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Voor een eenduidige oplossing van de verstrooiing
door een ondoordringbaar object met behulp van
integraalvergelijkingen over de rand van het object zijn
consistentie-eisen in het inwendige ervan essentieel.

Voor een voldoende foutcriterium kunnen niet-
noodzakelijke eisen in de formulering van een
verstrooiingsprobleem met voordeel in rekening
worden gebracht.

Het verdient aanbeveling om de zwakke vorm van de
Greense functie te verkrijgen door middel van een
bolgemiddelde over de inverse van de afstand.

Dit proefschrifi, Hoofdstuk 4.

Bij het gebruik van een nabijheidsbuis is kennis over de
verstrooiingseigenschappen van een vijandelijk doel
noodzakelijk voor het onderkennen van de geometrie
van het doel en het punt van interceptie.

Een dun SiC laagje met lage mechanische spanning
gedeponeerd met een techniek van de “Plasma
Enhanced Chemical Vapor Deposition” is gunstig voor
“IC-compatible” micro-sensoren.

E. Korkmaz, 'Low-stress PECVD SiC thin films for IC-compatible
microstructures’, MSc thesis, Delft University of Technology, The
Netherlands, November 1997.
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Een onderzoek dat uitsluitend resultaatgericht is,
beperkt de persoonlijke ontplooiing.

Tolerantie en dialoog zijn de pijlers van een multi-
culturele samenleving.

Het woord ‘geloven’ wordt meestal verkeerd opgevat
en veelal gebruikt wanneer er concrete bewijzen zijn
over hetgeen waarin men gelooft.

Het oude gezegde “Wie de jeugd heeft, heeft de
toekomst” verdient nieuwe aandacht.

Een goede spits in een voetbalteam onderscheidt zich
door de keuze van de positie waar hij zich aanbiedt.
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Chapter 1

Introduction

Since World War II proximity fuzes are used against aerial targets. The
principle of these fuzes is based on the observation of moving aerial targets
in the near field of the antenna present in a proximity fuze. It radiates a
continuous RF signal. When the target passes the proximity fuze, part of the
signal is received back due to the reflection. The received signal has a small
difference in frequency when the target is moving. This small difference
frequency (the so-called LF Doppler signal) is proportional with the relative
velocity between the proximity fuze and the moving target. The LF Doppler
signal forms the input of a piece of electronic signal processing equipment
and an algorithm that has to decide whether or not, and at which moment,
an explosion has to take place so that the target is destroyed.

The knowledge about the scattering properties of targets is not only
useful for the evaluation of the performance of proximity fuzes, it can also be
used to design proximity fuzes that recognize their target and the geometry
of interception. This would lead to an optimization of the burst point, and
an increasc of the effectivity of the fuze.

In order to develop new types of proximity fuze a trajectory simulator
and scaled models are used at TNO-FEL. However, this simulator has some
restrictions and therefore a software simulator is required. Our aim is to
develop a method of calculating the electromagnetic interaction between the
fuze and the target when the passing-by distance between the target and the
fuze is less than or equal to the size of the target. The method can then be
used as a basic tool in a computer model that generates the target signals.
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Our present research objective is to develop a method to calculate the
scattered electromagnetic fields by a moving object. In 1991 Vogel [1] cal-
culated the near-by reflection of aerial targets in the radar frequency (cm-
waves). In his calculations the moving object is large with respect to the
wavelength. For this reason he has used the 'Physical-Optics’ approxima-~
tions to compute the surface field at the target. Furthermore, his experi-
ments were restricted to rotationally symmetrical scatterers. In the present
study we aim to compute the surface field on an object of general shape, by
solving an integral equation over the surface of the target.

In Chapter 2, we describe the experimental setup where we have per-
formed measurements in order to compare the accuracy of numerically com-
puted results. In the experimental setup, the received signals are processed
by a microwave mixer, such that the output voltage is proportional to the
real part of the complex value of the measured electric field component [1].
To facilitate a comparison between modeled and experimental results, we
replace the actual transmitter/receiver antenna by an effective dipole. Sub-
sequently we determine the actual magnitude of the dipole moment of our
effective dipole antenna by means of determining a multiplicative constant
between the measured signal and the simulated field responses. For this cal-
ibration we take a very large plate as a scatterer so that the reflected fields
are known analytically and can be computed directly. After presenting the
measured and calibrated computed results we observe a phase shift between
the two results. This may be due to the actual positioning of the scatterer,
where a small location error is made. Hence we further develop a calibration
procedure to find an improved estimate for the location of the origin of the
effective dipole.

In Chapter 3, we formulate the stationary scattering problem as a prob-
lem of scattering an electromagnetic wave field by an electrically perfectly
conducting object. In view of our application we aim to solve this scattering
problem for objects having dimensions in the order of a wavelength. This
means that the physical-optics approximation is not valid and we have to de-
velop a rigorous computational method. From Lorentz’ reciprocity theorem
[2], we briefly discuss the derivation of the integral representations for the
scattered fields in terms of the tangential component of the total magnetic
field on the boundary surface of the scattering object. This unknown sur-
face field follows from a solution of an integral equation over the boundary
of the object. There are two types of integral equations, one of the electric
‘type and one of the magnetic type, see e.g. [3, 4]. Since the magnetic-field
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equation is an integral equation of the second kind and easy to discretize we
take this boundary integral equation as point of departure.

A disadvantage of the use of boundary type integral equations is related
to the non-uniqueness of their solution. In absence of an exciting field, the
boundary integral equations can also represent the clectromagnetic field so-
lution of a cavity enclosed by the boundary of the object. Thus, at certain
eigenfrequencies associated with the cavity problem, the homogeneous type
of integral equation yiclds source-free solutions. Hence, the solution of the
integral equation for the exterior problem will not be unique when a nontriv-
ial solution exists to the interior problem. Although the theoretical problem
of the non-uniqueness has been well understood [5, 6], the problem is often
not anticipated in advance. Development involving the numerical solution
of integral equations typically concentrates on the treatment of electrically
small or moderately-sized scatterers, at least for the initial testing and vali-
dation of the formulations. Then, the solution is obtained by a direct matrix
inversion of the discretized equations and the electric-field and magnetic-field
integral equations produce perfect solutions as long as the frequency of op-
eration does not coincide with an eigenfrequency of an interior resonance [7].
For electrically large objects, the number of unknowns becomes so large that
direct matrix inversion is not feasible, and we adopt the conjugate gradient
method [8, 9] as an iterative solver of the discretized integral equation. But,
within some frequency band around the eigenfrequency of an internal reso-
nance, the convergence rate of this iterative scheme decreases dramatically
and the numerical results are not reliable.

Mitzner [10] recommended the use of a linear combination of the electric-
field integral equation and the magnetic-field integral equation as a remedy
to overcome non-uniqueness problems at eigenfrequencies of interior reso-
nances. The resulting formulation is known as the combined-field integral
equation [11, 12]. But the drawback is the increase of computation time for
the calculation of the matrix elements of the two sets of discretized equa-
tions. Yaghjian [13] augmented the magnetic-field integral equation with the
normal projection of the integral equation, while recently an iterative solu-
tion of this augmented system is discussed by Makarov and Vedantham [15]:
the latter authors remark that their approach is not expected to completely
eliminate the numerical problems due to the spurious resonances. Another
approach is the use of dual surfaces [16, 17] to create a well-conditioned prob-
lem. The dual surface is located at approximately one quarter wavelength
mside the actual scatterer surface. The disadvantage is the extra computa-
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tion of the matrix elements with respect to this interior dual surface. Our
present objective is to minimize these extra computations by taking a smaller
interior surface, without losing uniqueness. This is achieved by using the in-
tegral equations in combination with interior integral representations (often
called null-field equations) obtained by applying Oseen’s extinction theorem
[18]. In contrast to the dual surface equation used in [16] and [17], where
the tangential components of the electric-field integral equations are used,
we propose to include the null-field equations for the three components of
the magnetic field. This guarantees uniqueness, irrespectively of the choice
of the closed interior surface. This idea is inspired by the work of Schenck
[19] in acoustics, and the work of Mittra and Klein [20] in electromagnetics,
using an over-specification with these null-field equations throughout the
interior region. Although we are dealing with a unique solution when all
interior points are taken into account, for computational reasons the num-
ber of interior points (and hence cxtra equations) should be limited. The
pre-selection of the interior points must then be based on some a priori in-
formation about the occurrence and nature of the interior resonances. In
this thesis, this problem is avoided by assuming that these interior points
span a surface that encloses a non-vanishing subdomain. Observing that on
this closed interior surface convergent expansions of the incident field and
the Green function in spherical regular vector eigenfunctions [21] exist, we
may conclude that the interior field representations hold everywhere in the
interior of the object and hence uniqueness is guaranteed. We therefore re-
place the pre-selection of interior points by a null-field integral equation over
a closed interior surface. We first use the null-field integral equation, to be
imposed on a closed interior surface, as a criterion to monitor the error in the
solution. Subsequently we use it as a sufficient constraint to the boundary
integral equation to guarantee a unique solution. Combining this first kind
null-field integral equation together with the second kind boundary equation
of the magnetic type and normalizing both equations properly [14], the ill-
posedness of the first kind integral equation over the interior surface is not
important and we may choose the interior surface as small as possible, as
long as the field variation over this surface remains computable within the
degree of accuracy.

In Chapter 4, we discuss the discretization of the boundary of the scat-
tering object in a number of planar triangles. We further discuss a weak
form of the Green function, that is finite and defined everywhere, and that
replaces the exact one. Then in the integration over a patch, it is allowed
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to interpolate the integrands linearly in terms of their values at the vertices.
We formulate a conjugate gradient iterative scheme [22] that minimizes an
integrated squared error over the boundary surface of the object and uses
the integrated squared error norm over an internal surface as an additional
check for the numerical results. For a sphere we compare the results with
the analytical solution in terms of the Mie series [23]. We observe that the
additional error criterion is also a computational error criterion to quantify
the error made in the discretization of the boundary integral equation. This
inspires us to use this error norm as a constraint for the conjugate gradient
scheme. Then a modified conjugate gradient scheme (based on the principles
developed in [24]) is presented, such that both the normalized error norm
in the satisfaction of the boundary integral equation and the normalized
error norm in the satisfaction of the integral equation over the interior sur-
face are minimized simultaneously. Some numerical tests are performed and
with some very small additional computer time (less than 3%) we observe
that the combined error criterion indeed reflects the actual discretization
error of the problem at hand, and in addition it overcomes the problem of
non-uniqueness due to interior resonances.

In Chapter 5, we compare our numerically computed results and the
measured results for various perfectly conducting objects. We use a mea-
surement setup in an anechoic chamber, where the antenna is moved to the
object under consideration. In our computations we assume that the speed
of movement is much smaller than the wave speed in vacuum, so that no
relativistic corrections are needed. This means that for each location of the
transmitter /receiver antenna the scattering problem can be handled as a
stationary one. In other words, we are dealing with a monostatic scatter-
ing problem. In the experimental setup, the received signals are processed
by a microwave mixer, such that the output voltage is proportional to the
real part of the complex value of the measured electric field component [1].
Therefore we have multiplied our computed results with the calibration con-
stant calculated as described in Chapter 2. In addition, we use the correction
of the positioning of the antenna configuration determined in Chapter 2.

In our simulations, we first compute the surface field with the constrained
conjugate gradient method as developed in Chapter 4. Since we compute
the scattered fields at certain discrete points along the measurement range
we determined a factor which is roughly proportional with the field change
along the movement. We use this factor to improve the initial estimate when
we change the antenna position. After computation of the surface field we
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compute the scattered field. We also compare the measured results with
simulated results when we take the physical-optics approximation for the
surface field. After the comparisons of the measured results and simulated
results for some simple canonical objects (sphere, cylinder and plate), we also
made some numerical simulations with the physical-optics approximation
and constrained conjugate gradient method for a capped box, in order to
study the accuracy of physical optics approximation for a more complicated
scatterer. We compare the results for three different orientations of the
capped box.




Chapter 2

Experimental Setup

In order to compare the accuracy of numerical results for various objects
we have performed some measurements. Since we model the antenna as
an electric dipole source, we want to determine the cffective dipole moment.
The first thing is to calibrate the modcled field from this dipole source; in fact
we want to determine the amplitude of the dipole moment and the origin
(phase center) of the dipole source. We therefore discuss a measurement
setup and calibration scheme, where the antenna is moved to a very large
flat plate, so that the mcasured reflected field can be considered as generated
by a mirrored antenna.

2.1. Description of experimental setup

The measurements are performed in an ancchoic chamber to avoid unwanted
reflections caused by other objects present (e.g. the walls. floor, ceiling). The
measurement setup consists of two perpendicularly standing rails, one lower
rail and one upper rail (sec Fig. 2.1). The upper rail is fixed and has a
sledge to move horizontally the suspending object. The scattering object is
suspended from the sledge of the upper rail and fixed with cores on three
points. The lower rail has also a sledge on which the antenna is located and
this sledge can move horizontally, while the lower rail can move entirely ver-
tically with the help of linear induction motors. The antenna has a function
of transmitting electromagnetic field and receiving reflected fields by the oh-
ject present. The rails are covered by a foam that absorbs electromagnetic
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antenna

lift $&

— .
lower rail

Figure 2.1: The experimental setup

energy and cxhibits very low reflection. Its relative permittivity is typically
1.04.

The experiments are performed at 35.06 GHz. The various scattering
objects chosen for the experiments are made of conducting materials like
aluminum and copper. We assume that we are dealing with perfectly con-
ducting objects.

The antenna (see Fig. 2.2), that transmits and receives the electromag-
netic signals, has approximately a half-wave dipole radiation pattern. The
pedestal for the antenna is also made of polystyrene foam. Since we model
the antenna as an electric dipole source, we want to determine the cffective
dipole moment; this is achieved by matching the modeled incident field from
this dipole source to the field from the actual antenna. In fact we want to de-
termine the amplitude of the dipole moment and the origin (phase center) of
the dipole source. Therefore, we first describe the modeled electromagnetic
field from a dipole source.
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Figure 2.2: The transmitting and receiving antenna.

2.2. Electromagnetic field from a dipole antenna

In this section we compute the field strengths of the electromagnetic field
emitted by a dipole antenna. We consider the dipole antenna as a short,
straight segment of a thin, conducting, current-carrying wire. In the thin-
wire approximation, we replace the actual volume distribution of electric
current by a line current concentrated at the center line of the conductor,
the line current having the direction of the local tangent to the line segment.
We use the complex representation of field quantities with complex time
factor exp(—iwt), where ¢ is the imaginary unit and w = 27 f is the angular
frequency and f is the frequency of operation in Hz. To locate a point
in space we use a Cartesian coordinate system with position vector & =
{z,y,2}.

We now counsider the electromagnetic field at a point x generated by a
dipole antenna with center at 2’ (see Fig. 2.3). For an arbitrary dipole
source distribution, the expressions for the electromagnetic field quantities
E and H in an unbounded, homogeneous domain R? are [2]
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Figure 2.3: Configuration for a dipole antenna.

E(z) = iigl—o[kg+vv-] [ pCle-a)iE@av, @y
H(z) = Vx / g O =TIV, (2.2)

1. . e
where kg = w(eouo)? is the wave number, g9 is the free-space permittivity
and po is the free-space permeability. Further, G is the free-space Green
function given by

n _ exp(ikole — ='))
Gle—a) = iz — x'|)

(2.3)

and J is the volume density of electric current. Assuming that the dipole
antenna is located at ' = ! and that it can be approximated as a short,
straight and thin wire, we then approximate the integral at the right-hand
sides of Egs. (2.1) and (2.2) as

A = /I’EJRSG(a:—x')J(x')dV,

~ G-z / J()dV,
x’€ antenna
~ Gz -z, (2.4)

where I,,; denotes the electric current through the dipole antenna and L
denotes the oriented length of the dipole.

Using the approximation of Eq. (2.4) in Eqgs. (2.1) and (2.2) and after
computing the spatial derivatives of V = {0,, 9y, 0, }, we note that the fields
may be written as E(z) = E(x — 7) and H(x) = H(z — 2T, where the
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fields E(x) = E(x — ') and H(z) = H(x — 2T) arc obtained as
1 (L-300-L)

E(iB — CET) = Ia'n,t {

iweg |z —xT|?
ko (L-300O-L) . T
A it — . Gz — )
ve Jw—aT] + iwpog(L — OO L)} (x—x),
(2.5)
H(CB — .’BT) = lgnt |:Zk() — —1—:| O x LG(CIJ — .’ET) s (26)
|z — |
with unit vector -
T—x
= . 2.7
© Py (2.7)

This electromagnetic field is taken as the field that is generated by the an-
tenna and it is considered as the field that incidents on the object under
investigation. Therefore this field is denoted as {E', H'}. It is lincarly
related to the magnitude of the dipole moment I,,;L. To determine this
magnitude we carry out a particular calibration experiment.

2.3. Calibration

In the experimental setup, the received signals are processed by a microwave
mixer, such that the output voltage is proportional to the real part of the
complex value of the measured electric field component [1]. In order to
be able to compare the experimental with the measured results we have to
perform some calibration to determine the multiplicative constant between
the measured signal and the simulated field responses. In view of the lincarity
of the problem at hand, it means that we want to determine the actual
magnitude of the dipole moment of our effective dipole antenna, say

C = |IsntL|, (2.8)

such that the responses of the measured output and the simulated received
field values coincide as well as possible. The phase is calibrated in a subse-
quent step.

The calibration is carried out with a scattering experiment, where the
reflected field from the scattering object is known. As scattering object we
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Figure 2.4: Antenna moving to a large plate.

simply have chosen a large aluminum square flat plate with side lengths
of 1.20 m and moved the antenna towards the plate (Fig. 2.4). The idea is
based on the fact that the size of the plate is much larger than the wavelength
(0.856 cm) of the electromagnetic wave field. Hence, it can be considered
as an infinitely large plate and therefore a total reflection will be obtained.
The scattering pattern of that experiment can be mathematically modeled
as a mirrored dipole source moving towards the plate (Fig. 2.5).

We consider a coordinate system such that the metal plate coincides
with z = 0. The dipole is moved along the z-axis. Let us denote the
spatial position of the effective dipole source by xT = {0,0,d} and let us
assume that the dipole is oriented in the y-direction (see Fig. 2.5). Then,
the measured reflected field at T can be considered as the field from a
dipole source located at its image point zTimage with a negative current
—1I,n. For this reason, in our model computations we simply take the dipole
moment as I, L = {0,—1,0} and the source point as T = {0,0,—d}, and
compute the y-component of the field at = {0,0,d}. The real part of this
field component represents the reflected field received in the antenna and is
denoted as ET. This experiment is carried out for a moving antenna along
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metal plate

antenna

z2=0

Figure 2.5: Configuration for the calibration: A dipole antenna is moving
towards the infinite metal plate.

the z-direction. Since the speed of movement is very low, it means that the
measurements of the field are carried out for some discrete values of d, viz.,

dk = kAZ» k= kstarh Ty kend (29)

in which Az is the sampling interval in the z-direction. The measured field
values are denoted as e(dy). The real part of the simulated field values are
denoted as E7(dy). For an observation range of 30 mm < di < 260 mm,
the results of the measurement and the computed model are depicted in
Figs. (2.6) and (2.7). In the measurement results we observed roughly 0.24
V DC value of the measurement setup and we have subtracted it from all
measurement results. In view of the different amplitudes, we determine a
calibration constant C, see Eq. (2.8), from

kend 2 1/2
k=kotar le(d)|
C = = ¢ - . . (2.10)
|E7(dy)|

kzkstar!

After taking |I,n: L] = C in our simulations we present the measured and
calibrated computed results in Fig. 2.8. From this figure we observe that
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Figure 2.6: Measurement signal, e(dy), as a function of distance dj.
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Figure 2.7: Computed field response, E"(dy), as a function of distance dy.

there is some shift between the two results in the z-direction. This may be
due to the uncertainty in the determination of the phase center of the actual
antenna. Therefore we carry out a second calibration to find an improved
estimate for the location of the origin of the effective dipole. We now assume
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Figure 2.8: The measurement (solid line) and simulated (dashed line) re-
sponses after calibration as a function of distance d.
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Figure 2.9: Same as Fig. 2.8, but now after phase center correction.

the dipole located to be at 7 = {0,0,d + Ad}. To find the shift Ad we
consider the correlation, P(Ad), involving the sequences E"(dy + Ad) and
e(dy). We consider this correlation as function of Ad, where we express Ad
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Figure 2.10: The differences between the measurement signal and computed
signals, after the two calibration steps.

in terms of the discrete variable [ as

1 1

Ad=IANz, |l=—=L,---, =

? 2 b bl 2

where the interval [—%L, %L] is chosen such that the oscillating curve of the
simulated field response shifts at most one period. Hence, L = A, where
) is the free-space wavelength of the electromagnetic wave field. Then our

correlation function is defined as

L, (2.11)

k=kena—3L
P= S eld) E(dp+1A2). (2.12)
k:kstart+%L

We search for its maximum by varying | and determine the proper calibra-
tion value of { as the one where the correlation P has a maximum. From
Eq. (2.11) the value of Ad, is obtained as Ad = 0.58 mm in this way, we
have found the actual source point of our dipole model. After applying this
phase center correction, the simulated results and the measured ones are
depicted in Fig. 2.9. The differences between these two results are depicted
in Fig. 2.10.

Finally we have to mention that unfortunately, even the most carefully
designed anechoic chamber will produce some residual reflections. To have
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Figure 2.11: Reflections of the anechoic chamber without any object present.

an idea of the magnitude of these unwanted reflections we performed an
experiment without a scattering object present. The results are shown in
Fig. (2.11). The amplitude of this signal varies between —0.07 V/m and 0.07
V/m, which is considerable less than the discrepancies between the computer
simulations and actual measurements of the field components.

Before discussing the results of measurements and computations, when a
scattering object is present, we first develop in the next chapter the theoret-
ical formulation and its resulting algorithm for computation of the scattered
field from a finite object.







Chapter 3

Formulation of the
Scattering Problem

In this chapter, we formulate the problem of scattering of an incident wave
field by a finite object in free space. Using Lorentz’s rcciprocity theorem
we derive integral representations for the electric and magnetic wave fields
in terms of the tangential components of the electric and magnetic field on
a closed surface. In particular, we derive integral representations for the
incident and scattered electromagnetic fields. We simplify the representa-
tions for the scattered field by assuming that the scattering object under
consideration is electrically perfectly conducting. Then, only the tangen-
tial components of the magnetic ficld are the fundamental unknown field
quantities. Subsequently, we derive two types of boundary integral equa-
tions for this unknown surface field. In view of non-uniqueness problems, we
also require consistency of the integral representations in the interior of the
scattering object.

3.1. The scattering configuration

Consider the electromagnetic scattering by an arbitrary object occupying
the domain Dgp; with boundary surface dD,p;. The electromagnetic radi-
ation originates from an antenna in a domain D,,;. The configuration is
depicted in Fig. 3.1. The total electromagnetic field quantities E and H
can be written as the sum of the incident and scattered fields, E = Ei 4+ ES,
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(B HY)
ODgpj “‘J\/‘

Figure 3.1: The scattering configuration.

H = H' + H?®, where the superscripts "i” and ”s” denote the incident and
scattered fields, respectively. These fields satisfy the Maxwell equations in
the frequency domain in vacuum,viz.

V x H(z) + iwsg E(x) = J(x), (3.1)
V x E(z) —iwpoH(xz) = —K(x), (3.2)

where J is the volume density of the electric current and K is the volume
density of the magnetic current.

3.2. Lorentz’s reciprocity theorem

In order to derive the appropriate representations for the scattered fields we
briefly state the essential steps to derive Lorentz’s reciprocity theorem [2].
Consider the configuration as described in Fig. 3.2. The superscripts ”a”
and ”b” denote fields somewhere in space due to the volume densities of the
electric current J*P and the magnetic current K*® inside a closed domain
D with boundary 8D and the outward normal vector v. These two field
states are denoted as State A and State B, respectively. The fundamental
interaction quantity between the two states is

V. (E*x H"—E°x H*) = H®.(VxE®*)-E*.(VxH
— H* (VxE®)+E®- (VxH*. (33
Subsequently after using Eq. (3.1) and Eq. (3.2) in Eq. (3.3) it becomes
V. (E*xH’—E’x H*)=E".J°- H°. K* - E*.J*+ H* K", (34)
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State A State B

Figure 3.2: Configuration for the application of the reciprocity theorem.

which is Lorentz’s reciprocity theorem in local form. Taking the integral over
D and after applying Gauss’ integral theorem to the left part of Eq. (3.4),
it becomes now

f (E* x H> — E" x H).vdA —
oD

/[E}),Ja_Hb.Ka—Ea~Jb+Ha'Kb}dV7 (35)
D

being the global form of Lorentz’s reciprocity theorem.

3.3. Electromagnetic Green’s states

The desired representations are obtained when State A is chosen as the
actual electromagnetic wave field in the configuration depicted in Fig. 3.2
and State B as the computational state, i.c. a state that is representative
for the manner which the wave-field quantitics in State A can be computed.
To arrive at a Green’s state we take a dipole source for State B.

For a dipole source at « = x,, Maxwell’s equations are written as

V x H(x) +iwegE(x) = jo(x—x,), (3.6)
—ko(x —x,). (3.7)

V x E(x) — iwpoH (x)
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in which j and k are arbitrary vectors, and () is the Dirac delta function.
The electromagnetic field satisfying these equations are given by [2]

E(z) = %[k%-i—VV-]G(m—wp)j - VxGlx—x,)k, (3.8)

H(x) = ic;:o K+ VVIGx—ap)k + VXGlx—ap)J. (3.9)
where '

Glz - z,) = explikole — zp|) (3.10)

dr|x — x|

The electromagnetic Green'’s state {ES, H%} is defined as the field
that is generated by a dipole source of the electric type at @ = x,. Hence,
{ECe, HY¢} satisfy

V x H%(x) + iweoE®%(x) = joé(z —xp), (3.11)
V x EC(z) ~ wpgH®(z) = 0, (3.12)

The electromagnetic Green’s state {EC™, H®™} is defined as the field
that is generated by a dipole source of the magnetic type at & = x,, . Hence,
{EC™ HC™) satisfy

V x H™(z) + iweg ES™(x) = 0, (3.13)
V x E™(z) — iwpuoH™(x) = —ki(z—zp). (3.14)

We can now write the solutions of Eq. (3.11) to Eq. (3.14) by means of
Eq. (3.8) and Eq. (3.9) as

. ~1 :
EC = Eg[k?, + V,V, |Gz — x)7 , (3.15)
H® = -V, xG(xz-x,)j, (3.16)
EC™ = V,xG(z-x,)k, (3.17)
-1
HE™ = o k3 + V,V, |G(x — )k, (3.18)

in which the relation V = —V, has been used. Note that V, denotes the
spatial differentiation with respect to x,.
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3.4. General integral representations

In this section we derive general integral representation for the electromag-
netic field quantities. Consider the configuration depicted in Fig. 3.3. It is
assumed that no sources are present in the domain outside D. The sources
that generate the electromagnetic field are assumed to be located inside D.
While the domain D can be either Dy, or Dgyj, the domain 0D is the bound-
ary of D and the domain D' is defined as D" = R®3\{ DUAD}. The boundary
of D’ consist of the surfaces aD. (at infinity) and &D.

————

N ———

Figure 3.3: Configuration for application of reciprocity theorem.

Electric field

In order to derive a representation for the electric field we apply the
reciprocity theorem. At the surface 0D the normal v is an inward normal
to D', which results in an extra minus sign. Considering a field {E,H} in
State A and the electromagnetic Green’s State {E®¢, H®®} in state B and
applying the reciprocity theorem yields

_f (ExHGc—EGexH)-vdA:/I—E-jcS(w—wp)dV, (3.19)
oD D

where x is the integration variable and the point, x, € {D’,@D,D}7 is an
observation point. We have assumed that the integral over 8D, vanishes
in view of the radiation conditions. The integral in the right-hand side of
Eq. (3.19) is, after eliminating the minus sign, equal to j - E(x,) when
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xp € D', equal to %j - E(x,) when x, € D and equal to 0 when z, € D.
Hence,

{1,%,0}3-.;3(%):7{ (E x H% — ES° x H) - vdA. (3.20)
aD

Substitution of the expressions for E®® and HEC® of Eq. (3.15) and Eq. (3.16)
into this equation yields

(1.1,0)5 -E(a:p) = {- B@ x (% x = 2]

2+ V,V,] G(z mp)ij(m)}-udA, (3.21)

iwe 0

We can rewrite the first expression of the integrand on the right-hand side
of Eq. (3.21) as

{—-E(z) x [V, x Gz — xp)Jl} v
= 7 {V, x[G(x—=zp)v x E(x)]}, (3.22)

and the second expression on the right-hand side of Eq. (3.21) as

{lwg (k3 + V, V] G(x — zp)j x H(x) }.,,

= —E—[kO+VV]G(:c xp)v x H(x)]-5. (3.23)

Using these relations in Eq. (3.21) and removing the arbitrary vector j lead
to the desired expression, viz.,

{1,1,0}E(z,) = V,,xf Cla — z,)v x E(z)dA

- _1_[}”0 + Vp,Vp'] ng G(x —xp)v x H(x)dA, (3.24)

1WEQ

when x, € {D’,dD, D}.

Magnetic field

We derive now in the same way a representation for the magnetic field.
Considering now a field {E, H} as in state A and electromagnetic Green’s
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state {EC™, HS™} in state B as described in Fig. 3.2, and applying the
reciprocity theorem yields

_]{ (E x HS — ES » HY.pdA = / H kiz —z,)dV. (3.25)
aD JD'
where 2, € {D',0D. D}. Similarly, Eq. (3.25) can now be rewritten as
{1,100k H(z,) = f (ES™ x H—E x Ho™) . vdA,  (3.26)
D

substitution of the expressions for E™ and H®™ of Eq. (3.17) and Eq. (3.18)
yields

(L30)k- H,) = ¢

{Wp x G(z — x,)k] x H(x)
aD

+ E(x) x

1
[k} + V,V,|Glz — z,)k } vdA. (3.27)
W ito

We can rewrite the first expression of the integrand on the right-hand side
of Eq. (3.27) as

{(Vp x G(z —xp)k] x H(x)} - v
= k- {V,x[G(x—zp)vx H(x)|} , (3.28)

and the second expression on the right hand side of Eq. (3.27) as

{ E(x) x iwluo (k§ + V,V, |G(x — x,)k } v
_ iwluo k2 4 V,V,]C(2 — a,)[v x E(x)] k. (3.20)

Using these relations in Eq. (3.27) and removing the arbitrary vector k lead
to the desired expression, viz.,

{1,1,0}H(z,) = V,x ¢ G(z—=z,)vx H(z)dA
JoD
W +V,V, ¢ Gx—z,)vxE@)dA. (3.30)

+
1o oD

when z, € {D'.dD. D}.
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3.5. Integral representations for scattered field

In the previous section we have obtained integral representations for the
electromagnetic field quantities anywhere in space. We will now apply these
results to our scattering problem. Instead of the domain D with boundary
0D we now deal with a scattering object Dgp; with boundary dDep; (sec
Fig. 3.4), while the electromagnetic wavefield is denoted by { E°, H*}. Then,
the general representations of Eqs. (3.24) and (3.30) for this special case are
given by

{1 ,Q,O}Es(mp = V Gz — x,)v x E°(x)dA
8D
S - s
P [A + V,V, ] aDnbjG'(a: mp)u x H*(z)dA, (3.31)
and
{1,2,0}H5(a:p) = V,x Gz —xp)v x H*(x )dA
Dob;

K2 4 V, 9, f G~z x B ()44, (332)

iwptg

where x, € {D;bjyaDobj,Dobj}-

In order to obtain a representation for the scattered fields in terms of the
total field, we apply the reciprocity theorem to the domain Dop,;. The total
field is the sum of the incident and scattered fields. We already have the
integral representations for the scattered field. To obtain similar expressions
for the incident field, we take the incident ficlds {Ei,Hi} as state A. To
obtain the cxpression for the electric field we choose the electromagnetic
Green’s state {EC¢, HY¢} as in state B, with the result

jé (E' x HO — ES x H').vdA = / E'-js(z —x,dV, (3.33)
aDobJ Ob_]

which is, after substitution of {E®®, H%®}, equivalent with
{0, 3 l}Ei(mp) = V,x Gz — zp)v X E'( )dA
OD b

— [k +V,V,] 4 G(z-z,)vx Hi(z)dA, (3.34)

lweg Do
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Figure 3.4: Configuration for application of reciprocity theorem, when the domain
D encloses a scattering object.

|

|

| where x, € {D;bj,aDobj,DObj}. Addition of Eqgs. (3.31) and (3.34) yields
; our desired representations

| {E*(zy), 3[E*(zp) - E'(x,)], —E'(z,)}

= V,x G(x — xzp)v x E(x)dA
ODgbj

,L[kg +V,V, | G(x — z,)v x H(z)dA, (3.35)

weg Do

7

where xp, € { D, ODobj, Dob;}-

Similarly to find the representation for the magnetic field we choose the
electromagnetic Green’s state { ES™ HS™} as in state B. We obtain then

74 (E'x HS™ — ES" « Hi). ydA= [ H' ké(x —z,)dV, (3.36)
ODgj Dqbj

which after substitution of { E“™ HS™} is equivalent with

—{0, % l}Hi(:cp) = V,x Gz — z,)v X Hi(x)dA
7 OD g

(k5 + VprJ?{ Gz —z,)v x E'(z)dA. (3.37)
oD

obj

1
lwpo
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7

where ¢, € {Dobj,aDobj,Dohj}. Addition of Eqgs. (3.32) and (3.37) yields
the desired representation
{H*(xcp), §[H(a0p) — H'(xp)], —H'(zp)}

= V,x G(x —xp)v x H(x)dA
OD g

L 2rvv, f Clz - z,)v x E(z)dA, (3.38)
D gbj

iwpo

where @p € {Dp;, Dobj, Dobj}-

3.5.1. Integral representations

At this point we are able to express the scattered fields outside the scattering
object in terms of the total electric and magnetic fields on the surface of the
scattering object by means of the following integral representations

E(z,) = V,x 7481) Cla - z,)v x E(x)dA
obj

1
_,__k2+vv-f Gz —x,)v x H(z)dA, (3.39
1w60[ 0 p p] 2D, (x ‘Ep) (z) ( )
and
H(x,) = V,x G(x — xp)v x H(x)dA
Db
1
+ —[k2 + V,V, Glz — z,)v x E(x)dA, (3.40
1Wo[o »Vp'l - (x—zp) () (3.40)

where x, € D;bj. These equations become simpler when we apply it for a
perfectly conducting object. Applying the boundary condition v x E = 0
gives

1 oo I{
s - _ . — H(x)d .
Ef(xp) e (k5 + V, V] aDOber'(cc xp)v x H(xz)dA, (3.41)

and

Hé(xzp) =V, x Glx — zp)v x H(x)dA, (3.42)
Do

7
where x, € Dobj.

The integral representations for the scattered fields E*(x,) and H*(xp)
now depend only on v x H at the boundary 0D,;.
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3.5.2. Integral equations

The unknown v x H on 0D is a solution of an integral equation, obtained
either from Eq. (3.35) or from Eq. (3.38), by letting the point of observation
xp on the surface dD of D and applying it for a perfectly conducting surface,
Viz.,

1E(z,) = E'(zp)
1
- v ngObjG@ —z,)v x H(z)dA, (3.43)

and

1H(x,) = H'(z,)+ V,x > Gz —x,)v x H(xz)dA,  (3.44)
obj

where in the left-hand sides the relations E = E'+E® and H = H'4 HS are
used. Subsequently, we take the cross product of these equations with the
normal vector v, and again applying the boundary condition v, x E(x;,) = 0,
we obtain the integral equations

: 1
v, x E' = x_——-k2+VV-j1{Ga:—w vx H(x)dA,
p (zp) Vp 10150[ 0 »Vp aDob(j p) (x)

(3.45)

vp x H'(xp) = iv, x H(zp)

— vy X {Vp x ¢ G(x —x,)v x H(x) dAj| . (3.46)

ol obj

where @, € ODp;.

These integral equations for v x H can be solved numerically and the
results can be substituted in Eqs. (3.41) and (3.42) to arrive at the elec-
tromagnetic field anywhere outside the scattering object. Eq, (3.45) is an
integral equation of the first kind and Eq. (3.46) is an integral equation of the
second kind. In view of the advantageous properties of the integral equation
of the second kind, we prefer this integral equation. Therefore, in this thesis
we shall choose as point of departure the magnetic-field integral equation.
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3.5.3. Interior representations

The solution of our integral equations is not-unique at certain frequencies
of interior resonances [5, 6]. Nowadays, the standard technique to overcome
this problem is a proper combination of the electric-field integral equation
and the magnetic-field integral equation, see e.g. [10] and [11, 12]. The
drawback is the extra computational burden of the electric-field integral
equation. To overcome the non-uniqueness problem of the magnetic-field
integral equation we require consistency inside the scattering object. For
points inside the object, Eq. (3.38), together with the boundary condition
that the tangential electric field vanishes, yields

Hi(z,) = -V, x fs Gla - zp)v x H(z)dA, x,€ Doy  (3.47)

However, it is not necessary to consider all the interior points. Let us con-
sider a closed surface Si; that completely lies in the interior of D. When
Eq. (3.47) is satisfied on this interior surface, both for the incident field and
the Green function, we can use a convergent expansion in regular vector
eigenfunctions inside and on this closed surface, and we may conclude that
this equation holds inside Sjy; as well. Subsequently, in view of analytic con-
tinuation, Eq. (3.47) holds everywhere in the interior of the object. Hence,
we may conclude that the satisfaction of the interior representation on a
closed surface is a sufficient condition for uniqueness of the solution of the
surface field » x H on the boundary of the object. Eq. (3.47) to be satisfied
for all points on an interior surface Siy; can be considered as a first kind
of integral equation, and again we do not advocate to solve this ill-posed
equation numerically. However, in the next chapter we show that this equa-
tion on an interior surface can be used advantageously as a sufficient error
norm and hence as a constraint for the magnetic ficld integral equation, to
overcome the non-uniqueness problems.



Chapter 4

Numerical Approach

In Chapter 3, we have derived, for a perfectly conducting object, the integral
representations for the scattered fields E® and H® in terms of the tangential
magnetic surface field. To compute this magnetic surface field, we also have
derived a magnetic-field integral equation. Since the solution can only be
found by numerical techniques we evaluate in this chapter both the integral
representations and the integral equation numerically. In all expressions we
have integrations over a surface of the boundary of the object, and for that
reason we need the discretization of the geometry of the surface of the object.

4.1. Discretization of the geometry

For convenience, we denote the boundary surface of the object as § = dDy;.
Algebraic topology [25] tells us that the simplex triangle is the most fun-
damental shape to divide the surface S into a finite number of elementary
surface elements. For this reason we discretize S into planar, triangular sur-
face elements who span S. Let {S,;n = 1,2,..., N} be the collection of
planar triangles, then

S~ S (4.1)

We take the orientation of the triangle such that the direction of circulation
and the unit vector along the outward normal to .S, form a right-handed
system. We usc a local numbering of the vertices of S, which carry the




32 NUMERICAL APPROACH

Figure 4.1: Spatial view of .S,, with normal v.

labels {1,2,3}. The computation is taken to the direction of the circulation.
We further introduce the position vectors of its vertices with respect to the
origin of the chosen background Cartesian reference frame. A spatial view of
S, is shown in Fig. 4.1. The vectorial edges {a;; i = 1, 2,3} of the triangle
are defined with the aid of the position vectors as

a; =z —xj, with {7,7,k} = cycl{1,2,3}, (4.2)

and the vectorial area of S,, can be expressed in terms of the vectorial edges
through

1 1
A= 5[% — x| X (@ — ) = 5 a5 X @k, with {4, j, k} = cycl{1,2,3},

(4.3)
and the unit vector v along the normal to S, follows from
A
= — 4
v="2 (44)
where A denotes the scalar area of .S, which is given by
A=[A- Az, (4.5)

In Appendix A, we derive a linear interpolation function to express any
quantity in the interior and on the boundary of each planar triangle Sy, viz.,

(€ —byp) - Lni

I (4.6)

1
‘I’n,i(w) = 3

in which b,, is the position vector of the barycenter of S, and Ly ; are the
vectors normal to the respective edges in the plane of S,, and A, is the
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scalar area of S,,. On S, any vectorial function F(x) can be expanded as

F(z) = ZF(:BZ)(I)m(a:) . (4.7)
With the result,
A
/ b x)dAd="" =123, (4.8)
Sn 3

the integral over a linear vector function F(x) is obtained as

F(x 23: F(z;). (4.9)

Sn

This latter integration rule is used extensively in our discretization proce-
dure. All integrals over the object surface S of a vector function F(x) are
replaced by

/;"'F(:cm) , (4.10)

N 3
§ F@da=Y Y
. 1i=1

where @, ; denotes the nodal point with ordinal number 7 on the triangle
with ordinal number n.

4.2. Discretization of integral representations

For a perfectly conducting object the integral representations for the scat-
tered fields E® and H® are derived in Chapter 3 as

Il

E(z,) L Vpr»}ng(w ~a,)[v x H|(z)dA, (4.11)

iw&"o

H'(z,) = V,x ]{;G(m ~x,)[v x H](z)dA, (4.12)

where x, € D;bj is the observation variable and = € S (= dDgy;) is the in-
tegration variable. The integrations in these representations must be solved
numerically. Since for points outside the scattering object the Green func-
tion is not singular, we can discretize the integrals straightforwardly. After
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interchanging the order of differentiation and integration, we obtain

E(z,) = ZZ "[kéG (zni — zp)

luJE()

n=11i=1
-+- Vo VoG (X — xp)- [V x H|(Tn,i), (4.13)
Hé(x,) = Z Z VG — p) X [V X H]|(X0) - (4.14)

n=11i=1
The summation with respect to n denotes the summation over the trian-

gles, while the summation with respect to ¢ denotes the summation over the
particular nodes of the triangle with ordinal number n.

In these equations we have differentiations with respect to a, which has
to be carried out. The first derivative is obtained as [2]

VPG(m _ mp) — eXP(lk()IiE - il?pl) [lko _ __1_j| ®p7 (415)

dr|e — ap| |z — x|

and the second derivative as

V,V,G(z — ) - [v x Hl(z)
—30,0,) k(1 -30,0,)
@ — xp[? T — x|

~ k0,0, | v x H(x),

= Gz - Tp) [_(1

(4.16)

in which
T —xp

Op =Vl — x| = - (4.17)

|z — “’p|

is the unit vector in the negative (x — x,)-direction.

4.3. Discretization of integral equations

As argued in the previous chapter, we only consider the magnetic-field inte-
gral equation given by
v, x Hi(z,) = v, x H(xp)

oy, {vp v }!Sc(x _a)v x H()d4|,  (418)
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in which the point of observation x, is taken at the surface S. Studying the
kernel in more detail, we observe that it is a bounded, continuous function
of  and x,, except for @ = x,, where it is not defined. When both points
and x, are located on a planar surface arca and do not coincide, the kernel
function vanishes. In view of the continuity of the kernel, it is allowed to
replace the Green function in a discretized configuration by its spherical
mean [26], and this weak form of the Green function is defined everywhere,
including the point @ = x,. In this thesis we operate a little different. A
simpler procedure is to take only the mean of 1/|x — x,| over a spherical
domain with a radius of A, where A is the average sampling width of the
discretized surface. Then our weak form of the derivative of the Green
function is obtained as (see Appendix B)

ViG(x — xp) = —(x — 2)0G(|x — @, [) (4.19)
with )
(kR — 1) 22EH) - when0 < R < A,
OG(R) = (4.20)
(ko R — l)exp(ikoR) when A < R < oo.

4nR®
Since this weak form of the Green function is continuous and bounded ev-
erywhere, we are able discretize the integral of Eq. (4.18) straightforwardly,
using a linear interpolation of integrand. After interchanging the order of
differentiation and integration, we obtain

v, x H(z,) = tvp x H(zp)

N 3
—vp X Z Z %Vpg(mnyi —xp) X (v x H|(zn:)|. (4.21)
n=11i=1
The summation with respect to n denotes the summation over the triangles,
while the summation with respect to 7 denotes the summation over the par-
ticular nodes of the triangle with ordinal number n. Finally, we consider
a finite set of equations by requiring consistency in each node j of a each
triangle m with normal vector v,,,. We then end up with a lincar set of
equations

v x H')(@m;) = 5lvx H|(@m;)

N 3 A
—VUnm X Z Z ?Vpg(wn,i - mm,j) X [V X H}(wn,i)

n=11i=1

m=1,2....N, j=123. (4.22)
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Note that in Eq. (4.22), V,G(&y, i — T ;) denotes the value of V,G(xn ; —Tp)
when &, = &y, j. This is a linear system of 6N equations for the 6 N unknown
surface field quantities, v x H, at the 3N nodal points x,;. In view of
our application we are interested in objects which are large compared to
the wavelength of the incident field. In practice, we nced at least five to
six discretization points per wavelength [27]. Hence, for large objects, the
storage of the system matrix and its inversion becomes unrealistic with the
present-day computer power. We therefore aim for an iterative solution of
the system of equations. Starting with the (high-frequency) physical-optics
approximation [3] , where we take the surface field

[V x H|(tm ;) =2[v x H)(Tm;), (4.23)

on the ’illuminated’ part of the object surface, and equal to zero on the 'dark’
part of the object, we anticipate that a conjugate gradient scheme would be
able to compute an improved approximation efficiently, within some imposed
error criterion.

4.4. Conjugate gradient method

In this section we discuss the iterative solution of Eq. (4.22) using a conjugate
gradient scheme. For the description it is convenient to introduce a operator
notation, an inner product and a norm. We start with writing Eq. (4.22)
in an operator form by introducing a linear operator L acting on a vector
function [v x H] as

LivxH)=xHY], ons, (4.24)

where

LlvxH)=vxH+K[vxH]. (4.25)
Here, the operator IC acting on [v x H] is defined as
N 3 A
KvxHl = vimx Y, Z fvg(mn,i — Ty ;) X [V x Hlnjil
m:q,#;,l.ﬂ.l.,N, =123 (4.26)
with

[U X H}n,i

v x H)(zn:), n=12,...,N, =123, (4.27)
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while the known vector is defined as

vxH] = vxH|(xn;), m=12,...,N, j=1,23.(428)
Note that in Eq. (4.26), VG(x,,; — T ;) denotes the value of VG(x ~ @y, ;)
when © = x,,;. The gradient acting on the Green function denotes now

the spatial differentiation with respect to @, ;. Further, we define an inner
product of two vector functions on S as

N 34,
([wx £l lvxgls zz—s—V><f](wn,i)-[vxg](wn,i)f (4.29)

where the overline denotes complex conjugate. The norm is defined as

o=

lvx flls = [{[bx £, v x £1) 5] (4.30)

We also need an adjoint operator £ defined via the inner product as

(v x 1, Ll x gl)s = (L lv x f, v < gl)s. (4.31)
This adjoint operator is obtained as
Lvxfl=1vxfl+ Kvxf]. (4.32)
with
Kivxf)
N 3 4
=v, X {um X [Z > ?"V X — Tmyj) X {Vn X [fo]m}} },
n=11i=1
m=12,...,N, j=1,23. (4.33)

With these definitions we now formulate the conjugate gradient scheme that
minimizes iteratively the error norm

[ERRg)* = &%2 (4.34)
v x H'||5

where the residual error on S is defined as

p=vxH]-LvxH]. (4.35)




LY

38 NUMERICAL APPROACH

We start the conjugate gradient scheme with the physical-optics approx-
imation, Eq. (4.23), as initial estimate, denoted by [v X H]©. Then, it
computes

pO =[vx H])- LvxH.
Next the scheme chooses

© Loy
1) — gl = £,0 o = P v )s
v R VOl P

with the updates
[v x H](l) =[vx H](O) + aWpM) p(l) — p(O) — oW LM

and computes successively for p=23,... P,

(p))|2
) — L£*,(p-1) (p) — ,(p) ”L”_S (r-1)
e A i P

?

<p(p_l)7 E'U(p)>5‘
ILo®%

alP) —

with the updates
v x H% = v x H](p—l) 1+ aPlyp®)  pl) = ple=1) () LapP) |

In fact, this conjugate gradient scheme solves iteratively the symmetrized
integral equation

L'LvxH =L"vxH), onS, (4.36)

When this integral equation is uniquely solvable, the symmetrized operator
L*L does not have a null-space and is positive, so that the conjugate
gradient scheme (for the non-discretized problem) converges to the exact
solution [28, 29]
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4.4.1. An additional error criterion

From Chapter 3, we also know that on an interior closed surface Si,: the
interior representation of Eq. (3.47) should hold. We therefore define an
additional error criterion

ol
ERRg,  — —omt S 4.37
S = [ H 5, (437)

where the residual error on S;; is defined as

Pus(@) = H@y) + Y, x § Gla -z x H@)dd.  (438)
Since the precise form of the interior surface is not important, we subdivide
Sint is into Niy planar triangles Sin,, and we require consistency of the

interior integral representation at one single point on each patch. On each
planar triangle we determine the barycenter as

23: (4.39)

oolr—l

Then our discrete error norm is defined as

1.nt

m_l "pmt(b )”2
e = N B (b )P )

m—l

while the discretized residual error at a point by, € Siy; is given by

Pint(bm) = Z Z —VG(®n; — bm) X [V x Hnj,

n=1i=1

m=1,2,..., Nip . (4.41)

We shall use this additional error norm as a check of the numerical results.

In order to guarantee that in the discretized counterpart of Siy the field
variation is computable within the present computer accuracy, we take care
that Siu encloses a sphere with a diameter of a half wavelength, and on Siy
we take a discretization of five to six points per wavelength. Taking a larger
interior surface and/or a finer is discretization is always allowed, but it will
increase the computation time without any benefit.
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4.4.2. Numerical example of a sphere

As a first test example we consider the scattering of a plane wave by a per-
fectly conducting sphere with radius a. We assume that its center coincides
with the origin of our coordinate system. For this particular scattering prob-
lems analytical results are available. In a spherical coordinate system, the
incident and the scattered field are expanded in terms of regular and singu-
lar vector eigenfunctions, respectively. Each term of this type of expansions
satisfies Maxwell equations in spherical coordinates. The coefficients of the
scattered-field expansions (Mie series [23]) are obtained by requiring the
boundary condition that the tangential electric field vanish at a radial co-
ordinate r = a. For comparison we have computed the tangential magnetic
field at the boundary of the sphere in terms of these Mie series.

The incident plane wave is obtained by putting our dipole antenna (see
Chapter 2) very far from our scattering object and normalizing the results
with the normalization factor 4mr/(kolant), Where r is the distance between
the antenna and the origin of the coordinate system. For our examples we
take r = 1000 m. The wave is travelling in the negative z-direction towards
the scattering object. We take the polarization of the electric field in the
z-direction and in the y-direction, respectively.

In the several figures in this chapter, we present the error only for the
case that the electric field of the incident wave is polarized in the y-direction.

We consider three frequencies of operation, such that the normalized
wave numbers are kga = 4, 4.973 and 6, respectively. At kpa = 4.973 a
spurious solution can occur due to the non-uniqueness of the magnetic field
equation at the eigenfrequency of an interior resonance. We discretize the
boundary surface S of the sphere in 960 plane triangles patches (see Fig. 4.2).

In Fig. 4.4 (top), we present the normalized error norm, ERRg, as a
function of the number of iterations. From this figure we observe that the
error on S in the conjugate gradient scheme remains decreasing, although at
an interior resonance (kga = 4.973) with a much slower speed. To investigate
the problem of the occurrence of a spurious field solution related to the
occurrence of an interior resonance in more detail, we compute our additional
error norm over an interior surface Sy as well. To save computation time the
interior surface Si,; is taken as small as possible, but this surface should be
large enough such that the field variation of the incident field is visible within
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Figure 4.2: Sphere of radius a = 6 mm, Figure 4.3: Interior sphere of radius
discretized in 960 patches. %a, discretized in 110 patches.

numerical accuracy. Here, we take a sphere with a radius of %a, subdivided
in 110 plane triangular patches (see Fig. 4.3). The extra computation time
to compute the error on Sy is less than 3%. In Fig. 4.4 (bottom), we present
the normalized error on the interior surface Sin, ERRg, ,, as a function of
the number of iterations of the conjugate gradient scheme. From this figure
it appears that the final error on Sj,; is more indicative for the actual error
due to the discretization of integral equation on S and the presence of an
interior resonance. At the interior resonance (koa = 4.973) we clearly observe
an increase of the error at iterations where the conjugate gradient scheme
adds field components of the interior resonance to the actual surface field.

For kga = 4.973, in Fig. 4.5, we present the absolute value of the surface
field » x H as a function of the angular coordinate along the surface of
the sphere in the cross-sectional plane = 0, for a increasing number, p,
of iterations. We consider the two cases of polarization, viz., an incident
plane wave with electric field in the z-direction and an incident plane wave
with electric field in the y-direction. To compare the results we have also
presented the results obtained from an analytical solution of the scattering
problem of the sphere in terms of the Mie-series [23]. In each figure, these
analytical results are represented by the heavy solid line. In accordance with
the results of our additional interior error criterion given in Fig. 4.4 (bottom)
we observe that for increasing number of iterations up to p = 10 — 17 the
results are approximating the analytical results, but from p = 17 the surface
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Figure 4.4: Normalized errors on S (top) and Sis: (bottom) in conjugate
gradient scheme.

field starts to deviate. From these results, we draw the conclusion that our
additional error criterion seems to be a sufficient error norm to judge the
final solution for the surface field v x H on S.

The present numerical results inspired us to use the interior norm on




CONJUGATE GRADIENT METHOD 43

koa=4.973

surface field jvxH|
- [\
) ) &)

-

0.5

0 90 180 270 360
angular coordinate

surface field [vxH|

0 920 180 270 360
angular coordinate

Figure 4.5: Tangential magnetic surface field for plane wave incidence with electric
field vector in the z-direction (top) and y-direction (bottom), for increasing number,
p, of iterations; the heavy solid line denotes the analytical results.

Sint as a (sufficient) constraint for the magnetic-field integral equation, that
eliminates the occurrence of spurious solutions due to interior resonances.
Instead of a conjugate gradient scheme that minimizes the error norm on
the surface S of the object, we propose to use a conjugate gradient scheme
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that minimizes the sum of the two norms, viz.,

[SIES

ERR = [ERR} + ERRY, | (4.42)
Later, we discuss that for the continuous (i.e. the non-discretized case)
the conjugate gradient method, minimizing this sum of norms, provides a
convergent iterative scheme that leads to the exact solution of our scattering
problem.

4.5. Constrained conjugate gradient method

The conjugate gradient scheme that minimizes the combined error criterion
of Eq. (4.42) is a modification of the previous one. To describe the mod-
ifications due to the presence of the error norm on Siy, for the discretize
quantities it is convenient to introduce an operator and an inner product
on Siy. We introduce a linear operator L acting on a vector function

[v x H] as

An
Lo x H = | Y Z26(@ni = bu) x v x Hlui|
n=11i=1
m:1727"‘7Nint7 (443)

and the vector function for a point b, € Sit,
H = H(b,), m=12,...,Niy. (4.44)

Further, we define an inner product of two vector functions on Siy as

Nine
(va)Sm = Amf(bm) 'g(bm) . (4-45)
m=1
The norm on S;,; is defined as
1F s = [(F2 Fsia)? - (4.46)

We also need an adjoint operator ‘C’?nt defined via the inner product as

(f:cint[VXQDSim = (‘L.’i*nt-f7 [Vx9]>5 . (447)
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This adjoint operator mapping Sj,; into S is obtained as

Ning
‘C;ntf = —VUnX {Vm X Anv-g—(bn - mm,j) X f(bn):l }7
n=1

m=1,2,...,N, j=1,2,3. (4.48)

With these extra definitions for the constraining error norm on Sj, we
now formulate our conjugate gradient scheme that minimizes iteratively the
combined error norm

2 2
ERR2 = ( ||P||Si ) + (”pinitHSim> ’ (4‘49)
v x H'||s | H'||s

int

where the residual error on S and Si,; are defined as

p=vxH]-LvxH], ppn=H —LiylvxH. (4.50)

We start the conjugate gradient scheme with the physical-optics approx-
imation, Eq. (4.23), as initial estimate, denoted by [v x H](O). Then, it
computes

PO = xH]-LyxHQ, pO=H L vxHO.
Next the scheme chooses

* * 0
g L0 Lo
lv x HYIS |l H|[E

int

(p®, LvD)s | (0, Lingv V)5,

o < HE Ei
[LoD)3 | 1L D5,
v x H% " (1HE

with the updates

v x HY = [v x H|© + oVp(1)

PV = pO _ oW Ly 0 _ O )
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and computes successively for p=2,3,...,P,

* _ * -1
) _ L pr '1) ‘Cintpi(gt ) . @ =gl 4 ”g(p)||§2 v @1
lv < Hg ~ [|H' g5

int

g(p

(pP~1), LolP)g + (pi(rzl);l)acintv(p))s

int

o X HT 2
[Lo®E | L@l
v x % .

with the updates

v x H](P) = [v x H](P—l) + oy

p® = p=D) _ P L@ pP) = 0D 0 L 2

In fact, this constrained conjugate gradient scheme solves iteratively the
symmetrized integral equation

( E*L + i*ntﬁint
lvxHYE | H%

)[VXH]

int
*

L'v x HY - H
‘(uuxHin% H ) ens. s

int

For the non-discretized problem, this integral equation is uniquely solvable,
since the symmetrized operator LL s non-negative and the symmetrized
operator. L:?ntﬁint is positive, because the latter operator does not have
a null-space. Hence, the complete operator is positive and the conjugate
gradient scheme (for the non-discretized problem) converges to the exact
solution [28, 29], even for frequencies coinciding with an eigenfrequency of
interior resonance.

In view of the definition of the two error norms of Eq. (4.42), the extra
computation time per iteration to take the second error norm into account
is roughly of the order %N;m /N, so that the objective is to minimize Niy; as
much as possible.
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4.5.1. Numerical example of a sphere

As an example, we again consider the problem of scattering of a plane wave
by a sphere, where analytical results in terms of the Mie series are available.
The precise shape of the interior surface is not essential, in fact the only
important requirement is that the discretized version of the interior object
prescribes a closed interior surface within numerical accuracy. In order to
guarantee that in the discretized counterpart of Sj,; the field variation is
computable within the present computer accuracy, we use the same argu-
ments as before and we take care that S, encloses a sphere with a diameter
of a half wavelength, and on Siy, we take a discretization of five to six points
per wavelength. Taking a larger interior surface and/or a finer discretization

is always allowed, but it will increase the computation time without any
benefit.

We start with the same discretization as before and discretize the bound-
ary S of the sphere in 960 patches and the interior surface Sp, in 110 patches
(see Figs. 4.2 and 4.3). For the present case, our constrained conjugate gradi-
ent method needs only 3% more computer time than the unconstrained one.

10 - T T T T T I T

S in 960 patches

Sim in 110 patches

int

)
+
» ]
[ = ]
5 ]
S
@
°
N k a=6
5 0=
£ - ] .
o o s e e e e
2 :
koa.:
10_3 1 1 1 "l 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

number of iterations

Figure 4.6: Normalized error on S + Sj,; in the constrained conjugate gradient
iterative scheme.




48 NUMERICAL APPROACH

Table 4.1: Final normalized error on S + Sj; for different discretizations (koa =
4.973)

S in 110 patches | S in 960 patches | S in 9800 patches

Sint in 110 patéhes ERR = 0.0457 ERR = 0.0072 ERR = 0.0006

Sint in 960 patches ERR = 0.0464 ERR = 0.0072 ERR = 0.0006

Sinte in 9800 patches | ERR = 0.0465 ERR = 0.0072 ERR = 0.0006

We again consider the three frequencies corresponding to koa = 4, 4.973 and
6, respectively.

In Fig. 4.6, we present the normalized error, see Eq. (4.42) as a func-
tion of the number of iterations, using the constrained conjugate gradient
scheme. We observe that, for kpa = 4.973, where the unconstrained conju-
gate gradient methods yields a spurious solution due to an interior resonance,
the error minimized by the constrained conjugate gradient method decreases
monotonically to some constant value. It is further observed that the final
error (after 50 iterations).increases with increasing koa and this fact gives
the impression that this final error is a measure for the quality of the com-
puted surface field. We therefore investigate the discretization errors in more
detail, by taking different discretizations of the boundary surface S of the
scattering object and the interior surface Siyt.

In Table 4.1, the normalized combined error ERR is presented for the
various discretizations. We observe that the discretization of the interior
surface in 110 patches is sufficient. This is roughly a discretization of five to
six points per wavelength. In order to be sure to eliminate spurious solutions
due to interior resonances, a smaller discretization of this interior surface is
not allowed. Using a discretization of the interior surface in 110 patches,
we further observe that the error decreases from 0.0457 to 0.0006 when we
refine the discretization of the boundary surface S from 110 patches to 9800
patches, which is roughly a discretization of 2 points per wavelength to 20
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Figure 4.7: Tangential magnetic surface field for plane wave incidence with electric
field vector in the z-direction (top) and y-direction (bottom); solid line: analytical
results; circles: numerical results based on minimization of combined error criterion.

points per wavelength, respectively. This confirms our expectation that the
normalized error over both S and S;,¢ is a sufficient error criterion, not only
theoretically, but also in computational sense.




50 NUMERICAL APPROACH

In Fig. 4.7, we present the absolute value of the surface field v x H as
a function of the angular coordinate along the surface of the sphere in the
cross-sectional plane = = 0, for an incident plane wave with electric field
vector in the z-direction (top figure) and y-direction (bottom figure), re-
spectively. The circles denote our computed solution based on minimization
of the combined error criterion, while the solid lines denote the computed
results using the analytic expression of the surface field in terms of the Mie
series.

Before discussing objects of more complicated shapes, we consider the
spherical object with a finer discretization and subsequently for an increased
frequency.

Finer discretization

Subsequently, we study the effect of a finer discretization of the boundary
surface S. We take a discretization of 9800 patches instead of 960 patches,
while keeping the discretization of the interior surface in 110 patches (see
Figs. 4.8 and 4.9). In Fig. 4.10, we present the results for the absolute
value of the surface field v x H. We observe excellent agreement with the
analytical solution based on the Mie series. We certainly may conclude that
the presence of a spurious field due to interior resonances at the frequency
belonging to kga = 4.973 has been eliminated by the method of minimizing

9800 patches

110 patches

2-axis
VAV
{ ‘A‘t\‘&“»
NN
NNV

6 -6

-6 -6 y-axis

X-axis x-axis

y-axis

Figure 4.8: Sphere of radius ¢ = 6 mm, Figure 4.9: Interior sphere of radius
discretized in 9800 patches. 3a, discretized in 110 patches.
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Figure 4.10: Tangential magnetic surface field for plane wave incidence with elec-
tric field vector in the z-direction (top) and y-direction (bottom); solid line: ana-

lytical results, circles: numerical results based on minimization of combined error
criterion.

the combined error criterion, combining the error on the boundary S and
the interior surface Sjy.
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Figure 4.11: Normalized error on S + Sin in the constrained conjugate gradient
iterative scheme.

In Fig. 4.11, we present the error as a function of the number of iterations.
For comparison we plot the errors for a rough discretization as well. It seems
that the combined error is a measure for the error in the discretization of
the boundary surface of the object; refining the discretization with a factor
of ten yields a reduction of an order in the final error ERR. Note further
that the error (see Fig. 4.11) converges very fast (within 20 iterations) to
the final error value. In view of the fast convergence, our new, constrained,
conjugate gradient scheme offers the possibility to compute the scattered
field from objects which are large compared to the wavelength.

Increased frequency

We now increase the frequency and consider a normalized wavenumber of
koa = 15. We take a discretization of 9800 patches on the boundary surface
S and 960 points on the interior surface Siy, see Figs. 4.12 and 4.13. This
means that on both surfaces we have discretizations of roughly 6 points per
wavelength.

In Fig. 4.14, we present the error as function of the number of iterations
for kga = 15. For comparison, we present the results for a discretization of
the interior surface in 110 patches as well (dotted line). For further compar-
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Figure 4.12: Sphere of radiusa=6 mm, Figure 4.13: Interior sphere of radius
discretized in 9800 patches. 3a, discretized in 960 patches.
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Figure 4.14: Normalized error on S + S, in the constrained conjugate gradient
iterative scheme.

ison, we have copied the results for ka = 4.973 from Fig. 4.11 and plotted
as dashed line. Although, for both cases, the boundary surface of the object
is discretized in the same number of points, it seems that the discretization
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Figure 4.15: Tangential magnetic surface field for plane wave incidence with elec-
tric field vector in the z-direction (top) and y-direction (bottom); solid line: ana-
lytical results, circles: numerical results based on minimization of combined error

criterion.

errors, made for higher values of ka, becomes relatively smaller. In addition
a finer discretization of the interior surface helps to decrease the error after
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a large number of iterations. This fact is not observed for lower frequencies
(see Table 4.1). In Fig. 4.15 we present, for kga = 15, the absolute values of
the surface field v x H.

So far we have carried out a number of numerical experiments for the
spherical scattering object to illustrate the performance of the constrained
conjugate gradient method. However, one can argue that the sphere is a
too simple shape to validate the proposition and actual implementation of
the combined error norm. We therefore carry out more experiments with
scattering objects, we are using in our experiments of Chapter 5.

4.5.2. Numerical results of a finite cylinder

One of the targets we consider in our experiments of the next chapter is
the finite cylinder with circular cross-section. Here, we again assume that
the incident field is a plane wave incident in the negative z-direction. We
further assume that the incident electric field vector is oriented in the y-
direction. The cylinder has a radius of 5 mm and a length of 3 cm. The
frequency of operation is 35.06 GHz and the wavelength is 0.856 cm. We
discretize the boundary surface into 1972 patches (Fig. 4.16), which is a
discretization of five to six points per wavelength. The interior surface is the
same as before, viz., a sphere with a radius of 2 mm, and discretized into

0.015 1972 patches 0015
110 patches
0.0054 0.005
2 2
x x
] &
i i
! ~ o
~-0.005 -0.005
-0.015 -0015,
0.015 0.015
0.005 Q015 0.005 0.015
0005 0.005
-0.005 -0.005
~0.005 -0.005
y-axis -0.015 _00t5 axis y-axis -0.015 0015

Figure 4.16: The 3 cm cylinder of 5mm  Figure 4.17: Interior sphere of 2 mm
radius, discretized in 1972 patches. radius, discretized in 110 patches.




56 NUMERICAL APPROACH

int

EF(F{s in CG method j

‘.

-3

normalized error on S+S.
3
1

-
(=]
T

1

Sint972patches Ut

Sam in 110 patches

~4 i s 1 1 1 | H 1 1

0 5 10 15 20 25 30 35 40 45 50
number of iterations

10

Figure 4.18: Normalized error on S + Sin in the constrained conjugate gradient
iterative scheme.

110 patches (Fig. 4.17).

We compute the surface field v x H with the conjugate gradient method
that minimizes the error ERRg in the magnetic-field integral equation. In
Fig. 4.18, the normalized error, ERRg, as a function of the number of iter-
ations is presented as the dotted line. Simultaneously, we check the interior
error by presenting the normalized error, ERRg,  , as the dashed lines. We
observe that after 10 iterations the interior error increases, while the bound-
ary error decreases rapidly. From our experience of the previous example
we know that this is an indication that we compute a spurious solution
due to-an interior resonances. When we compute the surface field with our
constrained conjugate gradient method that minimizes the combined error,
ERR, we observe that the latter scheme converges to a minimum that is a
measure for the discretization error (see solid line in Fig. 4.18).

4.5.3. Numerical results of a plate

So far we have considered rotationally symmetric targets. Since our com-
putational method can handle arbitrarily closed objects, we now consider a
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Figure 4.19: Plate of 10 x 10 x 1 ecm®,  Figure 4.20: Interior sphere of 2 mm
discretized in 17280 patches. radius, discretized in 110 patches.

square plate of dimensions 10 cm by 10 cm and thickness of 1 cm (Fig. 4.19).
The incident field is a plane wave incident in the negative z-direction, with
polarization of the electric field in the y-direction. The frequency of op-
eration is 35.06 GHz and the wavelength is 0.856 cm. We discretize the
boundary surface into 17280 patches, which is a discretization of roughly
five points per wavelength. The interior surface Siy¢ is the same as before,
viz., a sphere of radius 2 mm, and discretized into 110 patches. We locate
this sphere in the center of the plate domain (Fig. 4.20).

We first compute the surface field v x H with the conjugate gradient
method that minimizes the error ERRg in the magnetic-field integral equa-
tion. In Fig. 4.21, the normalized error, ERRg, as a function of the number
of iterations is presented as the dotted line. Simultaneously, we check the in-
terior error by presenting the normalized error, ERRg, ,, as the dashed lines.
We observe that already after five iterations the interior error increases, while
the boundary error remains decreasing. In view of the increasing error on
the interior surface, we note that we again deal with an interior resonance
and that we compute a spurious solution. However, when compute the sur-
face field with our constrained conjugate gradient method that minimizes
the combined error, ERR, we observe again that the latter scheme converges
to a minimum that is a measure for the discretization error (see solid line
in Fig. 4.21). Although we have many (2 x 3 x 17280) unknowns, still the
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Figure 4.21: Normalized error on S + Siy in the constrained conjugate gradient
iterative scheme.

constrained conjugate gradient method reaches its minimum in roughly 50
iterations.

So far we have located the interior sphere in the center of the targets.
In order to show that the location is not important, as long as the interior
surface is not too close the boundary surface of the object (to stay away
from the singular point of the Green function), we locate the interior sphere
near a corner of the plate (see Figs. 4.22 and 4.23). We take the center of
the interior sphere at {—0.04,0.04,0} m. The various error quantities are
presented in Fig. 4.24. Comparing these results with the ones of Fig. 4.21
we observe that the interior error starts in the first few iterations at a much
larger value and for further iterations it remains at that value, while the
combined error (ERR) of the constrained conjugate gradient method starts
at a much higher level, but converges rapidly to the same error value as
obtained for the case of the centered interior sphere. Obviously, by moving
the interior sphere to the corner of the plate, we visualize that the local
errors, certainly in the first iterations, are larger at the corner than in the
middle of the plate; the internal error criterion indicates this phenomenon.
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4.5.4. Numerical results of a capped box

We finally consider a more complicated object. We take a box capped with
three cones. The incident field is a plane wave incident in the negative z-
direction, while the electric field vector is oriented in the y-direction. The
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Figure 4.25: The capped box dis- Figure 4.26: Interior sphere of 2 mm
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box has a length of 3 cm and a cross-section of 0.8 x 0.8 cm?. At the end,
the box is capped with a right circular cone; this cone has a height of 1
cm and a basis cross-section with a radius of 0.4 cm. In addition on two
opposite sides we have placed cones with a height of 0.4 cm and a basis
cross-section with a radius of 0.4 cm. The frequency of operation is 35.06
GHz and the wavelength is 0.856 cm. We discretize the boundary surface
into 1888 patches (Fig. 4.25), which is a discretization of five to six points
per wavelength. The interior surface is the same as before, viz., a sphere
with a radius of 2 mm, and discretized into 110 patches (Fig. 4.26).

We compute the surface field v x H with the conjugate gradient method
that minimizes the error ERRg in the magnetic-field integral equation. In
Fig. 4.27, the normalized error, ERRg, as a function of the number of iter-
ations is presented as the dotted line. Simultaneously, we check the interior
error by presenting the normalized error, ERRg, ,, as the dashed lines. We
see that the initial estimate of the physical-optics approximation yields a nor-
malized error larger than 100 % and this indicates that the physical-optics
approximation without further improvement cannot be used for these types
of targets. We further observe that the interior error ERRg;,, after 10 itera-
tions does not decrease anymore and remains at a high error level of about
20 %, while the boundary error ERRg decreases rapidly. When we compute
the surface field with our constrained conjugate gradient method that mini-
mizes the combined error, ERR, we observe that the latter scheme converges
to a minimum that is a measure for the discretization error (see solid line




CONSTRAINED CONJUGATE GRADIENT METHOD 61

10 T T T T T T T T T
10° ]
E

@ ERR in CG method
(2] R = — m e = M e - - - =
§ 107 .
£ ERR in constrained
N S PP CG method
- Y
o0 e ERR in CG method .
g Sin1888patches U
<)
S Sim in 110 patches

10'3 L 1 1 1 1 1 1 L 1

0 5 10 15 35 40 45 50

20 2?, .30
number of iterations

Figure 4.27: Normalized error on S + Sj, in the constrained conjugate gradient
iterative scheme.

in Fig. 4.27). The conclusions is that for complex objects, where the behav-
ior and occurrence of interior resonances are completely unpredictable, the
method dealing with the magnetic-field integral equation only is unreliable
and has to be used in combination with our interior error constraint.

With this example we conclude our numerical approach. In the next
chapter we compare our numerical results for the scattered field with mea-
surements, when the transmitting/receiving antenna is moved towards the
target.







Chapter 5

Comparison of Experimental
and Numerical Results

In this Chapter, we compare our numerically computed results and the mea-
sured results for various objects. We use a measurement setup, where the
antenna is moved to the object under consideration. We assume that the
speed of movement is much smaller than the wave speed in vacuum, so that
no relativistic corrections are needed. This means that for each location of
the transmitting/receiving antenna the scattering problem can be handled
as a stationary one. The measurements are performed in an anechoic cham-
ber and the experimental setup is the same as described in Chapter 2. In
the experimental setup, the received signals are processed by a microwave
mixer, such that the output voltage is proportional to the real part of the
complex value of the measured electric field component [1]. Therefore we
have multiplied our computed results with the calibration constant calcu-
lated in Chapter 2. In addition, we use the correction of the positioning of
the antenna configuration determined in Chapter 2. The measurements are
performed at 35.06 GHz.

5.1. Experiments with a sphere

We first present the results for a sphere made of aluminum. In our numerical
modeling we assume that it is equivalent to a perfectly conducting scattering
object. The radius, a, of the sphere is 6 mm, so that we deal with the
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Figure 5.1: Dipole antenna moving towards the sphere.

normalized wave number kga = 4.4. The sphere is suspended from the
sledge of the upper rail, while the dipole antenna which is located at the
lower sledge is moved towards the sphere. The center of the sphere coincides
with the origin of the coordinate system. In our computations, the position
of the transmitting and receiving dipole is given by zT = {0,0,d+ Ad},
where the value of Ad =0.58 mm is found from the shift correction explained
in Chapter 2. The dipole antenna is moved along the z-axis towards the
sphere, see Fig. 5.1. The parameter d is the varying distance between the
dipole antenna and the scattering surface. The dipole is oriented in the y-
direction with a dipole moment I,;L = {0,C,0}, where the amplitude C
of the dipole moment is found from the calibration procedure explained in
Chapter 2. Since only the y-component of the scattered field is measured, we
suffice by computing the y-component of the scattered field and the real part
of this field component represents the reflected field amplitude E” measured
by the antenna system. When the antenna is moved towards the sphere,
the scattered electromagnetic fields are measured at certain discrete points
along the range of 19.7 mm < dj < 169.7 mm with a sampling unit of 0.04
mm. From the measured response we subtract its DC value. We calculated
this DC value by taking the mean value of all the measurements.

In our computations we discretize the boundary surface S of the sphere
in 960 plane triangular patches and the internal spherical surface Siy in
110 patches, which is sufficient to obtain the accuracy within not too much
computation time (see Chapter 4).
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Constrained conjugate gradient method (CGQG)

We first compute the surface field » x H with the constrained conjugate
gradient method (CG) as developed in Chapter 4. We stop the iteration once
an error less than 2 % is arrived at. The maximum number of iterations to
meet this error criterion is denoted as P. Since we compute the scattered
fields at certain discrete points, & = 1,2,---,300, along the measurement
range, the field changes roughly with the factor

T

. T

Crk—1 = exp [1k0|:c{—m{_1|} |)BTk| K xf = {0,0,d, + Ad}, (5.1)
k-1

and we use this factor to improve the initial estimate, when we change the
antenna position from di_; to dx. Our computational procedure is as follows.
We start for k£ = 1 with the physical-optics approximation, using Eq. (4.23),
as an initial estimate and let the constrained conjugate gradient method

iterate P times until it satisfies the error criterion of 2 %. For each new
position of the dipole antenna we use the following initial estimate,

v x H|OF = ¢y [v x H)PF-D | (5.2)

where [v x H](Pk=1) denotes the updated surface field in the last iteration
of the previous location of the antenna, while [ x H](©*) denotes the initial

normalized error
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Figure 5.2: The error, ERR, as a function dj in the simulation procedure.
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Figure 5.3: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dy.
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Figure 5.4: The weighted difference between the measured and simulated
CG field responses, as a function of distance dj.

estimate at the new antenna location. With this initial estimate the number
of iterations needed to meet our error criterion of 2 % varies between P =0
and P = 1. The values of the error during this procedure are plotted in
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Fig. 5.2. From the starting point at dj = 169.7 mm to 145 mm, the new
initial estimate yields an error less than 2 % and no further iterations are
needed (P = 0). Closer to the sphere, often one extra iteration (P = 1) is
needed to meet the error criterion. .

After computation of the surface field ¥ x H, we compute the scat-
tered field with the representation of Eq. (4.13). In Fig. 5.3 we present the
measured results (solid lines) and the computed results (dashed lines). We
further want to quantify the difference between the results in more detail. In
addition, to make the differences in the far field more visible we have multi-
plied the difference between the two results with a factor dy/0.02, where dj,
is the distance in meters. The results for this weighted difference are plotted
in Fig. 5.4. From the latter two figures we observe that, the amplitudes of
the field responses do match properly, but we observe a shift between the
curves, which indicates that the shift calculated in Chapter 2 is not good
enough. Probably, in the actual positioning of the sphere a small location
error is made, and for a fair comparison we need a second calibration. To
find the proper shift we perform exactly the same procedure as in Chapter 2,
by shifting the computed results in such a way that the correlation of both
responses is maximized. Before we carry out this second calibration we have
to mention that the accuracy of the measurement is not reliable in the near
field close to the sphere due to additional reflections from the antenna and
the sledge of the antenna. For this reason we have performed the calibration
in the range of 40 mm < dj < 160 mm to find the proper shift. We find that
the antenna configuration in the modeling has to be shifted over a distance
of 1 mm.

After performing the second calibration, the measured and the simu-
lated scattered field responses along the measurement range are depicted in
Fig. 5.5 and the weighted difference between the two responses is plotted
in Fig. 5.6. In'these figures the two vertical dotted lines indicate the begin
and end of our calibration range. We observe that the results match very
good in the calibration area (see Fig. 5.6) and close to the sphere discrepan-
cies occur. As already mentioned, these discrepancies are caused by mutual
reflections between the sphere and the antenna configuration.

Physical-optics approximation (PO)

Next, we compare the measured result with a simulated result when we
take the physical-optics (PO) approximation for the surface field. After
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Figure 5.5: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance di, after second calibration.
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Figure 5.6: The weighted difference between the measured and simulated
CG field responses, as a function of distance dy, after second calibration.

computing the scattered field using this physical-optics approximation, and
applying the extra shift found from the second calibration with the CG
simulations, the results are depicted in Fig. 5.7 and the weighted difference
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Figure 5.7: The measured (solid line) and simulated PO (dashed line) field
responses as a function of distance dj, after second calibration.
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Figure 5.8: The weighted difference between the measured and simulated
PO field responses as a function of distance d, after second calibration.

between these two results in Fig. 5.8. We observe that the field responses do
match properly. When we compare Fig. 5.8 with Fig. 5.6 we can conclude
for this simple spherical-shaped scatterer the physical-optics approximations
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Figure 5.9: The weighted difference between the simulated CG and PO
responses as a function of distance dj.

performs very well.

In order to quantify the differences between the simulated CG results
and the simulated PO results, we present the differences between these two
results in Fig. 5.9. We note that these differences become larger in the near
field of the scattering object.

5.2. Experiments with a finite cylinder

Secondly, we present the results for a finite cylinder made of aluminum. The
radius, a, of the cylinder is 5 mm and the length is 30 mm. The cylinder
is suspended from the sledge of the upper rail, while the dipole antenna
which is located at the lower sledge is moved towards the barycenter of the
cylinder. We consider again the barycenter of the cylinder as the origin
of the coordinate system. In our computations, the dipole is positioned at
2T = {0,0,d + Ay}, where the value of Ad = 0.58 mm is found from the
shift correction explained in Chapter 2. The dipole antenna is moved along
the z-axis towards the cylinder (Fig. 5.10). The parameter d is the varying
distance between the dipole antenna and the scattering surface. The dipole is
oriented in the y-direction with a dipole moment I, L = {0,C, 0}, where the
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Figure 5.10: Dipole antenna moving towards the cylinder.

amplitude C of the dipole moment is found from the calibration procedure
explained in Chapter 2. Since only the y-component of the scattered field is
measured, we suffice by computing the y-component of the scattered field and
the real part of this field component represents the reflected field amplitude
E7 measured by the antenna system. When the antenna is moved towards
the cylinder, the scattered electromagnetic fields are measured at certain
discrete points along the range of 17 mm < dj < 157 mm with a sampling
unit of 0.04 mm. From the measured response we subtract its DC value. We
calculated this DC value by taking the mean value of all the measurements.

In our computations we discretize the boundary surface S of the cylinder
in 1972 plane triangular patches and the internal spherical surface Sy in
110 patches, which is sufficient enough to obtain the accuracy within not too
much computation time (see Chapter 4).

Constrained conjugate gradient method (CQG)

We first compute the surface field v x H with the constrained conjugate
gradient method (CG) as developed in Chapter 4. We stop the iteration once
an error less than 2 % is arrived at. The maximum number of iterations to
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Figure 5.11: The error, ERR, as a function dj. in the simulation procedure.

meet this error criterion is denoted as P. Since we compute the scattered
fields at certain discrete points, k& = 1,2,---,300, along the measurement
range, the field changes roughly with the factor C 1 of Eq. (5.1), and we
use this factor to improve the initial estimate, when we change the antenna
position from di_; to d. Our computational procedure is as follows. We
start for k = 1 with the physical-optics approximation, using Eq. (4.23), as
an initial estimate and let the constrained conjugate gradient method iterate
P times until it satisfies the error criterion of 2 %. For each new position
of the dipole antenna we use the initial estimate of Eq. (5.2). With this
initial estimate the number of iterations needed to meet our error criterion
of 2 % varies between P = 0 and P = 4. The values of the error during
this procedure are plotted in Fig. 5.11. From the starting point at dj = 157
mm to 70 mm, we need either the zero iteration or one extra iteration, while
closer to the cylinder, two to four iterations are needed to meet the error
criterion.

After computation of the surface field ¥ x H, we compute the scat-
tered field with the representation of Eq. (4.13). In Fig. 5.12 we present
the measured results (solid lines) and the computed results (dashed lines).
We further want to quantify the difference between the results in more de-
tail. In addition, to make the differences in the far field more visible we
have multiplied the difference between the two results with a factor dj/0.02,
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Figure 5.12: The measured (solid line) and simulated CG (dashed line) ficld
responses as a function of distance dj.

T T T T T T
ol [xd,/0.02] |
Af—
B i
s °f
[0l
Q
[
2
£ of
2
©
jol
E
=
g sl :
—10} 4
1 L 1 1 1 1 1
20 40 60 80 100 120 140

distance [mm]

Figure 5.13: The weighted difference between the measured and simulated
CG ficld responses as a function of distance dy.

where dj, is the distance in meters. The results for this weighted difference
are plotted in Fig. 5.13. From the latter two figures we observe that, the
amplitudes of the field responses do match properly, but we observe a shift
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Figure 5.14: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dj, after second calibration.
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Figure 5.15: The weighted difference between the measured and simulated
CG field responses as a function of distance dj. after second calibration.

between the curves, which indicates that the shift calculated in Chapter 2 is
not good enough. Probably, again in the actual positioning of the cylinder
a small location error is made, and for a fair comparison we need a second
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calibration. To find the proper shift we perform exactly the same procedure
as in Chapter 2, by shifting the computed results in such a way that the
correlation of both responses is maximized. Before we carry out this second
calibration we have to mention that the accuracy of the measurement is not
reliable in the near field close to the cylinder due to additional reflections
from the antenna and the sledge of the antenna. For this reason we have
performed the calibration in the range of 40 mm < dj < 140 mm to find the
proper shift. We again find that the antenna configuration in the modeling
has to be shifted over a distance of 1 mm.

After performing the second calibration, the measured and the simu-
lated scattered field responses along the measurement range are depicted in
Fig. 5.14, while the weighted difference between the two responses is plot-
ted in Fig. 5.15. In these figures the two vertical dotted lines indicate the
begin and end of our calibration range. We observe that the results match
very good in the calibration range (see Fig. 5.15) and close to the cylinder
discrepancies occur. As already mentioned, these discrepancies are caused
by mutual reflections between the cylinder and the antenna configuration.

Physical-optics approximation (PO)

Next, we compare the measured result with a simulated result when we
take the physical-optics (PO) approximation for the surface field. After
computing the scattered field using this physical-optics approximation, and
applying the extra shift found from the second calibration with the CG
simulations, the results are depicted in Fig. 5.16 and the weighted difference
between these two results in Fig. 5.17. We observe that the field responses do
match properly. When we compare Fig. 5.17 with Fig. 5.15 we can conclude
that for this simple scatterer the physical-optics approximations performs
reasonably well.

In order to quantify the differences between the simulated CG results
and the simulated PO results, we present the differences between these two
results in Fig. 5.18. When we compare these differences with the ones of
Fig. 5.9 we observe that, for the scattering by a sphere, the physical-optics
approximation was a reasonable approximation, certainly in the far-field
zone, but that in the present case of the scattering by a finite cylinder the
discrepancies become more pronounced in the intermediate-field and near-
field zones. Furthermore, at the start of the measurements, a DC value is
present. This is caused by the presence of some residual charge in the elec-
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Figure 5.16: The measured (solid line) and simulated PO (dashed line) field
‘responses as a function of distance d. after second calibration.
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Figure 5.17: The weighted difference between the measured and simulated
PO field responses as a function of distance dy after second calibration.

tronic system. This charge decreases as a function of time, which is visible
as a function of position. Although the differences between the CG results
~ and the PO results are of the same order as the differences between the mea-
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Figure 5.18: The weighted difference between the simulated CG and PO
field responses as a function of distance d.

surements and the CG results we surmise that for a more complicated object
the physical-optics approximation will not be useful anymore. Therefore, at
the end of this chapter we model a more complicated object, viz., the capped
box. But first we discuss the experiments with a finite flat plate.

5.3. Experiments with a finite flat plate

Thirdly, we present the results for a finite plate made of aluminum. The
plate has a dimension of 20 x 20 mm? base and 3 mm thickness. In able to
support the plate a small box is attached on the back side with dimensions
of 6 x 6 mm? base and 7 mm thickness. This support box has a small hole to
be fixed on a bar. The plate and the support box form one aluminum object.
The dipole antenna which is located at the lower sledge is moved towards
the barycenter of the plate (Fig. 5.19). We consider again the barycenter
of the plate as the origin of the coordinate system. In our computations,
the dipole is positioned at T = {0,0,d + Ad}, where the value of Ad =
0.58 mm is found from the shift correction explained in Chapter 2. The
dipole antenna is moved along the z-axis towards the plate (Fig. 5.20). The
parameter d is the varying distance between the dipole antenna and the
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Figure 5.19: The finite plate.

scattering surface. The dipole is oriented in the y-direction with a dipole
moment Ip,; L = {0,C,0}, where the amplitude C of the dipole moment is
found from the calibration procedure explained in Chapter 2. Since only the
y-component of the scattered field is measured, we suffice by computing the
y-component of the scattered field and the real part of this field component
represents the reflected field amplitude E™ measured by the antenna system.
When the antenna is moved towards the plate, the scattered electromagnetic
fields are measured at certain discrete points along the range of 6 mm < dj <
100 mm with a sampling unit of 0.04 mm. From the measured response we
subtract its DC value. We calculated this DC value by taking the mean value
of all the measurements.

In our computations we discretize the boundary surface S of the plate
with support box in 5400 plane triangular patches and the internal spherical
surface Siyt in 110 patches, which is sufficient enough to obtain the accuracy
within not too much computation time (see Chapter 4).

Constrained conjugate gradient method (CG)

We first compute the surface field v x H with the constrained conjugate
gradient method (CQ) as developed in Chapter 4. We stop the iteration once
an error less than 4 % is arrived at. The maximum number of iterations to
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Figure 5.20: Dipole antenna moving towards the finite plate.

meet this error criterion is denoted as P. Since we compute the scattered
fields at certain discrete points, & = 1,2,---,300, along the measurement
range, the field changes roughly with the factor Cj, x_1 of Eq. (5.1), and we
use this factor to improve the initial estimate, when we change the antenna
position from di_; to di. Our computational procedure is as follows. We
start for & = 1 with the physical-optics approximation, using Eq. (4.23), as
an initial estimate and let the constrained conjugate gradient method iterate
P times until it satisfies the error criterion of 4 %. For each new position
of the dipole antenna we use the initial estimate of Eq. (5.2). With this
initial estimate the number of iterations needed to meet our error criterion
of 4 % varies between P = 0 and P = 8. The values of the error during this
procedure arc plotted in Fig. 5.21. In this figure we observe that closer to
the scattering object the error with respect to the initial estimate increases
and the number of iterations needed to meet the error criterion increases as
well.

After computation of the surface field » x H, we compute the scattered
field with the representation of Eq. (4.13). In Fig. 5.22 we present the
measured results (solid lines) and the computed results (dashed lines). We
further want to quantify the difference between the results in more detail.
In addition, to make the differences in the far ficld more visible we have
multiplied the difference between the two results with a factor d;./0.02, where
dj, is the distance in meters. The results for this weighted difference are
plotted in Fig. 5.23. From the latter figure we observe that. the amplitudes
of the field responses do match properly until dp = 30 mm and after that the
measured result shows an amplifier error since the mixer of the trajectory
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Figure 5.21: The error, ERR, as a function di in the simulation procedure.

simulator do not operate properly anymore. Further we also observe a shift
between the curves, which indicates that the shift calculated in Chapter 2
is not good enough. Probably, again in the actual positioning of the plate
a small location error is made, and for a fair comparison we need a second
calibration. To find the proper shift we perform exactly the same procedure
as in Chapter 2, by shifting the computed results in such a way that the
correlation of both responses is maximized. Before we carry out this second
calibration we have to mention that the accuracy of the measurement is
not reliable in the near field close to the plate due to additional reflections
from the antenna and the sledge of the antenna. For this reason we have
performed the calibration in the range of 35 mm < di < 90 mm to find the
proper shift. We find that the antenna configuration in the modeling has to
be shifted over a distance of 0.4 mm.

After performing the second calibration, the measured and the simu-
lated scattered field responses along the measurement range are depicted in
Fig. 5.24, while the weighted difference between the two responses is plot-
ted in Fig. 5.25. In these figures the two vertical dotted lines indicate the
begin and end of our calibration range. We observe that the results match
very good in the calibration range (see Fig. 5.25) and close to the cylinder
discrepancies occur. As already mentioned, these discrepancies are caused
by mutual reflections between the scatterer and the antenna configuration.




EXPERIMENTS WITH A FINITE PLATE 81

field responces [V/m)]

—60 1 1 1 1 1 1 1 L 1
10 20 30 40 50 60 70 80 90 100
distance [mm)

Figure 5.22: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dy,.
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Figure 5.23: The weighted difference between the measured and simulated
CG field responses as a function of distance dj..

Physical-optics approximation (PO)

Next, we compare the measured result with a simulated result when we
take the physical-optics (PO) approximation for the surface field. After

|
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Figure 5.24: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dj, after second calibration.
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Figure 5.25: The weighted difference between the measured and simulated
CG field responses as a function of distance dj after second calibration.

computing the scattered field using this physical-optics approximation, and
applying the extra shift found from the second calibration with the CG
simulations, the results are depicted in Fig. 5.26 and the weighted difference
between these two results in Fig. 5.27. We observe that the field responses do
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Figure 5.26: The measured (solid line) and simulated PO (dashed line) re-
sponses as a function of distance dj, after second calibration.
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Figure 5.27: The weighted difference between the measured and simulated
PO field responses as a function of distance dj after second calibration.

match properly. When we compare Fig. 5.27 with Fig. 5.25 we can conclude

that for this simple finite plate the physical-optics approximations performs
reasonably well.
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Figure 5.28: The weighted difference between the simulated CG and PO
field responses as a function of distance dj.

In order to quantify the differences between the simulated CG results
and the simulated PO results, we present the differences between these two
results in Fig. 5.28. When we compare these differences with the ones of
Fig. 5.9, we observe that, for the scattering by a sphere, the physical-optics
approximation was a reasonable approximation, certainly in the far-field
zone, but that in the present case of the scattering by a finite plate the dis-
crepancies becomes more pronounced in the intermediate-field and near-field
zones. Although the differences between the CG results and the PO results
are of the same order as the differences between the measurements and the
CG results we surmise that for a more complicated object the physical-optics
approximation will not be useful anymore.

5.4. Experiments with a capped box

In the previous sections, for some simple canonical objects (sphere, cylinder
and plate), we compared the measured results and computed results using
both the physical-optics approximation and the conjugate gradient method
for simple objects. In these comparisons we observed that the results using
the physical-optics approximation are slightly worse than the results using
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Figure 5.29: The capped box in a hand.

the conjugate gradient method, but still one can conclude that the physical-
optics approximation is a reasonable approximation.

In this section we consider a more complicated object. We present the
results simulated numerically, using either the physical-optics approximation
or the conjugate gradient method. We take a box capped with three cones
made of aluminum (see Fig. 5.29 and Fig. 5.30). The box has a length of 2 cm
and a cross-section of 0.8 x 0.8 cm?. At the front end, the box is capped with
a right circular cone; this cone has a height of 1 cm and a basis cross-section
with a radius of 0.4 cm. In addition on two opposite sides we have placed
cones with a height of 0.4 cm and a basis cross-section with a radius of 0.4
cm. We consider the barycenter of the box of the capped box as the origin
of the coordinate system. In our computations, the dipole is positioned at
z? = {0,0,d}. The dipole antenna is moved along the z-axis towards the
cylinder (Fig. 5.31). The parameter d is the varying distance between the
dipole antenna and the scattering surface. The dipole is oriented in the
y-direction with a dipole moment I, L = {0,C,0}. We compute only the
y-component of the scattered ficld in accordance with measurements and the
real part of this field component represents the reflected field amplitude E7
measured by the antenna system. When the antenna is moved towards the
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Figure 5.30: The capped box.

capped box, the scattered electromagnetic fields are computed at certain
discrete points along the measurement range with a sampling unit of 0.5
mm. We compare the results for three different orientations of the capped
box. The results are presented after the amplitude and phase correction as
performed in previous sections.

In our computations we discretize the boundary surface into 1888 patches,
which is a discretization of five to six points per wavelength. The interior
surface is the same as before, viz., a sphere with a radius of 2 mm, and
discretized into 110 patches.

(i) Firstly, we position the capped box as depicted in Fig. 5.31 and move
the antenna to the front cone of the scattering object. The measurement
range is 20 mm < dp < 110 mm. We compute the surface field v x H with
the constrained conjugate gradient method (CG) as developed in Chapter 4.
We stop the iteration once an error less than 5 % is arrived at. The maximum
number of iterations to meet this error criterion is denoted as P. Since we
compute the scattered fields at certain discrete points, k = 1,2,---,300,
along the computation range, the field changes roughly with the factor C x—1
of Eq. (5.1), and we use this factor to improve the initial estimate, when we
change the antenna position from dy_1 to dy. We start for k£ = 1 with the
physical-optics approximation, using Eq. (4.23), as an initial estimate. The
error when using this physical-optics approximation as initial estimate is 123
% and in the first iteration it decreases to 70 %. For each new position of the
dipole antenna we use the initial estimate of Eq. (5.2). Then, the number of
iterations needed to meet our error criterion of 5 % varies between P = 0 and
P = 8. The values of the error during this procedure are plotted in Fig. 5.32,
except for the first antenna position (k = 1). In this figure we observe that
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capped box

dipole

Figure 5.31: Dipole antenna moving towards the front cone of the capped
box.
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Figure 5.32: The error, ERR, as a function dj, in the simulation procedure.
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Figure 5.33: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dj.
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Figure 5.34: The measured (solid line) and simulated PO (dashed line) field
responses as a function of distance dj,.
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closer to the scattering object the error with respect to the initial estimate
increases and the number of iterations needed to meet the error criterion
increases as well. After computation of the surface field v x H with the
CG method and the PO method, we compute the scattered fields with the
representation of Eq. (4.13). In Fig. 5.33 we present the measured results
(solid lines) and computed results with CG (dashed lines). We observe that
the computed results with CG do match reasonable in the far field but closer
to the scatterer a phase shift occurs. This is probably due to the difference
between the modeled and actual form and position of the apex of the front
cone. A different location between the modeled and actual one may be
responsible for the shift observed in the near-field responses. In Fig. 5.34
we present the measured results (solid lines) and computed results with PO
(dashed lines). We observe that the results with PO differs apparently from
the measured results. This is also in accordance with the 123 % error when
we take PO as initial estimate for CG.

(ii) Secondly, we position the capped box as depicted in Fig. 5.35 and

capped box

Figure 5.35: Dipole antenna moving towards a side cone of the capped box.
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move the antenna to a side cone of the capped box. The measurement range
is 17 mm < dj < 110 mm. We used the same computation procedure as
described in the first positioning. The error with physical-optics approxima-
tion as initial estimate is 135 % and in the first iteration it decreases to 59
%. For each new position of the dipole antenna we use the initial estimate
of Eq. (5.2). With this initial estimate the number of iterations needed to
meet our error criterion of 5 % varies between P = 0 and P = 7. The values
of the error during this procedure are plotted in Fig. 5.36, except for the
first antenna position. After computation of the surface field v x H both
with the CG method and the PO method, we compute the scattered fields
with the representation of Eq. (4.13). In Fig. 5.37 we present the measured
results (solid lines) and computed results with CG (dashed lines). We ob-
serve that the computed results with CG do match properly in the far field
and intermediate field but in the near field a slight difference occurs in the
amplitude. Again this is probably due to the difference in form and position
between the modeled one and the actual apex of the side cone, although
the present discrepancies are much smaller than the ones of the former case,
where the front cone has been approached. In Fig. 5.38 we again present the
measured results (solid lines) and computed results with PO (dashed lines).
We observe that the results with PO differs apparently from the measured
results, but less worse than in the previous case, where the front cone has

0.07 T T T T T T T T T

0.065 ‘ —

normalized error
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Figure 5.36: The error, ERR, as a function dj, in the simulation procedure.
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Figure 5.37: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dy.
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Figure 5.38: The measured (solid line) and simulated PO (dashed line) field
responses - 1 function of distance dj,.
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been approached. The side cone has a less pronounced apex.

(iii) Thirdly, we position the capped box as depicted in Fig. 5.35 and move
the antenna to the bulk of the capped box. We used the same computation
procedure as described for the first orientation of the object. By computing
the surface field v x H with the constrained conjugate gradient method
(CG) we start again for k = 1 with the physical-optics approximation, using
Eq. (4.23), as an initial estimate and let the constrained conjugate gradient
method iterate P times until it satisfies the error criterion of 5 %. The
error with physical-optics approximation as initial estimate is 75 % and in
the first iteration it decreases to 53 %. For each new position of the dipole
antenna we use the initial estimate of Eq. (5.2). With this initial estimate the
number of iterations needed to meet our error criterion of 5 % varies between
P =0 and P = 3. The values of the error during this procedure are plotted
in Fig. 5.40, except the first point. After computation of the surface field
v x H with the CG method and the PO method, we compute the scattered

capped box

Figure 5.39: Dipole antenna moving towards the plane side of the capped
box.
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Figure 5.40: The error, ERR, as a function di in the simulation procedure.

fields with the representation of Eq. (4.13). In Fig. 5.41 we present the
measured results (solid lines) and computed results with CG (dashed lines).
We observe that the computed results with CG do match very good in the
far field and intermediate field but in the near ficld an amplifier error occurs
during the measurement. This also occurs in the case of the flat plate. In the
near field, the strong reflected field response causes problems in the electronic
circuit of the mixer of the trajectory simulator. In Fig. 5.42 we present the
measured results (solid lines) and computed results with PO (dashed lines).
We observe that the results with PO do match properly in the far field and
intermediate field. In the near field discrepancies show up, but they are not
as pronounced as in the former cases where the front and side cones have
been approached.

When we compare the figures for the three orientations of the capped
box, we observe the following. In the first orientation, when the antenna
moves to the front cone with a height of 1 cm, there are large discrepancies
between the CG results and the PO results (see Fig. 5.33 and Fig. 5.34). In
the second orientation, when the antenna moves to a side cone, the agreement
between the two results are slightly better (see Fig. 5.37 and Fig. 5.38). The
side-cone has a height of 0.4 cm, so that the side cone is less sharp than the
front cone. Further, we note that the characteristic dimensions of the cones

O
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Figure 5.41: The measured (solid line) and simulated CG (dashed line) field
responses as a function of distance dj.
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Figure 5.42: The measured (solid line) and simulated PO (dashed line) field
responses as a function of distance dj.
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are less or equal to a wavelength, so that it is not expected that the physical-
optics approximation will yield acceptable results. In the third orientation,
when the antenna moves to a flat side of the capped box, the agreement
becomes better (see Fig. 5.41 and Fig. 5.42).

When we also compare the CG and PO results with the measurements,
we conclude that our simulation based on the constrained CG method yields
reliable results, as long as the modeled configuration presents the actual
scatterer accurately enough. The physical-optics approximation, however,
cannot be used for complicated scatterers.






Chapter 6

Conclusions

In this thesis we have developed a simple and efficient computational method
to calculate the electromagnetic scattering for perfectly conducting objects.
In particular, we derived integral representations for the scattered electro-
magnetic fields. Subsequently, in these representations the only unknown
field quantity, the tangential component of the magnetic field, has been
studied. We derived two types of boundary integral equations for this un-
known surface field, one of the electric type and one of the magnetic type. In
view of some non-uniqueness problems, we also required consistency of the
integral representations in the interior of the scattering object. As a point
of departure the magnetic-field boundary integral equation was chosen for
solving the unknown surface field in view of the computational simplicity.

To solve the boundary integral equation of the magnetic type we used
the conjugate gradient method as an iterative solver. We observed that
the solution of our integral equation is not unique at certain frequencies
in the presence of interior resonances. In order to restore uniqueness, we
used the interior integral representation over a closed interior surface as a
constraint for the conjugate gradient method. To that end, the problem
is posed as an optimization problem in which an error norm of two terms
is minimized. The first term is the normalized error norm with respect to
the boundary integral equation, while the second term is the normalized
error with respect to the interior equation over a closed interior surface.
In order to limit the extra computation time due to the presence of the
constraint, the interior surface has been chosen as small as possible, but such
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that the field variation over this surface remains visible in computational
sense. Therefore, we have chosen the interior surface to enclose a sphere
with a diameter of at least half a wavelength. Then, for realistic objects the
extra computation time is less than 3%. Numerical examples have shown
that the proposed computational method produces stable results even for
frequencies corresponding to the interior resonances of the scatterer. We
also observed that the location of the interior surface is not important as
long as the interior surface is not too close to the boundary surface of the
object. Very close to the boundary, numerical problems may occur due to the
singular point of the Green function. Furthermore, we have observed that
the constrained conjugate gradient scheme converges to a minimum that
is representative for the discretization error made in the boundary integral
equation. Improving the discretization leads to a lower minimum. With this
feature we have arrived at a quantitative criterion for the global error made
in the discretization.

In addition, we have developed a calibration scheme in order to be able to
compare the numerically computed results with the measured results. Since
we model the antenna as an electric dipole source, we determined the effec-
tive dipole moment. First we calibrated the modeled field from this dipole
source; in fact we determined the actual magnitude of the dipole antenna
by means of determining a multiplicative constant between the measured
signal and simulated field responces. Next, after presenting the measured
and calibrated computed results, we observed a phase shift between the two
results. This may be due to the actual positioning of the scatterer, where
a small location error is made. Hence we further developed a calibration
procedure to find an improved estimate for the location of the origin of the
dipole antenna.

We performed a limited number of measurements in an anechoic chamber
by moving the dipole antenna to various perfectly conducting objects (tar-
gets) in order to compare the measured field responses with simulated results.
Since the speed of movement is much smaller than the wave speed in vac-
uum we considered it as a monostatic scattering problem. This means that
for each location of the transmitter/receiver antenna the scattering problem
has been handled as a stationary one. The experiments have shown that the
method we have developed is successful. In our simulations, we have first
computed the surface field with the constrained conjugate gradient method.
We stopped the iteration once an error tolerance had been reached. Since
we computed the scattered fields at certain discrete points along the mea-
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surement range we determined a factor which is roughly proportional to the
field change along the movement. We used this factor to improve the initial
estimate when we change the antenna position. This leads to a substan-
tial decrease in simulation time. After computation of the surface field we
compute the scattered field. We also compared the measured results with
simulated results when we take the physical-optics approximation for the
surface field. We note that a further reduction in simulation time may be
obtained, when we use the extrapolation technique suggested by Tijhuis et
al. (30].

After the comparisons of the measured results and the simulated results
for some simple canonical objects (sphere, cylinder and plate), we also made
some numerical simulations using both the physical-optics approximation
and the constrained conjugate gradient method for a capped box, in order
to study the accuracy of the physical-optics approximation for a more com-
plicated scatterer. We compared the results for three different orientations
of the capped box. In the first orientation, when the antenna moves to the
top-cone, the results were the worst. In the second orientation, when the
antenna moves to the side-cone, the results were slightly better, because the
side-cone is less sharp than the top-cone. Furthermore, we note that the
characteristic dimensions are less or equal to a wavelength, so it is not ex-
pected that the physical-optics approximation will yield acceptable results.
In the third orientation, when the antenna moves to the flat side of the
capped box, the results become better. From these facts we conclude that
the physical-optics approximation cannot be used for complicated (non-flat)
scatterers.

The knowledge about the scattering properties of targets is not only
useful for the evaluation of the performance of proximity fuzes, but it can
also be used to design proximity fuzes that recognize their target and the
geometry of interception. This would lead to an optimization of the burst
point, and an increase the effectivity of the fuze.

Future Research

We further remark that, for simplicity reasons, the computational re-
search in this thesis is restricted to the solution of the magnetic-field inte-
gral equation over the boundary of the scattering object. The disadvantage
is that this equation can only handle closed surfaces with a non-zero vol-
ume. For open surfaces (e.g. an infinitely thin plate). onc has to use the
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electric ficld integral equation over the boundary, which is a singular first
kind equation. For open surfaces this integral has always a unique solution,
because there is no interior domain to contain resonant fields. However,
the electric-field equation can handle also combinations of open and closed
surfaces, as it occurs in the case where the target has the form of a closed
object of non-zero volume with some very thin wings. Then, non-uniqueness
is again a problem and it is suggested to supplement the clectric-field inte-
gral equation over the boundary with either the electric-field equation or the
magnetic-field equation over a small interior surface. In view of its simplicity
we prefer the latter one.

In addition, more research is needed when the scattering object (target)
is not electrically perfectly conducting. Actually, the nowadays targets such
as missiles, consist of a combination of conducting and non-conducting ma-
terials. In that case the boundary integral equations will not be valid and
the domain integral equations have to be introduced [32].




Appendix

A. Discretization of the geometry

In our analysis of Chapter 4, we need an expression for a linear interpola-
tion function on a triangle S,. We therefore define the vectors L; that are
oriented along the outward normal to the respective edges in the plane of
Sy, cach of them having a magnitude that equals the length of the relevant
edge (see Fig. A.1). We have

L,‘,:ain/, (A.l)
and
3
> L;=0. (A2)
i=1

To arrive at a representation to express any quantity in the interior and
on the boundary of each planar triangle, we introduce the barycentric co-
ordinates of the position of observation in the triangle. Let {\;; i =1,2,3}
denote the barycentric coordinates pertaining to S,,. Then, the position of
observation « in the interior and on the boundary of S,, can be specified by

3 3
x = Zz\ﬂ:i, where 0 < \; < 1 with Z’\i =1, forxzeS,, (A3)
i=1

i=1

in which x; are the position vectors of the respective vertices of S,,. Eq. (A.3)
yields the value of « for given values of A;. However, we want an expression
that yields the values of A; for a given value of z € S,,. We can do that by
selecting one of the vertices of S, as the preferred one and eliminating the
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Figure A.l: Perpendicular view on S,.

barycentric coordinate that has the value one at that vertex. As an example
we choose \; as the preferred vertex, and accordingly we eliminate A; with
using the relation Ay =1 — A2 — A3. This yields,

3
x—-x = Z Ai [Ti — 1] . (A4)
1=2

Next, taking the dot product of v with Eq. (4.3) and using Eq. (4.4), we can
easily verify that

(x2 — 1) L2 = —24, (A.5)
and
(:1:3 - :Bl) . L3 =-2A (AG)
Furthermore, applying Eq. (A.5) and Eq. (A.6) to Eq. (A.4) gives
(@ — 1) Ly = —2A) (A7)
and
(x — 1) - Lg = —24A)3. (A.8)

where we have used that (3 — ;) L2 = 0 and (xg — =) - L3 = 0. Adding
Eq. (A.7) with Eq. (A.8) and using the relation Ly = —Ly — L3 gives

(x—xy) L1 =2A(N2 + A3). (A.9)
Applying the expressions, that result from Eqs. (A.7)-(A.8) for A2, A3 and
Eq. (A.9) for Ay + A3, in Eq. (A.4) yields,

3
r— ] = Z —xl) L (AlO)
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Results similar to Eq. (A.10) hold when x; is replaced by @2 and x3, respec-
tively. Upon adding the relevant results, we end up with the symmetrical
expression

13
m—b:ﬂ;[(m—b)-Li]wi, (A1)
in which
13
b= 5298 (A.12)

is the position vector of the barycenter of S,,. Finally when we compare
Eq. (A.11) with Eq. (A.3) we conclude that

1 (z-0b)-L;
do=g -t (A.13)

Eq. (A.13) gives the desired representation to express any quantity in the
interior and on the boundary of each planar triangle S,. That is why, we will
use Eq. (A.13) as a linear interpolation function in the subsequent analysis.
Regarding this aspect we shall write a more general form linear interpolation
function @, ;(x) instead of A;, i.e., Eq. (A.13) is rewritten as

1 (:B - bn) - Ln 7
b i) =c———F— A.l4
ni(T) 3 24, ] ( )
in which by, is the position vector of the barycenter of S, and, Ly ; are the
vectors normal to the respective edges in the plane of S,,, and A, is the scalar

area of S,,. We can express now local expansion of any vectorial function
A(x) as

3
F(x) =Y F(z;)%;(x). (A.15)
1=1

With the aid of Eq. (A.12) and Egs. (4.2)-(A.1) we can easily show that
Eq. (A.14) has the property

@n’i(xj) = 51"]' . (A.lG)

For our computations we use the software package Rhinoceros [31] to
generate a discretization mesh of the surface of the object under considera-
tion. Subsequently, the output is used to generate a data set containing the
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data of each triangle, such as the vertices, the vectorial edges, the normal
vectors to the surface and to the edges.

B. Weak form of Green’s function

In the discretized kernel of the magnetic field integral equation we have to
compute the gradient of the Green function, viz.,

il:—ilfp

VoG (x—xp) = —[iko|z—x,| — 1] exp(ikolx—p)) (B.1)

Al -z,

In view of the continuity of the kernel, it is allowed to replace the kernel in a
discretized configuration by its spherical mean. The radius of the spherical
domain is taken equal to the average discretization size A of the object under
consideration. But we restrict the spherical mean over the singular part only.
To this end we write the singular factor at the right-hand side of Eq. (B.1)

as
T _ g (L
dmlz—z,3 Ve <47r|:1:—:c,,|) ) (B2)

Subsequently we define our mean of V,G over a spherical domain D with
radius A as

V,G(@—a,) = ~[ikole ~z,| — 1) explikole—z,)) Vog(z—z;),  (B3)

where

g(w—=p) = M% / 1 v, (B.4)

x'eDp AT|X T —p|
The simplest way to evaluate this integral is to introduce spherical coordi-
nates in the =’-space with center at @’ = 0 and the direction &—x, as polar
axis. Let r = |2'| and 6 the polar angle between =’ and x—x,, then the
range of integration is 0 <r < A, 0< 6 <7, 0 < ¢ < 2w, where ¢ is the
azimuth angle in the plane perpendicular to —x,. Let further R = |x—ap|.
Then in the integral we have

[Nl

o’ +z—,| = [r2 YR+ 2chos(a)] , (B.5)
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and dV = r%sin(#)drdfd¢. In the resulting integral we first carry out the
integration with respect to ¢. Since the integrand is independent of ¢, this
merely amounts to a multiplication by a function of 27. Next we carry out
the integration with respect to @, which is elementary. After this we have

1 1 A
— dV = — _ — rllrdr. .
-/a:’eDA 4|’ +— x| QR/O [(R+7)—|R—r|rds (B.6)

Integration with respect to r is straightforward and yields
1o 1 2
§A - 61w«w,,| , when0 < |z—a,| < A,

1
/ ——dV =
T'eDy AT +x—2p) A3

—_— hen A < |z— .
Tem | esseeslc
7

Hence, the spherical mean of the inverse distance as defined in Eq. (B.4) is
given by

3 1 1
(—A2 — giw—l‘p|2> , when 0 < |lz—zp| <A,

4T A3 \ 2
g(m—:cp) =
;, when A < |z—zp| < 0.
4l —a,|
(B.3)
The gradient of this function is obtained as
%r%’ when 0 < [z —xp| < A,
Vog(z—zp) = (B.9)
__azv_:cg__’ when A < jz—xp| < 00.
am|x—xp|?

With this result, substituted into Eq. (B.3) we arrive at our desired expres-
sion for the weak form of V,G, i.c.,

VoG (x —xp) = —(x — ,)0G(|Jx—x,|) (B.10)
with
(ikoR—l)@(Z—f:ZOsR—)» when 0 < R< A,
9G(R) = (B.11)
. exp(iko R)
(tkoR - 1)———5—~, when A <R.

aTrR>
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These expressions are used in Chapter 4 in the discretization of the magnetic
field equation. Note that the expression for B > A is exactly equal to the
strong form as given in Eq. (B.1).
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Samenvatting

Modellering van elektromagnetische
wisselwerking van nabijheidsbuizen

voor naderende doelen

door Erdal Korkmaz

Kennis over de verstrooiingseigenschappen van een voorwerp is waardevol
bij het modeclleren van nabijheidsbuizen. Deze buizen worden gebruikt voor
de verdediging tegen luchtaanvallen van een vijandelijke vliegtuig of raket.
De nabijheidsbuizen worden naar het doel geleid en op het juiste moment
worden explosieven gebruikt om het doel uit te schakelen. Meer kennis
over de verstrooiing van een elektromagnetische golf door een voorwerp kan
gebruikt worden voor het beter onderkennen van de geometrie van het doel
en het punt van interceptie. Dit kan leiden tot een verdere optimalisatie van
het tijdstip van explosie, en dientengevolge tot een hogere effectiviteit van
de verdediging.

In dit proefschrift wordt cen efficiénte methode ontwikkeld om elek-
tromagnetische verstrooiing aan perfect-geleidende voorwerpen numerick te
berekenen. In het bijzonder worden integraalrepresentaties voor de ver-
strooide elektromagnetische veldgrootheden afgeleid. In deze representaties
is de tangentiéle component van de magnetische veldvector op de rand van
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het voorwerp de enige onbekende grootheid. Voor deze onbekende veld-
grootheid worden twee soorten integraalvergelijkingen over de rand van het
voorwerp afgeleid, één van het elektrische type en één van het magnetische
type. Voor bepaalde frequenties van het invallend veld leveren deze in-
tegraalvergelijkingen geen ecnduidige oplossing. Wij eisen daarom ook de
consistentie van de integraalrepresentaties in het binnengebied van het ver-
strooiende voorwerp. Om de rekenkundige complexiteit zo veel mogelijk
te beperken, zijn, voor het oplossen van de onbekende veldgrootheid op de
rand van het voorwerp, de integraalvergelijkingen van het magnetische type
gekozen. De in dit proefschrift ontwikkelde numerieke rekenmethoden zijn
ook met metingen geverifiéerd.

Voor het oplossen van de integraalvergelijkingen over de rand van het
voorwerp is de geconjugeerde gradiéntenmethode als een iteratieve oplosser
gebruikt. Voor bepaalde frequenties hebben wij inderdaad waargenomen
dat de oplossing van onze integraalvergelijking niet eenduidig is. Dit heeft
te maken met mathematisch gecreéerde interne resonanties. Om de niet-
eenduidigheid te herstellen, hebben wij de integraalrepresentaties over een
gesloten oppervlak in het binnengebied van het voorwerp als een noodza-
kelijke eis opgelegd. Dat wil zeggen, het probleem wordt gesteld als een
optimalisatie-probleem, waarbij een foutennorm van twee termen wordt gefor-
muleeerd. De eerste term is de genormaliseerde foutennorm ten aanzien van
de integraalvergelijking over de rand van het voorwerp, terwijl de tweede
term de genormaliseerde foutennorm is ten aanzien van de integraalrepre-
sentatie over een gesloten oppervlak in het inwendige van het voorwerp. De
totale foutennorm wordt met de geconjugeerde gradiéntenmethode gemini-
maliseerd. Om de extra rekentijd te beperken, is het interne oppervlak zo
klein mogelijk gekozen, maar dusdanig dat veldvariaties over het interne
oppervlak rekenkundige betekenis blijven houden. Derhalve kiezen wij een
zodanig oppervlak, dat het omsloten wordt door een bol met een diameter
van tenminste een halve golflengte. Voor realistische voorwerpen is de extra
rekentijd te verwaarlozen. Numerieke experimenten hebben aangetoond dat
de voorgestelde rekenmethode betrouwbare resultaten geeft en het probleem
van de interne resonanties vermijdt. Verder hebben wij ook geconstateerd
dat de positie van het interne oppervlak niet belangrijk is, zo lang dit in-
terne oppervlak niet te dicht bij de rand van het voorwerp wordt gekozen.
Dicht bij de rand voor het voorwerp ontstaan numerieke problemen door
aanwezigheid van het singuliere punt van de Greense functie. Van groter
belang is de constatering dat de nieuwe geconjugeerde gradiéntenmethode
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convergeert naar een minimum, dat representatief is voor de fout, gemaakt
in de discretizatic van de integraalvergelijking over de rand van het voor-
werp. Een verbetering in de discretisatie levert een lager minimum van de
foutennorm. Dit betekent dat wij een kwantitatief foutencriterium hebben
voor de gemaakte discretisatie-fouten.

Om de numeriek berekende resultaten met gemeten resultaten te kun-
nen vergelijken hebben wij een calibratie-schema ontwikkeld. Omdat wij
veronderstellen dat de antenne gemodeleerd kan worden door een elektrische
dipool, moet de effectieve plaats en het effectieve moment van de dipool
bepaald worden. Daartoe wordt als verstrooiiend voorwerp een zeer grote
plaat genomen, zodat het gereflecteerde veld eenvoudig bepaald kan worden,
namelijk met het spiegelingsprincipe. Eerst wordt het effectieve moment
van de dipool bepaald door middel van het berekenen van de globale fac-
tor tussen de gemeten velden en de berekende velden, waarna de berekende
velden met deze factor gecalibreerd worden. Vervolgens wordt de effectieve
plaats van de dipool bepaald door binnen een interval van een golflengte,
de fascverschillen tussen de gemeten en gecalibreerde computer-resultaten
te minimalizeren.

Na een verdere vergelijking van de gemeten resultaten met de gecali-
breerde computer-resultaten voor een bepaald type voorwerp, hebben wij
weer faseverschillen geconstateerd tussen de twee resultaten. Dit is te wijten
aan onzekerheden tijdens het handmatig positioneren van het verstrooiende
object. Om die reden wordt de tweede calibratie-procedure herhaald om
de oorspronkelijke effectieve locatie van de dipool ten opzichte van het ver-
strooiende object te berekenen.

Vervolgens hebben wij metingen verricht door het laten naderen van de
dipool-antenne naar verschillende goed-geleidende voorwerpen. Omdat de
snelheid van de beweging vecl kleiner is dan de lichtsnelheid, hebben wij
het als monostatische verstrooiing beschouwd. Dat wil zeggen, voor clke
locatie van de dipool-antenne, wordt het verstrooiingsprobleem als een sta-
tionair probleem beschouwd. In de simulaties worden de verstrooide velden
op bepaalde discrete punten berekend langs de meettraject. In het cerste
punt wordt de velden berekend met een nauwkeurigheid, dic bepaald wordt
door een van te voren gestelde fouttolerantie. Daarna hebben wij een con-
stante bepaald, die ongeveer evenredig is met de veldveranderingen langs het
meettraject. Deze constante wordt gebruikt om de beginschatting van het
onbekende veld in de geconjugeerde gradiéntenmethode te verbeteren, zodra




114 SAMENVATTING

de antennepositie veranderd is. Dat heeft de computertijd fors verlaagd. De
experimenten laten zien dat de ontwikkelde rekenmethode succesvol is. Wij
hebben ook de resultaten, verkregen met de zogenaamde fysisch-optische
benadering, vergeleken met metingen. Hieruit kan geconcludeerd worden
dat de fysisch-optische benadering geen betrouwbare resultaten geeft voor
gecompliceerde (geen vlakke) voorwerpen.

Tenslotte wordt opgemerkt, dat de ontwikkelde rekenmethode in dit
proefschrift beperkt is tot de oplossing van integraalvergelijking van het
magnetische type. Alleen die voorwerpen kunnen worden gebruikt, waar-
van de rand een gesloten oppervlak vormt en een inwendige gebied omsluit
met een volume ongelijk aan nul. Voor open oppervlakken, zoals oneindig
dunne platen, dient de integraalvergelijking van het elektrische type gebruikt
te worden.
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