantly non-identically distributed. We conclude that the assumptions of Corollary
7.3.5 about properties of feature vectors are realistic in practice, and that Weibull
functions are expected to fit distance distributions well.

Inter-Feature Assumptions

In Corollary 7.3.6, we have assumed that distances from one to other feature vectors
are described well by a mixture of Weibulls, if the features are taken from different
clusters in the data. Here, we illustrate that clusters of feature vectors, and clusters
of distances, occur in practice. Figure 7.2a shows Harris-affine regions from a natural
scene which are described by the SIFT feature. The distances are described well by
a single Weibull distribution. The same hold for distances from one to other regions
computed from a man-made object, see Figure 7.2b. In Figure 7.2c, we illustrate the
distances of one to other regions computed from a composite image containing two
types of regions. This results in two modalitites of feature vectors hence of similarity
distances. The distance distribution is therefore bimodal, illustrating the general case
of multimodality to be expected in realistic, heterogeneous image data. We conclude
that the assumptions of Corollary 7.3.6 are realistic in practice, and that the Weibull
function, or a mixture, fits distance distributions well.

7.4.2 Validation of Weibull-shaped Distance Distributions

In this experiment, we validate the fitting of Weibull distributions of distances from
one reference feature vector to other vectors. We consider the same data as before.
Over 1,000 repetitions we consider the goodness-of-fit of L2-distances by the Weibull
distribution. The parameters of the Weibull distribution function are obtained by
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Figure 7.2: Distance distributions from one randomly selected image region to other regions,

each described by the SIFT feature. The distance distribution is described by a single Weibull

function for a natural scene (a) and a man-made object (b). For a composite image, the distance

distribution is bimodal (c). Samples from each of the distributions are shown in the upper images.

maximum likelihood estimation. The established fit is assessed by the Anderson-
Darling test at a confidence level of α = 0.05 [91]. The Anderson-Darling test has
also proven to be suited to measure the goodness-of-fit of mixture distributions [89].

Results for Image Region Features

Table 1 indicates that for most of the feature types computed from various regions,
more than 90% of the distance distributions is fit by a single Weibull function. As
expected, distances between each of the SPIN, SIFT, PCA-SIFT and GLOH features,
are fitted well by Weibull distributions. The exception here is the low number of fits for
the SIFT and SPIN features computed from Hessian-affine regions. The distributions
of distances between these two region/feature combinations tend to have multiple
modes. Likewise, there is a low percentage of fits of L2-distance distributions of the
SPIN feature computed from IBR regions. Again, multiple modes in the distributions
are observed. For these distributions, a mixture of two Weibull functions provides a
good fit (≥ 97%).

Global Image Feature

We consider the dataset collected by Snoek et al. [114], describing 101 concepts from
video data. For each concept, 30, 000 images have been collected. From these images,
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Table 7.1: Accepted Weibull fits for COREL data [26].

Harris-affine Hessian-affine MSER IBR
c =
1

c ≤
2

c =
1

c ≤
2

c =
1

c ≤
2

c =
1

c ≤
2

SIFT 95% 100% 60% 99% 98% 100% 92% 100%
SIFT (g =PCA) 95% 99% 60% 98% 98% 100% 92% 99%
PCA-SIFT 89% 100% 96% 100% 94% 100% 95% 100%
PCA-SIFT

(g =PCA)
89% 100% 96% 100% 94% 100% 95% 100%

SPIN 71% 99% 12% 99% 77% 99% 45% 98%
SPIN (g =PCA) 71% 100% 12% 97% 77% 99% 45% 98%
GLOH 87% 100% 91% 100% 82% 99% 86% 100%
GLOH (g =PCA) 87% 100% 91% 99% 82% 99% 86% 100%

Percentages of L2-distance distributions fitted by a Weibull function (c = 1) and a
mixture of two Weibull functions (c ≤ 2) are given.

Table 7.2: Accepted Weibull fits for TRECVID data of the benchmark in [114]

Positive examples Negative examples
c = 1 c ≤ 2 c = 1 c ≤ 2

outdoor 93% 98% 89% 98%
maps 59% 97% 92% 99%
crowd 89% 99% 92% 100%
building 92% 99% 90% 99%

Percentages of Weibull fits for distributions of L2-distances from one to other im-
ages. Distributions are fit with a Weibull function (c = 1) and a mixture-of-Weibull
functions (c ≤ 2).

1−10% are annotated as positive examples of the concept. The remaining images are
annotated as negative examples. Each image is described by a vector of 120 statistical
image features, see [43]. We consider two natural concepts, outdoor and crowd, and
two man-made concepts, maps and buildings.

Results. For the negative examples, on average 90% ± 2% of the distributions of
distances fit well to the Weibull distribution. For positive examples, the percentage
of fitted distributions is: 83 ± 16%. For maps, the fit percentage is low: 59%. The
mixture of two to four Weibulls provides generally a good fit for > 97% of the cases,
as indicated in Table 2.
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7.5 Consequence

We consider the estimation of quantiles in the distance distribution. Quantiles are
important to determine, amongst others, they are used in the determination of: a)
the distance to be set to establish N nearest neighbors, b) the median of the distances
required for balanced construction of indexing trees, and c) critical values for the de-
tection of outliers. Our point here is that for quantiles, it is important to know the
skewness. For non-skewed distributions, occurring in 53% of the cases found by exper-
imentation in the previous section (including the components of mixtures), the normal
distribution suffices [98]. For > 90% of the cases the Weibull distribution provides a
better alternative. The Weibull distribution is preferred here, as the distributions are
in practice often skewed significantly: skewed positively (γ ≤ 2.5 represents 15% of
the cases) and skewed negatively (γ ≥ 6 representing 32%). Together with ones that
are marginally skewed (2.5 < γ < 6 representing 53%), we divide the distributions in
three categories, represented by respectively γ = 2, 4 and 8. For each category we
consider 1,000 distributions, fitted by both the Weibull and the normal distribution.
Subsequently, we determine from their parameters the distance threshold to be set to
retrieve the objective quantile of the features. We measure the error in the percentage
of retrieved features compared to the objective quantile.

Without loss of generalization, we limit ourselves to the single-component distri-
butions here. Note that multi-component distributions are linear combinations of
single-components.

Results. Over 1,000 repetitions, we have considered the minimum and maximum
of retrieved features. For both values, we indicate in Table 3 the error relative to the
objective quantile of features to be retrieved. First, we discuss the median of similar
instances to be retrieved. Obviously, the Weibull distribution provides generally a
good estimation of the quantiles (error ≤ 0.4%). For positively skewed distributions,
γ = 2, the normal distribution produces an overestimation of the median value:
≥ 8.4%. For marginally skewed distributions, γ = 4, the median is systematically
underestimated by the normal distribution: bias ≈ −2.0%. For negatively skewed
distributions, the median is systematically underestimated: bias ≈ −7.5%.

Second, we discuss the estimation of the tail properties, that is the retrieval of the
1% most similar features to a randomly selected feature. Estimating tail properties
is noisier then estimating the median value: the relative error of the Weibull estima-
tion increases but is at maximum 10%. This means that for a database of 1, 000, 000
features, the objective is to retrieve 10, 000 most similar features, while the estima-
tion retrieves 10, 000 ± 1, 000 features. Next, we turn to the results obtained for the
normal distribution in more detail. For γ = 4, the retrieval of most similar features is
comparable to that of the Weibull distribution. For negatively skewed distributions,
by example of γ = 8, systematically too many instances are retrieved when requesting
the 1% most similar ones: at least twice the number of requested features is retrieved
(error of 100%). For the example above, this means that 10, 000 features too many
are retrieved. Moreover, for positively skewed distributions, by example of γ = 2, no
instances are retrieved at all when requesting the 1% most similar ones. In recapitula-
tion, the Weibull distribution retrieves the most similar features accurately up to only
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Table 7.3: Accuracy of Quantile Estimation

Shape pa-
rameter

Representative
for

Fitting func-
tion

[min, max] relative error

of distribu-
tion

% of the
cases

at median at 1% most
similar

γ = 2 15% Weibull [−0.4%, 0.4%] [−10%, 10%]
normal [8.4%, 9.4%] [none∗,none∗]

γ = 4 53% Weibull [−0.2%, 0.4%] [−10%, 10%]
normal [−1.8%,−2.2%][−10%, 10%]

γ = 8 32% Weibull [−0.4%, 0.4%] [−10%, 10%]
normal [−8.2%,−7.2%][100%, 120%]

For distance distributions of various shapes (γ), we establish quantiles from the
parameters of the fitted function (Weibull and normal distribution). The second
column indicates the percentages of cases for the SIFT, PCA-SIFT, SPIN and
GLOH features computed from the COREL dataset. Over 1,000 repetitions, mini-
mum and maximum relative errors are given for the percentage of features that are
retrieved. (∗): none of the features are retrieved in this case.

a 10% deviation, while for the normal distribution the errors range from no retrieved
features at all up to twice the amount of features to be retrieved. We conclude that
the Weibull distribution is the preferred choice for determining the distance bounds
in which a given number of nearest neighbors to a given feature are to be expected.

7.6 Conclusion

In this chapter, we have derived that similarity distances between one and other image
features in databases are Weibull distributed. Indeed, for various types of features,
i.e. the SPIN, SIFT, GLOH and PCA-SIFT features, and a global feature of an
image, and for two datasets, i.e. the COREL image collection and keyframes from
TRECVID video data, we have demonstrated that the similarity distances from one
to other features, computed from Lp norms, are Weibull-distributed. These results are
established by the experiments presented in Table 1. Also, between PCA-transformed
feature vectors, the distances are Weibull-distributed. Furthermore, when the dataset
is a composition, a mixture of few (typically two) Weibull functions suffices, as estab-
lished by the experiments presented in Tables 1 and 2.

The resulting Weibull distributions are distinctively different from the distribu-
tions suggested in literature, as they are positively or negatively skewed while the
Gamma [35] and normal [98] distributions are positively and non-skewed, respec-
tively. We have shown by experiments presented in Table 3 that the approximation
of distance distributions by a normal distribution yields systematic and unacceptable
errors in almost 50% of all cases. We demonstrate that the Weibull distribution is the
preferred choice for estimating properties of sets of similarity distances. In particular,
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the Weibull distribution estimates accurately the distance, below which to expect the
most similar instances to an image feature.



Chapter 8
Summary and Conclusions

8.1 Summary

In this thesis, we have explored the quality of image features, each with a specific
degree of invariance to the conditions that dominate the appearance of objects in
images. The results obtained in the thesis are discussed per chapter in the following
paragraphs:

Chapter 2: Quality of Variant and Invariant Features for Color Image
Processing. In this chapter, we evaluate color invariants in terms of properties that
are important to image processing. We start with an overview of various invariants
with different invariant properties. They are based on Gaussian filters and are a
measure of color and local shape. We shortly overview how invariants can be derived
from the Gaussian variant measurements. Our contribution is to assess the quality of
variants and invariants.

In spite of their nonlinear nature, we demonstrate the invariant features to per-
form nearly as well in terms of localization and stability to low image intensity and
JPEG compression as the well-known Gaussian filters. Furthermore, we show that
the responses of invariants – with the exception of the hue-based invariant – are low
under irrelevant scene variations, while they are shown to covary with relevant image
variation.

Chapter 3: Performance Evaluation of Local Color Invariants. In this
chapter, we compare local color descriptors to grey-value descriptors. We adopt the
evaluation framework of Mikolayzcyk and Schmid [84,85]. We modify the framework
in several ways. We decompose the evaluation framework to the level of local grey-
value invariants on which common region descriptors are based. We compare the
discriminative power and invariance of grey-value invariants to that of color invariants.
In addition, we evaluate the invariance of color descriptors to photometric events such
as shadow and highlights. We measure the performance over an extended range of
common recording conditions including significant photometric variation.

105
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We demonstrate the intensity-normalized color invariants and the shadow invari-
ants to be highly distinctive, while the shadow invariants are more robust to both
changes of the illumination color, and to changes of the shading and shadows. Over-
all, the shadow invariants perform best: they are most robust to various imaging
conditions while maintaining discriminative power. When plugged into the SIFT
descriptor, they show to outperform other methods that have combined color in-
formation and SIFT. The usefulness of C-color-SIFT for realistic computer vision
applications is illustrated for the classification of object categories from the VOC
challenge [134], for which a significant improvement is reported.

Chapter 4: Quasi-periodic Spatio-temporal Filtering This chapter presents
the online estimation of temporal frequency to simultaneously detect and identify the
quasi-periodic motion of an object. We introduce color to increase discriminative
power of a reoccurring object and to provide robustness to appearance changes due
to illumination changes. Spatial contextual information is incorporated by considering
the object motion at different scales. We combined spatiospectral Gaussian filters and
a temporal reparameterized Gabor filter to construct the online temporal frequency
filter.

We demonstrate the online filter to respond faster and decay faster than offline
Gabor filters. Further, we show the online filter to be more selective to the tuned
frequency than Gabor filters. We contribute to temporal frequency analysis in that
we both identify (“what”) and detect (“when”) the frequency. In color video, we
demonstrate the filter to detect and identify the periodicity of natural motion. The
velocity of moving gratings is determined in a real world example. We consider
periodic and quasi-periodic motion of both stationary and non-stationary objects.

Chapter 5: Color Textons for Texture Recognition Texton models have
proven to be very discriminative for the recognition of grayvalue images taken from
rough textures. To further improve the discriminative power of the distinctive texton
models of Varma and Zisserman (VZ model) (IJCV, vol. 62(1), pp. 61-81, 2005), we
propose two schemes to exploit color information. First, we incorporate color infor-
mation directly at the texton level, and apply color invariants to deal with straight-
forward illumination effects as local intensity, shading and shadow. But, the learning
of representatives of the spatial structure and colors of textures may be hampered by
the wide variety of apparent structure-color combinations. Therefore, our second con-
tribution is an alternative approach, where we weight grayvalue-based textons with
color information in a post-processing step, leaving the original VZ algorithm intact.

We demonstrate that the color-weighted textons outperform the VZ textons as
well as the color invariant textons. The color-weighted textons are specifically more
discriminative than grayvalue-based textons when the size of the example image set
is reduced. When using 2 example images only, recognition performance is 85.6%,
which is an improvement over grayvalue-based textons of 10%. Hence, incorporating
color in textons facilitates the learning of textons.

Chapter 6: Material-specific Adaptation of Color Invariant Features.
For the modelling of materials, the mapping of image features onto a codebook of
feature representatives receives extensive treatment. For reason of their generality
and simplicity, filterbank outputs are in use as features. The MR8 filterbank of
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Varma and Zisserman is performing well in a recent evaluation [120]. In this chapter,
we construct color invariant filter sets from the original MR8 filterbank. We evaluate
several color invariant alternatives over more than 250 real-world materials recorded
under a variety of imaging conditions including clutter. Our contribution is a material
recognition framework that learns automatically for each material specifically the most
discriminative filterbank combination and corresponding degree of color invariance.
For a large set of materials each with different physical properties, we demonstrate the
material-specific filterbank models to be preferred over models with fixed filterbanks.

Chapter 7: The Distribution Family of Similarity Distances. We report
that the Lp-norms – a class of commonly applied distance metrics – from one feature
vector to other vectors are Weibull-distributed if the feature values are correlated and
non-identical. Although these properties are common for different types of multimedia
features in practice, we illustrate them to hold for the domain of image features. We
consider image features that are commonly used in the realm of computer vision tasks.

In the experiments, we show that the values of image features are correlated and
non-identical, and demonstrate that the Weibull distribution describes the distances
between them very well. The Weibull distribution estimates accurately the distance
below which to expect the most similar instances to an image feature.

8.2 Conclusions

In this thesis, we have investigated the quality of variant and invariant features.
Various reasonable degrees of invariance that can be investigated on a local scale
have been considered. As a consequence, the thesis makes a contribution to low-level
image analysis: it provides solutions to the quest which local features to choose for
more or less specific problems.

First, we conclude on which features perform well generally and which do not.
From Chapters 2 we conclude that the hue-based invariant is not stable, hence we
exclude it from further general conclusions. As expected, we have found in Chapter
2 that for any invariant the more invariant a feature is, the less stable it becomes,
but also the more robustness to variations of the accidental conditions is gained. We
conclude that an intermediate level of invariance is suited for many tasks. We have
found in Chapters 2, 3 and 5 the intensity-normalized image derivatives to be very
descriptive of image edges and yet robust to imaging conditions. Similarly, in Chapter
6 the intensity-normalized filterbank has proven more distinctive for texture modelling
than are other filterbanks with different variant or invariant properties.

The success of the measurement of image edges by invariants based on intensity-
normalization may be explained by the dominating appearance effects. Image edges
are highly localized, and their appearance is dominated by surface orientation relative
to the illumination direction and camera viewpoint. For changes of these parameters,
but also for a change of camera gain or illumination intensity, the main appearance
effect is a change of local intensity. We conclude that these effects are suppressed well
by a straightforward normalization of intensity.

Second, we conclude that for region-based descriptors, rather than point-based
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features, other observation effects start to play a role. Regions descriptors are still lo-
calized but have a larger support area than have image edges. As a consequence, they
are more probable to be perturbed by shadow and shading effects. For region-based
descriptors, we have found in Chapter 3 that indeed shadow and shading invariants
are the preferred features. This is an interesting result, as many state-of-the-art
applications in computer vision are built upon region-based descriptors.

Third, we have contributed to the understanding of statistics of similarity. In
Chapter 7, we have derived the distribution family of similarity distances between one
and other descriptors in a dataset. Comparison to and retrieval of images or image
regions is a fundamental issue to be resolved in many computer vision and image
retrieval applications. We conclude from our results that knowing the statistics of
similarities improves significantly the retrieval of similar descriptors.

Fourth, we have addressed in Chapter 6 the problem of selecting invariants not
only for the task at hand but also for the object at hand. The proposed framework
is a first attempt to maximize the information about an object in terms of extracted
features. The improvements in performance are promising, which shows that object-
specific representation is an fruitful direction for future work.
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Samenvatting∗

In dit proefschrift is de kwaliteit van beeldkenmerken, elk met een specifieke invari-
antie voor effecten in het beeld, verkend. Het scala aan invariante eigenschappen
betreft diegene die toe zijn te schrijven aan toevallige omstandigheden van de vi-
suele scene zoals die in het beeld vastgelegd is. De resultaten van de evaluatie van
beeldkenmerken worden besproken per hoofdstukken in de volgende paragrafen:

Hoofdstuk 2: Quality of Variant and Invariant Features for Color Image
Processing. In dit hoofdstuk zijn kleurinvarianten geevalueerd op basis van eigen-
schappen die belangrijk zijn voor beeldverwerking. Voorafgaand aan de evaluatie is
een kader opgesteld met daarin fysische parameters van de beeldformatie, Gaussische
filters die kleur, vorm en textuur in het beeld meten, en invarianten gebaseerd op de
filters om effecten in de beeldformatie tegen te gaan. De bijdrage van dit hoofdstuk
is de evaluatie van invarianten.

Ondanks de nonlineaire bepaling van de invarianten, zijn de invarianten bijna net
zo stabiel onder lage beeldintensiteit en JPEG compressie als de Gaussische filter-
metingen, kortweg varianten genoemd. Verder hebben de invarianten, met uitzonder-
ing van de hue-gebaseerde invariant, inderdaad een lage respons onder de irrelevante
variaties in het beeld, terwijl ze covarieren met relevante beeldinformatie.

Hoofdstuk 3: Performance Evaluation of Local Color Invariants. In
dit hoofdstuk worden kleurinvarianten als lokale descriptors van het beeld vergeleken
met grijswaarde descriptors. De evaluatie methodologie van Mikolayzcyk and Schmid
[84, 85] wordt aangepast, met als doel de basis van descriptors, namelijk de on-
derliggende gradient-metingen, te vergelijken. Zowel het onderscheidend vermogen
als invariante eigenschappen onder scene variatie en onder specifieke variatie zoals
schaduw en speculariteit worden geevalueerd. Uitgangspunt is hier het nut van
de beeldkenmerken voor het beschrijven van alledaagse, 3-dimensionale objecten in
beelden.

Intensiteits-genormaliseerde metingen en schaduw invarianten blijken zowel zeer
beschrijvend als robust tegen de meest voorkomende variaties in alledaagse opnames.

∗Summary, in Dutch.
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De schaduw invarianten zijn te prefereren als significante variatie van belichtingsricht-
ing is te verwachten. Deze invariant is ook in de veelgebruikte SIFT descriptor [79]
ingebouwd, waarmee aangetoond wordt dat het classificeren van objecten uit de uitda-
gende VOC dataset [134] significant verbeterd kan worden.

Hoofdstuk 4: Quasi-periodic Spatio-temporal Filtering Dit hoofdstuk pre-
senteert, binnen de Gaussische set van beeldkenmerken, een online filter voor het
meten van repeterende objectbeweging. Het doel is om zowel frequentie te meten als
te detecteren, d.w.z. te lokaliseren in de tijdsdimensie. Kleur wordt meegenomen als
extra kenmerk om onderscheidend vermogen te vergroten, en om kleurinvariantie te
kunnen afleiden. Spatieele context wordt inherent beschouwd door het gebruik van
Gaussische metingen, zodat het ook mogelijk wordt objectbeweging op verschillende
schalen te analyseren.

Het voorgestelde filter is een online Gabor filter, en verschilt van het traditionele,
offline Gabor filter. Het online filter reageert sneller en dooft sneller uit dan offline
filters. Verder is het online filter beter in staat om een bepaalde frequentie te meten.
Het nut van het online filter wordt aangetoond in verschillende video-opnames van
diverse, zowel stilstaande als bewegende, objecten.

Hoofdstuk 5: Color Textons for Texture Recognition Modellen van
textuurprimitieven, ook wel textons genoemd, zijn erg informatief gebleken voor
het beschrijven van ruwe texturen. Om het onderscheidend vermogen van texton-
modellen verder te vergroten, stellen we twee schema’s voor om kleurinformatie toe te
voegen. Eerst doen we dit direct op het niveau van textons, door textons te verkrijgen
uit het kleurenbeeld. Maar, het is niet efficient om alle kleur- en vormcombinaties te
moeten leren. Daartoe stellen we een tweede aanpak voor, die de texton-modellen a
posteriori weegt met de kleurinformatie, zodat kleurinformatie niet de vormbeschrijv-
ing beinvloed maar slechts nader specificeert. Deze aanpak blijkt meer onderscheidend
dan zowel het grijsmodel als het leren van kleur direct op het niveau van de textons.
Vooral als de leerset klein is, zoals een set van slechts twee beelden, wordt een signif-
icante verbetering behaald van 10% tot een herkenningspercentage van 86% voor de
CURET dataset van ruwe texturen.

Hoofdstuk 6: Material-specific Adaptation of Color Invariant Features.
Voor het modelleren van materialen is een veelbeoefende aanpak om het beeld uit
te drukken in typische materiaal-primitieven. Deze primitieven worden veelal uit
filterbank-responses geleerd, vanwege het generieke karakter en de simpliciteit van een
filterbank. De MR8-filterbank van Varma en Zisserman blijkt zeer discriminerend in
een recente evaluatie op de CURET dataset [120]. In dit hoofdstuk construeren we
verscheidene filterbanken met kleurinvariante eigenschappen. De voorgestelde filter-
banken worden geevalueerd op de ALOT dataset van 250 alledaagse materialen.

De bijdrage van dit hoofdstuk is een framework wordt voorgesteld dat in staat is
om zonder tussenkomst van een expert te leren welke selectie of combinatie van de
voorgestelde filterbanken het beste een specifiek materiaal van andere onderscheid.
Voor de grote dataset van materialen met verschillende fysische eigenschappen wordt
gedemonstreerd dat met materiaal-specifieke filterbank-modellen betere resultaten be-
haald worden dan met een vooraf vastgelegde keuze.

Hoofdstuk 7: The Distribution Family of Similarity Distances. Om
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beelden te vergelijken is een maat voor similariteit nodig. Veelal wordt een beeld-
kenmerk gerepresenteerd als meerwaardige vector, en om twee of meerdere vectoren
te vergelijken wordt een Lp-norm – een klasse van metrieken – als similariteitsmaat
gehanteerd. In dit hoofstuk wordt afgeleid dat Lp-normen tussen (beeld)kenmerken
die gerepresenteerd worden als meerwaardige vectoren een vaste statistische verdel-
ing met slechts enkele parameters volgen. Aangetoond wordt dat als de waardes van
de te vergelijken vectoren correleren en niet-identiek verdeeld zijn, de similariteiten
tussen een en andere vectoren een Weibull-verdeling volgen. Ondanks dat deze eigen-
schappen gelden voor vele typen kenmerken – ook voor andere media dan beelden –
illustreren we dat voor Weibull-verdeling optreedt voor similariteiten tussen veelge-
bruikte beeldkenmerken.





Dankwoord

Ik ben ontzettend blij dat dit onderzoek tot een mooi einde is gekomen. Het is
spannend, intrigerend, zwaar, mooi, teleurstellend, maar vooral vormend geweest.
Deze kenmerken opsommend, komt met name het diffuse karakter van onderzoek naar
boven. Dat is wat me enorm aangesproken heeft toen ik ermee begon, in oktober 2002.
Ik herinner me nog goed dat ik met een biertje op een grasveldje zat, met wat vrienden;
samen waren we naar een band aan het luisteren. Ik raakte daar in gesprek met
een promovendus, die me vertelde over zijn onderzoek naar hoe te meten aan video
om uitspraken te kunnen doen over de semantiek ervan. Een prachtig onderwerp;
inderdaad, later zijn we collega’s geworden. Cees, dank voor je enthousiasme.

Eenmaal begonnen aan mijn eigen onderzoek, ben ik enorm geéfnspireerd door
Jan-Mark, mijn dagelijks begeleider. Ik moest een behoorlijke sprong maken om van
mijn afstudeerproject in Twente op het niveau van mijn nieuwe groep, ISIS, te komen.
Jan-Mark, dank voor de tijd en moeite die je daarin hebt gestoken. Meer ben ik je
dankbaar voor het verbreden van mijn blik – vaak heb je me interessante artikelen
aangereikt om te laten zien wat er nog meer speelt in de wereld van de wetenschap.
Natuurlijk heb ik ook genoten van je praktische insteek. Waren er foto’s nodig, dan
zaten we even later op de fiets, met een daklozenkrant in de hand op zoek naar
verschillende bomen in Amsterdam om de verschijningsvormen van texturen vast te
leggen. Schreef ik een paper over het meten van beweging, dan nam ik de camera van
thuis mee, en zat ik er later mee in Artis om een anemoon te bewonderen. Jan-Mark,
dank!

Waar Jan-Mark mijn blik verbreedde, heeft mijn andere begeleider, Arnold, mijn
blik weer geconcentreerd om duidelijk te maken dat wetenschap ook hard werken is
om bepaalde doelen te realiseren. Niet alleen in het schrijven van papers, of het
bezoeken van conferenties, maar ook op persoonlijk vlak. Zo herinner ik me het zeer
ongewone “sinaasappelpers” gesprek, waarvoor ik je erg dankbaar ben, Arnold – jouw
begeleiding in het laatste jaar heeft me gevormd als collega-onderzoeker.

De onderzoeksgroep werd al even genoemd, ISIS, waar ik me erg thuis heb gevoeld.
Goede mensen, leuke collega’s, en ook al was ik naar het einde toe regelmatig afwezig
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bij de koffiepauzes, ik ben jullie erg dankbaar voor de prettige sfeer. Met Giang,
Aristeidis, en mijn kamergenoot Frank heb ik met veel plezier de mijn eerste ASCI
conferentie bezocht. Bij de andere Frank kon ik altijd terecht voor een vraag, opval-
lende was dat het vaak eindigde in gesprekken over muziek, kunst, of politiek. Jan,
Cees, Dennis, Sumit, Michiel, Sander, en Arjan, dank voor de vele discussies over
het werk maar vooral voor de gezellige pauzes. Enkele van mijn huidige collega’s bij
TNO heb ik leren kennen tijdens deze periode: Jeroen, Erik, en Andy, op een goede
toekomst! Theo, Sennay, Minh, Ioannis, Arjan, and Thang, thanks for the nice soc-
cer games – and remember, not bad, second over all! Virginie, diep dankbaar ben
ik je dat je altijd aanspreekbaar bent geweest, en vooral de rust die je aanbracht op
hectische momenten. Joost, je hebt me nog ingewijd in het meten in beelden, en van
Cor heb ik regelmatig een inleiding gehad in de patroonherkenning, want met beide
interessante onderwerpen was ik niet bekend toen ik bij ISIS kwam. Joost en Cor,
bedankt!

Mijn goede vrienden Pascal en Joost, bedankt voor de enerverende avonden uit!
Jullie volhardende initiatief om in Eindhoven, Amsterdam of Volendam een biertje
te gaan drinken waardeer ik enorm. Ellen, Afke, Diana, Amy, Esther, Tineke, Fieke,
Marijke, en Lisa, dank voor de ontspanning tijdens de gezellige verjaardagen, kermis-
sen en housewarmings!

Mijn familie, jullie zijn heel belangrijk geweest. Het tweewekelijkse eten op don-
derdagavond met mijn gezin, en op vrijdag met mijn schoonfamilie, heb ik met name
in de laatste maanden ervaren als ultiem rustpunt. Lekker een glas cointreau of Shiraz
erbij, fantastisch! Mijn broer en zus, Nico en Marijke, jullie dank ik voor de getoonde
interesse, en mijn zwager Michel voor het spelen (?) van de advocaat van de duivel.
Mijn ouders, Sjaak en Carla – jullie zijn fantastisch, dank voor jullie warmte! Van
de prachtige olijfboom die ik van jullie heb gekregen, zal ik nog lang genieten, en
herinnert me aan een mooie periode in mijn leven.

Ina, mijn lieve vriendin, samen delen we de liefde voor zoveel: reizen, sport,
gezelligheid, en het ondernemen van allerlei activiteiten. Voor het promoveren heb
ik alleen gekozen, maar ik heb in alles het gevoel gehad dat ik ook dit met je kon en
nog steeds kan delen. Voor je interesse, onvermoeibaarheid, liefde, en enthousiasme,
ben ik je heel dankbaar. Maar niet alleen nu, dat zal ik altijd blijven, zoals ik hoop
dat we samen nog van alles zullen beleven,

Gertjan
Edam


