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Abstract—1In this paper, we deal with the synthesis prob-
lem of conformal array antennas using a mean-field neural
network. We applied a discrete version of mean-field neu-
ral network proposed by Vidyasagar [1]. This technique
is used to find the global minimum of the objective func-
tion, which represents the square of the distance between
the required and actual radiation pattern. We compared
the results with those obtained by an iterative least square
synthesis.

[. INTRODUCTION

Since a few decades, the synthesis problem for a given
complex radiation pattern has been extensively studied
and investigated [2]. For its linear characteristic, the cre-
ation of shaped patterns is well-known in technical litera-
ture.

In recent years, conformal arrays have attracted great
attention. They can offer some advantages in compari-
son with linear or planar arrays, like: fulfillment of struc-
tural and/or aerodynamic requirements without apprecia-
ble degradation of the antenna performances, reduction
of the interaction between the radome and the antenna,
wider scan angles without rotating/moving antennas and
reduced radar cross section of the platform. Unfortu-
nately, the corresponding mathematical formulation of the
far field is more complicated. This is due to the fact that
the effective height of the array is no longer the product
of element pattern and array factor. Besides, the polariza-
tion properties depend on the single radiator and on the
geometry of the array.

Moreover, many engineering applications require a more
and more sophisticated design of the radiation pattern,
given in terms of the amplitude of the co-polar and cross-
polar components. The phase pattern is not constrained
and is available as a further degree of freedom to improve
the design. However, the corresponding problem is not lin-
ear, and the least square method leads to the minimization
of a functional, which can have several local minima. For
this kind of problems, algorithms like the iterative least
square (3], generalized projection [4] and adaptive beam-
forming [5], based on Newton method, can be trapped in
spurious solutions.

In last years, stochastic algorithms, like simulated an-
nealing [6] and genetic algorithm [7], and deterministic
algorithms, like mean-field neural network [6] have been
extensively developed. They are more reliable and robust
to the spurious solutions, although more time consuming.

The matching points technique and the least square
method lead to the minimization of an objective func-
tional, which represents the square of the distance between
the required and actual radiation pattern. Due to the com-
plexity of this functional, we have used a discrete version
(8] of a reliable algorithm, based on Vidyasagar mean-field
neural network [1].

In section II, we apply the least square method and
matching point technique to the synthesis problem. A
brief description of Vidyasagar mean-field neural network
is given in section III. Finally, in section IV, some numer-
ical simulations show the performances of the proposed
algorithm.

II. SYNTHESIS PROBLEM FORMULATION

We consider a conformal array antenna of N elements.
R, is the effective height (radiation vector) of the array
when only the n-th antenna is excited by a unitary current.
In a linear system, the effective height A of the overall array
can be written as a linear combination of vectors h,,, i.e.:
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where the symbols (¢©) (¢7) indicate the copolar and
crosspolar components, respectively, and I,, are the un-
known excitation coefficients normalized to a unitary cur-
rent. Given the design requirement on the amplitude fy4
of the radiation vector 77:(1; the syntheg,is problem is to find
the N-dimensional complex vector I and/or geometrical
parameters that make the array radiation pattern as close
as possible to the required one. In order to solve this prob-
lem, we have considered the following functional equation:
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By applying the matching point method in the M direc-
tions {(Gm, dm)M_1, (2) can be rewritten as:
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Least squares formulation leads to the minimization of the
functional f:
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where o are the weights of the functional, (f{, f{°7)

and (wfiw), wff")) are amplitude and phase of the radiation
pattern, respectively.
(4) can be rewritten as:

f(] w(co) cr) Z Z I*] Alj

i=1,N j=1,N

2. 2

i=1,Nr=1,M

a2y 1V 4 ol (21 e
(5)
where
M
Aig =Y ol ZED (25 + ol (Z50) (Z5D) (6)
m=1

1

and * is the conjugate operation. In (5), the constant term
is neglected, since it is irrelevant in the minimization pro-
cedure. Note that the functional f is not quadratic, since
it depends exponentially on 2M phases of the required
radiation pattern.

III. MEAN-FIELD NEURAL NETWORKS

The non-linear mean-field neural network. introduced
by M. Vidyasagar [1], is described by the following system
of differential equations:
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where @ and § denote the potential and the state of the
net, respectively, H(-) is a multilinear polynomial, g(-) is
a strictly increasing C* threshold function such that:
lim g(z)=0, lim g(z)=1,
I~ —00 —0oC (8)
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[ is a positive real parameter, which is analogous to the
inverse of the temperature in the annealing physical phe-
nomenon [9], and Nb is the number of neurons. An im-
portant property of mean-field neural networks is that the
stationary solution of (7) converges to the local minima of
A [6):
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which is a Lyapounov function for (7). It has been showed
in [1] that for 8 — oo the state § of the net converges to
a local minimum?® of H(3). In [8], it has been proposed a
discrete version of Vidyasagar mean-field neural net:
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which has the same properties of the continuous one, if
0<ALI.

IV. NUMERICAL SIMULATIONS

In order to apply the neural net, we must turn the
functional f into a multilinear polynomial, with the same
global minimum. This can be accomplished by expand-
ing the feeding currents and the phases of the required
radiation pattern in terms of boolean variables, i.e.:
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where |Ip| is a constant current, j is the imaginary unit

and s, §, p are boolean variables. For these unknowns, it

is banal to verify that:
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Finally, substituting (11) in (5) and resorting to (12), we
obtain the unique multilinear functional H, which verifies
the following equality:
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The design requirement on the radiation vector is given
by means of the lower and upper masks for the amplitudes
of the copolar and crosspolar components. Since the al-
lowable masks are, in fact, a set of functions, it is always
possible to find one that is closer to the pattern, which can
be radiated by the given array. Of course, the best approx-
imation is obtained projecting the pattern, radiated by the
array, on the set of masks.

Now, we focus the attention on the choice of the param-
eters {a,}}, and 8. We assume that the vector {o, }M,
is equal to one, in order to use the same weights for each
point of the required radiation pattern. It is known, from
annealing physical phenomenon and from convergence the-
ory of the simulated annealing [9], that the parameter 5
must increase slowly like the logarithmic function. How-
ever, in practical applications the more efficient strategy,
from the computational point of view, is obtained with
a geometrical progression [6]. In accordance with [8], we
have chosen this initial value for 3:
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The proposed procedure can be summarized as follows:

» Step 1)  Given the element patterns, calculate the A
matrix.

« Step 2)  Evaluate the multilinear polynomial H.

« Step 3) Apply the discrete version of Vidyasagar

mean-field neural network, in order to minimize H.

« Step 4) Using the projection method, find the mask
closer to the radiation pattern, produced by the array.

o Step 5)  If the effective height is not accurate enough,
return to step 2.

First, we tested the algorithm on a conformal array an-
tenna demonstrator, manufactured at the TNO-Physics
and Electronics Laboratory. The demonstrator consists of
an array of 65 open ended waveguides (WR90), mounted
on a circular cylindrical structure. The radius of the cylin-
der is 20.97) (wavelength) at the frequency 9GHz. The ar-
ray consists of 5 rows of 13 elements, spaced 1.26 (vertical
interelements distance) and .98 (horizontal interelements
distance). In our simulation, the upper and lower masks
are rectangular windows 6° and 3° wide, respectively. In
fig.s 1-2, we show the amplitude and phase of the radia-
tion pattern obtained with the proposed algorithm. Fig.s
3-4 show the effective height for the iterative least square
method [3]. Although the required radiation pattern is
constrained to be different from zero only in a very nar-
row azimuthal window (6°), the neural network algorithm
achieves a good performance.

In order to stress the role of the phase, we considered
the design of a uniform radiation pattern (the lower and
upper masks are constants) for an array of 135 elements
placed on the same cylinder of the previous example. Fig.s

5-6 show a better performance of the proposed algorithm
with respect to the iterative least square method (fig.s 7-
8), in terms of reduction of the mean square error (~ 6dB).

V. CONCLUSIONS

In this paper, we have proposed an algorithm based
on the mean-field neural network and we have compared
it with the iterative least square method, presented in
[3]. Numerical simulations have shown that the proposed
method is reliable and robust to spurious solutions, but it
is time consuming.

In the first example, the required radiation pattern is
significative only in a narrow azimuthal window. Although
the phase distribution has few degrees of freedom, the neu-
ral network algorithm achieves a good performance. Of
course, the reduction of actual unknowns leads to a func-
tional less complicated, and as a result it decreases the
number of local minima. In this case, the iterative least
square synthesis, based on Newton method. has a good
chance of success.

Whereas, in the second instance, the amplitude distri-
bution is uniform in the azimuthal plane and many more
degrees of freedom on the phase distribution are therefore
available. In this case, the two algorithms find different
solutions, and the iterative least square method is, in fact,
trapped in a local minimum. The better performance of
the proposed algorithm with respect to the iterative least
square synthesis is showed by a reduction of &~ 6dB of the
mean square error.
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Fig. 1 — Amplitude pattern using mean-field neural net synthesis.
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Fig. 2 - Phase pattern using mean-field neural net synthesis.
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Fig. 3 — Amplitude pattern using iterative least square synthesis.
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Fig. 4 - Phase pattern using iterative least square synthesis.
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Fig. 5 — Amplitude pattern using mean-field neural net synthesis.
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Fig. 7 - Amplitude pattern using iterative least square synthesis.
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Fig. 8 — Phase pattern using iterative least square synthesis.



