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 ABSTRACT

Measurements of different types of aircraft are performed and used to obtain information on target characteristics and
develop an algorithm to perform classification between jet aircraft, propeller aircraft and helicopters. To obtain a larger
detection range, reduce background noise and to reduce classification errors in a multi-target environment, a real time
adaptive beamformer algorithm is developed for a three microphone array. The output of the beamformer is submitted to a
tracking algorithm. Acoustic signals from identified tracks are submitted to the classification algorithms. The algorithm is
tested on data recorded during various field trials. The objective of the research, which is part of a research program for the
Dutch Army, is to detect the passage of an aircraft with one or more mechanical wave sensors, either acoustic or seismic.
After detection of a target, classification of the type of aircraft is requested (for example: helicopter-jet-propeller-rpv). If
possible type identification is also requested. Earlier work showed promising results for detection and classification of
helicopter targets. The projects resulted in an algorithm that can detect and classify helicopters, but it was developed to
reject other targets. The chosen approach is to combine new aircraft detection and beamforming algorithms with the
existing algorithms.
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1. BACKGROUND AND INTRODUCTION
The military interest in acoustic-seismic aircraft detection is based on the military requirement to obtain situational
awareness on the battlefield. Traditionally the intelligence about aircraft movement is gathered with (radar) or electro-optic
sensors. However there are possibilities that such assets are not available or do not function as expected due to lack of
coverage or line of sight conditions. An alternative method for detection of targets, less hampered by line of sight
requirements is the use of Unattended Ground Sensors (UGS), for example using seismic or acoustic transducers. More
information on the military perspective of the use of UGS is given in [Stotts 1]. An algorithm developed at TNO-FEL can
be used to detect and classify helicopter targets, using the acoustic signal from a microphone or geophone as input.
Originally a laboratory version implemented in Matlab of a helicopter detection demonstrator was developed based on a
desktop PC [van Koersel 2,3]. Later the demonstrator was extended to detect passing aircraft, and to automatically
discriminate between passes of jet or propeller aircraft. The work regarding aircraft detection and classification is
described in detail in [van Koersel 4,5]. It is noted that relatively successful results are reported on the detection and
classification of the type of aircraft (jet or propeller) passing over a sensor array. The investigation of the possibilities of
the identification of the aircraft model shows less promising results, broadband signatures of jet aircraft show comparable
difference between passes of aircraft of the same model, as they do between passes of different aircraft. It seems that
engine power settings and the flight profile are important factors that determine the spectral properties of the aircraft
passage signatures. The current paper describes the implementation and application of a Delay and Sum (DS) beamformer
and an adaptive Minimum-Variance Distortionless Response (MVDR) beamformer to data recorded using a triangular
microphone array. A comparison is shown between results of both beamforming methods. The adaptive beamformer is
combined with a clutter removal and tracking algorithm developed for underwater applications. Identified tracks can be
submitted to the existing helicopter detection and classification algorithm. Results using this combination are compared to
results obtained using single sensor input, using real data.



2. BEAMFORMER DESCRIPTION
Beamforming techniques to obtain target localisation are described in different papers, for example in the proceedings of
last years Spie Aerosense conference session on UGS [Carapezza 6]. Arrays used for the estimation of the target bearing
range from 8 sensors in a wagon-wheel arrangement [Kaplan 7], a similar arrangement using 7 sensors [Kozick 8] and
circular arrays using 8 microphones [Johnson 9]. Beamforming techniques are also used extensively for underwater
applications, to determine target bearings, to reduce the influence of background noise and to increase detection ranges.
Traditional techniques applied to towed arrays are based on conventional delay and sum beamforming techniques.
Improvements to obtain port-starboard discrimination of targets has led to the use of twin arrays, and later triplet arrays. A
triplet array is an array of hydrophones arranged in a triangle in a single array tube. The array output is beamformed,
subsequently the beamformed result is treated as a triangle of directional hydrophones and submitted to the triplet
beamformer. In [Beerens 10] different beamforming techniques for hydrophone triplet arrays are described and applied to
measured data. We have applied the triplet array beamforming method to the triangular microphone array (1.5 m spacing)
used by TNO-FEL for measuring acoustics targets [van Hoof 11].

2.1 Delay and Sum Beamformer
The conventional delay and sum beamformer is formulated as follows. First the data is transformed to the frequency
domain (by means of an FFT): xk(t) ⇒  Xk(f), where k = 1,2,3 numbers the microphones. In the frequency domain a time
delay corresponds to a phase shift and the 3 microphone outputs can be summed with a compensating phase shift:

p(θ) = ∑k Xk(f) exp (-2 π i f τk), (1)

where the delay times τk depend on the direction of arrival of arrival (bearing) denoted by θ  as :

τ1 = -  d/c  (1/3√3 cosθ ) (2a)

τ2 = + d/c  (1/6√3 cosθ + 1/2 sin θ ) (2b)

τ3 = + d/c  (1/6√3 cosθ  - 1/2 sin θ ) (2c)

The microphone array is an equilateral triangle with sides d, c is the speed of sound. For all bearings the three outputs are
combined in a different way, but only for the true target bearing the three outputs are summed coherently (in phase). Only
for this bearing the beamformer output will be 3 times higher than a single microphone output, resulting in a maximum
processing gain of 5 dB. More important than this extra gain may be the ability of the beamformer to estimate the bearing
of the target. Although with only three microphones in the array the beamwidth is rather high, the bearing can be estimated
quite accurately in case of high SNR.

2.2 MVDR beamformer
In the Minimum-Variance Distortionless Response (MVDR) beamformer one maximises the beam output SNR by means
of minimising the total output power while maintaining a constant gain in a specified beam direction. The goal is to
suppress directional noise from sources outside the specified beam by adaptively changing the array beamformer, so that
the sidelobes of these sources are lowered under the background noise.
An additional advantage of this process is a reduction of the beamwidth. In the mathematical description we will use a
matrix notation to reduce the writing. The (unweighted) conventional DS beamformer in this notation is (cf. Eq. (1)):

p = d* · X (3)

and the power is

p2 = |d* · X|2 = (d* · X )(X · d*)* (4)

where d is the steering vector and X is the vector with complex microphone data for one  frequency bin, both have a length
K=3.

In the adaptive (MVDR) beamformer the steering vector is replaced by an optimal steering vector [Nielsen 12]:



p = w* · X (5)

where the optimal steering vector is related to the covariance (or correlation) matrix R = XX*:

w = d R-1 /(d* R-1 d) (6)

In the case of uncorrelated noise the correlation matrix has only contributions from the auto-correlation’s on the diagonal,
i.e. R=I. In this case the adaptive beamformer is equivalent to a conventional beamformer. For data with directional noise
the matrix departs from unity and the adaptive beamformer becomes efficient.

The MVDR beamformer output  power now becomes:

p2  = w* R w  =  d* /(d* R-1 d) R d /(d* R-1 d) =  d* R d /(d* R-1 d)2   = (d* R-1 d)-1 (7)

The R’s and d’s have been eating each other and we are left with a relatively simple expression in which the inverse
covariance matrix R-1 plays the central role. It is sandwiched between two conventional steering vectors. In spite of the
simplicity of the MVDR algorithm there are some problems with the implementation of this beamformer. These problems
are:

•  How to compute R?
•  Can we invert R?

The matrix R depends on time and frequency. It is hard to determine the proper integration time and bandwidth to compute
R in a robust way, without smearing out vital information. Integration times should be short to cope with rapid varying
noise sources, but long enough to obtain statistically stable information. The tuning is complicated (it depends on the
sensor, the environment, the self-noise, etc).

The inversion of R is sometimes cumbersome. Since R is estimated from measurements, with associated measurement
errors, some matrix elements may be poorly estimated. Especially in the cases of interest (with high non-diagonal
elements) the matrix may become nearly singular. The condition number (smallest eigenvalue over the largest eigenvalue)
becomes close to machine precision and inversion gets unstable. A trick to get over this problem is diagonal loading. By
addition of small values to the auto-correlation the invertability is restored. Of course this non-physical addition decreases
the performance. In fact the MVDR beamformer is mixed with a DS beamformer and if large loading is required the
performance will be no better than that of a DS beamformer. To find a stable but low loading requires again a lot of tuning.

2.3 Application to a three-microphone array
The main problem in practical application of MVDR to sonar arrays is to find a reliable estimate of the covariance
matrices. Problems arise from the fact that loud nearby noise sources do not “stay in the same beam” long enough to
provide an accurate, time-stationary estimate of the matrix elements. Still an attempt was made.

The covariance matrices (R) are computed in the frequency domain. The integration time is 1 s and the integration
bandwidth is 3 Hz. The results are very sensitive to these parameters. Longer integration gives more robust results, but the
averaging also fades out the instantaneous noise bursts to which one actually wants to adapt to.

The inversion of R takes place after scaling the matrix (by 3/trace(R)), such that the average diagonal element is 1. A
small loading (10-2) was found large enough for stable condition numbers.
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Figure 2.1: Scaled covariance matrices for only rain and wind noise (left) and for wind and helicopter noise (right)

In Figure 2.1 16 typical examples of R are plotted using experimental data. The matrices are averaged in terts band
frequencies, starting at fc = 10 Hz. In the case that only onmi-directional noise (wind and rain) is received (left-hand
panel), the matrices look very much like the identity matrix.

The three microphones show no correlation for wind noise. All the off diagonal components are close to 0. In that case
MVDR beamformers are mathematically equivalent to conventional beamformers. However, in case of directional noise
bursts (e.g. from the passing helicopters) off-diagonal elements become alive, in this figure mostly for the lower frequency
bands (for this type of noise the spatial correlation function is cos(kx)). Here the MVDR beamformer become effective.

To apply the MVDR beamformer algorithm to our three-microphone array, we have derived the analytical expression for
the inverse of the covariance matrix. Given the input from the three sensors we calculate R without the use of matrix
inversion routines, which increases accuracy and decreases computation time.

3. COMPARISON OF DS AND MVDR BEAMPATTERNS
To compare the results of both beamforming methods, data gathered during a field trial is processed, and beampatterns are
calculated using both the DS and the MVDR beamformer. For both methods 72 beams covering the whole horizon were
calculated. The data originates from a field trial held in May 1999 on Soesterberg airbase in the Netherlands. A map of the
measurement location is shown in figure 3.1.



Figure 3.1: Measurement position on Soesterberg airfield. The microphone array is located in the middle of the
compass ring, the outer ring shows the direction of the microphone array, with M1 direction (0) pointing
towards 150 degrees compass direction.

The microphone array was located in the centre of the two compass circles. The inner circle shows the compass headings
(0 upwards), the outer circle shows the heading of the microphone array, with microphone 1 pointing towards compass
direction 150. Table 3.1 gives some information on the type of aircraft present in the recording used for comparison of the
beampatterns. The recording duration is approximately 8 minutes, it contains approaches of 2 helicopters (both Cougar),
and one transport aircraft (Fokker 27).

Table 3.1 Recording info of run 6_9 of May 27, 1999 at Soesterberg airbase.

12:02.20 RR Start recording
12:02 Cougar 1 From 270 over East-West runway to intersection in front of

measurement van
12:03 Cougar 1 Lands in front of building 3, taxi to building 1
12:05 Cougar 2 Lands in front of building 1
12:06 F27 Lands on East-West runway from direction 270
12:10.51 SR Stop recording

The compass bearing for microphone 1 was approximately 150°, which means that the aircraft arriving from bearing 270
are seen by the array in a direction of approximately 120° -130° degrees. The bearing towards the buildings mentioned in
table 1 are approximately 230-260 degrees.
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Figure 3.2 Beampatterns calculated for both DS (left) and MVDR (right) beamforming algorithms using run 6_9
recorded at Soesterberg airfield. The bearing is shown at the x axis in degrees, the recording time is shown
along the y axis. Both beampatterns are scaled between 0 and 1.

Inspecting both beampatterns, the most striking difference is the beamwidth and the associated possibility to separate
different sources. In the right graph we are able to separate three sources (between t = 50 s and 150 s), using the DS
beampattern that is not be possible.

The beampattern resulting from the calculation of the MVDR beamformer is used as input for an algorithm to reduce the
detection of false targets. First local maxima are identified in the beampattern without using a threshold, so that low SNR
targets are not lost. Clutter removal is performed by the convolution of a detection window and the local maxima. An
example of the target detections extracted from the MVDR beampattern show in figure 2.3. The left graph shows the target
detections after clutter removal, the right graph shows the original MVDR beampattern.
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Figure 3.3 Left: Local maxima in the MVDR beampattern, Middle: target detections after clutter removal, Right:
tracked beam.

After beamforming, clutter removal and tracking, the tracked beam can be submitted to the classification algorithm, to
determine the type of target present in the beam. To facilitate comparison between single sensor results and the results
after beamforming, we have chosen to use the algorithm used to determine the type of helicopter. The algorithm was
described earlier in [van Koersel 2].



4. CLASSIFICATION RESULTS AFTER BEAMFORMING
To compare results of the helicopter classification algorithm on both beamformed and single sensor data, we present the
time-frequency distribution of both the single sensor and the beamfomed data, as well as the classification results obtained
using the data as input for the classification algorithm. For the single sensor data this is straightforward, the pre-processed
sensor data can be submitted to the algorithm immediately. To be able to show classification results after beamforming, we
have to identify a target track first. After track identification, we calculate one beam to the target, for the entire frequency
range of interest. The tracked beam is submitted to the classification algorithm. In our current implementation the target
track has to be identified manually at first, an algorithm performs automatic track following afterwards. The example
shown here is the approach of a Lynx helicopter from a range of approximately 8 km, recorded during measurements in
Dreux France, 1988 [vanHoof 11]. Close inspection of the time frequency plot of the single sensor data (figure 4.1 left)
shows that this dataset is extremely difficult. It contains amplifier switching, necessary since the data was recorded using a
tape recorder with a dynamic range not exceeding 50 dB, as well as data that is nearly at the noise floor of the AD
converter used.
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Figure 4.1 Results of the helicopter classification algorithm for a single sensor(top graphs) and after beamforming and
tracking (bottom graphs. One helicopter is approaching the array from a distance from approximately 8 km.
The left graph shows the time frequency distribution, the right graph shows the output derived from the
classification algorithm (from top to bottom: helicopter type, classification code, main rotor frequency, tail
rotor frequency and speed relative to the sensor).



Comparing the graphs with the classification results show that the classifier connected to the MVDR beamformer can pick
the helicopter up 4 s after the start of the recording, where as the single sensor classifier picks the helicopter up after 27 s.
With a helicopter approach speed of 65 m/s in this run that means a difference in detection range of approximately 1500 m.
The algorithm connected to the MVDR beamformer classifies 55% of the samples correctly, the single sensor classifier
scores 40 % correct. Note that in both cases for this dataset there are no samples that are classified the wrong type.

Figure 4.2 show the results on a single sensor as presented in [van Koersel 2], the dataset was recorded at Soesterberg
1999. Two Cougar helicopters are approaching and landing after eachother, one stationary CH 47 starts up on a platform
near its hangar. For this paper we have processed the first part of the recording, with the two helicopters approaching and
the stationary one starting up.

Time in [s]

F
re

qu
en

cy
 in

 H
z

20 40 60 80 100 120 140
0

50

100

150

200

250

0 20 40 60 80 100 120 140 160
0

5

10

ty
pe

0 20 40 60 80 100 120 140 160
0

5

co
de

0 20 40 60 80 100 120 140 160

10

20

30

40

fm

0 20 40 60 80 100 120 140 160
20
40
60
80

100
120

ft

0 20 40 60 80 100 120 140 160
−100

0

100

v

Figure 4.2: Time frequency distribution of multiple helicopters, two of type 10, one of type 9. Horizontal: time axis (0-
160s), Vertical: frequency axis. Right: Classification results on the data, from top to bottom: helicopter type,
classification code, main and tail rotor frequency and helicopter speed.

To show the ability of the MVDR beamformer to separate targets, we have processed the first part of the recording using
the MVDR beamformer and tracker. Figure 4.3 shows only the beams that were tracked, the data from the tracked beams
was submitted to the classification algortihm.
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Figure 4.3: Tracked beams of the recording with multiple helicopters.
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Figure 4.4: Time frequency distribution of multiple helicopters, two of type 10, one of type 9, Horizontal: time axis (0-
160s), Vertical: frequency axis. Right: Classification results on the data, from top to bottom: helicopter type,
classification code, main and tail rotor frequency and helicopter speed.

The first helicopter that is approaching is correctly classified as type 10, until the bearing is close to the bearing of the
stationary helicopter, then the classifier switches to the louder stationary helicopter. As soon as the new arriving helicopter
appears in the beampattern, the tracker is pointed to that one. The classifier now switches correctly to type 10. The louder
stationary helicopter is surpressed, until the bearing of the arriving helicopter is within 20-30 degrees of the bearing of the
stationary one (after t – 140 s). There are some problems with correct classification, the main rotor is picked up correctly
however.

5. CONCLUSIONS
MVDR applied to a triangular microphone array allows the separation of targets that are not identifiable as separate targets
using conventional beamfomers. The drawback of MVDR is usually loss in frequency resolution, the chosen
implementation with averaging over only three frequency bins results in an output spectrum with enough resolution to be
submitted to algorithms that are used for type classification. Calculation on stored datafiles is faster than real time on a 800
MHz Pentium PC running Matlab. The overall result on classification performance is a larger detection range and less
false classifications in the presence of interfering targets.
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