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Structured Abstract 
The TNO instance search submission to TRECVID 2012 consisted of four different runs: two are 
using an exhaustive SIFT key-point search, and two are using an extended bag-of-visual-words 
approach. Our run approaches: 
 
Briefly, what approach or combination of approaches did you test in each of your submitted 
runs? 

• all runs: video decoding using ffmpeg library, sampling every 25th frame.   
• F_X_NO_TNO-ANNMSK_1: standard SIFT key point detection, exhaustive search 

using FLANN matching with query key points inside query mask. 
• F_X_NO_TNO-ANNMSK_3: standard SIFT key point detection, exhaustive search 

using FLANN matching with query key points inside query mask and resolution of query 
images enhanced by a factor 2 for small objects. 

• F_X_NO_TNO-INOMSK_2: standard SIFT key point detection within mask region, 
extended bag-of-words using 1000 prototypes from videos, indexing and querying using 
Lucene. 

• F_X_NO_TNO-INORDR_4: standard SIFT key point detection, extended bag-of-words 
using 1000 prototypes from videos, indexing and querying using Lucene. 

 
What if any significant differences (in terms of what measures) did you find among the runs? 
In terms of average precision TNO runs 1 and 2 significantly outperform TNO run 3 and 4. TNO 
run 2 with resolution enhancement performs slightly better than run 1 without enhancement. 
 
Based on the results, can you estimate the relative contribution of each component of your 
system/approach to its effectiveness? 
Based on the difference between TNO runs 1 & 2 and 3 & 4 we can estimate that the contribution 
of choosing exhaustive key-point search over bag-of-words with a small visual vocabulary is 
high. The contribution of resolution enhancement is low. 
 
Overall, what did you learn about runs/approaches and the research question(s) that motivated 
them? 
Exhaustive key point search significantly outperforms bag-of-words at the cost of extra query 
time. One can build an image-retrieval system using open-source components. 



Introduction 
In this notebook paper we describe our approaches to the TRECVID 2012 instance search tasks 
and analyze the results of our submissions. TNO has submitted four runs: two are using an 
exhaustive SIFT key point search using FLANN matching, and two are using a bag-of-visual-
words approach.  
 
The main rationale behind all four runs was: “Can we build an instance-search system from 
scratch using only open source or commercial components without significant algorithmic 
development of our own?” The remainder of this notebook paper is as follows. The paper starts 
with a short section on data analysis of the video and query data set in Section “Data Analysis”. 
In Section “Approach” we describe in detail the processing steps of the four runs and their 
software implementation. In Section “Results” we present some of the results of the three runs 
and compare them. In Section “Conclusions” we discuss some of the chosen algorithms for the 
different runs. 

Data analysis  

Video data set 
The video data set consists of about 70000 internet videos in WebM format, downloaded from 
Flickr under Creative Commons licenses, some general features we noticed: 

• videos mostly in color; 
• videos in different resolutions; 
• very short videos, at maximum a few minutes; 
• some videos contain no video frames; 
• no subtitling. 

Query data set 
The query set consists of 21 queries. For every query multiple query images are given up to nine 
images per query. And for every query image two formats are given: source image (full-sized 
image) and mask image (binary segmentation for target object), all query images in color and 
with image resolutions ranging from: 352x240 to 640x480. 
 

        
Figure 1: Three images for one query (9057, LOCATION). 
 
 



 
Figure 2: Example mask and source images from the query image set. 
 
The query dataset contains three types of queries: persons, objects and locations. For example 
query 9060 is a person query, 9048 an object query and 9057 a location query. 
 

  
Figure 3: Mask and source image for one query image (9060, PERSON). 

Approach 
The chosen approach differs from TNO runs 1 & 2 and 3 & 4 so they are described separately in 
different sections: 

• F_X_NO_TNO-ANN*: retrieval by object recognition (runs 1 & 2) 
• F_X_NO_TNO-INO*: bag-of-visual-words retrieval (runs 3 & 4) 

For all runs the pre-processing (decoding and framing) of the videos in the dataset was the same. 
For video decoding we used the FFmpeg library [1] as integral part of the Open Computer Vision 
Library [2] and stored every 25th frame as a JPEG image. The 1Hz sampling was chosen because 
of storage size and processing time considerations. 

Runs 1 and 2 approach: object recognition 
Our first approach for runs 1 and 2 is interesting because it is the original object recognition idea 
outlined by David Lowe in his paper on SIFT [7]. In our approach we follow the same scheme of 



detecting key points, computing and matching local descriptors but instead of a few objects in the 
recognition database we have descriptors from every video. We handle that large amount of 
descriptors on an application level by dividing the resulting descriptor ‘matrix’ in a number of 
binary files (in the order of hundreds, depending on memory) and process them one by one. 
Multiple queries can be combined within one single run. 
 
In contradiction with our earlier experiments in 2010 and 2011 we have chosen SIFT over SURF 
[6]. As with the approach of Lowe, key point detection is done sparse and is not using a sampling 
with a pre-defined grid of points. We use the default SIFT detector based on difference of 
Gaussians.  Descriptor matching is done with an approximate nearest-neighbor implementation 
(FLANN) where only a part of all descriptors can be in memory. This approach showed more 
than average (median) results for all queries, for one (9057) it was the best performing one. 
 
The difference between run 1 and 2 is that for run 2 the image resolution for small objects 
(determined by mask area) is enhanced by a factor 2 to generate more detected key points at the 
cost of possibly less optimal descriptors. The resolution enhancement has a small positive effect 
on the results. 

Run 3 and 4 approach: extended bag-of-visual-words 
Our 2nd approach (runs 3 and 4) uses an extended bag-of-words. The interesting part is that all 
visual features are converted to text and that a text-retrieval framework can be used for quick 
(interactive) searching. Furthermore, the vocabulary is computed on the videos. 
 
With the extended Bag of Words(EBoW) approach we tried to improve matching quality while 
keeping the fast matching speed typical for BoW methods. The EBoW method differs from the 
normal approach in two ways: 

• Using a variety of textual representations, some enable uses of wildcards for flexible 
matching 

• Use of the coordinates of the key points in the scoring function. 
The indexing and search processes followed are described in detail in the sections below. Lucene 
was used as the search engine. 

Indexing 
The EBoW method is based on text search and hence consists of two major steps: indexing and 
searching. The indexing pipeline used to analyze and store a single image is shown in the figure 
below.  
 

 



First key points are extracted and clustered resulting in 1000 prototypes. For each key point the 
three ‘nearest’ prototypes (including the distance of the key point to each prototype centroid) are 
used. Each key point is represented as: proto385-0.03412_proto041-0.00725_proto795-0.00732 
(prototype term followed by the distance of the key point to that prototype centroid). 
In the actual text-indexing phase these long strings are represented in three different ways: 

1. Best prototype: only the best prototype is stored, in the example above this would be 
‘proto385’ (classic BoW approach) 

2. Prototypes: thee prototypes are stored in order without their distances: 
‘proto385_proto041_proto795’ 

3. Weighted prototypes: the prototypes are stored including their distance values: ‘proto385-
0.03412_proto041-0.00725_proto795-0.00732’ 

Each key point in an image is transformed to these three representations that are all stored in their 
own fields (concatenated using a single space) resulting in a text document as shown below. 
 

 
 
The polar coordinate (t,r) of each key point in the image is calculated 
with respect to the center of the image and normalized using the 
images height and width. Each representation is stored in the index 
along with its polar coordinate as payload. This payload is used in the 
search process to change the score of an indexed image with respect to 
a query image. 

Searching 
The search process is very similar to the indexing process:  key points are extracted, clustered and 
representations created resulting in a text document as shown before. This text document forms 
the basis for the query to be executed. There are many different search strategies possible: 

1. Use one field only (best_proto, prototypes and weighted_proto) 
2. Use multiple fields, possibly boosting one field with respect to the other(s) 
3. Use wildcards within the weighted_proto queries to control the precision during search. 

For example a query such as proto385-0.03???_proto041-0.00???_proto795-0.00??? will 
match more precisely than proto385-0.0????_proto041-0.0????_proto795-0.0???? 

4. Weight of the coordinates of matched key points with respect to the coordinates of the 
query key points. The role of the coordinates is described in a separate section below  

 
Different search strategies use one or multiple of the three fields (best_proto, prototypes and 
weighted_proto) as a very large OR query. It is possible to boost one type of field with respect to 
the other(s). An example query is shown below where prototypes field is boosted 10 times with 
respect to the best_proto field (results based on the prototypes field contribute 10 times more to 
the relevance score than results from best_proto do). 

Image:	
  9048_1.jpg	
  
Best_proto:	
  proto385	
  proto068	
  proto001	
  etc.	
  
Prototypes:	
  proto385_proto041_proto795	
  proto068_proto156_proto985	
  etc	
  
Weighted_proto:	
  proto385-­‐0.03412_proto041-­‐0.00725_proto795-­‐0.00732	
  proto068-­‐
0.1250_proto156-­‐0.0567_proto985-­‐0.0086	
  etc.	
  



 
 
The coordinates of each key point are transformed into polar coordinates (t,r) with respect to the 
center of the image. These coordinates are used during search to 
boost matching key points that have similar polar coordinates (i.e. 
key points that are in the same portion of the image). For example a 
query key point represented as proto385 matches all ‘proto385’ key 
points but the score that this match contributes to the overall score of 
the image is boosted based on the distance (D) between the query key 
point and the hit key point. The boost factor is inverted with respect to D, i.e. the larger the 
distance the lower the boost. This means that matching key points that are very close to the query 
key point get higher scores.  

Relevance score 
The default Lucene [8] similarity strategy was used to calculate relevance scores for documents 
that match the given query. In essence the similarity is based on TF.IDF with the addition that the 
score resulting from a query term can be changed using boosting or based on payloads. 

 
Docscore(d|Q) = score for document d given query Q 
t = term from query Q 
tf(t d) = term frequency of t in document d 
idf(t) = inverse document frequency of t 
boost(t d) = boost factor based on t in d 

 
The boost factor is based on the coordinates of the query term (i.e. a single key point) with 
respect to the coordinates of the key point that was matched in the document as described before. 
 
In the end the task is to find relevant clips based on one or more query images. This is done by 
searching on individual query images and aggregating the result. Each possible clip is fetched and 
initiated with a score of 0.0. 
 
A search for a query image results in a list of matching images ordered on their relevance score. 
For each result image its clip is fetched its score is incremented with the relevance calculated by 
the search engine. Finally the list with clips is ordered based on their score and returned as the 
final result. 

Submitted runs 
We submitted two runs using this method: F_X_NO_TNO-INOMSK_2 and F_X_NO_TNO-
INORDR_4 which only differ in the use of masks or not. For both methods we used the 
following query model: 

• Use of ‘Best_proto’ field with a boost factor of 1 (focus on recall) in combination with 
• ‘Prototypes’ field with a boost factor of 10 (focus on precision).  

Best_proto:(proto385	
  OR	
  proto068	
  OR	
  proto001	
  OR	
  …)	
  OR	
  	
  
Prototypes:(proto385_proto041_proto795	
  OR	
  proto068_proto156_proto985	
  OR	
  …)^10	
  



• Polar coordinates were used. 
The INORDR method used all key points found in a query image while the INOMSK method 
only used key points within the mask for search. 

Observations 
The idea behind the representations of key points and the use of wildcards works but has proven 
to be too slow to be of actual use. For example a query like: proto385-0.03???_proto041-
0.00???_proto795-0.00??? results in less results than: proto385-0.0????_proto041-
0.0????_proto795-0.0????. In addition the results of the first query are usually better but tend to 
miss relevant results as well (its more tuned for precision rather than recall). Unfortunately the 
use of wildcards is very time consuming since the search engine first has to find all possible 
terms that match the wildcards, expand the query and perform the search. Doing this for some 
hundred to multiple thousand terms for a single query image was not feasible. 
 
The representation used (i.e. proto385_proto041_proto795) either with or without scores resulted 
in a very large number of unique words (almost a billion possible words). This poses a problem 
for the search engine that uses an inverted index, pointers from words to documents, for fast 
retrieval. Having this many words (a normal language has a maximum of 1 million words) results 
in a very large inverted index which makes searching relatively slow (or very memory 
consuming). 

Results 
In this section we present some of the results our runs made on the instance search task. In the 
first four figures we show the average precision of our four runs versus the median and best 
scores by topic. 
 

 
Figure 4: Average precision of run F_X_NO_TNO-ANNMSK_1 (dot) versus median (---) versus best (box) by 
topic. 
 



 
Figure 5: Average precision of run F_X_NO_TNO-ANNMSK_3 (dot) versus median (---) versus best (box) by 
topic. 
 

 
Figure 6: Average precision of run F_X_NO_TNO-INOMSK_2 (dot) versus median (---) versus best (box) by 
topic. 
 

 
Figure 7: Average precision of run F_X_NO_TNO-INORDR_4  (dot) versus median (---) versus best (box) by 
topic. 
 



 
From these figures it is clear that TNO run 1 and 2 perform best w.r.t. the other two runs and 
average performance, for one topic (9057) run 1 was the best performing one. TNO run 3 & 4 
(bag-of-words) have average results. 
 

Conclusions  
(F_X_NO_TNO-ANN*) Using a brute-force search over all SIFT key point descriptors gives real 
instance search results: hits for every query. However, there is no generalization of objects and it 
takes relatively long (15-30 minutes on a single-core PC for a query set). Furthermore, when the 
object is small (for example query 9048) and there are not many SIFT key points inside the query 
mask the search becomes difficult. 
 

   
 
Figure 8: Query 9059 is the ideal query: nine example images, no masking: use the whole image and as a 
result many key points to search with. 
 
(F_X_NO_TNO-INO*) Our extended bag-of-words approach gives for some queries nice 
concept detection results and is fast but does not perform as expected for instance search. 
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