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Abstract

In this paper we describe our TRECVID 2006 experiments.
The MediaMill team participated in two tasks: concept de-
tection and search. For concept detection we use the Medi-
aMill Challenge as experimental platform. The MediaMill
Challenge divides the generic video indexing problem into
a visual-only, textual-only, early fusion, late fusion, and
combined analysis experiment. We provide a baseline im-
plementation for each experiment together with baseline re-
sults, which we made available to the TRECVID commu-
nity. The Challenge package was downloaded more than
80 times and we anticipate that it has been used by sev-
eral teams for their 2006 submission. Our Challenge ex-
periments focus specifically on visual-only analysis of video
(run id: B MM). We extract image features, on global, re-
gional, and keypoint level, which we combine with various
supervised learners. A late fusion approach of visual-only
analysis methods using geometric mean was our most suc-
cessful run. With this run we conquer the Challenge baseline
by more than 50%. Our concept detection experiments have
resulted in the best score for three concepts: i.e. desert,
flag us, and charts. What is more, using LSCOM annota-
tions, our visual-only approach generalizes well to a set of
491 concept detectors. To handle such a large thesaurus in
retrieval, an engine is developed which automatically selects
a set of relevant concept detectors based on text matching
and ontology querying. The suggestion engine is evaluated
as part of the automatic search task (run id: A-MM) and
forms the entry point for our interactive search experiments
(run id: A-MM). Here we experiment with query by object
matching and two browsers for interactive exploration: the
CrossBrowser and the novel RotorBrowser. It was found
that the RotorBrowser is able to produce the same results as
the CrossBrowser, but with less user interaction. Similar to
previous years our best interactive search runs yield top per-
formance, ranking 2nd and 6th overall. Again a lot has been
learned during this year’s TRECVID campaign, we highlight
the most important lessons at the end of this paper.

∗The Netherlands Organisation for Applied Scientific Research
(TNO), Signal Processing Department, Stieltjesweg 1, Postbus 155,
2600 AD Delft, The Netherlands.

1 Introduction

Most commercial video search engines such as Google,
Blinkx, and YouTube provide access to their repositories
based on text, as this is still the easiest way for a user to
describe an information need. The indices of these search
engines are based on the filename, surrounding text, so-
cial tagging, or a transcript. This results in disappointing
performance when the visual content is not reflected in the
associated text. In addition, when the videos originate from
non-English speaking countries, such as China, Lebanon, or
the Netherlands, querying the content becomes even harder
as automatic speech recognition results are so much poorer.
Additional visual analysis yields more robustness. Thus, in
video retrieval a recent trend is to learn a lexicon of seman-
tic concepts from multimedia examples and to employ these
as entry points in querying the collection.

Last year we presented the MediaMill 2005 semantic
video search engine [34] using a 101 concept lexicon. For
our current system we made a jump to a thesaurus of 491
concepts. The items vary from pure format like a detected
split screen, or a style like an interview, or an object like
a horse, or an event like an airplane take off. Any one of
those brings an understanding of the current content. The
elements in such a thesaurus offer users a semantic entry to
video by allowing them to query on presence or absence of
content elements. For a user, however, selecting the right
topic from the large thesaurus is difficult. We therefore de-
veloped a suggestion engine that analyzes the textual topic
given by the user, to automatically derive the most relevant
concept detectors for querying the video archive. In ad-
dition, we developed novel browsers that present retrieval
results using advanced visualizations. Taken together, the
MediaMill 2006 semantic video search engine provides users
with semantic access to news video archives.

The remainder of the paper is organized as follows. We
first define our semantic video indexing architecture in Sec-
tion 2, introducing the MediaMil Challenge and our mostly
visual analysis approach for this year’s TRECVID. Then we
highlight our semantic video retrieval engine in Section 3,
which includes novel methods for concept suggestion, vi-
sual querying, and various video browsers. We wrap up in
Section 4 where we highlight the most important lessons
learned.



2 Semantic Video Indexing

Our generic semantic video indexing architecture is based
on the semantic pathfinder [34, 35]. It is founded on the
observation that produced video is the result of an author-
ing process. The semantic pathfinder selects the best path
through content analysis, style analysis, and context anal-
ysis. This year we use a semantic pathfinder that relies
mainly on (visual) content analysis, where the MediaMill
Challenge [37] replaces the content analysis step. In this
section we will highlight which components and experiments
of the Challenge have been replaced by more elaborate anal-
ysis, learning, and combination schemes.

2.1 MediaMill Challenge

TRECVID has been of pivotal importance in assessing com-
plete video indexing methods on their relative merit. In
the course of the TRECVID benchmark some groups have
shared annotations, like LSCOM [23], donated features, like
the camera shot segmentation by CLIPS-IMAG [27], speech
recognition results donated by LIMSI [10] and various mul-
timedia features donated by Informedia [46]. In addition,
all participants share their results on common test data for
a limited lexicon of typically 10 high-level concepts. Until
recently, however, nobody has provided low-level features
and detected semantic concepts for a large lexicon on both
training and test data, while these are crucial assets for re-
peatability of intermediate analysis steps.

This is mainly caused by the fact that TRECVID focuses
on the final result of concept detection systems. In the-
ory, the TRECVID experiments are repeatable, but not on
a system component level. Because TRECVID ignores in-
termediate results, component-based optimization and com-
parison during methodology development are impossible in
practice. To gain insight in intermediate steps that affect
performance of concept detection methods, while simulta-
neously pushing performance to the modular max, we have
proposed and distributed the MediaMill Challenge during
the 2006 TRECVID benchmark [37].

The Challenge divides the generic video indexing prob-
lem into a visual-only, textual-only, early fusion, late fu-
sion, and combined analysis experiment, see Fig.1. We pro-
vide a baseline implementation for each experiment together
with baseline results for a lexicon containing 101 semantic
concept detectors. The 85 hours of training data from the
TRECVID 2005 corpus forms the basis for the MediaMill
Challenge. We divided this archive a priori into a non-
overlapping train and test set. The Challenge train set A
contains 70% of the data, and the Challenge test set B holds
the remaining 30%. The Challenge package has been down-
loaded more than 80 times, and we anticipate that it has
been used by several teams for their 2006 system, either for
comparison or as a building block for their submission.

Figure 1: Data flow within the MediaMill Challenge for generic
video indexing of 101 semantic concepts [37]. Experiment 1 and 2
focus on unimodal analysis, yielding a visual and a textual concept
classification. Experiment 3 and 4 employ an early and late fusion
scheme respectively. The Challenge allows for the construction of
four classifiers for each concept. In experiment 5, an optimum is
selected based on combined analysis.

2.2 Supervised Learners

We perceive concept detection in video as a pattern recog-
nition problem. Given pattern ~x, part of a shot i, the aim is
to obtain a probability measure, which indicates whether se-
mantic concept ωj is present in shot i. Similar to the Medi-
aMill Challenge, we use the Support Vector Machine (SVM)
framework [44] for supervised learning of concepts. Here we
use the LIBSVM implementation [4] with radial basis func-
tion and probabilistic output [24]. We obtain good SVM
parameter settings by using an iterative search on a large
number of SVM parameter combinations. The MediaMill
Challenge optimizes SVM parameters that aim to balance
positive and negative examples (w+1 and w−1). Here we
take the γ parameter into account also. We measure average
precision performance of all parameter combinations and se-
lect the combination that yields the best performance. We
use a 3-fold cross validation on Challenge train set A to pre-
vent overfitting of parameters. Rather than using regular
cross-validation for SVM parameter optimization, we also
experiment with the recently proposed episode-constrained
cross-validation method, as this method is known to yield a
more accurate estimate of classifier performance [12].

In addition to the SVM we also experiment with logis-
tic regression and Fisher’s linear discriminant [8]. While
both classifiers are known to be less effective than SVM,
in terms of concept detection performance, they require no
parameter tuning so classification is relatively cheap. Lo-
gistic regression performs a maximum likelihood estimation
of weights for the different feature dimensions, under the
assumption that the observed training data was generated
by a binomial model. In contrast, the Fisher’s linear dis-
criminant assumes normal distribution. It is used to find
the linear combination of features which best separates two
classes. It minimizes the errors in the least square sense.
We use the resulting combinations as a linear classifier. For
both classifiers we use the PRTools implementation [5]. All



Figure 2: Simplified overview of our visual-only analysis approach
for TRECVID 2006, using the conventions of Fig.1.

three classifiers yield a probability measure p(ωj |~xi), which
we use to rank and to combine concept detection results.

2.3 Visual-Only Analysis

Given the promising performance of our visual features in
last years benchmark, we have concentrated this years’ ef-
forts mainly on visual-only analysis, i.e. experiment 1 of the
MediaMill Challenge. We extract image features on three
levels of abstraction, namely: global level, region level, and
keypoint level. On each level, we aim to decompose com-
plex scenes in proto-concepts like vegetation, water, fire, sky
etc. These proto-concepts provide a first step to automatic
access to image content [45]. Given a fixed vocabulary of
proto-concepts, we assign a similarity score to all proto-
concepts for all regions in an image. Different combinations
of a similarity histogram of proto-concepts provide a suffi-
cient characterization of a complex scene.

In contrast to codebook approaches [6, 26, 38, 40, 45], we
use the similarity to all vocabulary elements [11]. A code-
book approach uses the single, best matching vocabulary
element to represent an image patch. For example, given a
blue area, the codebook approach must choose between wa-
ter and sky, leaving no room for uncertainty. Following [11],
we use the distances to all vocabulary elements. Hence, we
model the uncertainty of assigning an image patch to each
vocabulary elements. By using similarities to the whole vo-
cabulary, our approach is able to model scenes that consist
of elements not present in the codebook vocabulary.

All visual features are used in isolation or in combination,
with the three supervised learners. Finally, we combine the
individual concept detectors in several ways and select the
combination that maximizes validation set performance.

2.3.1 Global Image Feature Extraction

We rely on Wiccest features for global image feature extrac-
tion. Wiccest features [14] utilize natural image statistics to
effectively model texture information. Texture is described
by the distribution of edges in a certain image. Hence, a his-
togram of a Gaussian derivative filter is used to represent

the edge statistics. Since there are more non-edge pixels
then there are edge pixels, a histogram of edge responses for
natural images typically has a peak around zero, i.e.: many
pixels have no edge responses. Additionally, the shape of
the tails of the distribution is often in-between a power-
law and a Gaussian distribution. The tail emphasizes the
long-range correlation between edge pixels in the image. A
heavy power-law tail indicates a strongly contrasting object-
background edge, whereas a Gaussian tail indicates a noisy,
high-frequency texture region. The complete range of im-
age statistics in natural textures can be well modeled with
an integrated Weibull distribution [13]. This distribution is
given by

f(r) =
γ

2γ
1

γ βΓ( 1
γ
)

exp

{
− 1

γ

∣∣∣∣
r − µ

β

∣∣∣∣
γ}

, (1)

where r is the edge response to the Gaussian derivative
filter and Γ(·) is the complete Gamma function, Γ(x) =∫
∞

0
tx−1e−1dt. The parameter β denotes the width of the

distribution, the parameter γ represents the ‘peakness’ of
the distribution, and the parameter µ denotes the mode of
the distribution. The position of the mode is influenced
by uneven illumination and colored illumination. Hence, to
achieve color constancy the values for µ is ignored.

The integrated Weibull distribution can be estimated
from a histogram of filter responses with a maximum likeli-
hood estimator (MLE) as described in [14]. The parameters
µ, β and γ are estimated by taking the derivatives of the in-
tegrated Weibull distribution to the respective parameters
and setting them to zero. The parameters β and γ are de-
pendant on each other, therefore a dichotomic search scheme
is utilized to estimate the best β and γ combination. Note
that a histogram is only used to speed up the calculations.
Therefore, the number of bins in the histogram should be
taken as large as the computation time allows.

The Wiccest features for an image region consist of the
Weibull parameters for the color invariant edges in the re-
gion. Thus, the β and γ values for the x-edges and y-edges
of the three color channels yields a 12 dimensional descrip-
tor. The similarity between two Wiccest features is given
by the accumulated fraction between the respective β and γ

parameters:
∑ (

min(βF ,βG)
max(βF ,βG)

min(γF ,γG)
max(γF ,γG)

)
, where F and G are

Wiccest features. We compute the similarity to 15 proto-
concepts [11] for F and G. This yields global image feature
vector W1.

2.3.2 Regional Image Feature Extraction

We also use Wiccest features for regional image feature ex-
traction. We divide an input frame into multiple overlap-
ping regions, and compute for each region the similarity to
15 proto-concepts [11]. This yields regional image feature
vector W.

In addition to the Wiccest features, we also rely on Ga-
bor filters for regional image feature extraction. Gabor fil-
ters may be used to measure perceptual surface texture in



an image [3]. Specifically, Gabor filters respond to reg-
ular patterns in a given orientation on a given scale and
frequency. A 2D Gabor filter is given by:

G̃(x, y) = Gσ(x, y) exp

{
2πi

(
Ωx0

Ωy0

)(
x

y

)}
, i =

√
−1,

(2)

where Gσ(x, y) is a Gaussian with a scale σ,
√

Ω2
x0

+ Ω2
y0

is the radial center frequency and tan−1(
Ωy0

Ωx0

) the orienta-

tion. Note that a zero-frequency Gabor filter reduces to a
Gaussian filter.

In order to obtain an image region descriptor with Gabor
filters we follow these three steps: 1) parameterize the Ga-
bor filters 2) incorporate color invariance and 3) construct a
histogram. First, the parameters of a Gabor filter consist of
orientation, scale and frequency. We use four orientations,
0◦, 45◦, 90◦, 135◦, and two (scale, frequency) pairs: (2.828,
0.720), (1.414, 2.094). Second, color responses are measured
by filtering each color channel with a Gabor filter. The
W color invariant is obtained by normalizing each Gabor
filtered color channel by the intensity [15]. Finally, a his-
togram is constructed for each Gabor filtered color channel,
where we use histogram intersection as a similarity measure
between histograms. We divide an input frame into multiple
overlapping regions, and compute for each region the simi-
larity to 15 proto-concepts [11]. This yields regional image
feature vector G.

2.3.3 Keypoint Image Feature Extraction

Inspired by the work of Zhang [47], we also compute invari-
ant descriptors based on interest regions. In an evaluation of
interest region detectors, Mikolajczyk et al [22] found that
the Harris-Affine detector performs best. However, Zhang
obtains best results using the Harris-Laplace interest region
detector, noting that affine invariance can often be unstable
in the presence of large affine or perspective distortions.

The Harris-Laplace interest region detector [20] uses a
Harris corner detector on an image at multiple smoothing
scales to detect keypoints. We compute the Laplacian at
scales near the scale at which the keypoint was detected.
The scale at which the Laplacian is at a local maximum is
selected as the scale of the keypoint. The point is rejected if
there is no local maximum of the Laplacian. Detected scale
and keypoint together form a circular interest region, which
can be detected under rotation and scale changes.

The SIFT descriptor [19] is consistently among the best
performing interest region descriptors [21, 47]. SIFT de-
scribes the local shape of the interest region using edge his-
tograms. To make the descriptor invariant, while retaining
some positional information, the interest region is divided
into a 4x4 grid and every sector has its own edge direction
histogram (8 bins). The grid is aligned with the dominant
direction of the edges in the interest region to make the
descriptor rotation invariant.

The indexing method used by Zhang involves a compari-
son between all images, which is not feasible on TRECVID

data. Instead, we cluster in descriptor space on descrip-
tors of up to 1,000 positive images of a concept. For all
39 TRECVID concepts we search for at least 10 clusters.
Depending on the descriptor and the data clustered on, we
obtain between 400 and 425 clusters.

We use the improvement over the standard codebook
model as introduced in Section 2.3 [11]. However, instead
of a similarity function, we use the Euclidean distance be-
tween the image descriptors and the clusters. Summing all
distances yields a fixed-length feature vector ~F of length
n, with n equal to the number of clusters. We term this
keypoint image feature vector S.

2.4 Visual-Only Challenge Results

We performed several experiments against the MediaMill
Challenge using the feature vectors W1, W, G, and S in
combination with SVM, logistic regression and Fisher’s lin-
ear discriminant. In addition to using the global, regional,
and keypoint features separately, we also explored their
combined influence on concept detection performance us-
ing vector concatenation. An overview of the results for the
39 TRECVID concepts is given in Fig. 3.

The Challenge baseline is the SVM with feature vector
W, yielding a mean average precision (MAP) of 0.250 on
the 39 TRECVID concepts (Fig. 3, column 2). Our best
overall results are obtained with an SVM and WG com-
bination using episode constrained cross-validation and in-
clusion of the γ parameter. Improving upon the Challenge
by 41%. Combining features with an SVM yields better
performance than using logistic regression or Fisher’s linear
discriminant. However, these two classifiers allow for quick
classification of relatively long feature vectors. Sometimes
even outperforming the best SVM detector for a concept.
The Fisher linear discriminant is especially effective in clas-
sification tasks that involve long feature vectors. When we
select the feature and classifier combination that yields the
best performance per concept we may obtain an increase
over the Challenge of as much as 48% for the 39 TRECVID
concepts. For the complete lexicon of 101 concepts from the
Challenge the increase is more than 68% (data not shown).

2.5 Submitted Concept Detection Results

All our experiments were performed on the MediaMill Chal-
lenge, including parameter optimization and best-of selec-
tion. Since the Challenge is based on TRECVID 2005 train-
ing data only, we extended the annotations for our final sub-
mission with more positive examples from the TRECVID
2005 test set. These were obtained by manual inspection of
last years result. We added the positive feature vectors at
model construction time, they were not used for parameter
optimization. An overview of our submitted concept detec-
tion results is depicted in Fig. 4. We will now highlight the
details of each submitted run.
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Figure 3: Overview of our visual-only analysis experiments on the MediaMill Challenge using the feature vectors {W1,W,G,S}, classifiers
{SVM, logistic regression, Fisher linear discriminant}, and classifiers settings {regular cross-validation, episode-constrained cross-validation
(+), and inclusion of γ SVM parameter (g)} as explained in Section 2.3. The best result per concept is denoted in bold (data for 62
remaining Challenge concepts not shown).
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Figure 4: Comparison of MediaMill video indexing experiments with present-day indexing systems in the TRECVID 2006 benchmark.

2.5.1 Run ‘strange’: Best Visual-Only

Concept detection that relies on a single feature/classifier
combination seldom leads to excellent performance. For
some concepts, however, performance is reasonable, e.g.,
meeting, desert, mountain, us flag, people marching, maps,
and charts. Our other runs more or less extend on this run
to see how performance is influenced by: using concepts
in context, adding text, comparison against a keypoint-only
run, using cluster-based similarity, and late fusion of several
visual-only analysis methods.

2.5.2 Run ‘charm’: Visual Context Analysis

The context analysis step adds context to our interpretation
of the video. Here we combine the best visual-only concept
analysis method per concept from Fig. 3, e.g., for building
we use WGS features in combination with the Fisher linear
discriminant, where for a court we use the WG features in
combination with an SVM. The best visual-only run yields
a probability for each shot and all 101 concepts detectors in
our thesaurus. The probability indicates whether a concept
is present. We fuse these probability scores into a concate-
nated vector for each shot. This vector forms the input for
a stacked SVM. We use this vector to learn a classifier for
each concept. We learn these concepts on Challenge vali-
dation set B to prevent overfitting in our context analysis
step.

The results do not show a clear overall advantage of using
context for concept detection. For concepts as mountain,
corporate leader, and military personnel, context improves
upon the best visual-only run. Context aids especially to
disambiguate between maps and charts. For the other con-
cepts the benefit of context is less apparent, but this might
be caused by the fact that validation set B contains less
examples than training set A.

2.5.3 Run ‘up’: Early Fusion

For the ‘up’ run we performed an early fusion scheme similar
to Challenge experiment 3. We combine the feature vectors
resulting from visual feature extraction with those obtained
from textual feature extraction using vector concatenation.

For the visual features we selected the WG combination.
To obtain text features, we transformed the ASR text in
three ways. The first transformation was pure normaliza-
tion, eliminating punctuation and capitalization. The sec-
ond transformation was stemming, using the Porter [25]
stemmer to reduce the number of morphological variants
of words. The third transformation of the text was char-
acter 4-grams, using consecutive sequences of 4 characters
for search, to catch ’sounds-like’ errors made by the speech
transcriber. We used relevance feedback to select the most
descriptive n terms for each concept. We did this by cal-
culating Rocchio’s weight for all of the terms of the ASR
text of the positive concept examples, as described in [30].
We then selected the n terms with the highest weight. We
experimented with several values for n, i.e. 50, 100, 200,
and 500. For feature extraction we compare the text asso-
ciated with a shot with the top n terms for a concept. This
comparison yields a text vector for a shot, which contains
the histogram of the words in association with a concept.
To learn semantic concepts this text vector serves as the in-
put for a logistic regression classifier. We did not found any
significant differences between the text-only experiments,
eventually we selected the unstemmed relevance feedback
method with top 200 terms. The concatenation of the vi-
sual and textual features forms the input for an SVM, which
learns detectors for all 101 concepts.

Early fusion performs reasonably well for sports, water-
scape, police/security, airplane, and charts. Apparently, the
text complements the visual features for these concepts.
However, for the other concepts addition of text has a neg-



ative influence on concept detection performance. In such
cases as meeting, desert, mountain, us flag, and maps result-
ing in poor performance when compared to our best results
for these concepts. Early fusion suffers from textual features
based on poor quality (machine translated) ASR.

2.5.4 Run ‘down’: Late Fusion of Keypoint Detectors

SIFT only operates on intensity images, ignoring color in-
formation. Van de Weijer [43] proposes a hue descriptor to
be used in conjunction with SIFT. The hue descriptor is a
37-bin histogram of the hue of pixels in the interest region,
weighed by saturation and the distance to the center of the
interest region.

Besides adding color information in description, we can
also add color in detection of interest regions. By applying
color boosting [41] to the input image and extending Harris-
Laplace to operate on color [31, 42], we can detect regions
with strong color information. We will refer to this detector
as Boosted ColorHarris-Laplace.

We have selected 5 combinations of detectors and descrip-
tors based on experiments with the MediaMill Challenge:

• Harris-Laplace, SIFT

• Harris-Laplace, Hue and SIFT

• Boosted ColorHarris-Laplace, SIFT

• Boosted ColorHarris-Laplace, Hue

• Harris-Laplace and Boosted ColorHarris-Laplace,
SIFT

For each of the five combinations of interest region de-
tectors and descriptors we have applied SVM, yielding five
ranked lists of shots. Shots in the list have a likelihood
(provided by the SVM) and naturally the shots with the
highest likelihood are ranked at the top. For late fusion
of such ranked lists several methods exist, e.g., min, max,
sum, median, and product [9]. An extension of product fu-
sion that is capable to handle missing data is the geometric
mean. We found after several experiments on Challenge
data that this geometric mean outperforms the other fusion
methods. Hence, we combine the various lists using the ge-
ometric mean. For a single shot i the combined likelihood
becomes:

exp

[
1

n

n∑

k=1

ln pk(ωj |~xi)

]
, (3)

where n equal to the number of experiments, in our case up
to five experiments. The advantage of the geometric mean
is its ability to handle a variable number of likelihoods per
shot. If the n varies between shots, the geometric means of
those shots can be compared. We use this property for shots
which do not have any interest regions: these shots have no
likelihood, but if at least one combination has a likelihood
for this shot, then we are able to compute a geometric mean.

Visual inspection of results shows that there are many
topics where many top ranked results do not look like the

target concept at all (from a human perspective, at least).
However, there is a pattern in those results: they all tend to
have many smooth areas, be relatively blurred and/or lack
saturated colors. These are all conditions in which an inter-
est region detector will detect few interest regions. Looking
at the results of our Harris-Laplace interest region detector
we can see that there are many keyframes with few interest
regions in this run. For the top 100 shots of the runs of all
concepts evaluated this year, 30% have 10 interest regions or
less in run 5. In all other runs it does not exceed 10%. One
might be tempted to remove shots with few interest regions
because they introduce many incorrect results, but this can
have side-effects. For the first 100 shots of the concept an-
imal, 10 shots have been evaluated as correct. However,
five of these have less than 10 interest regions. Removing
these shots would cause a serious decrease in performance
for this concept. We are currently investigating how to han-
dle keyframes with few detected interest points.

2.5.5 Run ‘bottom’: Proto-Concept Clustering

In contrast to using semantic proto-concepts as a vocab-
ulary, we use a data-driven clustering approach to find-
ing representative proto-concepts in run ‘bottom’. A pop-
ular clustering approach for finding proto-concepts is k-
means [6, 26, 38]. K-means is an unsupervised clustering
algorithm that tries to minimizes the variance between k

clusters and the training data, where k is a parameter of
the algorithm. The advantages of k-means are its simple
and efficient implementation. However, the disadvantage
of k-means is that the algorithm is variance-based. Thus,
the algorithm will award more clusters to high-frequency
areas of the data, leaving less clusters for the remaining ar-
eas. This over-sampling of dense regions is unwanted, since
frequent occurring data is not informative. In contrast to
variance-based clustering, the prototypes for a codebook
model are better represented by using radius-based clus-
tering [18]. Radius-based clustering assigns all data points
within a fixed radius of similarity r to one cluster, where
r is a parameter of the algorithm. This radius r, denotes
the maximum similarity between data points that may be
considered equal. As such, the radius determines whether
two patches describe the same prototype. The radius-based
clustering algorithm we use is developed by Astrahan [2].

This run constructs a dictionary of proto-concepts for the
Weibull and Gabor features in a data-driven approach. This
data-driven approach was developed in parallel to the other
experiments. Hence, this run is not incorporated in the
fusion, best-visual or context runs. Nevertheless, the data-
driven approach outperforms the other MediaMill runs for
6 out of 20 concepts. Moreover, the concept desert yields
the best result over all other systems. Hence, a data-driven
approach for finding a dictionary of proto-concepts comple-
ments the other runs and even yields first-rate performance
for some concepts.



2.5.6 Run ‘top’: Late Fusion of Visual-Only Analysis

This run is a late fusion of all our experiments based on
visual features. For the 39 TRECVID concepts all exper-
iments from Fig. 3 and the keypoint feature run (‘down’)
are included. However, fusing all experiments did not yield
good results on Challenge data. Instead, we choose to use a
variable number of experiments per concept. The combina-
tion always includes the keypoint feature run as an exper-
iment. The combination method adds further experiments
from Fig. 3 on a per-concept basis. Experiments are added
in order of decreasing performance. We consider combina-
tions of up to 10 experiments. Per concept we select the
number of experiments that yields the best average preci-
sion performance on Challenge validation set B. The fusion
of the different experiments is again performed using the
geometric mean from eq. (3).

The fusion of visual-only analysis results is our best over-
all run. Moreover, we obtain the highest performance for
pure visual concepts flag us and charts. We also perform
well for concepts meeting, desert, and maps. For concepts
with relatively few learning examples, e.g., corporate leader
and police/security, classification remains hard. Relative to
other concept detection methods we perform poor for com-
puter/tv screen. This is caused, however, by the fact that
we do not consider screens that appear in a news studio set-
ting as valid examples. Since detection here boils down to
detecting the studio or news anchor. It is interesting to note
that fusion always outperforms the best single visual-only
analysis approach, except for animal where both scores are
close to zero. The ‘bottom’ run was not included in the fu-
sion, inclusion of this run in the fusion will further improve
concept classification performance.

2.6 Scaling-up to 491 Concept Detectors

To scale our lexicon of concept detectors further we adopt
a graceful degradation approach. For the remaining 62 Me-
diaMill concepts, the keypoint features from the ‘down’ run
and the SVM gamma experiment are not available. We
determine the best combination of experiments for these
concepts from the remaining experiments; again up to 10
experiments are allowed in a combination. For the LSCOM
concepts [23] none of the SVM experiments are available,
leading to a further reduction in the number of experiments,
i.e. only those performed by logistic regression and Fisher’s
linear discriminant. Because parameter optimization of the
SVM is expensive – even when supercomputers are used
– performing a complete analysis for all concepts was not
feasible. While the performance might not be optimal, the
detectors may still be useful for semantic video retrieval.

3 Semantic Video Retrieval

Our TRECVID 2006 search task efforts have concentrated
on automatic and interactive retrieval using the lexicon of
491 learned concept detectors. For users, remembering a

list of 491 concepts is not feasible. We therefore developed a
concept suggestion engine which finds the most appropriate
concept detector given the topic using an ontology. Query
by this concept yields a ranking of the data, a convenient
way of browsing the result is our CrossBrowser [36] which
allows to use both the rank and temporal context of a shot.
There are, however, many other relevant directions which
can be explored e.g. different semantic threads through the
data or shots visually similar to the current shot. This year
we therefore developed the RotorBrowser which allows the
user to browse along up to 8 directions. In addition to con-
cept suggestion and video browsing, we also explored the
benefit of query-by-example using objects in images rather
than descriptors based on global characteristics of the im-
ages.

3.1 Automatic Search: Concept Suggestion

Selection of a concept detector appropriate to the query can
allow users to quickly retrieve a list of relevant video frag-
ments. We focus on the selection of a single best detector
to maximize retrieval performance. We used the automatic
search task to evaluate two different techniques for selecting
the single best detector for a particular topic, namely: text
matching and ontology querying. We compare results with
a text retrieval baseline.

The text baseline this year was created using the
Lucene [1] search engine. The final baseline was the result
of the combination of search results of a number of differ-
ent searches using different types of queries. These searches
made use of the transcriptions and the machine translations
that were provided, as well as the story boundaries supplied
by the DVMM lab at Columbia University [16]. Speech
was indexed at two temporal levels: shot level and story
level. By indexing at story level we adjust for the temporal
mismatch between the time a visual object is mentioned in
speech and the time it appears in a shot. We used differ-
ent forms of text normalization to increase recall. Story-
level speech was also used to increase recall. As we did last
year, we boosted precision by performing an extra search on
proper nouns for specific queries, and an extra search for all
nouns for general queries [34] The final baseline result was
created by combining different searches. The text trans-
formations we used are the following: character 4-grams,
Porter [25] stemmed, exact match, proper nouns/all nouns.
Each search was performed at shot-level text and on story-
level text. Finally all searches were combined using Borda
fusion, as preliminary experiments showed that the highest
MAP was obtained in this way.

3.1.1 Detector Selection through Text Matching

Our text matching detector selection technique is based on
statistical text retrieval of the detector description that best
matches the query text. An in-depth description can be
found in [33]. We index the concept descriptions that are
given to annotators creating the ground truth for the topics,



Table 1: Comparison of two detector selection strategies for video retrieval. Search results are compared against a text only baseline.
The best result is given in bold. Note that for topic 0194 no suitable detector was found, we used a simple default text search instead.

Search Topic Baseline Text Match Ontology Querying

ID Query AP Selected Detector AP Selected Detector AP

0173 emergency vehicles in motion 0.007 Emergency Vehicle 0.006 Emergency Vehicles 0.006
0174 tall buildings and the top story visible 0.001 Cityscape 0.023 Cityscape 0.023

0175 people leaving or entering a vehicle 0.001 Vehicle 0.001 Rowboat 0.000
0176 soldiers, police, or guards escorting a prisoner 0.005 Guard 0.001 Prisoner 0.000
0177 daytime demonstration or protest with building visible 0.046 Demonstration Or Protest 0.014 Singing 0.000
0178 US Vice President Dick Cheney 0.252 Emile Lahoud 0.000 Corporate Leader 0.000
0179 Saddam Hussein with another persons face visible 0.134 Person 0.000 Face 0.000
0180 people in uniform and in formation 0.001 Insurgents 0.002 Ties 0.000
0181 US President George W. Bush, Jr. walking 0.028 George Bush jr 0.012 George Bush jr 0.012
0182 soldiers or police with weapons and military vehicles 0.054 Emergency Vehicles 0.000 Tanks 0.008
0183 water with boats or ships 0.028 Ship 0.003 Rowboat 0.000
0184 people seated at a computer with display visible 0.005 Furniture 0.000 Computers 0.004
0185 people reading a newspaper 0.007 Newspaper 0.084 Newspaper 0.084

0186 a natural scene 0.004 Beach 0.014 Waterfall 0.003
0187 helicopters in flight 0.011 Helicopters 0.016 Airplane Takeoff 0.001
0188 something burning with flames visible 0.116 Coal Powerplants 0.000 Sitting 0.000
0189 people dressed in suits, seated, and with flag 0.000 Group 0.009 Flag USA 0.001
0190 at least one person and at least 10 books 0.005 Single Person 0.000 Graphical Map 0.000
0191 at least one adult person and at least one child 0.008 Adult 0.001 Infants 0.001
0192 a greeting by at least one kiss on the cheek 0.001 Election Greeting 0.000 Election Greeting 0.000
0193 smokestacks, chimneys, or cooling towers with smoke 0.000 Smoke Stack 0.009 Smoke Stack 0.009

0194 Condoleeza Rice 0.141 - 0.127 Sky 0.000
0195 soccer goalposts 0.139 Soccer Game 0.608 Baseball Game 0.000
0196 scenes with snow 0.165 Snow 0.122 Snow 0.122

MAP 0.048 0.044 0.011

once again using the Lucene search engine. Each description
elaborates on the visual elements that should — or should
not — be present in a shot for it to be considered relevant.
For example, the description for our concept detector storms
is ‘outdoor scenes of stormy weather, thunderstorms, light-
ning.’ It explicitly indicates that video containing lightning
and thunderstorms should be tagged as storms. The de-
scriptions are by no means exhaustive, usually consisting of
one or two sentences [23, 37], but do contain a significant
amount of information about the different kinds of visual
content associated with each detector. By matching the
query to detector description, we hope to select the detec-
tor that best matches the description.

3.1.2 Detector Selection through Ontology Querying

In an attempt to model the user intent, we design a de-
tector selection method based on ontology querying. This
detector selection method is described in [33], which can
be summarized as follows: We first link each detector to a
noun synset (or particular meaning) in the WordNet [7] on-
tology. At runtime we use a memory-based shallow parser,
described in [39], to extract nouns and noun chunks from the
topic text. We then look up each noun chunk in WordNet.
When a match has been found the matched words are elim-
inated from further lookups. Then, we look up any remain-
ing nouns in WordNet. The result is a number of WordNet
nouns related to the query text. Each WordNet noun can
have several different synsets. We reduce each noun to its
most common synset, as this form of disambiguation has

been shown to work adequately in the past [17] We calcu-
late the similarity of each of the topic synsets to each of
the detector synsets using Resnik’s measure [28], where a
concept is viewed as the composite of its synonyms and its
sub-concepts.

3.1.3 Submitted Automatic Search Results

Likely due to our choice to focus on the detection of a single
concept detector, rather than combining multiple informa-
tion sources (text, low-level features, more detectors, and so
on) our automatic search results (shown in Table 1) did not
stand out of the crowd. Surprisingly, of the three automatic
runs we entered this year, the run with the highest mean
average precision was the text baseline, with a mean average
precision of 0.048. The single best detector based on text
matching performed almost as well as the text baseline, with
a mean average precision of 0.044. The single best ontology
query based detector had a much lower mean average preci-
sion of 0.0114. We expect that the good performance of the
baseline is largely due to the inclusion of story-level ASR
and boosting nouns. The baseline always performed bet-
ter than the median for topics containing proper nouns (for
example, ‘Dick Cheney’ and ‘Saddam Hussein’). Further-
more, we notice that the detector match tends to perform
better than the baseline for topics that request incidental
visual objects such as the newspaper detector used for ‘one
or more people reading a newspaper’ and the tie detector
selected for ‘multiple people in uniform and formation’.



3.2 Interactive Search: Video Browsing

In traditional video retrieval systems a user typically creates
a search query, then browses through the results, and when
the results are unsatisfactory the process reiterates. As a
consequence of this iterative process a lot of time is spent
on query specification. Moreover, when the target search
results are not returned by the system in the initial queries a
user may run out of query ideas. To alleviate both problems
we try to depart from this traditional approach by providing
users with query by object matching and browsers that allow
to visualize the entire data set in multiple dimensions and
facilitate interactive exploration.

3.2.1 Query by Object Matching

In order to interactively search for specific objects and loca-
tions using their visual properties we implemented a query
by object matching algorithm. The method of object match-
ing draws heavily on the work of Sivic and Zisserman [32]
and can be summarized as follows. Firstly, interest points
are detected and described in each keyframe using the meth-
ods of Lowe [19] i.e. we use a Difference of Gaussians de-
tector and the Scale Invariant Feature Transform (SIFT)
descriptor, no color information was used. Next, SIFT vec-
tors were quantized into a fixed set of 10,000 prototypes
by applying a clustering algorithm based on competitive
learning. Lastly, text-retrieval methods are applied using
a term-document matrix (in our case a prototype-keyframe
matrix) and td-idf weighting. In practice, the query proce-
dure starts with a keyframe displayed in the GUI, the user
then selects a region by drawing a rectangle around the ob-
ject of interest and a ranked list of keyframes containing
similar groups of SIFT prototypes is returned.

3.2.2 Video Threads

We introduce the notion of threads in order to browse
through a video data set in multiple directions. A thread is
a linked sequence of shots in a specified order, based upon
an aspect of their content. We define several thread types
in our system. The most used form of threads is the query
result thread: the result of a user constructed query. In this
case the shots are dynamically linked because they originate
from the same query result. Other forms of threads include
visual threads, semantic threads, top-rank threads, textual
threads, and the time thread. The visual thread links shots
together which share the same visual characteristics, so that
shots next to each other are also visually similar. The se-
mantic thread links shots together based on their detected
concept scores, so that shots next to each share common
semantics. The textual thread links shots to each other in
which similar words are spoken, derived from the ASR text.
The time thread follows the time line of a video. The top-
rank thread connects the top n shots from every concept.
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Figure 5: Browsing dimensions for the CrossBrowser and Rotor-
Browser [29]. The number behind each dimension indicates the
number of times this dimension can be shown for any shot.

3.2.3 Thread Visualizations

The MediaMill engine supports two modes for displaying
threads. Both show an active focal shot and a collection of
threads relevant to this focal shot. The display modes use a
fixed layout. The current focal point is displayed with the
largest keyframe and is centered on the screen. All relevant
threads are shown in a star formation around it. The user
has to choose between two actions only: selection of the
current focal shot as a valid result, or switch focus to any of
the neighboring shots in one of the threads. In addition, the
user may use the mouse to directly select any visible shot
by clicking on the key frame representing it.

To determine the benefit of having additional dimensions,
one display mode, i.e. the CrossBrowser, is limited to show-
ing two fixed directions only. Namely, the query result
thread and the time thread. The other display mode, i.e.
the multi-dimensional RotorBrowser [29], shows a variable
number of directions. See Fig. 5 for an overview of available
directions. Depending on the thread type, the system may
show a thread once or multiple times. For example: a shot
can only participate once in the time thread, the visually
similar thread and the semantic concept thread. Multiple
concepts can be detected from a shot, however, so this could
lead to inclusion of the shot in multiple top-rank threads.
The same holds for textual threads: the shot could be a re-
sult of multiple textual queries, so these could all be shown.
We limit the number of visible threads to reduce the amount
of information a user has to process. To achieve this, the Ro-
torBrowser uses a priority ranking system where the initial
query result and the time thread are placed first, followed
by visually similar, text, semantic concept and finally up to
three top-rank threads.

The CrossBrowser allows movement through the initial
query results, and for each retrieved shot limited movement
through the time thread. To preserve context the user is
not allowed to leave the initial query results, except when a
new query is posed to the system. Because of these limita-
tions in browsing possibilities the CrossBrowser works well
for focussed topics. In contrast, the RotorBrowser shows
all possible relevant threads for each shot. Moreover, the
RotorBrowser does allow the user to leave the initial query
result set. By doing so the user can browse through any-



Figure 6: Screenshots of the CrossBrowser (left) and the RotorBrowser.

thing that catches her interest. To prevent the user from
“getting lost” the user can always jump back to the latest
query result. Hence, the RotorBrowser allows to explore
all possible directions for complicated topics. A graphical
overview of the browsers is depicted in Fig. 6.

3.2.4 Submitted Interactive Search Results

We submitted three runs for interactive search with three
expert users. One user performed the interactive search by
using the MediaMill search engine with the CrossBrowser.
Another user exploited the MediaMill system in combina-
tion with the RotorBrowser. We dedicated one run to eval-
uating the object matching functionality. During this run,
the following procedure was used. Firstly, any of the other
interactive search tools available in the system was used to
generate a first set of keyframes to use as entry points for
object matching. Next, object matching queries were at-
tempted using the keyframe entry points. The user tried
to use the object-matching functionality whenever possible,
but if this was judged to be hopeless the search was com-
pleted using the alternative tools. Results in Fig. 7 indicate
that for most search topics, users of the MediaMill system
score above average. Furthermore, users of our approach
obtain a top-3 average precision result for 14 out of 24 top-
ics. Best performance is obtained for 6 topics. Overall the
user of the CrossBrowser obtains better performance than
the user of the RotorBrowser and the user of the query by
object matching functionality.

Among the TRECVID 2006 interactive search topics
there are few topics that can be successfully approached
by object matching. For most search topics object match-
ing was therefore abandoned early in the search and in the
end it turned out to be useful for only 2 of the 20 topic
results; topic 0179 (Saddam Hussein with another person’s
face visible) and topic 0185 (people reading a newspaper).
For topic 0179 an image of a courtroom was used as an
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Figure 7: Comparison of interactive video search results for 24
topics (Table 1) performed by 36 users of present-day video retrieval
systems. MediaMill results are indicated with special markers.

entry point and other images of the same courtroom were
retrieved. For topic 0185 an image of a television studio was
used as an entry point and other images of the same studio
were retrieved (the studio was the backdrop of a program
that discussed news stories and the broadcast sometimes



showed people reading a newspaper story). These results
suggest that, although object matching is not suitable for
the majority of TRECVID 2006 topics, when a topic can
be related to a specific object or location it can produce
competitive results.

The CrossBrowser is especially successful when a search
topic can be addressed with a single concept detector from
the lexicon. Finding a helicopter in flight, for example, is
relatively easy when a reasonably accurate helicopter de-
tector is available. The CrossBrowser then allows for quick
scanning and selection of relevant results. This observation
also holds for topics 0174, 0177, 0180, 0183, 0185, 0186,
0195. Although we have the best score for the topic request-
ing shots from Dick Cheney, we did not have a specific Dick
Cheney detector available. Because the (visual) appearance
of specific persons in broadcast news is often described in the
speech signal of an anchor or voice-over, for example, query-
by-keyword is effective for this topic. Once a relevant shot
is retrieved, the time tread aids in further augmentation of
correct results. When search topics contain combinations
of several reliable concept detectors, e.g. people, suits, flag
(Topic: 0189), results are not optimal. This indicates that
much is to be expected from a more intelligent combina-
tion of query results. Overall the CrossBrowser ranks 2nd
among all interactive video retrieval systems this year.

Overall the RotorBrowser performed well in the
TRECVID evaluation, ranked 6th in the overall results.
When compared to the CrossBrowser there is however a sig-
nificant gap in results. Unfortunately despite the fact that
both runs were performed by an expert user for each re-
spective browser, this does not make the results themselves
comparable, so we cannot determine which browser is best.
A more detailed user study is required before we can answer
this question. We can however deduce some interesting facts
from the results.

Analysis of our topic evaluation runs shows that the Ro-
torBrowser required less user interaction than the Cross-
Browser. If we count every keyboard press or mouse click
as one move action, the RotorBrowser required 1491 moves
per topic, and the CrossBrowser required 1829 moves per
topic, on average. More interesting insights stem from an-
alyzing the various threads used for retrieval with the Ro-
torBrowser, depicted in Fig. 8. By far the largest portion
of results is generated from the initial query results and the
time thread. Since these threads are the only two threads
available in the CrossBrowser this partly explains its suc-
cess.

A quarter of the selected shots was generated by using
mouse interaction. However from this part only 41.9% of
the shots were judged correct by TRECVID. This contrasts
the initial query results and the time thread, where approx.
61.0% was judged relevant. The cause lies in the fact that
the mouse was only used when the user saw a possibly valid
shot on the visible edge of some thread on the screen. If
the shot was closer to the center the keyboard would have
been used, since it allowed for quicker navigation. The fixed
layout of the RotorBrowser also resulted in these shots be-
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Figure 8: This graph shows how many results were obtained from
each thread, and which percentage of them was judged relevant.

ing the smallest on screen, which could account for the user
making the most mistakes in determining if a shot was cor-
rect.

From the other threads the semantic concept thread and
the visually similar thread were used most. Since the textual
threads were visible only when the user explicitly performed
a textual search these were seldom used. Although the top-
rank thread occupies the largest part of the screen these are
also hardly used by the user of the RotorBrowser. Since
it does require a lot of mental processing by the user, the
results suggest that the top-rank threads should be shown
on user request only. Overall we can say that the Rotor-
Browser is able to find similar results as the CrossBrowser
with less user interaction. However, more tuning is required
to make it visualize relevant threads only. A more in-depth
study using a larger (novice) user base is currently under-
way to determine the possible benefit of having multiple
dimensions in browsing.

4 Lessons Learned

TRECVID continues to be a rewarding experience in gain-
ing insight in the difficult problem of semantic video index-
ing and retrieval. To conclude this paper we highlight our
most important lessons learned:

• The MediaMill Challenge allows to gain insight in in-
termediate video analysis steps by fostering repeatability
of experiments on system components;

• Regional image features seem more effective for concept
detection than global or keypoint features;

• Data-driven clustering of proto-concepts is more effec-
tive than using similarity to a predefined set;



• Coloring keypoint features matters;

• Keypoint methods become unstable when there are only
few interest regions;

• A combination of visual analysis methods pays off;

• Simple classifiers can yield competitive performance;

• High dimensional features spaces can be mapped to se-
mantic concepts using relatively simple classifiers like
Fisher’s linear discriminant;

• Learning concept detectors from few examples remains
problematic;

• Early fusion of the textual modality and the visual
modality helps for some concepts, but often yields de-
crease in performance due to modest quality of non-
English speech recognition and machine translations;

• Late fusion of concept detectors using geometric mean
is cheap and effective;

• Usage of supercomputers is seriously hampered by lack
of efficient and effective data management tools;

• Scaling-up to 1,000+ detectors is a matter of annotated
examples;

• Concept suggestion is a useful tool for video search en-
gines containing 100+ detectors;

• Text matching and ontology querying are effective tech-
niques for concept suggestion;

• Standard text retrieval is, in general, more effective
than retrieval based on any single concept detector;

• Combining concept detectors effectively for video re-
trieval is an unsolved problem;

• Querying video archives by matching objects in
keyframes is helpful for specific topics;

• Using multiple dimensions for browsing reduces the
amount of user interaction;
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