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ABSTRACT  

For maritime situational awareness, it is important to identify currently observed ships as earlier encounters. For 

example, past location and behavior analysis are useful to determine whether a ship is of interest in case of piracy and 

smuggling. It is beneficial to verify this with cameras at a distance, to avoid the costs of bringing an own asset closer to 

the ship. The focus of this paper is on ship recognition from electro-optical imagery. The main contribution is an analysis 

of the effect of using the combination of descriptor localization and compact representations. An evaluation is performed 

to assess the usefulness in persistent tracking, especially for larger intervals (i.e. re-identification of ships). From the 

evaluation on recordings of imagery, it is estimated how well the system discriminates between different ships. 

Keywords: track recognition, persistent tracking, maritime situational awareness, infrared, Fisher vector, SIFT.  

 

1. INTRODUCTION 

Recognition of a ship can make it easier to determine if it is of interest in naval operations, such as piracy prevention, by 

using historical information and deriving a long term description of its behavior. For example, knowing whether a skiff 

has been in a certain area for a longer time, may make it possible to distinguish a fisher boat from a possible pirate, 

especially if at an earlier encounter it was determined that it was of no interest. When intent of ships can be predicted, it 

may help planning the use of assets such as UAVs to more efficiently cover a (larger) surveillance area. 

This paper describes research on determining the effective use of features obtained from electro-optical systems, in 

recognition of small ships. In earlier work, the scale-invariant feature transform (SIFT) descriptors in infrared recordings 

were found to be useful, even with low resolution imagery of ships. The use of localization of key-points in comparing 

images caused an improvement in recognition, and Fisher vectors were introduced as a way of presenting the information 

of a varying number of key-point descriptors in a fixed length vector [10]. In this paper, we examine the addition of 

descriptor location into the Fisher vector representation. For this new evaluation, we compare results to our previous 

methods, to a bag-of-words approach – a more common way of representing a varying number of key points – and to a 

human observer. Evaluation is done on a subset of the earlier used dataset of infrared images, where unreliable 

annotations and low quality images were removed. The usefulness in persistent tracking is illustrated using tracking 

results on simulated ship movements.  

The outline of the paper is as follows. The different recognition methods are presented in Section 2. The experiments and 

results are shown in Section 3. Results are discussed in Section 4 and conclusions and recommendations are summarized 

in Section 5. 

2. RECOGNITION METHOD 

The recognition method consists of the following steps. First, detection and segmentation is performed to localize the 

targets (Sec. 2.1). Secondly, the detections are preprocessed, which includes intensity stretching, centering and scaling 

(Sec. 2.2). The main part of the recognition method are the matching algorithms. Matching is performed of the detected 
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target to a database of images of the different ships to identify the most similar type. Section 2.3 describes different 

matching algorithms, including those of a previous paper [10], a bag-of-words approach and an exploration to combine 

descriptor location into the Fisher vector description. Section 2.4 describes the ranking of results, and finally, Section 2.5 

describes the simulation environment in which the effect of recognition is examined. 

 

2.1 Detection and segmentation 

In order to automatically extract ships from recorded imagery, we use the detection method described in [6] to separate 

foreground objects (e.g., ships) from background (sea, sky). In this method, the background is assumed to have 

properties that are constant per image line (corrected for rotation) and to vary only smoothly from line to line. This 

assumption is sufficiently accurate for various levels of sea state, in open ocean as well as in bay environments, as 

known from infrared statistical background analysis work by Schwering [23]. Pixels that are statistically unlikely to be 

background are clustered in a segmentation of possible ships. This results in a binary mask and bounding boxes around 

the target. This mask is used for computation of central moments and to select a window for the other description 

methods.  

 

2.2 Preprocessing 

The ships are extracted from the images based on automatic segmentation but with a manual check on completeness. The 

extracted images have 16-bit pixel depth but contain a much smaller range of intensity values. Therefore, the images are 

enhanced by histogram stretching using a 0,5% value at both the upper and lower range. After stretching the images are 

converted to 8-bit per pixel. As there is some spatial variation in the way the ship ROIs are extracted from the 

recordings, the alignment of the ships in the extracted images will not be precise. In order to compensate for this, more 

detection mask properties (e.g., center of mass) are used to improve the extraction of the ships. Since there are several 

possibilities for the extraction/cropping of the images and this affects feature computation and localization, multiple 

images will be extracted per ship to evaluate the influence on the recognition result. We used three types of extraction. 

Besides the original extracted image (type A), there are two versions that are centered at the mask’s center of mass. Type 

B, contains only valid image/mask pixels and is cropped at the shortest sides of the mask. Type C, contains all of the 

mask area and is appended by pixel replication in order to retain the desired image center. All three versions of the 

extracted images are scaled to have a fixed width of 300 pixels. Scaling of the images is performed by means of bicubic 

interpolation. Examples of the extracted versions for a ship are shown in Figure 1. 

 

2.3 Matching methods 

We compare the newly proposed Fisher vector method to other approaches, some of which were also used in our 

previous paper [10]. Here all methods are shortly described.  

Central moments 

The first type of matching is based on normalized moments for the binary mask of detected pixels. These moments are 

statistical features that describe properties such as symmetry and skew. The normalized central moments [8][9] are scale 

invariant and computed around the center of mass of the binary mask. Six values are used, obtained from the nine 

combinations of different orders (0 to 2) for x and y, discarding the three values that are constant due to normalization. 

Comparison between images is based on a statistical distance between these values, computed as a Euclidean distance of 

the 6 value vector, where each value is divided by the standard deviations over all images. 

SIFT features (with localization) 

The second type of matching is based on the scale-invariant feature transform SIFT [17][18] and keypoint localization 

[19]. SIFT keypoints are a commonly used feature in image retrieval, where the match criterion is generally based on the 

number of keypoint matches. This generally ignores the fact that the spatial distribution of the keypoints over an object 

should be similar as well.  
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Type A: The original extracted image and the initial detection mask 

  

Type B: Centered + Minimal dimensions 

  

Type C: Centered + Maximal dimensions 

Figure 1: The ship image is extracted in different ways (denoted Type A, B and C) in order to evaluate its effect on recognition. Type 

B is centered at the center of mass of the mask (red dot) and its dimensions are limited by the minimum width/height that is contained 

in the image (green rectangle). Type C is also centered but its dimensions are limited by the maximum width/height that is contained 

in the image. The shorter sides (corresponding to the gray area in the mask) are padded by pixel replication. 

 

The relative location can be computed by comparing locations relative to the center-of-mass of the thresholded detection 

image (see description in Section 2.2), scaled by the width (to compensate for slight differences in aspect angle) and 

height of the detection (to compensate for observation distance). We use a somewhat different dissimilarity measure than 

in [19], namely:  

 

    
        

           
 (1) 

where only the number of keypoints in the observation image is used in the denominator. This dissimilarity lies in the 

range [0,1] since matching is performed for each of the ‘observed’ keypoints so there will be at maximum this number of 

matches. When using the keypoint location, this changes the number of matches, as matches are discarded if the location 

is different. 

Bag of Words 

Instead of a per-feature comparison as in the SIFT-matching method, there is also the possibility to create an aggregate 

description of all SIFT keys for the image. A popular method for making such an aggregate description is the Bag Of 

Words (BOW) approach [24]. Here the keypoint features are first clustered, creating a dictionary of ‘Words’. All 

keypoints are subsequently assigned individually to one of these clusters (Words), producing a histogram of clusters per 

image. The clustering is performed by K-means clustering using a number of cluster centers and a Euclidean distance 

measure on the 128-element SIFT keys. After assigning all SIFT keys to the closest cluster, the (Euclidean) distances 

between the BOWs (histograms) are determined and used for training an SVM-classifier for each ship type. For 

recognition, SIFT keypoints in an image are again assigned to the clusters, and the SVM-classifier with the highest 

posterior probability yields the most likely match. The training and testing is performed using a leave-one-ship-out cross 

validation. 

Fisher Vectors (with localization) 

For each keypoint in the image, a SIFT descriptor of length 128 is computed. This results in a variable number of 

descriptors per image. One fixed-length vector is computationally less intensive for matching than a variable number of 

SIFT-descriptors. The BOW approach is one approach to obtain a fixed-length descriptor. A more advanced approach to 
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obtain a fixed-length compact representation is the Fisher Vector (FV) [14][15]. The BOW approach uses hard 

assignment to cluster centers whereas the FV is based on soft-assignment. 

The method consists of the following steps: computation of SIFT descriptors, principal component analysis (PCA) on 

these descriptors, Gaussian mixture model (GMM) on the principal components of SIFT, computation of the Fisher 

Vector, normalization, and finally, computation of nearest neighbors (NN), which results in a dissimilarity distance. The 

method contains two important parameters: the number of Gaussians in the GMM (g), and the number of principal 

components to keep with PCA of the SIFT (p). The length of the Fisher Vector is p*g. 

In this paper, we add localization information to the SIFT feature vector of 128 values and compare objects with a 

compact representation in the Fisher Vector. The localization is added by concatenation and weighted with a factor ‘w’, 

where the SIFT feature is multiplied by (w) and the location information by (1-w). An overview of the localization 

approaches is shown in Table 1. The simplest approach to add location information is by concatenating the absolute 

location. To make the information more invariant to dislocation of the detection or to make it scale invariant, one can 

concatenate the relative location information. To separate orientation information and distance information, a polar 

projection can be performed from the relative location to an angle and a radius. To avoid problems with discontinuities in 

orientation matching, we use two orthogonal components (sin + cos) to encode the angular information [21] that can be 

projected on the unit circle. 

 

Table 1: Approaches to add localization information to the Fisher Vector. 

Label Size Description 

No localization 128+0 No localization information is concatenated to the SIFT feature. 

Absolute 128+2 The absolute x,y location in the image is added. 

Relative 128+2 The relative x,y location is added, by subtracting the center of mass and 
dividing by the maximum of the image width and image height. 

Unit circle 128+2 The relative x,y locations are projected on a unit circle around the center of 
mass. This makes the location scale invariant and it encodes the orientation 
angle without a discontinuity. 

Radius 128+1 The radius is the distance to the center of mass that is computed based on the 
relative x,y location, which is scaled by image size. 

Unit + Radius 128+3 This is a concatenation of the unit circle and the radius. 

 

2.4 Ranking 

For most methods, the comparison is of one image to another, using some dissimilarity measure to determine how alike 

two images are. For each image, a rank-1 result is obtained that selects the image with smallest dissimilarity out of all 

other images. Although a rank-1 match is most similar to comparing one image to (few) previous images, a more robust 

assessment may be obtained by looking at more matches than only the first. For each ship, the threshold is determined 

for which 5% of the images of that ship have a dissimilarity below that value. The percentile-5 result, is then the ship that 

has the lowest threshold, i.e., 5% of its images are more alike the reference image than the 5% of images of another ship. 

A percentile value is used instead of counting images, as this allows interpolation for ships with few images. While for 

most methods, the percentile-5 performance is worse than when using rank-1 (percentile-0 value), in some cases it is 

slightly better; the best result will be reported.  

 

2.5 Persistent tracking simulation 

In the MSA (Maritime Situational Awareness) research program, persistent tracking is one of the topics of research. 

Other topics are intent estimation based on the observed tracks (and other information) [4] and asset planning, where 

assets (such as helicopters and UAVs controlled from a frigate) are planned in time based on updated risks from intent 

and commercial shipping. These three parts are also built into a simulation environment, where ship traffic is simulated 

and observations are created based on sensor ranges and vessel appearance. An impression of the simulated traffic is 

shown in Figure 2, where white marks indicate co-operative (commercial) vessels, and other marks are (smaller) vessels, 
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such as skiffs, dhows, trawlers, etc. The squares indicate the three observation areas, each covered by a frigate with 

helicopter and UAV. 

 

Figure 2: Simulation environment. 

The implementation of persistent tracking is as follows: 

- For commercial (cooperative) shipping, it is assumed that positions are known. These ships are not taken into 

account in the further examination. 

- As long as ships are in radar range, they are assumed to be tracked by the observing platform. 

- Only limited kinematic tracking is implemented, based on last observations and a maximum speed. 

- Recognition is simulated by an single value for each vessel, which is only observed by certain sensors and at 

limited range. A difference in this value is an indication of the possibility of the observation matching a track. 

Setting a maximum allowed difference is a way of indicating how probable a confusion between ships is. In 

other words, if values are allowed to differ by 10%, one in ten ships looks alike, and at 1% only one in a 

hundred. 

 

3. EXPERIMENTS AND RESULTS 

3.1 Description of the imagery 

For assessing the different methods of matching, recordings of five small ships are used, recorded during the 

international SMARTEX trial, which took place over two days in June 2012 in co-operation with the US Coast Guard. 

Target location from GPS is available for several targets, which is used in annotating images and providing distance and 

aspect angle estimations. Five targets are used in these tests for recognition: a sailing boat, two 24-feet cabin boats 

(called 24A and 24B), a flat boat of 35 feet and a 74 feet flat boat. Examples are shown in Figure 3. 

From the ship positions, a distance and aspect angle relative to the camera can be estimated, as well as expected pixel 

resolution on the ship. From this, images are automatically retrieved over a range of resolutions and aspect angles. In this 

automatically selected set, most images (95%) range in resolution from 0.1 to 0.5 meters per pixel, with a maximum of 1 

meters per pixel (see examples in Figure 3). 80% of images are within 20 degrees of side view, with 10% being closer to 

frontal/back views. After applying the automatic detection and segmentation, images are manually checked to see if the 

ship was actually in the image, and detected. This annotation results in 186 recordings of the five different ships, 

including both mid-wave and long-wave infrared. This set was used in the previous paper, but was found to have some 

cases with aspect ratio or resolution outside the expected range, as well as cases where the correctness of the annotation 

could not be verified with ground-truth information. This latter is especially important for the two 24 feet boats, that look 

very much alike. Therefor a new set was created, with more consistent annotation, resulting in 128 images. Table 2 gives 

the number of images per ship, for the full and cleaned set. Since processing for some of the methods is not symmetric 
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(i.e., a ship does not match its mirrored image), horizontally flipped versions of the images are added to the set. In 

assessing the recognition, numbers are corrected for this, and an image is not compared to its mirrored version. 

 Resolution 

0.1 m/pixel 0.5 m/pixel 

24A 

Cabin 

boat 

  

24B 

Cabin 

boat 

  

35 ft flat 

boat 

  

74 ft flat 

boat 

  

Sail boat 

 
 

Figure 3: Examples of IR images of ships in the data set, with high and low resolution. 

 

The 35 and 74 (feet) targets are flat boats that are somewhat alike and viewed at a distance they are not dissimilar from 

the sail boat, of which its mast is often not seen in the automatic segmentation. The 74 flat boat only had 4 examples in 

this set, which makes the result for this target less accurate. 

 

3.2 Performance measures 

We used two ways to measure the accuracy of the matching methods. The first gives equal weight to each of the 128 

images (accuracy by number) and the second gives equal weight to each of the five target classes (accuracy by 

percentage).  
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Table 2: Ships and numbers used in the experiment. 

 
Ship label 

 
Description 

Full Set Cleaned Set 

Number 
of samples 

Fraction Number 
of samples 

Fraction 

24A 24-feet cabin boat 54 29% 37 29% 

24B 24-feet cabin boat 67 36% 37 29% 

35 35-feet flat boat 21 11% 14 11% 

74 74 feet flat boat 4 2% 4 3% 

Sail sail boat 40 22% 36 28% 

TOTAL  186 100% 128 100% 

 

Combining the results of all images for each target results in a confusion matrix, containing on the diagonal the number 

of images that correctly have an image of the same ship as most similar, and off-diagonal the mismatched images. From 

these values, two overall accuracies are determined. The accuracy by number, is obtained by counting the percentage of 

correct images out of the total number of images: 

            
∑                       

∑               
            (2) 

where Ncorrect,target is the number of correct matches for one of the five ships, out of Ntarget images of that ship. Although 

this presents a good overall value, it does not well represent the result of those ships classes that only have a few 

matches. Therefor a second value is used, the accuracy by percentage, which is obtained by taking the mean of the 

percentages obtained per target class: 

                
∑

               

       
       

        
           (3) 

where Ntargets is the number of different ships. This value weighs all target classes more evenly, but is very sensitive for 

differences in the targets with a low number of images. For example, in our case with five target classes, an increase of 

one correct match of a target with only 4 images, causes a change in accuracy of 5 percent. 

For the simulator, we used the average and the maximum number of track IDs given to each ship. Recognition values – 

indicated by confusion probability CP – are used to simulate how well ships can be distinguished from each other when a 

camera observation is available. In the association from observations to existing tracks, this is used to eliminate unlikely 

matches. A value of one indicates no recognition improvement, as each ship can appear the same as all others. Lower 

values indicate some exclusion is possible. For example, with CP=0.1, of possible wrong associations, 90% will be 

excluded.  

 

3.3 Human recognition 

As assessment of the data set and comparison to the automatic methods, recognition was also performed by a human 

observer on the cleaned set. For each of the images, a closest match among the rest was indicated, which is scored 

correctly if it was the same ship. To speed up this process, it was possible to group similar ships, for example all clear 

sailboats or all cabin boats with similar intensity distribution and no objects on the back. All images in such a group were 

scored as if the ship most common in the group was selected. The scores are shown in the table below. It is clear that to a 

human, the non-cabin boats are easily recognized by for example the mast, and shape of the hull. For the cabin boats, the 

human observer could not always identify whether an image is of one or the other, but in majority of cases, an image of 

the same ship that is similar can be found.  
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Table 3: Human recognition results. 

  Predicted 

  24A 24B 35 74 Sail 

 24A 91.9 8.1 0.0 0.0 0.0 

 24B 13.5 86.5 0.0 0.0 0.0 

GT 35 0.0 0.0 100 0.0 0.0 

 74 0.0 0.0 0.0 100 0.0 

 Sail 0.0 0.0 0.0 0.0 100 

 

This corresponds to an accuracy on percentages of 95.7%. The accuracy on numbers is 93.8%. It was found that with a 

less precise assessment (with a faster decision instead of finding the closest match), the process was still quite slow, and 

the accuracy was much lower. 

 

3.4  Recognition results of different methods 

Table 4 lists the results of all the different methods, including the base methods (indicated by reference [10]), the human 

operator, bag-of-words with different number of clusters, and the different methods of incorporating the location in the 

Fisher vector description. The baseline Fisher method gives an accuracy on percentages of 86.5% for the preprocessed 

set A. Table 5 shows the confusion matrix of the best Fisher result on preprocessed set C which equals 92.2%. 

Table 4: Comparison of the methods. 

Preprocessing Method Accuracy on 
numbers 

Accuracy on 
percentage 

- Human operator 93.8 95.7 

- Moments  [10] 77.3 70.9 

C BOW, 250 clusters 73.4 61.1 

C BOW, 500 clusters 79.3 66.0 

C BOW, 1000 clusters 84.8 70.7 

C BOW, 2000 clusters 86.3 78.5 

C BOW, 5000 clusters 87.1 75.0 

C SIFT  [10] 85.6 76.6 

C SIFT + localization  [10] 87.9 84.7 

A Fisher + No localization  [10] 83.5 86.5 

B Fisher + No localization 81.4 84.4 

C Fisher + No localization 84.5 88.5 

C Fisher + Absolute (w=0.1) 84.6 87.3 

C Fisher + Relative (w=0.1) 87.0 90.1 

C Fisher + Unit circle (w=0.1) 87.0 90.2 

C Fisher + Radius (w=0.1) 86.3 89.6 

C Fisher + Unit+Radius (w=0.1) 88.6 92.2 

 



 

 
 

 

Proc. SPIE, Vol. 9249, page 92490N-9 of 92490N-11 

 

 
 

 

 

 

Table 5: Confusion matrix using Fisher + Unit+Radius in percent. The accuracy based on percentages is 92.2 ± 1.3. 

  Predicted 

  24A 24B 35 74 Sail 

 24A 91.5 3.9 0.0 4.6 0 

 24B 16.9 76.4 1.1 4.9 0.8 

GT 35 0.0 0.0 99.6 0.4 0.0 

 74 0.0 0.0 0.0 100.0 0.0 

 Sail 0.0 2.5 0.3 3.6 93.6 

 

Among the non-Fisher methods, the SIFT + localization matching approach gives the highest recognition rates. 

Localization of the features provides additional discriminative power. The BOW approach does not employ localization 

information, but scores relatively well on the accuracy on numbers for large cluster numbers. This description in terms of 

a ‘dictionary’ is better than using SIFT matching alone.  

For the BOW approach, it turns out that there is a clear difference between the accuracies based on numbers and 

percentages. This is caused by the fact that there is a very small number of samples of the 74 feet flat boat in the dataset, 

which is therefore not well represented by the generated clusters. The closest cluster centers will therefore be far off for 

this type of boat, making it very difficult to recognize properly. 

This effect is not present in the Fisher vector approach, where not only the numbers of different clusters are used to 

describe the image but also the distances to these clusters. This produces a richer representation which seems to 

incorporate all the pros of the other methods. The results show that it is beneficial to add localization information to the 

Fisher Vector. The difference between the best FV without localization and the best FV with localization is almost 4%. 

The location encoding with a unit vector (indicating direction) and radius (indicating relative distance) appears to 

perform best at 92.2% accuracy on percentage. 

 

3.5 Effect of recognition on tracking in simulations  

In simulation, it is modeled that 286 smaller ships are observed (by sensors) in a 5 day period, in the limited area of 

operation of three frigates and their assets (see Figure 2). Recognition is only possible when multiple observations are 

done with a camera where the ship was out of view in between observations.  

 

Table 6: Results of persistent tracking for a confusion probability (CP) value of 1 (only kinematics in the tracking algorithm), and for 

a ship type dependent recognition. 

Confusion Measure of performance 

Probability Average tracks 
per ship 

Max. tracks per 
ship 

1 (no recognition) 32.2 132 

Type specific, from 1/4 to 1/50 13.6 67 

 

Table 6 shows the results of tracking the smaller ships over five simulated days. This results in an average of 32.2 track 

IDs per ship, without recognition. For recognition, CP is set at fixed values for different types of ships: 0.25 for skiffs, 

0.05 for dhows and 0.02 for (less common) larger vessels. In that case, it appears that even this limited recognition of the 

smaller ships (skiffs, dhows) gives a major improvement (from 32.2 to 13.6 tracks per ship). 

 

4. DISCUSSION 

The assessment by a human observer shows that it is possible to distinguish the flatter boats (sailboat and flat boats) very 

well, based on details that may not be apparent automatically, especially at lower resolutions. Distinguishing between the 

two cabin boats, i.e., indicating if it is 24A or 24B, is not perfectly possible, however, given an image of one, it is often 
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possible to find a very similar image, based on small details that may be less visible in the automated recognition as well. 

However, human observation is slow, and may be very much helped by using the automated methods to make a first 

selection.  

The keypoint matching, bag-of-words (BOW) and the Fisher vector methods all use the same SIFT keypoints. The 

results using Fisher vector (even when not using localization) are better when looking at the accuracy by percentage, as 

this shows results on the ships with fewer images more prominently. It was found that these ships were not represented 

well in the BOW clusters, unless many clusters were used, and even than the flat boats were mixed with the sail boat 

description. This may partly be the case as well for the GMM clusters in the Fisher vectors, but since a soft assignment is 

used in the latter case, differences for single images may be still be seen. 

The different sets of cropped images around the center of mass (preprocessing A, B and C in Table 4), show best results 

for set C, where more space around the ship is taken. This may allow more accurate SIFT key point descriptions on the 

edges of the ships. Of different ways of incorporating the keypoint location in the Fisher Vector description, using a unit 

vector (indicating direction) and radius (indicating relative distance to the center) appeared to perform best. This 

localization makes the orientation information independent of scale and without angular discontinuities and it preserves 

distance information in an orthogonal component. 

Compared to the baseline, the addition of location in the Fisher vector description clearly improves the recognition 

results. Since an increase is seen both in the accuracy by numbers (favoring the more common images) as well as 

accuracy by percentage (favoring the less common ships), this improvement seems to hold for all ships. The overall best 

result is for the Fisher vector with unit and radius localization, which shows recognition of over 92 percent for most 

ships, except for the 24B cabin boat, which is mainly confused with the (almost identical) 24A. This performance is 

close to that of the human observer. 

 

5. CONCLUSIONS 

In this paper, we presented an update of our research on the use of feature extraction and matching methods for 

recognizing ships from electro-optical imagery. An indication of discriminative power is obtained on infrared imagery of 

ships.  

The overall performance using Fisher vectors with SIFT keypoints is improved by including keypoint localization in the 

representation. Compared to a more commonly used bag-of-words approach, using Fisher vectors allows for better 

recognition of ships with few example images, as the soft-assignment also uses likeness to other ships in the similarity 

measure. For the SIFT keypoints, results show that it is better to include more area around the ship to obtain good 

descriptors. The performance of our approach is close to that of the human observer, and the system may be helpful to 

assist a human in retrieving similar images of a target faster.  

The simulation of tracking of small ships over five days, with small coverage of observation area, shows that recognition 

percentages as obtained with Fisher vectors (i.e., in the order of one in ten ships looks alike) already gives a significant 

increase in tracking accuracy in terms of track breaks, resulting in long-term descriptions of ships.  
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