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Abstract: Many image processing methods, such as
techniques for people re-identification, assume photomet-
ric constancy between different images. This paper ad-
dresses the correction of photometric variations based
upon changes in background areas to correct foreground
areas. We assume a multiple light source model where
all light sources can have different colors and will change
over time. In training mode we learn per-location rela-
tions between foreground and background color intensi-
ties. In correction mode we apply a double linear correc-
tion model based on learned relations. This double linear
correction includes a dynamic local illumination correc-
tion mapping as well as an inter-camera mapping.

We evaluate our illumination correction by computing
the similarity between two images based on the Earth
Mover’s Distance. We compare the results to a representa-
tive auto-exposure (AE) algorithm found in the recent lit-
erature plus a color correction one based on the inverse-
intensity chromaticity. Especially in complex scenarios
our method outperforms these state-of-the-art algorithms.

1 Introduction

Retrieving objects seen in earlier images is an active re-
search topic within image processing. In very controlled
environments the assumption will hold that the pixel val-
ues of an object are comparable between past and present
images, but in general this is not the case due to illumina-
tion variations. Within this paper we consider conditions
with multiple illumination sources, each with a different
color and a space-time variant intensity. In effect, the il-
lumination will be different for every position, time, and
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color channel. In addition, we consider a non-overlapping
multi-camera set-up. The challenge addressed in this paper
is to correct under such conditions images of the same ob-
jects such that their corresponding pixels are comparable,
to allow re-identifying those objects along time and space.

Three different strategies can be distinguished in litera-
ture to improve the performance of re-identification algo-
rithms under varying imaging conditions:

1. Control the camera parameters during acquisition, by
using auto-exposure (AE) or auto-white balance con-
trol.

2. Assume that the matching algorithm handles the
imaging condition changes. For instance, using in-
tensity invariant color descriptors.

3. Correct the images using image processing after ac-
quisition but before applying the matching algorithm.

Table 1 summarizes the main relevant approaches.

Table 1: Color correction approaches. First row refers to
the first strategy and the remainders to the third
strategy while the second strategy is not dealt with
in this paper.

Based on References

Acquisition control [30, 22, 18]
Color descriptors [2]
Color constancy [1, 13, 8, 25, 31]
Camera Response Function [12, 33, 21, 27]
Inter Camera Color Response [23, 16, 20, 10, 24, 5,

19, 28, 4]

The first strategy is widely applied on current avail-
able cameras [22, 30]. These methods control the cam-
era parameters during acquisition to compensate for the
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light variations and obtain suitable images for viewing
or processing purposes. Nevertheless, with multiple light
sources, each with different spatial effect, such approaches
are unable to effectively correct at every position within
an image because they do not allow for location dependent
corrections. Liu [18] goes far beyond the classic approach
because their division into regions provides better knowl-
edge of the light behavior, making the correction more ac-
curate.

The second strategy is often based on object descriptors
able to match two images of the same object in different
pose and light conditions. Such descriptors [2] may in-
clude information about color, location, structure, texture
or a combination of several of these. Using invariant fea-
tures may reduce the amount of information; for example
in an intensity normalized image – a common descriptor –
it will be very hard to separate grey clothes of people from
a black background. These kinds of techniques are hence
avoided in this paper.

The third strategy, including this work, may be used on
its own or in combination with the previously explained.
They are mainly based on knowledge about image for-
mation and surface reflectance models and consist of de-
signing computational color constancy methods that “es-
timate the chromaticity of the light source and then cor-
rect the image to a canonical illumination using the diag-
onal model” [9]. This diagonal model, introduced by Fin-
layson [7] as a Diagonal-Matrix Transform (DMT) based
on the von Kries’ model, consists of a linear transforma-
tion for each of the color channels. By means of the DMT,
the color appearance under several light conditions can be
maintained. A complete survey about color constancy al-
gorithms can be read in [8]. Nevertheless, these methods
have high computational cost and require complex calibra-
tions using known illuminants, causing these techniques
to fail when they are unknown. Furthermore, even though
there are several attempts to deal with real-images, their
accuracy [1] – or their application to complex scenarios
[31, 13, 25] – are not sufficiently demonstrated.

Other research lines model the Camera Response Func-
tion (CRF) [12] which consists of establishing the relation
between the amount of light collected by the camera sen-
sor and the digital intensity values. Using these models,
several correction algorithms may be applied by compar-
ing current pixel intensities to reference or previous val-
ues. For instance, Withagen [33] developed a simple and
fast correction method by presenting different ways to esti-
mate a global intensity correction factor to correct the input
images. This method has been recently complemented by
Sayed [27], who added a local correction using the mean

and standard deviation variation. Nevertheless, this cal-
culation is very sensitive to noise and introduces blurring
artifacts in the image. Inspired by Grossberg and Nayar’s
work [12], Parameswaran [21] implemented an illumina-
tion compensation method based on the fact that the order
of the pixel intensities is maintained when the illumination
changes. When the illumination change is local, several
functions must be estimated, which increases the compu-
tational cost. Furthermore, for our purpose, these methods
are not insufficient because they do not deal with multi-
camera systems.

The classic color constancy algorithms and CRF’s were
the basis for the first designs of methods that correct pho-
tometric differences in non-overlapping, multi-camera ar-
chitectures. Basically, the Inter Camera Color Response
(ICCR) estimates [23] are based on the assumption that the
appearance of an object under distinct illumination con-
ditions will be the same when their respective cumula-
tive histograms are equal. An initial approach from Javed
[16] utilized a supervised method performing a probabilis-
tic Principal Component Analysis using the normalized-
bin histograms of the objects for obtaining the Bright-
ness Transfer Functions (BTFs) between cameras. Sev-
eral works have been derived from Javed’s. They mainly
focused on making the method more robust against illumi-
nation changes using several frames of the same person for
the estimate [20]; defining improved BTFs [24, 5]; or im-
plementing non-supervised methods [10, 28]. The current
ones also include spatio-temporal relationships among ca-
meras [4, 19]. However, ICCR techniques require complex
calibration stages, the use of color checkers [1] or, in the
non-supervised methods, a deeper knowledge of the mov-
ing objects.

This paper focuses on a color correction of foreground
objects (persons) based upon observed variations in the
background in multi-camera scenarios. This correction is
composed of a double mapping. The first mapping corrects
the local illumination variations while the second com-
pensates the photometric changes between different came-
ras. Separation between foreground and background is
typically performed by object detection and tracking al-
gorithms, which are out of the scope of this paper ([3]
presents a complete review of these methods). The cor-
rection process is fast in run-time, and it only requires a
training mode that learns inter-camera and background-
foreground relations using several people samples as we
describe in the next sections. It also yields worthy results
with real images. Color calibration or knowledge of the
illuminants are not required. Advanced matching tech-
niques are also out of the scope. Nevertheless, we made
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use of the Earth Mover’s Distance (EMD) [26] as a simi-
larity measure for the experiments.

The remainder of the paper is organized as follows. In
Section 2, our linear correction model is proposed includ-
ing both the inter-camera as well as the local corrections.
Section 3 details the proposed technique. In Section 4
we describe our experiments which show the good perfor-
mance of our algorithm in a complex photometric real sce-
nario compared to state-of-the-art auto-exposure [18] and
color correction [29] algorithms. Finally, Section 5 sum-
marizes conclusions and suggestions for future work.

2 Linear correction model

We start providing our notation and assumptions (Sec-
tion 2.1). Then, we define our model and adapt it to our
requirements (Section 2.2). After that, we propose the dou-
ble linear correction mapping (Section 2.3).

2.1 Notation and assumptions

In the paper, we use the notation in Table 2.
Our approach has the following assumptions:

1. Multiple dynamic sources: All light sources can have
different colors and will change over time.

2. Lambertian: The objects are mainly composed by
Lambertian surfaces.

3. Static surface response: The photometric surface-
responses S of an object are not dependent of either
the illuminants or the camera response; remain
similar with time; and are only dependent on the
surface properties.

4. Not crowded scenes: As the correction is based on
background information, very crowded scenes –
where sufficient background is not always observed
– are not allowed.

5. Linearity: The intensity is neither under nor over sat-
urated and only linear digital processing is applied
(ignoring, e.g. gamma correction). Camera’s set-
tings hold constant. Although not every camera obeys
these assumptions, many cameras do, as is demon-
strated in [32].

6. Independent channels: Changes in the product of the
illumination E and the camera response Q is within
each band R,G,B independent of the surface reflec-
tivity S. We expect this to hold for a wide range of
light sources, cameras and materials.

2.2 Image formation model

The image formation model of image I is modelled by the
camera response function CRF :

Ik(~x, t) =CRFk(Rk(~x, t)) (1)

where R is the amount of electrons generated by each sen-
sor pixel. In this context k refers to the three (RGB) color
channels. The definition of Rk can be extended to:

Rk(~x, t) =
∫

λ

Qk(λ )E(λ ,~x, t)S(λ ,~x, t)dλ (2)

where the product E · S is the incident light arriving at pi-
xel coordinates ~x in the sensor plane and Q is the camera
sensitivity (similar to the model in [17]). If we assume that
the CRF is linear, and we have independent channels (As-
sumptions 5 and 6 of Section 2.1), Equations (1) and (2)
can be simplified to:

Ik(~x, t) = G(t)Sk(~x, t)
∫

λ

Qk(λ )E(λ ,~x, t)dλ (3)

where G models the in-camera processing such as expo-
sure variations and gain. In this expression we see three
parts: i) the product of G and Q which depends on the
camera; ii) E which depends on the source of light, loca-
tion and scenario; and iii) S which depends on the observed
object surface.

In Equation (2) and (3), the illumination dependent
term E is a sum of all i illumination sources, and thus,
E(λ ,~x, t) = ∑i Ei(λ ,~x, t). For each illumination source we
define a time varying illumination gain gi and a constant il-
lumination term ECi, such that Ei(λ ,~x, t) = gi(t)ECi(λ ,~x).
As such we can rewrite the model in Equation (2) and (3)
to:

Rk(~x, t) = ∑
i

gi(t)
∫

λ

Qk(λ )ECi(λ ,~x)S(λ ,~x, t)dλ (4)

Ik(~x, t) = G(t)Sk(~x, t)∑
i

gi(t)
∫

λ

Qk(λ )ECi(λ ,~x)dλ (5)

2.3 Linear correction mapping

Our goal is to obtain a similar digital image of the same
object when the photometric conditions and the cameras
change. For background areas, the photometric surface-
responses of an object in two temporal instants remains
constant (S(~x, tre f )≈ S(~x, t) = S(~x), Ass. 3 of Section 2.1).
Therefore two images I jre f (from camera jre f ) and I j (from
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Table 2: Notation used in the paper.
Symbol Description Symbol Description

λ Wavelength b Referred to background (as a superscript)
E Spectral irradiance of a light source f Referred to foreground (as a superscript)
G In-camera processing gain H Normalized cumulative histogram
I Pixel intensity in an image Î I corrected
Ī Average value of I ∆I Ratio of two values of I
i Illumination source index j Camera index
k Color channel index N Number of total locations
n Location index (range 1 to N) Q Camera sensor sensitivity
R Amount of electrons generated by each sensor

pixel
S Photometric response of a surface

t Time V Number of total background regions
v Background region index (range 1 to V ) ~x Pixel coordinates

camera j) of the same background area S0 having different
photometric conditions can be written (Equation (3)) as:

Ik, jre f (~x, tre f ) = G jre f (tre f )S(~x)
∫

λ
Qk, jre f E jre f (λ ,~x, tre f )dλ

Ik, j(~x, t) = G j(t)S(~x)
∫

λ
Qk, jE j(λ ,~x, t)dλ

}
→

Ik, j(~x, t) =
G j(t)

∫
λ

Qk, jE j(λ ,~x, t)dλ

G jre f (tre f )
∫

λ
Qk, jre f E jre f (λ ,~x, tre f )dλ

· Ik, jre f (~x, tre f )

(6)

Ik, j(~x, t) =
Ik, jre f (~x, tre f )

∆Ik, j(~x, t)
(7)

∆Ik, j(~x, t) is the k-band relation factor between a reference
camera jre f and time tre f with a camera j in time t.

A corrected image Îk, j is written as:

Îk, j(~x, t) = ∆Ik, j(~x, t) · Ik, j(~x, t) (8)

If the suitable ∆Ik, j(~x, t) is found, it is possible to correct
any image Ik, j(~x, t) to make it similar to a reference one
Ik, jref (~x, tref ).

We define a double linear correction mapping (LCM)
for camera j that compensates the variations of G ·Q and
E in an acquired image Ik, j as:

∆Ik, j(~x, t) = acam
k, j (t) ·ail

k, j(~x, t) (9)

Each image will be corrected by two terms: acam
k, j is the

inter-camera correction mapping (ICCM) that compen-
sates the scenario and change between cameras, and ail

k, j
is the illumination correction mapping (ICM) that corrects
the change in location within the same camera and illumi-
nant(s).

The variation of BG intensities (∆Ib
k,v) regarding a refer-

ence time tref is measured using the following expression:

∆Ib
k,v(~x, t) =

Īb
k,v(~x, tref )

Īb
k,v(~x, t)

(10)

where Īb
k,v(~x, t) is the average intensity value of BG region

v in location~x, time t and channel k according to the selec-
tion explained in the Section 3.1.1. Note the similarities
between Equation (10) and Equation (7).

Assuming camera exposure values are not modified to
maintain a linear relation between light and image inten-
sity, the variations of the BG regions model the terms gi(t)
of Equation (5) with respect to tre f that influence the FGs.
For that purpose we estimate the ICM using:

ail
k, j(~x, t) =

(
1, ∆Ib

k,1, j(~x, t), . . . ,∆Ib
k,V, j(~x, t)

)
·~mx, j (11)

where ~mx, j comes from Equation (16).

Regarding ICCM, better results are obtained when it is
included an offset term capable of partially compensating
for model derivations such as camera noise, intensity off-
sets or camera non-linearity. This term accounts for any
error due to the simplifications we made regarding the im-
age formation model (Section 2.2). Therefore, the original
Equation (8) is replaced by the following:

Îk, j(~x, t) = α
cam
k, j ·ail

k, j(~x, t) · Ik, j(~x, t)+β
cam
k, j (12)

where αcam
k, j and β cam

k, j are constants depending on camera
j.
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3 Method description

To estimate the relationship between the people response
(FG) and the light variations in the rest of the scene (BG),
we define a training mode (Section 3.1) and run-time mode
(Section 3.2).

3.1 Training mode

In training mode, the relation between cameras as well as
the relation between changes in BG and FG are learned.
We establish these relations by using some FG objects
seen in different cameras (for ICCM), different locations
and illuminations (for the ICM). In Section 3.1.1 we dis-
cuss the selection of locations and the segmentation of BG
regions, in Section 3.1.2 we explain how to estimate the
ICCM (acam

k, j ) and in Section 3.1.3 the vectors ~mx, j for ICM
which relates the FG to the BG.

3.1.1 Locations and background region selection

We model the 3D world geometry in the acquired im-
age for each camera by splitting the scene in a set of
n = {1, . . . ,N} pre-defined locations. Thus, each pixel~x is
mapped to a location n. We define the background regions
v = {1, . . . ,V} associated to each location according to the
geometry of the scene. The background regions (Reg in
the example of Figure 1) are used to estimate the change in
illumination to correct the foreground objects. It is desir-
able to select background regions that are most influenced
by light changes. For example, in Figure 1 some regions
are located on the wall on the left because outdoor light
goes through the opposite doors. Thus, the light reflected
on this surface will change in accordance with the outdoor
light. In our experiments, the background regions were
manually specified.

3.1.2 Camera-relation training for ICCM

In the ICCM, we obtain a linear mapping from one camera
to another by using several intensity values of foreground
objects in the different locations to approximate it to the
reference one. A comprehensive survey on foreground-
background separation is presented by Bouwmans [3]. In
our experiments, we use manually segmented foreground
objects. For comparing two images from two cameras, we
make use of the normalized cumulative object histograms
H with h values. If there are κ training objects, we have
W = h ·κ samples for each location and each color chan-
nel, different from the reference one. Thus, the ICCM of
Equation (12) is obtained by minimizing the error between

Figure 1: Indoor surveillance scenario modeling with se-
lected background regions. Subscript refers to
location and superscript to region index.

the histogram values of the reference camera jref and the
estimated camera j:

{αcam
k, j ,β cam

k, j }= arg min
{αcam

k,j ,β cam
k,j }

W

∑
w
‖H f

w,k, jref
−
(
α

cam
k,j ·H

f
w,k, j+β

cam
k, j
)
‖2

(13)
where H f

w,k, j is the sample w of the normalized cumula-
tive histogram between 0 and 1 of the channel k of the FG
in camera j. Due to overexposed pixels, shadows, erro-
neous background region assignments, etc., many of these
values may be outliers. Because linear least-squares es-
timates do not work properly when the error distribution
is not normal, they are not suitable tools in this case. In-
stead we use a robust linear regression algorithm which is
able to manage this kind of outliers. It is based on a max-
imum likelihood estimation [15] which performs an itera-
tive reweighted linear squares regression using a bisquare
weight function.

3.1.3 FG/BG-relation training for ICM

The normalized cumulative histograms H are also em-
ployed in the estimate of the relationship between BG and
FG. In this case, we extract data from the BG and FG when
the light changes. Similar to the ICCM estimate, we have
W = 3 ·h ·κ samples of data for each location. The estima-
tion is independent of the channel because the relationship
models gi are the same in every channel. Using this data,
we construct the following ratios expressing the variation
for foreground (14) and background (15) histograms rela-
tive to the reference time tref :
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∆H f
w, j(~x, t) =

H f
w, j(~x, tref )

H f
w, j(~x, t)

(14)

∆Hb
w,v,j(~x, t) =

Hb
w,v,j(~x, tref )

Hb
w,v,j(~x, t)

(15)

where Hw, j is the sample w of the normalized cumulative
histogram of camera j and v refers to the background re-
gion. We fit a linear combination of the BG variations to
FG using ~mx, j. This is a vector that relates the change in
V background regions to that in the foreground at location
~x, constant through time and equal for each channel k in
camera j. It is estimated by:

m̂x,j = arg min
m̃x,j

W

∑
w
‖∆H f

w, j−(1, ∆Hb
w,1,j, . . . ,∆Hb

w,V,j) ·~mx, j‖2

(16)
where W is the number of samples and V is the number
of BG regions, such that v = [1, · · · ,V ]. To avoid unreli-
able samples, we eliminate occluded and shadowed areas
of the BG. In our experiments, we tested two optimization
methods: robust linear regression algorithm and linear pro-
gramming. We use the second method as it yields lower er-
rors according to indicators explained in Section 4.2. Nev-
ertheless, the selection of the correct fitting method may
depend on the data. In our experiments we observed that,
to obtain good fitting, we need enough samples (W �V ).

3.2 Run-time mode

In the run-time mode, the LCM of Equation (12) is ap-
plied. It first requires the estimate of the BG intensities
in the image and then the computation of the mappings
ICM (ail) and ICCM (αcam, β cam). Regarding the ICCM,
Equation (12) is applied using the parameters estimated by
Equation (13).

4 Experimental evaluation

4.1 Experimental setup

The proposed method was tested in a dedicated experi-
ment with multiple cameras, multiple people, multiple lo-
cations and changing lighting conditions. Although there
are several datasets on the internet related to people re-
identification in a multi-camera network1 and some others

1QMUL underGround Re-IDentification (GRID) dataset.
http://www.eecs.qmul.ac.uk/~ccloy/downloads_qmul_

underground_reid.html

(a) (b) (c)

(d) (e)

Figure 2: Examples of light changes in both experimental
scenarios. Images show variations due to: natu-
ral outdoor light variations ((a) and (b)); switch
the indoor lights on (c); and open (d) and close
(e) multiple doors in the indoor scenario.

Figure 3: Example images of each person. The top-left is
used for training.
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also include light changes2,3, we were not able to find any
data set that fits all our requirements (overall, background
information and camera’s auto-settings off). Therefore, we
used our own dataset4. For the experiment, we used two
Firewire cameras influenced by indoor and outdoor illu-
mination. The illumination was changed by switching the
indoor lights on and off, by opening and closing doors,
and by outdoor lighting variations due to changing cloud
coverage (see Figure 2). The time between each capture
is enough to have a noticeable change in outdoor lighting.
For both cameras, the variation in the average value of im-
ages exceeds 10 %. In each camera view, we defined 3
locations (Figure 1), used 1 person for the training phase
and 8 other persons for the test phase. All persons are cap-
tured walking in two directions. Each one of the train-
ing and test samples were recorded with different outdoor
light conditions. In camera 2, the average background in-
tensity during acquisition of the training samples ranges
between 102 and 123, while the average background in-
tensity during testing ranges between 97 and 112. The test
persons each wore different shirts whose colors are well-
distributed along the RGB space. An example picture of
each subject is shown in Figure 3. People outlines are
manually segmented to obtain FG information, used dur-
ing training and evaluation. The shadows also are manu-
ally segmented and discarded. To demonstrate the perfor-
mance of the method with less optimal segmentation, an
experiment has been carried out by eroding and dilating
the manually segmented outlines (Section 4.6). A total of
96 frames have been used in training and 192 frames for
testing. The 96 training frames have 8 repetitions for each
light-condition, location and camera (8 frames x 2 light
conditions x 3 locations x 2 cameras). The 192 test frames
have 2 repetitions for each person, light-condition, location
and camera (8 persons x 2 directions x 2 light conditions x
3 locations x 2 cameras).

Camera’s auto-exposure (aperture, exposure time and
gain), auto-white balance (correction between bands) and
gamma correction have been disabled.

2VIPeR: Viewpoint Invariant Pedestrian Recognition.
http://vision.soe.ucsc.edu/node/178

3Person Re-ID (PRID) 2011 dataset.
http://lrs.icg.tugraz.at/datasets/prid/index.php

4Multi-Camera Dynamic Light (MCDL) dataset is publicly available
in:
https://www.researchgate.net/publication/264462014_

MCDL_Dataset

4.2 Similarity and error measure

We evaluate the intensity correction by measuring the dis-
similarity between persons using their histograms. We
choose the Earth Mover’s Distance (EMD) [26], normal-
ized between 0 and 1, a cross-bin algorithm which pro-
vides a minimum cost solution to transform one image dis-
tribution into another and is robust against noise and small
intensity variations. We calculate the Euclidean EMD for
each channel and the combined value as the average value
of these 3 EMDs.

We calculated both the intra-class and inter-class dis-
tances. For intra-class, denoted with suffix ii, we compare
between the same person in the different acquisitions: sev-
eral locations, illumination conditions and cameras. For
inter-class, denoted with suffix i j, any person is compared
to the other people in the same and different photometric
conditions.

We evaluate the performance of the system with an er-
ror measure that is based on normalized Cumulative His-
tograms Distribution (CHD) of the computed EMDs. For
the intra-class CHDii closer to 0 are better while for the
inter-class CHDij closer to 1 are better. Ideally our al-
gorithm increases the distance between CHDii and CHDij

as much as possible. Using the cumulative histograms,
for any threshold value nth: FP(nth) = CHDij(nth) and
FN(nth) = 1−CHDii(nth), we search for that threshold
where the Minimal Error Criterium MEC = FP+FN is
minimal.

For this MEC, high error rates are expected due to pose
variations, partial occlusions, inter-reflections, self-casting
shadows, which all cause the persons to appear differently.
The research in this paper only corrects for changes in
color distributions caused by light variations.

The Receiver Operating Characteristic (ROC) curve is
used to visualize the performance, where the true positive
rate is T P(r) = 1−FN(r).

4.3 Implementation of the reference methods

The obtained results are compared to four cases: direct
measurements without any correction, a state-of-the-art
automatic exposure algorithm (AE) [18], a color correc-
tion based on the inverse-intensity chromaticity (IIC) [29]
and a combination AE+IIC.

To allow a fair comparison and use the same input im-
ages for all methods, the AE algorithm estimates a cor-
rection coefficient based on the brightness of the image,
without modifying the camera gain and exposure time. It
is based on three parameters: the reference average value
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to be reached, the number of regions and the weight val-
ues of each region. The reference value is calculated by
estimating the average value of the illumination reference
images of the test set. Liu did not specify the method to
set up the number of regions or the weight values. These
choices depend on the scenario and how it responds to the
light changes. We decide to split the scenario into 3 re-
gions as it is shown in Figure 4. Regarding the weights,
we choose 0.15, 0.7 & 0.15 from left to right for camera 1.
We give a higher weight to the central region because peo-
ple are placed there. In a similar way, the chosen weights
for camera 2 are 0.2, 0.7 & 0.1. In this case the region on
the left has a greater weight than the region on the right
because the light coming from outside is reflected on the
wall on the left. These weights have been chosen empir-
ically after testing several variations, being the ones that
perform the best.

Camera 1

Camera 2

Figure 4: Region setup used by the AE algorithm de-
scribed in Section 4.3.

Similar to AE, IIC is applied to each channel using Tan’s
implementation. With AE+IIC, IIC correction is applied
over the AE-corrected image.

4.4 Intra camera results

(a)

(b) (c)

(d) (e)

Figure 5: Example of image correction. (a) Original image
to be corrected. Corrected images for the intra-
camera (b) and inter-camera (c) results. Refer-
ence images taken in the intra-camera (d) and
inter-camera (e) experiment. Images (b) and (c)
are more similar to images (d) and (e) in color
distribution, respectively.

An example of a corrected image for the intra-camera
correction is shown in Figure 5(a)(b)(d). Tables 3(a) and
(b) show the numerical results of intra camera experiments.
The results from camera 1 show an error reduction for our
algorithm compared to the uncorrected case (MEC is 0.42
and 0.66, respectively), which implies an improvement of
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37 %. The IIC algorithm do not work as well as LCM, and
AE makes the uncorrected case even worse.

Table 3: Results of cameras correction. The value of
the MEC besides the improvement compared to
the images with no correction are shown. Each
row is: uncorrected images, by using the auto-
exposure algorihtm (AE), the IIC, auto-exposure
plus IIC (AE+IIC) and our algorithm using three
different segmentations for the foreground: i)
manual –LCM–, ii) modifying the area size of the
manual segmentations in -30 % and 60 % –LCM
(-30,+60)–, and iii) area variations of -90 % and
200 % –LCM (-90,+200)–.

Camera 1 correction

Method MEC Improvement (%)

Uncorrected 0.66 –
AE [18] 0.69 -4
IIC [29] 0.64 4
AE+IIC [18, 29] 0.67 -1
LCM 0.42 37
LCM (-30,+60) 0.50 24
LCM (-90,+200) 0.55 18

(a)

Camera 2 correction

Method MEC Improvement (%)

Uncorrected 0.59 –
AE [18] 0.39 34
IIC [29] 0.70 -19
AE+IIC [18, 29] 0.57 4
LCM 0.40 32
LCM (-30,+60) 0.40 32
LCM (-90,+200) 0.38 36

(b)

Comparing images between both cameras

Method MEC Improvement (%)

Uncorrected 0.69 –
AE [18] 0.61 12
IIC [29] 0.71 -4
AE+IIC [18, 29] 0.66 5
LCM 0.50 27
LCM (-30,+60) 0.52 24
LCM (-90,+200) 0.69 -1

(c)

In the ROC curve (Figure 6), the improvement of our al-

gorithm is very substantial while the IIC algorithm, which
yields the best alternative results, hardly outperforms the
original images. This is probably because our method re-
jects the overexposed regions of the BG, making our al-
gorithm more robust against highlights. Furthermore, the
BG-FG relationship is more reliable than the transforma-
tion values calculated by AE and IIC algorithms, as the
BG-FG relationship has been trained for local rather than
global illumination changes.
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Figure 6: ROC curve for camera 1. The true positive rate
against the false positive rate of the five analysis
cases are shown. The red solid lines belong to
the uncorrected case, the black solid lines to the
best alternative performance (IIC [29]), the blue
solid lines to our algorithm using a manual seg-
mentation, the dashed ones to our algorithm with
segmentation errors of -30 and +60 % of area
variation, and the dotted ones to our algorithm
with segmentation errors of -90 and 200 %.

The results in camera 2 confirm that LCM outperforms
the others. Note that IIC does not improve the uncorrected
case (in Table 3(b)) and – in comparison to (AE) alone
– it also does not improve when both methods (AE+IIC)
are combined. Although results of AE are positive and
noteworthy (MEC is 0.39 and the improvement is 34 %),
LCM error is similar (MEC is 0.40 and the improvement
is 32 %).

In the case of camera 2, the most important source of
light is the sun, and the indoor lights have less influence.
Although indoor lights have been switched on/off, the in-
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Figure 7: ROC curve for camera 2. The figure description
is similar to Fig. 6. In this case, the best alterna-
tive is the AE [18].

fluence of the outdoor light variation produces a higher in-
tensity and color variation. Thus, it seems that IIC is not
able to estimate the correct main illuminant in every pic-
ture. In addition, the indoor lights do not over expose the
image acquisition as happened in camera 1. It can be said
that the multiple light sources and over-exposed BG areas
in camera 1 make a more complex scenario compared to
camera 2. This makes photometric variations in camera
2’s FG objects simpler, so it seems reasonable that errors
in uncorrected images are slightly smaller than in camera
1, as Table 3(b) shows.

To conclude, results on this dataset demonstrate that our
algorithm is able to correct photometric variations in ob-
jects even in complex illumination scenarios on condition
that BG areas are close enough to FG objects and the cam-
era works on the linear region. In this context, complex
scenarios may be those where there are a multitude of re-
flections on Lambertian surfaces, at least one illuminant is
changed and the intensity of lights vary significantly.

4.5 Inter camera results

An example of a corrected image for the inter-camera cor-
rection is shown in Figure 5(a)(c)(e). The estimates of the
ICCM are shown in Table 4.

Table 3(c) shows the results of inter-camera correction.
Compared to intra-camera results the MEC are slightly

Table 4: Estimated ICCM parameters using to correct im-
ages from camera 1. Intensity range is [0,1].

Channel α β

Red 1.1909 -0.0118
Green 1.2043 -0.0150
Blue 1.3264 -0.0195

worse than the corresponding mean of camera 1 and cam-
era 2 MEC. Deterioration of LCM is probably due to dif-
ferent illumination and shadow geometries at both came-
ras. Still our algorithm significantly outperforms the oth-
ers. As Table 3(c) shows, the MEC improvement of IIC
correction is negative and using the AE+IIC algorithm is
fairly close to the uncorrected case (a difference of 5 %)
due to the poor performance of camera 1. The inter-camera
results show that LCM obtains a large improvement of 27
%, which it is noteworthy and more than twice the AE al-
gorithm’s improvement. Figure 8 confirms the LCM im-
provement: although AE curve is over the uncorrected
curve for almost every false positive rate value, the LCM
curve is even closer to 1 and, hence, much better than AE’s.
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Figure 8: ROC curve for both cameras. The figure descrip-
tion is similar to Fig. 7. In this case, the best
alternative is the AE [18].

These results show that in a non-overlapping multi-
camera system – although scenarios’ illumination is differ-
ent (indoor and outdoor) – our algorithm is able to estimate
a correction that helps to maintain the color appearance of
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objects in such scenarios.

4.6 Robustness against segmentation errors

To evaluate the robustness of our method against segmen-
tation errors in the foreground extraction an additional ex-
periment was carried out.

The size of each foreground object was extended or re-
duced. The values of -30/60 % and -90/200 % were chosen
to reflect small and large errors in the FG segmentation,
where a negative value refers to a reduction and a positive
value refers to an extension. For each image, the decision
about the extension or reduction was random.

Note that the scope of this paper is on color correction.
For color correction, the foreground segmentation is only
used during training mode whereas the correction during
run-time is based on background intensities only. Fore-
ground segmentation is during run-time only used for eval-
uation. To determine the sensitivity of the color correc-
tion method, only the segmentation during training mode
is modified by erosions and dilations, and not the segmen-
tation used in evaluation within the EMD matching.

The assessment was the same as the exposed above. The
results are presented in Table 3 and Figures 6–8 for com-
parison with the rest of the methods. These demonstrate
that our method maintains similar error rates when the size
variation is reduced by 30 % and enlarged by 60 %. In
this case it still outperforms the AE, IIC and AE+IIC me-
thods. The deterioration of the algorithm becomes notice-
able when the segmentation errors are always large (in the
case of -90 % and 200 %).

5 Conclusions

In this paper, we describe a computationally efficient
method to correct photometric variations between scenar-
ios. For each image, these variations are estimated by sim-
ple vector operations and the correction is based on a dou-
ble linear mapping. This is linked with the fact that, con-
trary to other color constancy algorithms, the illuminants
do not have to be estimated. Therefore, the scenarios are
easy to calibrate and the use of canonical, known illumi-
nants or color-checker patterns are not required.

The main conclusions of this paper are the following:
Our algorithm performs much better than uncorrected im-
ages and state-of-the-art auto-exposure together with a rep-
resentative color correction algorithm. Furthermore, it is
able to work properly in complex environments with sev-
eral illuminants because, unlike most of inter-camera and
other correction methods, local photometric changes are

taken into account and the estimate of the BG-FG relation
makes it easy to adapt changes in any object using BG in-
formation. It is also robust against foreground segmenta-
tion errors.

Our algorithm is able to correct changes in the settings
of the camera as long as the change in the camera re-
sponse is linear. Gain, aperture and exposure time varia-
tions mostly produce linear variations in the image if the
post-processing is also linear. In future work we will in-
vestigate a combination of non-linear in-camera process-
ing as present in many cameras with our algorithm. This
shall include automatic characterization of such non-linear
processing [11, 6, 14] and an adequate compensation.

Future work will also involve the development of a seg-
mentation algorithm that automatically creates a segmen-
tation of background regions that are classified by their re-
sponse to the illumination changes.
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