
Cross-layer Utility-based System Optimization
Maarten Ditzel, Leon Kester, Sebastiaan van den Broek, Martin van Rijn

TNO, Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands
Email: maarten.ditzel@tno.nl

Abstract—Multilevel fusion systems need provisions to opti-
mally schedule scarce processing and communication resources.
To this end, we explore the idea of using utility-based metrics
to optimize the run-time operation of a computation and com-
munication constrained multilevel system, including automatic
decision support measures such as course of action planning.

In a simplified case study, we extend a processing chain
with local utility-based run-time feedback mechanisms. This
allows the processes in the distributed chain to improve their
behavior towards a common measure of effectiveness using
local interactions only. Simulation results show an increased
performance of utility-based optimization over constant rate or
random techniques.

Index Terms—system design; system architecture; system mod-
eling; distributed fusion; autonomous systems; fusion manage-
ment

I. INTRODUCTION

The situations in which observation systems have to operate
are becoming more complex and increasingly dynamic. None
withstanding, these systems are expected to seamlessly work
together to provide their users with actionable information
automatically. Moreover, they are expected be able to adapt
their behavior to the evolving situation without operator in-
tervention. The dynamics of the situation may cause changes
in the capability of sensors, communication and computation
resources, e.g., due to changing weather conditions. Also,
the actuality of the situation may result in a gradual or
sudden alteration of what important information is. Therefore
the next generation fusion systems need to (i) automatically
process information up to higher abstraction levels; (ii) operate
distributedly; and (iii) have provisions to optimally manage
sensors, processing and communication resources to cope with
the changing circumstances.

Modern systems apply different optimization techniques for
sensor management and for selecting which data needs to be
scheduled, using for instance first-come, first-served, priority-
based, or processor sharing (e.g., weighted fair queuing) tech-
niques. However, these optimization techniques do not take
into account the utility of the data for the ultimate effectiveness
of the system. They either use low level information theoretic
measures [1]–[3], or do not use information related measures
at all. Measures based on expected utility are more appropriate,
because they more directly relate to the effectiveness or goal
of the system. In [4], [5] such measures are applied for
sensor management. In [6] the authors derive utility metrics
for classes of data flows, for instance the transmission of an
image over a network channel. However, they do not take into
account the value of the actual data element in a particular

x [m]

y 
[m

]

−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000
−3000

−2000

−1000

0

1000

2000

3000

4000

5000

high value unithigh value unithigh value unit

air surveillance radarair surveillance radarair surveillance radar

ultralightultralightultralight

keep-out zonekeep-out zonekeep-out zone

Map data © OpenStreetMap contributorsMap data © OpenStreetMap contributorsMap data © OpenStreetMap contributors

Figure 1: Overview of the high value unit protection scenario:
two targets approach a high value unit (a moored tanker),
one friendly approaching from the northeast and one hostile
approaching from the northwest.

situation. [7] recognizes the value of using situation dependent
utility measures, but does not provide a method to derive these
during operation (run-time) of a system.

In [8]–[10], utility-based metrics are used in a distributed
system to build a common operational picture. The authors
have shown that the use of utility-based metrics to optimize
the communication and the information exchange between
similar functions at object assessment level gives substantial
performance gains. In this paper, we further explore the idea of
using utility-based metrics to optimize the run-time operation
of a computation and communication constrained multilevel
system, including automatic decision support measures such
as course of action planning.

To analyze and assess the potential benefits of utility-based
cross-layer system optimization, we explore the optimization
of a processing chain in a case study. The chain consists of
three functions: course of action planning, goal estimation
and state estimation. Since the system is distributed and the
communication resources are constrained also the optimization
needs to be distributed. For better comprehension of the
interactions and the results, the functions have simplified im-
plementations which, in our opinion, do not limit the validity
of the results. For each function we implement a (local) utility-
based run-time feedback mechanism. The added mechanisms
enable the individual processes forming the distributed chain

507

16th International Conference on Information Fusion 
Istanbul, Turkey, July 9-12, 2013 

978-605-86311-1-3 ©2013 ISIF



object
management

signal
management

acting

assessment

goal estimation
relation estimation

state estimation
recognition

feature extraction
detection

sensing

s
it

u
a
ti

o
n

o
b

je
c
t

s
ig

n
a
l

p
h

y

environment

function type

in
fo

rm
a
ti

o
n

 a
b

s
tr

a
c
ti

o
n

 l
e
v
e
l

management

impact prediction
coa planning

past future

Figure 2: Modified information abstraction model using inter-
nal (run-time) feedback.

to improve their behavior towards a common global metric
using local interactions only.

The paper is organized as follows. First in Section II a
scenario is described (see Fig. 1) in which an air surveillance
radar has to schedule its resources to effectively classify
different airborne targets. Next, in Section III, a simplified
processing model of a processing chain is described, consisting
of three separate functions starting state estimation, up until
course of action planning. Then, in Section IV, an optimization
approach is explained, that enables these functions to optimize
their behavior locally to a global performance metric, in
response to the actual changes in the situation. In Section V
results are presented and compared to different optimization
methods. Finally, in Section VI, we conclude this paper.

II. SCENARIO DESCRIPTION

To assess the performance of utility-based optimization of
a processing chain, we analyze its workings in an exemplary
scenario where a high value unit has to be protected. In this
scenario several assets are available to prevent an aerial attack
of a low flying ultralight aircraft on a moored tanker carrying
hazardous chemicals. An air surveillance radar is available to
scan the airspace for potential threats. Moreover, an armed
helicopter is at standby, first to intercept and deter a detected
threat, or ultimately to engage a hostile target. Apart from
potential hostile ultralights, also other non-hostile planes may
enter the airspace under observation. Of course, engaging one
of these ignorant bystanders by mistake should be avoided at
all times.

Sensing, detection and state estimation take place at the
surveillance radar. Higher level functions such as situation
assessment and course of action planning are located at a
command center unit. Here, it is also possible to issue the
order to dispatch the helicopter. The decision to engage a
target is made when a target enters a keep-out zone. The

size of the zone corresponds to a threshold on a function of
range, velocity and heading, similar to a time of impact, such
that the imminent attack can still be countered effectively. As
a consequence the zone’s boundaries depend on the target’s
actual range, heading and velocity, relative to the position of
the tanker.

Due to communication and/or processing constraints, it is
unfeasible to send all plot data to the command center. As
all processes are automated, the processing chain itself has to
optimize it behavior such that the limited resources are put to
maximum use. Therefore, as already argued, each element in
the processing chain needs quantitative metrics to be able to
decide which data to send or process.

Fig. 1 depicts the scenario graphically. In this scenario
two ultralights approach the tanker. One of the planes (green
trajectory) approaches the keep-out zone, but slowly turns
away and subsequently passes by. The other (blue trajectory)
initially seems to pass by, but gradually turns towards the
tanker to attack it.

III. PROCESSING MODEL

In this paper we investigate the optimization of a processing
chain layered according to an updated version of the informa-
tion abstraction model using internal feedback introduced in
[9] (see Fig. 2). The modifications involve the reordering of
the functionality originally found in the impact layer, and the
subsequent removal of this layer. Its functions are now moved
to situation management (impact prediction). The benefit of
this restructuring is a clear temporal distinction between the
assessment side and the management side.

As case study we have selected three functions of the mod-
ified model: course of action (CoA) planning, goal estimation
and state estimation. Our prime interest is to study the effects
of utility-based decentralized optimization of a processing
chain. Therefore we intentionally use simple implementations
for the three functions. Subsequently, for each function we
implement an internal run-time feedback mechanism, such that
each function is able to optimize its own behavior to improve
the overall effectiveness of the processing chain as a whole in
a structured manner.

A. CoA Planning

For the planning model we choose a simple function to
select one of three possible actions. The function takes a
single parameter as input: the estimated probability p that an
observed target actually is about to perform a hostile act. The
output of the function is one of the three possible actions that
can be taken:
• action A1 – do nothing,
• action A2 – intercept and deter, and
• action A3 – engage and destroy the target.

Each action to choose from has an associated reward RAi
(p)

given by

RAi
(p) = VAi

(p)− CAi
(p), i = 1 . . . 3. (1)

508



Here, VAi
(p) is the anticipated value of taking action Ai given

probability p

VA1(p) = −VT p, (2)

VA2(p) = − VT
EH

p, (3)

VA3
(p) = 0, (4)

where VT is the net worth of the tanker, and EH the effective-
ness of the deterrence. CAi

(p) is the expected cost associated
with action Ai

CA1(p) = 0, (5)
CA2(p) = CH , (6)
CA3(p) = CH + CW + CF (1− p), (7)

taking into account the cost of deploying a helicopter CH , the
cost of deploying a weapon CW , and the cost of inadvertently
destroying a non-hostile (friendly) target CF .

Substituting Eqn. (2) to (7) into Eqn. (1) gives

RA1(p) = −VT p, (8)

RA2(p) = − VT
EH

p− CH , (9)

RA3
(p) = −CH − CW − CF (1− p). (10)

The resulting rewards are depicted in Fig. 3. Finally, the output
of the decision function is the action Ad(p) that maximizes
the expected reward, given the estimated probability p, that is

Ad(p) = arg max
Ai

RAi(p). (11)

Substituting Eqn. (8) to (10) and solving Eqn. (11) gives

Ad(p) =


A1 if p ≤ P12,
A2 if P12 < p ≤ P23,
A3 otherwise,

(12)

where P12 = CHEH

VT (EH−1) and P23 = EH(CW+CF )
VT+EHCF

.

B. Goal Estimation

As exemplary implementation for the goal estimator we take
a function that takes the individual targets’ states as its inputs.
A target’s state includes the target’s position, course over
ground and velocity. Combined with the location of the tanker,
the goal estimator calculates an estimate of the probability
p that a target poses a threat to the moored tanker. Ad hoc
calculation of p is given by

p(r, v, φ) = pr(r) · pv(v) · pφ(φ), (13)

with r the range of a target, v the radial velocity and φ
the heading of target, all with respect to the tanker’s posi-
tion, i.e., a heading of 0 degrees signals that the target is
heading straight towards the tanker. pr(r), pv(v) and pφ(φ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

p

R
A

i(p
)

 

 

do nothing

intercept and deter

engage

Figure 3: Normalized expected reward RAi
for taking action

Ai (with VT = 1, CF = 4, EH = 2, CH = 0.1, and CW =
0.1).

respectively indicate the range, velocity and heading dependent
partial probabilities. These are given by

pr(r) =

{
Rmax−r
Rmax

if r ≤ Rmax,
0 otherwise,

(14)

pv(v) =

{
v

vmax
if v ≤ vmax,

1 otherwise,
(15)

pφ(φ) = 1−
∣∣∣∣φπ
∣∣∣∣ . (16)

Again, this particular implementation of goal estimation is
intentionally kept simple for better comprehension of the
optimization mechanism.

Goal estimation is done using the available state estimates
(r, v and φ). When no current update from the state estimation
component is obtained, the state is predicted using the latest
update and a prediction model to estimate the change of state
and its possible error. For example, a Kalman Filter could be
used with a constant velocity model. In this paper, a simple
constant velocity model is used (i.e., velocity and heading
stay constant, while range changes with time), with errors
increasing linearly in time to a maximum uncertainty.

C. State Estimation

State estimation is the final component of the processing
chain. It is foreseen that a kinematic tracker processes the
contacts delivered by the feature extraction and detection
components. Hence, it is able to provide the goal estimator
with the required position, direction and velocity information.
Moreover, it has additional internal information on the ac-
curacy of these information elements, for instance presented
by a covariance matrix. In the current example, no explicit
tracking is applied, and measurements are passed on with a
set accuracy.

IV. UTILITY-BASED OPTIMIZATION

For the optimization of a processing chain, two approaches
are possible: centralized or decentralized optimization. In
centralized optimization there is a single optimization entity
that reasons about the optimal working of the whole chain.

509



The entity does however require information on the individual
states of each of the constituting functions of the processing
chain. In decentralized optimization each component in the
chain is capable of optimizing its own function. Moreover,
restrictions apply to what functions know or are able to
learn about each others internal behavior, mostly because of
communication constraints and delays.

Irrespective of the approach taken, both the central and
the distributed optimization functions need clues to what is
to be achieved by the processing chain as a whole, i.e., an
expression of the chain’s effectiveness. Once that is known, an
optimization function can reason about how it may improve
the behavior of the function(s) under its control to better meet
the chain’s overall goal. Alternatively phrased, the question is
how to tune the functions’ individual performances to get to
an overall increased effectiveness of the chain. To that end,
we investigate the use of utility functions to express the value
of information for the overall effectiveness.

A commonly heard objection concerning the use of the
concept of utility for system optimization is that it is hard
to derive meaningful utility functions or utility metrics, par-
ticularly during operation of the system. In this paper, we do
not intend to state that this is actually an easy job. We do
however show that a system’s effectiveness can already be
improved with only very basic models and approximations to
calculate the effect of new information. Ultimately, only if
a system designer is able to explicitly express what is utile,
purposeful automatic optimization of a system is possible.

In case also an estimate is available for the cost of process-
ing and sending the data to the receiving functions (in addition
to the anticipated value of new information), we are able to
evaluate the condition

V > C, (17)

where V represents the value of the new data and C the cost
to compute and communicate the data. If this condition is met,
it is profitable to process and exchange the data and have the
receiving functions update their internal state and estimates.
Evidently, in this case the value and cost metrics should have
the same unit. Unfortunately, this is often not the case or even
possible. However, the value and cost metrics can then still be
used to determine the relative gain for each data element

V

C
. (18)

Those elements with the largest relative gains, can then be
selected for further processing and communication.

A. Value of Information

At the heart of the aforementioned approach is the calcula-
tion of the value of new information. We propose to calculate
the value of a new information element based on the effect
it has on the process that uses that information. Thereto, we
first introduce the potential gain in effect Γ(xn, xo) of new
information xn given prior information xo. It should be noted
that both xn and xo possibly represent multi-dimensional in-
formation elements. Then, the value V of the new information

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

p

R
A

i(p
)

 

 

old estimate poold estimate poold estimate po new estimate pnnew estimate pnnew estimate pn

action pattern basedaction pattern based
on old estimate A (p )d oon old estimate A (p )d o

action pattern based
on old estimate A (p )d o

action pattern basedaction pattern based
on new estimate A (p )d non new estimate A (p )d n

action pattern based
on new estimate A (p )d n

gain in rewardgain in rewardgain in reward

Figure 4: Reward of actions and probability density functions
of old and new estimates of p depicting the calculation of Vp.

given the old information can be calculated using

V =

∫
Xo

∫
Xn

Γ(xn, xo)P (xn|xo)P (xo)dxndxo, (19)

where P (xn|xo) and P (xo) denote the probability distribu-
tions of xn (conditional on xo) and xo, respectively. Xn and
Xo contain the range of all possible values for xn and xo.

Once the potential value of new information is known, it
can be used to select what information elements are important
enough to communicate or process. One way, is to communi-
cate the full expression that describes the value of information
to the information providers. Another approach is to calculate
the value’s sensitivity to a change in information and use this
to steer the selection process. The latter is the approach taken
in this paper.

B. CoA Planning

To express the need of the CoA planning module for new
information provided by the goal estimation function that
calculates p, we choose to quantify this need in the form of a
utility function U . As stated, we derive the utility function of
the planning module from the extent to which new information
influences the decision making process. Therefore, we first
define the potential gain in effect due to new information as
the potential gain in reward as

Γ(pn, po) = RAd(pn)(pn)−RAd(po)(pn). (20)

Here, po and pn are the old and new estimated threat prob-
abilities, respectively. Then using Eqn. (19), the value Vp of
new information pn (given the old information po) can be
calculated using

Vp =

∫ ∞
−∞

∫ ∞
−∞

Γ(pn, po)P (pn|po)P (po)dpndpo, (21)

where P (pn|po) and P (po) are the probability density func-
tions of pn (conditional on po) and po respectively. It corre-
sponds to proposing a new estimated probability pn – given the
prior po – and then calculating the integral over the uncertainty
distributions of the old and new estimates, keeping the action
set corresponding to the old po.

510



Given the progressive nature of the underlying processes
that jointly provide the threat probability, it is reasonable to
expect that pn will be an update of the previous estimate po.
Moreover, if we assume P (po) to be normally distributed then
we can expect pn and po to have fully correlated Gaussian
distributions such that

pn = f(po) =
σpn(po − µpo)

σpo
+ µpn (22)

and

P (pn|po) = δ(f(po)− po), (23)

where δ(.) denotes the Dirac delta function. In this equation,
σpo , µpo , and σpn and µpn indicate the standard deviation
and mean of the old and new distributions, respectively.
Substitution in Eqn. (21) gives

Vp(µpn , σpn , µpo , σpo) =∫ ∞
−∞

Γ

(
σpn(po − µpo)

σpo
+ µpn , po

)
σpn
σpo

P (po)dpo, (24)

with

P (po) =
1√

2πσpo
exp

{
−1

2

(
po − µpo
σpo

)2
}
. (25)

This approach is graphically depicted in Fig. 4.
Once we have the above expression for the value of new

information, it becomes possible to determine the sensitivity
of the CoA function to new information by calculating its
partial derivatives. New information consists of two elements:
the mean value of the new estimated distribution of µpn and
it standard deviation σpn . Therefore, we arrive at two utility
functions given by

Uµp
(µpo , σpo) =

∂

∂µpn
Vp(µpn , σpo , µpo , σpo), (26)

and

Uσp(µpo , σpo) =
∂

∂σpn
Vp(µpo , σpn , µpo , σpo), (27)

The values of these derivatives at operating point (µpo , σpo)
are the metrics that will be fed back to the goal estimation
function. With these, the goal estimator will be able to
optimize its behavior to provide the most useful information
for the top level CoA planning function.

In Fig. 5 the feedback metrics are plotted for different
operating points. Fig. 5a shows that sensitivity for changes
in µp is high if σp is small and µp is near a change of action
(see also Fig. 3). Sensitivity to σp is higher in the same cases,
but even more so when µp is near 0.5 and σp is large, as
seen in Fig. 5b. This suggests information has more value if
it makes the uncertainty smaller (i.e., decreases σp), or if µp
varies near values where the best action changes.

C. Goal Estimation

In general, any component may independently reason about
the information it has to deliver to other components based
on their interest expressed in the form of utility. In its term,
it will combine and translate the given requests to express
its own information needs to subsequent modules. Since,
in our example, the goal estimation only serves the CoA
planning module, the translation is straightforward. First, the
approximate expected value of a change in µp or σp may be
calculated using

V̂p(∆µp,∆σp) =

Uµp
(µpo , σpo)∆µp + Uσp

(µpo , σpo)∆σp, (28)

where ∆µp and ∆σp indicate the differences of the current
estimates of the mean and deviation with respect to the last
estimate of po sent.

Taking Eqn. (14) to (16), it takes little effort to calculate
the partial derivatives of p(r, v, φ). Multiplying these by the
feedback metrics Uµp and Uσp gives an approximation of
the sensitivity of the goal estimation to new information. For
instance

Uµr
(µro) =

∂V̂p(∆µp,∆σp)

∂µro

≈ ∂p(r, v, φ)

∂r

∣∣∣∣
r=µro

Uµp
(µpo , σpo) (29)

and

Uσr
(σro) =

∂V̂p(∆µp,∆σp)

∂σro

≈ ∂p(r, v, φ)

∂r

∣∣∣∣
r=µro

Uσp
(µpo , σpo) (30)

give the utility functions for new range information (its mean
and standard deviation). Here, we use that the derivatives of
the deltas in the value equation, equal the derivatives of p,
using po as operating point.

An equivalent approach is used to calculate the sensitivity to
new values of a target’s velocity v and heading φ. As before,
the sensitivity to new information is used to calculate feedback
metrics, but now for the state estimation module. Predictions
of the state are used when no new values are obtained from
the state estimation component, as explained in Section III-B.
This yields best estimates of values, with a possible error
that increases in time. Since the partial derivatives of p to
the state values have cross-dependencies (e.g., sensitivity to
heading decreases with range), worst case sensitivity values are
computed as feedback metrics for the state estimation function.

D. State Estimation

As in this example the state estimation is the final com-
ponent in the processing chain, we can directly calculate
the differences in mean and standard deviation of the range,
velocity and heading given the last values sent to the goal
estimation function, and using the same state prediction as
used in goal estimation. With the feedback metrics of the goal

511



0
0.1

0.2
0.3

0.4
0.50

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

σ
p

o

µ
p

o

U
µ

p

(a)

0
0.1

0.2
0.3

0.4
0.5

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

σ
p

o

µ
p

o

U
σ

p

(b)

Figure 5: Plot of the sensitivity of the expected value Vp of the CoA function to (a) changes in the estimated mean µpn and
(b) changes in the standard deviation σpn , used as a feedback metrics Uµp and Uσp for the goal estimation function.

estimation it is possible to estimate the value of new range
information for the goal estimation

V̂r(∆µr,∆σr) = Uµr
(µro)∆µr + Uσr

(σro)∆σr (31)

where ∆µr and ∆σr indicate the deltas of the current esti-
mates of the mean and deviation with respect to the last range
estimate ro sent. Again, the value gain for a target’s velocity
and heading can be calculated in an equivalent manner.

Overall, we now are able to value the contribution of
individual information elements to the overall performance of
the processing chain. As a consequence, we can now decide
which information to process or communicate in an educated
manner.

V. RESULTS

The utility-based strategy as described in the previous
section has been applied to optimize the processing chain
for the scenario as presented in Section II. Fig. 6 plots the
internal estimates of the range, velocity, heading and the threat
probability per target versus the actual values. The update
results are depicted for the case that 2.8% of the measurements
are communicated and processed. The graphs show that the
uncertainty in heading increases faster than that in range
and velocity. This is in line with the motion profile of an
ultralight: it can change heading fast, but cannot suddenly be
much closer. This results in more frequent updates in heading.
Consequently, as long as the heading is known not to be
directed to the tanker, range predictions will remain accurate
and updates in range are not made. This changes if the range is
small, and all values are updated more often. This is the case
at the very end of the scenario for the blue (hostile) ultralight
when the probability of threat becomes high and half-way the
trajectory of the green ultralight. For the blue ultralight it is
interesting to see that all values are updated less often, when
the ultralight is far away, not directed towards the tanker. In

this case, the sensitivity to for instance a change in velocity is
reduced by the low contribution (close to zero) to Eqn. (13) of
the range and heading values. The last pane shows the resulting
updates for the threat probability of each target.

Finally, Fig. 7 shows (i) the reward of p in the case all
the contacts would have been used, (ii) the predicted reward,
which is the best estimate of the system about the reward of p,
and (iii) the actual reward of p. We see that a reasonable update
strategy is followed, despite the (sometimes large) differences
between the estimated reward and the actual reward. Overall
we observe data to be updated more often when the situation
becomes more threatening or when parameters become more
dominant. For instance, heading updates are sent most often
for the friendly target around half of the scene duration. This
corresponds to the situation where the target is closest to the
tanker and a change in heading may result in a rapid change
in estimated threat level. Likewise, the heading updates for the
hostile target are most frequent and the end of the scenario,
when the target becomes a definite threat.

In order to get a fair comparison of the performance of the
optimization method Fig. 8 plots the average missed reward
for fifty ultralights with randomly generated trajectories. In
total six methods are compared. The first one is the utility-
based cross-layer method with individual updates (per value)
for range, velocity and heading as discussed above for the
two ultralight scenario. The second method is the similar,
but now the updates for range, velocity and heading are sent
simultaneously (per measurement). In addition, the figure also
contains results for randomly selecting updates and for trans-
mitting updates at a predefined constant rate, both methods
both per value and per measurement. The results show that the
random updates per value and per measurement both perform
significantly worse than updates at constant rate and updates
based on utility. At low update rates the utility-based method
also outperforms the constant rate method.

512



0 50 100 150 200 250 300 350 400
−1

0

1

2

3

4

5

6

7

8

time [s]

ra
n

g
e

 [
k
m

]

(a) Range r.

0 50 100 150 200 250 300 350 400
16

18

20

22

24

26

28

30

32

34

time [s]

v
e
lo

ci
ty

 [
m

/s
]

(b) Velocity v.

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

time [s]

h
e
a
d
in

g
 [
d
e
g
re

e
s]

(c) Heading φ.

0 50 100 150 200 250 300 350 400
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time [s]

p
ro

b
a

b
ili

ty
 o

f 
th

re
a

t

(d) Threat probability p.

Figure 6: Actual values (dotted lines) and internal estimates
(solid lines) of the range, velocity, heading and the probability
of threat for each target. The colored areas indicate the 1-σ
deviation from the estimate mean.

0 50 100 150 200 250 300 350 400

−0.5

−0.4

−0.3

−0.2

−0.1

0

time [s]

re
w

a
rd

 

 
optimal target 1

optimal target 2

predicted target 1

predicted target 2

actual target 1

actual target 2

Figure 7: Optimal, predicted and actual rewards for each
target. The predicted rewards indicate the erroneously assumed
reward from the estimated state, based on which actions are
calculated. The dashed lines show the actual reward of the
estimated actions, using the optimal state as ground truth. The
differences between the actual and optimal lines represent the
missed reward.

In Fig. 9 the maximum missed reward is plotted. This
measure is a good indication for the robustness of the method.
Here the differences between the methods are even more
distinctive. In this case the utility per value method performs
slightly better than the utility per measurement method, most
likely because the update per value method has an extra of
degree of freedom to update the most utile value.

VI. CONCLUSIONS

Overall, the experiments give a good indication of how
to perform cross-layer optimization with resource constraints.
The simulations show that the utility based method outper-
forms the method which updates at random times and the
method that updates at constant rate, requiring less updates
for similar results. This shows that the use of utility measures
allows automatic reasoning about the actual run-time value
of data to improve the overall effectiveness of the system,
using local interaction only. Making decisions for each value
of range, velocity and heading separately yields better results
than deciding for all three values at the same time, except
at very low data rates, where the latter produced the best
results. Results depend on the evaluated trajectories. For some,
a constant rate would describe the situation with similar result
as the utility-based one. However, an important difference
between the utility-based method with respect to the other
fixed rate methods is that it is able to adjust to the actual
trajectories, where the fixed rate methods are unable to do so.

ACKNOWLEDGMENT

This research was conducted as part of the Sensor Tech-
nology Applied in Reconfigurable Systems (STARS) project
funded by the Dutch Government.

513



10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

fraction of updates

a
v
e

ra
g

e
 r

e
w

a
rd

 m
is

s
e

d

 

 
utility per value

utility per measurement

random per value

random per measurement

constant per value

constant per measurement

Figure 8: Average value missed per assessment plotted as
function of the fraction of updates sent for utility-based,
random and constant rate selection of updates.

REFERENCES

[1] C. M. Kreucher, K. Kastella, and A. O. H. III, “Sensor management
using an active sensing approach,” Signal Processing, vol. 85, no. 3, pp.
607–624, 2005.

[2] J. L. Williams, “Information theoretic sensor management,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, 2007.

[3] P. A. Ortega and D. A. Braun, “A conversion between utility and
information,” in 3rd Conference on Artificial General Intelligence,
March 2010.

[4] F. Bolderheij, “Mission-driven sensor management, analysis, design,
implementation and simulation,” Ph.D. dissertation, Delft University of
Technology, 2007.

[5] A. Charlish, “Autonomous agents for multi-function radar resource
management,” Ph.D. dissertation, University College London, 2011.

[6] S. Eswaran, D. Shur, and S. Samtani, “A metric and framework for
measuring information utility in mission-oriented networks,” Pervasive
and Mobile Computing, vol. 7, no. 4, pp. 416–433, August 2011.

[7] P. Velagapudi, O. Prokopyev, K. Sycara, and P. Scerri, “Maintaining
shared belief in a large multiagent team,” in 10th International Confer-
ence on Information Fusion, 2007, pp. 1–8.

[8] E. van Foeken, L. Kester, and M. van Iersel, “Real-time common
awareness in communication constrained sensor systems,” in 12th In-
ternational Conference on Information Fusion, July 2009, pp. 118 –
125.

[9] L. Kester, “Method for designing networking adaptive interactive hybrid
systems,” in Interactive Collaborative Information Systems, R. Babuska
and F. Groen, Eds. Heidelberg: Springer-Verlag Berlin, 2010, vol. SCI
281, pp. 401 – 421.

[10] E. van Foeken and L. Kester, “Adaptive team formation for shared
situation awareness,” in 15th International Conference on Information
Fusion, July 2012, pp. 361–368.

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fraction of updates

m
a

x
im

u
m

 r
e

w
a

rd
 m

is
s
e

d

 

 
utility per value

utility per measurement

random per value

random per measurement

constant per value

constant per measurement

Figure 9: Maximum value missed plotted as function of the
fraction of updates sent for utility-based, random and constant
rate selection of updates.

514


