
IEEE Joint Intelligence and Security Informatics Conference JISIC 2014

Threat detection in tweets with trigger patterns and
contextual cues

Martijn Spitters, Pieter T. Eendebak, Daniël T.H. Worm, Henri Bouma
TNO

The Hague, The Netherlands
{martijn.spitters, pieter.eendebak, daniel.worm, henri.bouma}@tno.nl

Abstract—Many threats in the real world can be related to
activities in open sources on the internet. Early detection of
threats based on internet information could assist in the preven-
tion of incidents. However, the amount of data in social media,
blogs and forums rapidly increases and it is time consuming for
security services to monitor all these open sources. Therefore, it
is important to have a system that automatically ranks messages
based on their threat potential and thereby allows security
operators to check these messages more efficiently. In this paper,
we present a novel method for detecting threatening messages
on Twitter based on trigger keywords and contextual cues. The
system was tested on multiple large collections of Dutch tweets.
Our experimental results show that our system can successfully
analyze messages and recognize threatening content.

I. INTRODUCTION

Many threats to people or critical infrastructures in the real
world can be related to the activity of persons on social media,
blogs and forums. Open-source intelligence (OSINT) is the
information collection and analysis from publicly available
sources. Law enforcement OSINT aims to predict, prevent and
investigate attacks and assist in profiling suspects based on
information from cyber space. The information is gathered to
improve situation awareness for the protection of citizens and
infrastructures. However, the amount of data on the internet
rapidly increases and it is time consuming, if not impossible,
to monitor the continuous flow of tweets, posts and announce-
ments on websites manually. In the Netherlands alone, millions
of tweets are posted each day. Therefore, it is important to
have an automatic system that automatically selects and ranks
threatening messages, enabling security operators to check the
relevant messages much more efficiently.

To date, little research has been published about recogniz-
ing death threats on social media. There are several approaches
to perform OSINT for disaster management [1], incident
detection by handcrafted rules and semantic filtering using
DBpedia or news agencies [2], to handle limited availability of
annotated data with transfer or semi-supervised learning [3],
[4], but they are not optimized for the detection of threats
by individuals and they do not exploit the relations between
words in a message. Two approaches for recognizing threats in
the Dutch language have been reported [5], [6], which are both
based on N-grams. However, their performance is poor on large
test sets. Very recently, [6] was improved with encouraging
results [7]. However, a side-by-side comparison with our work
is not straightforward since the used datasets are different.

In this paper, we present a novel method for detecting
threatening messages on social media based on trigger key-

words and context cues. The main contribution is our two-stage
classification setup, which allows for an efficient and highly
scalable implementation. The first stage makes a pre-selection
based on a simple one-class description of threatening tweets,
while the second stage classifier further reduces this selection
by applying a more computationally intensive classifier based
on contextual relations between multiple words in the tweets.
A second advantage of our approach is that it can be applied
to other languages with minimal human effort, as it does not
rely on complex handcrafted rules or patterns.

The outline of this paper is as follows. Our method is
described in Sec. II. The data sets, experiments and results are
presented in Sec. III, and the conclusions are given in Sec. IV.

II. THREAT DETECTION METHOD

Our threat detection pipeline comprises a preprocessor, and
two classifiers which act like a funnel. Figure 1 outlines this
pipeline. The preprocessing step is described in II-A. The
first classifier makes a first separation of the preprocessed
tweets based on a semi-automatically generated list of threat
keywords, which we will call triggers. Creation of this trigger
list is described in II-B. The second classifier is only applied to
the tweets that are not filtered out by the first classifier, which
makes it a fast and scalable set-up. For the second classifier,
we compared two different approaches; one based on mining
contextual cues for the triggers (II-C), and one based on mining
more structured word patterns for the triggers (II-D).

A. Preprocessing

As a first step, incoming tweets are cleaned. Retweet indicators
(RT), URL’s, and usernames are removed. Emoticons are
replaced by placeholders to prevent problems with subsequent
tokenization. Finally the tweets are tokenized, i.e. punctuation
is removed and the tokens are translated to lowercase. Further-
more, for the training stage, tweets are deduplicated in order
to prevent a bias towards heavily retweeted messages.

B. First-stage classification based on threat triggers

The first-stage classifier is basically a simple filter which weeds
out the bulk of the incoming tweets. This filter uses a semi-
automatically generated list of threat triggers. Both second-
stage classifiers we compare in this paper (see following two
sections) are designed around this starting point. Because
tweets that do not contain any of these triggers will not be
sent to the second-stage classifier, it is very important that this
list of triggers covers as many potential threats as possible.

Copyright c© 2014 IEEE
http://dx.doi.org/10.1109/JISIC.2014.39

216

http://dx.doi.org/10.1109/JISIC.2014.39

IEEE JISIC 2014

Trigger
generator

Triggers
and

context

Trigger
patterns

Pre-
processing

Fig. 1. Overview of our threat detection pipeline.

Therefore, while constructing this list, we focused on recall
rather than on precision.

The trigger list is generated in a semi-automatic way
from a labeled training set of threatening and non-threatening
tweets (see III-A for dataset details). First, all tweets in the
training set are lemmatized, thus all different inflected forms
of a word are normalized to their lemma (e.g. stab, stabbing,
stabbed all become stab). We used the lemmatizer of the Frog
parser for Dutch [8]. Second, the most distinctive lemmas
for the threatening tweets w.r.t. the non-threatening tweets
are selected by computing Matthews correlation coefficient
(MCC), optionally with Laplace smoothing (K) to guarantee
that it is well-defined:

(tp+K) · (tn+K)− (fp+K) · (fn+K)√
(tp+fp+2K)(tp+fn+2K)(tn+fp+2K)(tn+fn+2K)

(1)

where tp, fp, tn and fn refer to the number of true/false
positives/negatives. The MCC has successfully been applied
as a feature selection metric for various text classification tasks
[9]–[11]. The MCC(L) is computed for each lemma L with
K = 0. Lemmas occurring in less than 3 tweets were ignored.

Subsequently, the resulting list of lemmas, ordered by their
correlation to the class of threatening tweets, was manually
cleaned. This boiled down to removing lemmas which on their
own are not evidential for a potential threat. E.g., dood (dead),
steken (stab), schieten (shoot), mes (knife), bom (bomb) were
kept, and jou (you), maken (make), moeder (mother), hoofd
(head), slet (slut) were removed. Lemmas with a negative
correlation are ignored in this stage.

Finally, because for the first filter recall is much more
important than precision, the selected lemmas were expanded
again with all their inflected forms found in the full training
set. This expanded list contains 172 triggers in total, and it
forms the final list of threat triggers tj used in the first stage
of our classification process.

C. Second-stage classification based on contextual cues

Our first second-stage classification approach is based on
mining positive and negative contextual cues for the triggers.
The intuition behind this approach is that words which have a
relatively high occurrence in the trigger’s contexts in threaten-
ing tweets compared to the contexts in non-threatening tweets
reinforce the chance of actual threatening content, and that
words for which the opposite is true, weaken the chance of a
threat.

1) Context word mining: Similar to the selection of our
trigger list, we use MCC (see Eq. 1) to compute the cor-
relations of the context words to the threatening and non-
threatening contexts of the triggers in our labeled training set.

A combined correlation score MCC(tj , ci,j) is computed for
each context word ci,j for each trigger tj . In this computation
we applied Laplace smoothing with K = 0.1. Note that in
this approach all positional information is ignored, e.g. for the
trigger word ‘destroy’ the tweets ‘I will you destroy’ and ‘I will
destroy you’ are assigned the same scores. We only selected
context words with correlation coefficient |MCC| > 0.05. For
each trigger the number of positive and the number of negative
context words were empirically restricted to a maximum of 18.
Table I and Table II show examples of respectively reinforcing
and weakening contextual cues, automatically mined for the
triggers given in the first columns.

TABLE I. EXAMPLES OF REINFORCING CUES AUTOMATICALLY
DISCOVERED BY THE CONTEXT METHOD.

Trigger Positive cues

snijden (cut) bek (mouth), door (through), kanker/kkr/kk (cancer), ik (I),
je (you/your), strot (throat), keel (throat), open (open)

zien (see) homo (gay), jou (you), gaan (will/go), hoer (whore), maken
(make), als (if), kanker/kkr/kk (cancer), dood (death/dead)

TABLE II. EXAMPLES OF WEAKENING CUES AUTOMATICALLY
DISCOVERED BY THE CONTEXT METHOD.

Trigger Negative cue Meaning of common expression

9mm (9mm) neerslag (rainfall) 9mm rainfall
breken (break) hart (heart) broken heart
dood (dead) moe (tired) very tired
opblazen (blow up) ballon (balloon) blow up balloon
opzoeken (look up) bed (bed) go to sleep
slaan (beat/hit) nergens (nothing) makes no sense

2) Context-based threat classification: Given the original
correlation scores of the triggers, and the correlation scores of
the context words, we can compute a final threat score for an
unseen tweet in various ways. We have tried several heuristic
combinations of the different trigger and context scores, of
which the version given in Equation 2 generally yielded the
best performance. Given a tweet T , we denote the trigger
words contained in T by tj , j = 1, . . . , nT , the corresponding
context words contained in T by ci,j , i = 1, . . . , nj and the
number of tokens in the tweet by len(T). The threat score of
a tweet T is computed as follows:

Scontext(T) =

∑nT

j=1

∑nj

i=1
MCC(tj , ci,j)

1 + len(T)
(2)

For the sake of completeness we also give the basic score
computation which does not take any context information into
account in the following equation, as it is used as a baseline
for our experiments reported later in Section III:

Strigger(T) =

∑nT

j=1
MCC(tj)√

1 + len(T)
(3)

D. Second-stage classification based on patterns

In our second approach we mine threat patterns from our train-
ing set of death threats using a sequence alignment technique
which has its roots in the field of bioinformatics. We used the
Needleman-Wunsch (N-W) algorithm [12], which is widely
used for aligning protein and nucleotide sequences. It uses
dynamic programming to find the optimal global alignment
between two sequences, admitting gap insertions at a certain

217

IEEE JISIC 2014

cost. For our purpose, we look at a tweet as a sequence of
words, and apply N-W to discover the typical word patterns
used in threatening tweets. As far as we know, biological
sequence alignment techniques have not been used for mining
text classification patterns before. However, some work has
been done for paraphrase alignment and sentence compression
[13]. In the continuation of this section we will explain how
we mine the patterns from our training set, and how we use
them to rank unseen tweets by their threat potential.

1) Pattern mining: Our pattern-mining process consists of
the following three steps. First, every tweet in our set of
threatening training examples is aligned with every other tweet
from the same set, using the N-W algorithm. Because our
training set contains 3096 threatening examples, this initial
step generates over 9 million alignments. As an illustration
Table III shows two alignment examples, one for the tweet ‘ik
ga een bom in mijn school plaatsen’ (I’m going to place a
bomb in my school), and one for the tweet ‘ik schiet je door
je hoofd bitch’ (I’ll shoot you through your head bitch).

TABLE III. TWO ALIGNMENT EXAMPLES, DERIVED USING THE
NEEDLEMAN-WUNSCH (N-W) ALGORITHM.

Seq1 ik ga een bom in mijn school plaatsen
Seq2 ik ga morgen een bom op mn school gooien
Pattern ik ga * een bom * school *
Seq1 ik schiet je door je hoofd bitch
Seq2 ik schiet die Wilders door zn kop wacht maar
Pattern ik schiet * door *

In the second step of the mining process, the huge set
of alignment patterns is radically reduced by (i) compressing
sequences of multiple gaps and/or mismatches to a single
matching expression which can be configured to match a
sequence of n words (see II-D2), (ii) filtering out all patterns
which do not contain at least one of the triggers, and (iii)
deduplication.

The final step of the mining process creates clusters of
patterns based on the threat trigger they contain. Each of these
clusters is then expanded by generating ‘sub-patterns’. For a
given trigger-specific pattern we want to generate all possible
sub-patterns still containing the trigger, as not all of them
necessarily arise during the alignment procedure, but may still
be useful for threat detection. As an illustration, Table IV
shows the result of generating the sub-patterns for pattern ‘jij
bent * dood * maar * jij’ (you are * dead * but * you).

TABLE IV. GENERATED SUB-PATTERNS FOR A COMPLEX PATTERN.

Main pattern jij bent * dood * maar * jij
Sub-patterns jij bent * dood * maar

jij bent * dood * jij
dood * maar * jij
jij bent * dood
dood * maar
dood * jij
dood

2) Pattern-based threat classification: The threat patterns
can be matched on unseen tweets in a real-time fashion. As
described before, for a new tweet our classifier first checks if
it contains one of the threat triggers. If it does not, the tweet
is let through without further analysis. If the tweet contains a
trigger, all patterns containing that trigger are matched on the

tweet, starting with the longest one(s). If none of the longest
patterns match, the second longest pattern(s) are matched, and
so on. As soon as a pattern of a certain length matches, its
length is used in the threat score computation, and no shorter
patterns for the same trigger are matched anymore. If multiple
matching patterns of the same trigger have equal length, the
highest score is used. If the tweet contains multiple different
triggers, the pattern matching process is repeated for each of
the triggers. The ’*’ expression in a pattern can be configured
to match one or more words. In our experiments we set it to
match 0-5 words. The final scoring mechanism of the classifier
combines the length of the matching pattern with its correlation
to the threatening class. For each pattern we computed the
MCC (Eq. 1, K = 0) on threatening and non-threatening
training examples and used this value as a weight in the scoring
computation. The threat score for a certain tweet T is then
computed as follows:

Spattern(T) =

nT∑
j=1

MCC(pj(T)) · len(pj(T))/M (4)

where nT is the total number of triggers in tweet T, pj(T) is
the longest matching pattern of the j-th trigger with the highest
score among all matching patterns with equal length, and M
is the maximum length of all patterns.

III. EXPERIMENTS AND RESULTS

A. Description of the data sets

For training and development, we used two Dutch datasets.
The first set contains 3096 death threats and the same number
of randomly selected, non-threatening tweets. The threats were
taken from the publicly available website doodsbedreiging.nl,
which aims to collect death threats expressed on Twitter. The
second data set we used for development was created on
March 5th 2014 by performing a Twitter scrape based on the
list of trigger keywords of Sec. II-B, resulting in 75,435 tweets.
Because this set was harvested by using the threat triggers, it
contains quite a lot of actual threats.

For testing and evaluation, we used two other Dutch
datasets. Firstly, a set which we harvested on March 22nd

2014 by performing another scrape with the same trigger list,
resulting in 74,330 tweets. Finally, we used an event-based
collection, which was created around and during the coronation
of the Dutch king on April 30th 2013, based on keywords
related to the event (such as kroningsdag, Beatrix, Willem-
Alexander etc.). This collection contains 157,048 tweets.

B. Experimental setup

Since it is very time consuming to annotate all tweets, for each
evaluated method we ranked the test tweets by their scores.
Only the top of these rankings were completely annotated in
order to compute the method’s precision. To obtain an estimate
of the recall, a fraction (1 or 2%) was sampled from the
remainder of the dataset. Volunteers were instructed to indicate
three threat categories: no threat, weak threat and strong threat.

In our experiments, we compared five approaches. The
two methods presented in this paper (Context, Pattern) are
compared to a baseline that only discards tweets that do not
contain a trigger keyword (Random), a baseline that sorts

218

IEEE JISIC 2014

5 10 15 20
0

10

20

30

40

50

60

rank/100

pr
ec

is
io

n

Random: Strong threat
Random: All threat
Pattern: Strong threat
Pattern: All threat
Context: Strong threat
Context: All threat
Combined: Strong threat
Combined: All threat

Fig. 2. Precision on the 74k test set of 22 March.

tweets based on the trigger score of Eq. 3 (Sort), and a
combined version of Context and Pattern (Combined, which
is based on a weighted sum).

C. Evaluation on enriched set of 74k tweets

The results in Figure 2 and Table V show that the Context
performs slightly better than the Pattern, and the combination
results in a further improvement. In the top 1000 tweets of the
combined method on the data of 22 March, the precision of
threats is 37.6%, the precision of strong threats is 13.5% and
the related recall is approximately 54%. Based on 2% of the
samples in the complete set we observe that 2.2% of the tweets
is threatening. The related (binomial) 99% confidence interval
of threats is between 1.3% and 3.4%. This indicates that all
approaches give a significant improvement (p < 0.01) in the
recognition of threatening content. For the detection of threats
with the combined method, the 99% confidence interval on the
top 1000 tweets is between 33.7% and 41.6%.

D. Evaluation on coronation set with 157k tweets

In the coronation set with 157k tweets, we were able to obtain
a precision of 14% in the top 100 tweets with the Context
approach. The 1% samples in the complete set that did not
contain threats, allows us to estimate with 99% certainty that
the expected number of threats in this set is below 0.3%. Based
on this worst-case estimate (the boundary of the confidence
interval instead of the expected value), we can conclude that
in this range the precision is at least 47 times higher than
without a system.

IV. CONCLUSION

In this paper, we presented a two-stage classification method
for detecting death threats in tweets. The first stage uses
trigger keywords as a pre-selection of potential threats based
on positive evidence, which makes it practical to implement
and extend. In the second stage, tweets which were not filtered
out in the first stage are classified based on the statistical
relation between triggers and their surrounding words. For
this stage we compared two approaches. The Context approach
mines positive and negative cues related to a specific trigger
keyword, and the Pattern approach uses alignment to mine
more structured threatening word patterns. We showed that
using these reinforcing and weakening cues and patterns results
in a huge improvement of threat-classification performance
over using just a keyword list. Future work may include the
development of a real-time early warning system for threats
and a more effective combination of both approaches.

TABLE V. PRECISION IN DIFFERENT RANK RANGES ON THE RICH
TEST SET OF 74K TWEETS.

Type Method Precision in a rank range
0k-1k 1k-2k 2k-74k (2%)

Strong threat Trigger Random 0.3%
Trigger Sort 1.5% 1.6% 0.3%

Trigger Pattern 11.3% 2.9% 0.1%
Trigger Context 12.1% 3.9% 0.1%

Trigger Combined 13.5% 4.6% 0.1%

All threat Trigger Random 2.2%
Trigger Sort 5.2% 3.8% 2.3%

Trigger Pattern 26.4% 11.1% 1.7%
Trigger Context 35.9% 16.6% 1.9%

Trigger Combined 37.6% 20.3% 1.8%

TABLE VI. PRECISION IN DIFFERENT RANK RANGES ON THE
CORONATION TEST SET OF 157K TWEETS.

Method Precision in a rank range
0-100 100-200 200-300 300:157k (1%)

Random 0.0%
Trigger Pattern 6% 4% 5% 0.0%
Trigger Context 14% 3% 0% 0.0%

ACKNOWLEDGMENT

The work for this paper was supported by the Dutch Ministry
of Security and Justice in the program for safety and security
research: “Veilige maatschappij” (Topic 3).

REFERENCES

[1] G. Backfried, C. Schmidt, M. Pfeiffer et al., “Open source intelligence
in disaster management,” in EISIC, 2012, pp. 254–258.

[2] F. Abel, C. Hauff, G. Houben, R. Stronkman, and K. Tao, “Semantics
+ filtering + search = twitcident. exploring information in social web
streams,” in ACM Hypertext and social media, 2012, pp. 285–294.

[3] D. Davidov, O. Tsur, and A. Rappoport, “Semi-supervised recognition
of sarcastic sentences in twitter and amazon,” in Comp. Nat. Lang.
Learning, 2010, pp. 107–116.

[4] W. Pan, E. Zhong, and Q. Yang, “Transfer learning for text mining,” in
Mining Text Data, 2012, pp. 223–249.

[5] H. Bouma, O. Rajadell, D. Worm, C. Versloot, and H. Wedemeijer, “On
the early detection of threats in the real world based on open-source
information on the internet,” in ITSEC, 2012.

[6] N. Oostdijk and H. van Halteren, “N-gram based recognition of threat-
ening tweets,” in Comp. Ling. and Intel. Text Proc., 2013, pp. 183–196.

[7] ——, “Shallow parsing for recognizing threats in dutch tweets,” in
Proc. IEEE/ACM Int. Conf. Adv. Social Networks and Mining, 2013,
pp. 1034–1041.

[8] A. van den Bosch, B. Busser, S. Canisius, and W. Daelemans, “An
efficient memory-based morphosyntactic tagger and parser for Dutch,”
in Comp. Ling. in the Netherlands, 2007, pp. 99–114.

[9] H. Ng, W. Goh, and K. Low, “Feature selection, perceptron learning,
and a usability case study for text categorization,” in ACM SIGIR Forum,
vol. 31, no. SI, 1997, pp. 67–73.

[10] M. Spitters, “Comparing feature sets for learing text categorization,” in
Proc. Content-Based Multimedia Access, 2000.

[11] F. Amardeilh, W. Kraaij, M. Spitters, C. Versloot, and S. Yrtsever,
“Semi-automatic ontology maintenance in the virtuoso news monitoring
system,” in IEEE EISIC, 2013, pp. 135–138.

[12] S. Needleman and C. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” J.
Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.

[13] J. Cordeiro, G. Dias, and G. Cleuziou, “Biology based alignments of
paraphrases for sentence compression,” in ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing, 2007, pp. 177–184.

219

	Introduction
	Threat detection method
	Preprocessing
	First-stage classification based on threat triggers
	Second-stage classification based on contextual cues
	Context word mining
	Context-based threat classification

	Second-stage classification based on patterns
	Pattern mining
	Pattern-based threat classification

	Experiments and results
	Description of the data sets
	Experimental setup
	Evaluation on enriched set of 74k tweets
	Evaluation on coronation set with 157k tweets

	Conclusion
	References

