PSUsing Phytoliths and Carbon Isotope Stratigraphy to Recognize Subtle Subsurface Unconformities in the Unavzah Group of Saudi Arabia*

T.B. van Hoof¹, D.M. Steinhauff², and N.P. Hooker²

Search and Discovery Article #50965 (2014)**
Posted May 26, 2014

*Adapted from poster presentation given at GEO-2014, 11th Middle East Geosciences Convention and Exhibition, Manama, Bahrain, March 10-12, 2014 **AAPG©2014 Serial rights given by author. For all other rights contact author directly.

¹TNO, Utrecht, The Netherlands (tom.vanhoof@tno.nl)

Abstract

Unayzah Group correlation in Saudi Arabia is hindered by the lack of terrestrial fossils preserved in oxidized red-beds. Phytoliths are biogenic siliceous plant infillings and casts resistant to oxidation. In previous studies the presence of Biogenic Silica microfossils (Phytoliths) in Unayzah Group deposits were confirmed. Although some may have been deposited by wind, we believe the bulk of the phytoliths preserved within the Unayzah red-beds comprise the remains of both hot- and cool-desert, restricted plant communities (i.e., biocoenoses) that persisted during deposition of the upper Unayzah. New Phytolith fossils observed in the present study and from Permian red-beds from Texas demonstrate a clear link with Permian plants species.

Although severely oxidized, the Unayzah Group red-beds contain sufficient organic matter for carbon isotope analyses. Organic matter δ^{13} C fluctuations typically reflect atmospheric CO_2 variations. In terrestrial material, however, (including the Unayzah red-beds) δ^{13} C fluctuations typically observed in other environments (i.e., marine) are overprinted by various organic matter sources. To deal with this limitation, a standard approach has been to measure carbon isotopes on single components (e.g. wood fragments). Unfortunately, in the Unayzah, most organic matter is amorphous and this standard, single-component approach is not possible.

As an alternative, we used the variations in Phytolith assemblages combined with stable carbon isotope stratigraphy to better

²Saudi Aramco, Dhahran Saudi Arabia (david.steinhauff@aramco.com)

understand the Unayzah Group stratigraphy. Variations in Phytolith assemblages were used to reduce the noise in the $\delta^{13}C$ record, enabling correlation of our isotope results to a global standard. This approach, combining quantitative Phytolith analysis with isotope stratigraphy, provides a method for estimating stratigraphic hiatuses and intervals deposited with reduced sedimentations rates. Our work suggests that hiatuses and intervals with reduced sedimentations rates are likely present within the Unayzah Group. Our conclusions are in general agreement with similar conclusions gained using other techniques (i.e., chemostratigraphy) employed by others to correlate these strata.

Using Phytoliths and Carbon Isotope Stratigraphy to Recognize Subtle Subsurface Unconformities in the Unayzah Group of Saudi Arabia

T.B. van Hoof¹, D.M. Steinhauff² and N.P. Hooker²

¹TNO, Utrecht, The Netherlands; ²Saudi Aramco, Dhahran Saudi Arabia

Contact: tom.vanhoof@tno.nl TNO Booth 185

Unayzah Group correlation in Saudi Arabia is hindered by the lack of terrestrial fossils preserved in oxidized red-beds. Phytoliths are biogenic siliceous plant infillings and casts resistant to oxidation. In previous studies the presence of Biogenic Silica microfossils (Phytoliths) in Unayzah Group deposits were confirmed (Fig. A). Although some may have been deposited by wind, we believe the bulk of the phytoliths preserved within the Unayzah red-beds comprise the remains of both hot- and cool-desert, restricted plant communities (i.e., biocoenoses) that persisted during deposition of the upper Unayzah. New Phytolith fossils observed in the present study and from Permian red-beds from Texas demonstrate a clear link with Permian plants species (Fig. A and B).

Although severely oxidized, the Unayzah Group red-beds contain sufficient organic matter for carbon isotope analyses. Organic matter $\delta^{\rm B}$ C fluctuations typically reflect atmospheric ${\rm CO_2}$ variations. In terrestrial material, however, (including the Unayzah red-beds) $\delta^{\rm B}$ C fluctuations typically observed in other environments (i.e., marine) are overprinted by various organic matter sources. To deal with this limitation, a standard approach has been to measure carbon isotopes on single components (e.g. wood fragments). Unfortunately, in the Unayzah, most organic matter is amorphous and this standard, single-component approach is not possible.

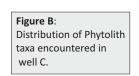
As an alternative, we used the variations in Phytolith assemblages combined with stable carbon isotope stratigraphy to better understand the Unayzah Group stratigraphy (Fig. C). Variations in Phytolith assemblages were used to reduce the noise in the δ^{13} C record (Fig. D and E), enabling correlation of our isotope results to a global standard (Fig. C). This approach, combining quantitative Phytolith analysis with isotope stratigraphy, provides a method for estimating stratigraphic hiatuses and intervals deposited with reduced sedimentations rates (Fig. E). Our work suggests that hiatuses and intervals with reduced sedimentations rates are likely present within the Unayzah Group. Our conclusions are in general agreement with similar conclusions gained using other techniques (i.e., chemostratigraphy) employed by others to correlate these strata.

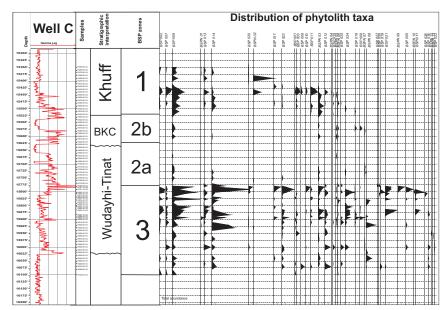
First PCA axis of uppermost Phytolith data interval First PCA axis of lowermost

Phytoltih data interval

 $\delta^{\scriptscriptstyle 13} C$ curve for TOC

Figure A


Old processing procedure



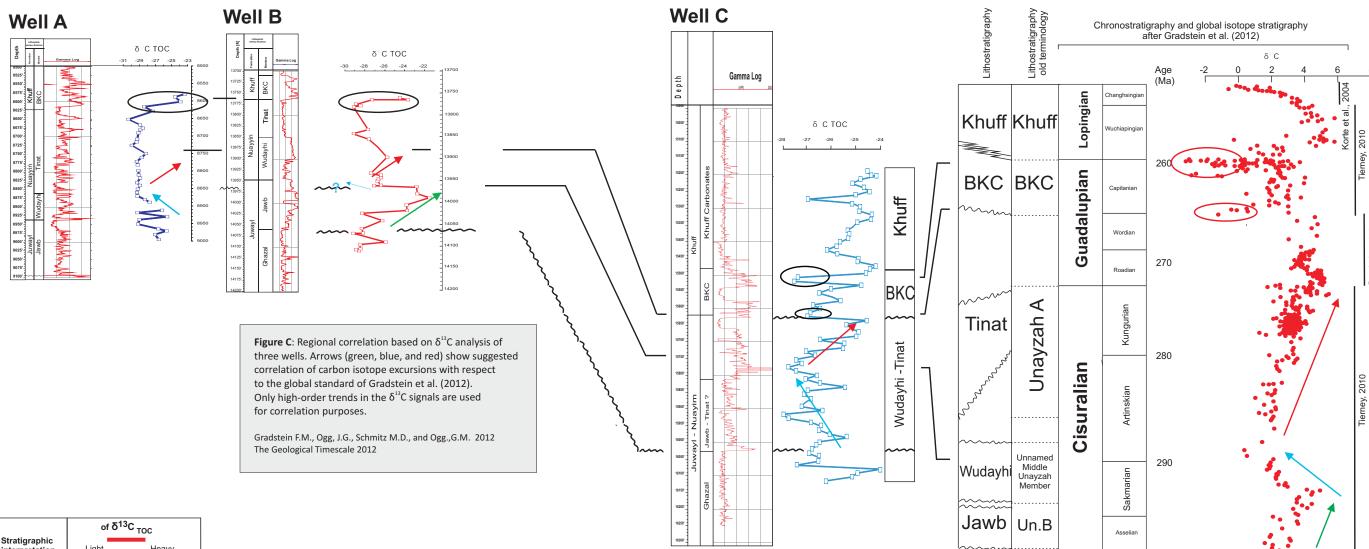

Figure A: Examples of Phytolith morphotypes recovered with an adjusted processing procedure from Unayzah Group deposits (right panel) compared with Phytolith morphotypes using the processing technique applied in the earlier Phase of the project (left panel).

Figure B

Figure C

Figure D

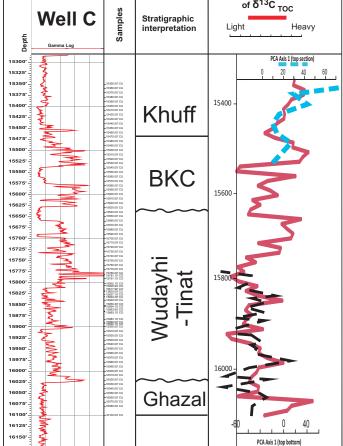


Figure D: First PCA components for Phytolith data are rendered as a dashed-black line for the analyses performed on the lowermost interval and as a light-bue line for the analyses performed on the uppermost interval. These Phytolith data are superimposed on the $\delta^{13}\text{C}$ curve for total organic carbon (TOC) for comparison. The good fit suggests that Phytolith assemblages provide a reasonable proxy for organic (plant) facies variations. We speculate that organic (plant) facies variations may drive short-term carbon-isotope excursions.

Figure E

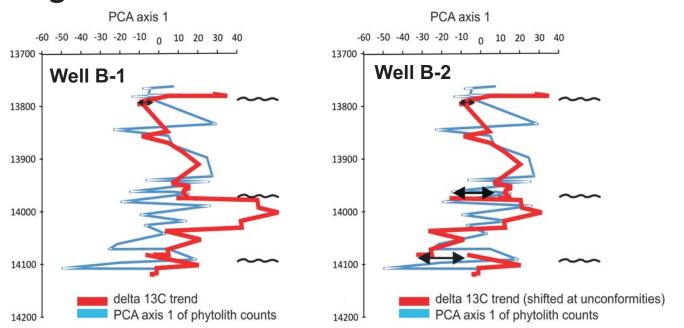


Figure E: (Well B-1) Comparison of the first component of the principal component analysis (PCA) axis of Phytolith data of well B to the δ^{13} C data of the same well. (Well B-2) When the δ^{13} C curve is shifted 4 per mille at the unconformities, towards more positive values, the results is a good match with the Phytolith PCA curve. This example shows how Phytolith facies analysis combined with carbon isotope analysis can help trace subtle unconformities in Unayzah group deposits.

Acknowledgements

Saudi Aramco management are thanked for their help and generous Phytolith research support. Additional thanks go to Samer Al-Ashgar and Maher Marhoon for their continuing support and to Ron Sprague, John Melvin, Dave Cantrell, Clemens van Dijk, and Salem Shammari for their involvement with various aspects of this research. Retired Saudi Aramco employees Steve Franks and Merrell Miller are recognized for their past contributions. Contributors from TNO include Roel Verreussel, Holger Cremer and Sander Houben. Former TNO staff including Oscar Abbink, Timme Donders, and Linda Garming are thanked for their past contributions.