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ABSTRACT

In this report, a method is presented to extrapolate measurements from Nuclear

Electromagnetic Pulse (NEMP) assessments directly in the time domain. Thjs methocl is

based on a time-domain extrapolation function which is obtained from the Singularity

Expansion Method representation of the measured incident field of the NEMP simulator.

Once the time-domain extrapolation function is determined, the responses recorded

during an assessment can be extrapolated simply by convolving them with the time-domain

extrapolation function.

It is found that to obtain useful extrapolated responses, the incident field measure-

ment needs to be made minimum phase; otherwise unbounded results can be obtained.

Results obtained with this technique are presented, using clata from actual

assessments.

nÉsulrÉ

Ce rapport décrit une méthode pour extrapoler des mesures obtenues lors cìe tests

cl'impulsions électromagnétiques (IEM) directement dans le domaine temporel. Cette

méthode utilise une fonction d'extrapolation temporelle obtenue par la méthode cl'expansion

cles singularités appliquée au champ incident mesuré du générateur d'IEM. A partir de cette

fonction d'extrapolation, les réponses enregistrées lors de test d'IEM peuvent être

extrapolées simplement en effectuant une convolution. Il est démontré que pour obtenir une

extrapolation vaiable, les mesures du champ incident doivent être à phase minimale. Des

résultats obtenus avec cette méthode et utilisant des mesures réelles sont présentés.
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EXECUTIYE SI]MMARY

Most Nuclear Electromagnetic Pulse (NEMP) simulators do not reproduce the

expected NEMP threat. They fail to reproduce both the waveform and the peak fielcl

strength of the perceived threat level. This is especially true for radiating and hybrid

simulators, which produce a waveform which is significantly different from the waveform of

the perceived threat.

To compensate for these shortcomings, the measured responses in NEMP

assessments have to be corrected (extrapolated) to calculate the response that would be

expected from a NEMP.

In this report, a method is presented to extrapolate such measurements directly in

the time domain.
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INTRODUCTION

Most Nuclear Electromagnetic Pulse (NEMP) simulators do nclt reproduce the

expected NEMP threat as layed down by AEP 4 [1]. They fail to reproduce both the

waveform and the peak field strength of the perceived threat level (also known as the

criterion environment), which includes reflections from the earth for grouncl-based Êacilities,

but not so for airborne systems. To compensate for these shortcomings, the measurecl

responses in NEMP assessments have to be corrected (extrapolatecl) to calculate the

response that would be expected from a NEMP.

This is a particular problem for radiating and hybrid simulators, which produce a

waveform which is significantly different from the waveform of the perceived threat. The

measurements from NEMP assessments using such simulators have therefore ahvays to be

extrapolated.

In this report, what is known as íncident field extrapolation will be aclclressed (see

Baum [2], type 3A). This type of extrapolation not only corrects for the difference in

waveform, but also tries to coûect the different spatial behaviour of the incident fielcl of the

simulator, compared with the criterion environment. An extrapolation function which is an

average over the space of interest, i.e., the test volume of the simulato¡ is therefore

constmcted.

Chapter 2 gives an overview of the basic incident field extrapolation methocl, and

derives some properties of the extrapolation function based on signal theory consiclerations.

How the incident field extrapolation method has been implemented in the past is also

addressed in Chapter 2. Traditional implementations are without exception based on

fre quency-domain te chniques.

An extrapolation technique which uses time-domain techniques is presented in

Chapter 3. This technique constructs the extrapolation function entirely in the time domain.

Some results are presented in Chapter 4.
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INCIDENT FIELD EXTRAPOLATION

With incident field extrapolation, an extrapolation function is constructed which is

an average over the space of interest, i.e., the test volume of the simulator. Furthermore,

the system under test is assumed to be configured in the normal operating-mode for the

system, and the interaction between the simulator structure and the object is neglecteci.

Extrapolation to correct differences in polarization, angle of incidence, or clirection

of propagation of the incident field between the criterion environment and the simulation

will not be addressed in this report. This simplifies the analysis and notation. A-lso

geometrical differences between the test environment and the normal operating environm-

ent, most importantly the presence or absence of the influence of the earth, will not be

considered. Therefore, the type of extrapolation addressed in this report is ljmited to
airborne systems in bounded wave simulators and ground-based facilities for racliating

simulators.

THE BASIC FORMULATION

Let the response of a linear and time-invariant system in its normal operating-mode

and environment to an incident NEMP be denotedby g(t). The response g(t) can be, for

example, an electric or a magnetic field, a current or a voltage. Then g(t) is the response of
the system in the criterion environment, and is given by2

8G)

where the asterisk denotes the convolution operatol and h(t) is the impulse response of the

system. When necessary, the latter takes into account reflections from the earth.

Furthermore, eu*rft) is the waveform of the perceived threat of the NEMP, and can be the

incident electric or the incident magnetic field. For of a high-altitude NEMP environment,

eex,rcft) is usually given by (Bell Laboratory waveform)

esrr{p(/) = A(e -or - e -Pt), (2)

2 For simplicity a scalar notation has been employed throughout the text.
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with

A = 5.278xt04 lVfml,
e, = 3.705x 106 [s 

-1],

,s = 3.g0g x 108 [s 
-1].

(3)

The impulse response of the system during the simulation will be the same as the impulse

response during its normal operating-mode, only if the following three conditions are

satisfied:

- the interaction between the system under test and the simulator structure can be

neglected,

- the system is configured the same as during its normal operating-mocìe,

- the test environment is the same as the normal operating-mode environment (i,e., an

airborne system must be tested without the influence of the earth, and vice versa for

a ground-based system).

Assuming that the above mentioned conditions are satisfied, the response of the system in

the NEMP simulator is given by (assuming a linear system)

&¡,(t) = lt(t) * e.i,(/), (4)

where e"i^O is the incident electric or incident magnetic field of the sjmLrlator. In this

context, incident means the field in the working volume of the simulator in absence of the

system under test. Furthermore, the system response gri^G) is the same physical quantity as

s(t) in Eq.(1).

It is well-known that an approximation to the response gØ can be reconstructed in

the following way (see Baum [2], type 3A)

g*Q) = g-1{x(s)c,¡n (s)},

where g*(t) denotes the extrapolated response, which is, unfortunately, not necessarily equal

to g(t). The difference betweeng*(t) andg(t) is the (unknown) error in the extrapolation.

Furthermore in Eq.(5), a quantity indicated with a capital letter denotes a complex

frequency-domain quantity, Sft{.} denotes the inverse Laplace transform operatol ancl s

denotes the complex-frequency variable.r = o + j?ù. X(s) is the extrapolation transfer

(s)
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ftrnction given by

X(s) = Eu*r$)/E,,(s).

Instead of using Eq.(5), another representation for the extrapolated response is

&(t) = x(r) * &i.(f). (1)

Eqs.(5) and (7) clearly show that X(s) plays the role of a transfer function, and x(t) that of

the impulse response pertaining to the transfer function X(s).

The extrapolation impulse response is determined by

x(t) = v-11x1s¡¡ = g-1{Ee.,,rr(s)/8.,*(s)}, (B)

or directly in the time domain

x(t¡ = envr$) * e.-;(t), (9)

in which e-1ri^G) is the inverse signal of. err^(t), defined by

e."1(r) 'g-r{r/8,*(s)}. (10)

Notice that err^(t) and e'lrr^(t) are related by

e.in(r) - ,,,å(r) = 6(t), (11)

where 6(r) denotes the Di¡ac delta function.

When the incident field of the simulator not only differs in waveform and peak fielcì

strength from the criterion environment, but also exhibits a different spatial behaviour, the

extrapolation transfer functionX(s) depends on the point of observation. This is usually the

case with radiating simulators such as FELTTNO'S EMIS-3. It is advantageous, however, to

define an "average" extrapolation function which will be used for all positions in the test

volume. In that case, Er,.(s) may be taken as a geometrical average, i.e., the average of

several field-mapping measurements at different positions in the test volume.

Some requirements for the extrapolation functions will be discussed in the next

section.

(6)
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SOME PROPERTIES OF THE EXTRAPOLATION FUNCTION

Although the formulation of the incident field extrapolation is quite straightfonvarcl,

some difficulties arise which we will address in this chapter. But before we do so, we first

introduce some definitions.

Definition 1: A signal /(r) is said

constant M, such that

to be bounded if and only if there exists a finite positive

l/(r)l 1M, vt.

Deflinition 2: A transfer function H(s) is said to be stable if and only if its impulse response

lr(t) is bounded.

Definition 3: A transfer function f(s) is said to be strictly stable if and only if its response

to a bounded input is bounded.

Definition 3 leads to the following theorem:

Theorem 1: A transfer function H(s) is strictly stable if its impulse response lr(r) satisfies the

inequality

.i 
ln(,) | dt < *.t

The extrapolation process can be called successful and of practical use, only if the

extrapolated response is causal and bounded. From Eq.(7) and Definition 3, we conclude

that the extrapolation impulse response x(r) must then be causal, and the extrapolation

transfer function X(s) strictly stable.

Because the extrapolation impulse response is a convolution of two causal signals,

causality is always guaranteed. Whether or not the extrapolation transfer function is strictly

stable, however, depends on e-rrr^¡t¡.In fact, it is easy to show that X(s) is strictly stable if
and only if e'lr,,nft) is bounded. This puts some restrictions on e-7,,,.,r¡t¡3.

To analyze the restrictions we have to impose one'1rr,n¡t¡, consider a bounded signal

f(t).In principle, the Laplace transform F(s) of f(t) has a finite number of poles, a finite

number of zeros, and some branch points in the complex-frequency plane. It can be proven

3 Not" trtut e.r1,(r) *L/eri^O.
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easily that a necessary (but not sufficient) requirement for f(t) to be bouncled, is that its

poles must be located in the left half-plane or on the jô-axis of the complex-frequency plane.

Since f'ß) = I/F(s), the poies of .F(s) a¡e the zeros of ftß). But more importantly, the

zeros of F(s) are the poles of F 1(s,). This yields the following theorem:

Theorem 2: For a bounded signal f(t) to have a bounded inverse signal ft(t), where

f(t) * f'(t) = s(t),it is necessary but not sufficient that the poles and zeros of its Laplace

transform F(s) lie only in the left half-plane or on the jô-axis of the complex-frequency

plane,

A signal whose Lapiace transform .F(s) has the above mentioned properties is called a

minimum-phase signal. See Zadeh et al. [3] for a more elaborate treatment of minimum-

phase signals. 'We conclude therefore that for the extrapolation transfer function X(s) to be

strictly stable, Er¡^(s) needs to be a minimum-phase signal, or needs to be made minimum

phase if it is not.

With respect to the latter remark, it is important to note that the magnitncle of the

spectrum of a signal whose Laplace transform has some zeros located in the right half-plane,

is the same as that of a minimum-phase signal whose Laplace transform has those zeros

reflected with respect to the jô-a.xis into the left half-plane.

Note that if F(s) in Theorem 2is a rational function, for fr(t) to be bounded it is
sufficient that its poles and zeros are located in the left half-plane, as a rational function

does not have branch points.

2,3 TRADITIONAL IMPLEMENT{TIONS OF INCIDENT FIELD EXTRAPOLATION

Traditional implementations of incident field extrapolation are based on Eq.(5) with

s =jô, but differ in the way X(jô) is computed. We mention the following three methods for

determining X(j?o)a:

1. compute 8",^(jÒ) with a Fast Fourier Transform (FFT);

2. compute Eri^rja) with a FFT, but use a minimum-phase fit of the amplitude of

E,¡n0ô) (see Fisher et al" [4]);
3. approximate esin|) by a Singularity Expansion Method (SEM) representation, then

E,¡,fi6) is also known (see Van de Sande [5]).

4 Not" that Es,' p0?Ð) is available in anal¡ical form.
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All of these methods compute the extrapolated response g*(t) by applying the inverse FFT
toX(j?D) G"¡n07¿). For an elaborate treatment of the SEM the reader is referred to Baum

t6l.

Method t has the disadvantage that it can yield an unstable extrapolation transfer

function as has been pointed out in Section 2.2. To circumvent this, Method 2 has been

employed.Inthismethod,thephase of 8,,^(j6) isdeterminedfrom lE,i^,0ô)l asif 8,,,.,.,(j?o)

is a minimum-phase signal. This seems to assure a strictly stable extrapolation transfer

function. For more details on how to construct the phase of a signal from the magnitude of
its spectrum see Oppenheim et al. [7].

The advantage of Method 3 is that no aliasing error occurs, and that no high-

frequency noise is introduced as a result of a truncated time window However, Method 3
does not guarantee a stable extrapolation transfer function. With care these ciifficulties can

be overcome and an extrapolation procedure based upon Method 3 and the considerations

given in Section 2.2will be developed in the next chapter.
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TIME.DOMAIN INCIDENT FIELD EXTRAPOLATION

Method 3 of Section 2.3 has some useful properties. We mention:

- the extrapolation transfer function contains no aliasing errors;

- the extrapolation transfer function contains no quantization noise and no high-

frequency noise due to a truncated time window;

- the extrapolation transfer function is known for all frequencies below the Nyquist

criterion, which enhances the low-frequency resolution.

Since the extrapolation transfer function is known analytically, it is possible to perform the

extrapolation entirely in the time domain. Once the extrapolation impulse response is

computed, the extrapolated responses can be found by convolving the measured signals with

the extrapolation impulse response. This idea will be pursued in the subsequent sections.

3.1 THE SEM REPRESENTATION OF A TRANSIENT SIGNAL

The SEM postulates that a transient signal can be written as a series of exponentials

with complex-valued arguments. So, according to the SEM a causal transient signal f(t) can

be represented as

N

Í(t) = DA,t'''U(r),
i=1

(12)

with

-Ji

-Ai
- u(t)
-N

a simple pole,

the residue pertaining to the pole s¡,

the Heaviside step function,

number of poles.

In general, the poles and residues are complex valued, but since the signal f(t) is real valued,

they occur in complex-conjugate pairs. For f(t) to be bounded, all the poles s¡ have to lie in

the left half-plane or on the j?o-axis of the complex-frequency plane, i.e., {si e C: S(s¡) s 0}.

To extract the poles and residues of a transient signal, several methods are known.

We mention Prony's method (see Kay [8]), and the Pencii-Of-Functions (POF) technique

(see MacKay [9]). Treatment of these methods is beyond the scope of this report.

Oirce the poles and residues of f(t) are computed with either Prony's method or the

POF technique, the Laplace transform of the signal is also known. It is given by (partial-



fraction expansion)

F(s) = å",+ ( 13)

(14)

This representation was used in Van de Sande [5] to approximate -Er,n'(s). The extrapolation

transfer function was then constructed using the Laplace transform of Eq.(2), and the

extrapolated response was computed by applying the inverse FFT to X(j?u) G"in,Ç?,t).

The inverse FFT, however, can be circumvented entirely by determining the

extrapolation impulse response analytically. For that purpose, the partial-fraction expansion

of Eq.(13) will be casted in a rational form, i.e.,

NNN
F(s) = DáIT ('!/f[ ('-'i) =

i=1 j=l j=l
i+i

p(s)
q(t)'

where p(s) is the polynomial of the numerator which is of degree N-1, and q(s) is the

polynomial of the denominator and is of degree N. The polynomial p(s) is given by

N

p(s) = EA,p,(t),
i=l

and

N

q(s) = f[ (s1),
j=1

in which

Pi(s)=r4unr=ffi
j+i

As the complex poles and residues occur in complex-conjugate pairs, it can

the coefficients of both p(s) and q(s) are real valued.

(1s)

( 16)

(r7)

be proven that
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Generally, the polynomial p(s) is of degree N-1s, so it has N-1 zeros. This allows the

following representation for p(s)

-1

p(s) = cf[ (sn), (18)
j=1

where the z,'s are the zeros of p(s) (and of F(s)), i.e., p(z) = 0, and c is a proportionality

constant to be determined later. It can be shown that c e IR, which also follows from the fact

that the complex poles and residues occur in complex-conjugate pairs.

The zeros zj can be found from

N

p(s) = lA,p,(s) = 0, (19)

i=1

and have to be determined numerically with a root find algorithm, snch as the IMSL

subroutine ZPLP<C (see [10]). It is noted that the zeros depend on the poles and resiclues,

but a direct relation cannot be established.

Once the zeros zjaÍe known, the constantc carL be found from the value of -F(s) at

s = 0. After substituting Eq.(18) in Eq.(1a), we find

N-1

-,^\ 'fI ('? 
eo)F(s)=ffi=k,

and after equating this result with Eq.(13), this yields for c at s = 0

NN
(ff s,) EA,','j=l i=1

L--
N-1

lI,¡
j=1

5 It .un be proven that if f(0) = 0, p(s) is of degree N-2.

-10-
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THE EXTRAPOLATION IMPULSE RESPONSE

To determine the extrapolation impulse response, erin,G) is approximated wìth a SEM

representation. To be able to do so, the poles and residues of er,,''(/) have to be determinecl

first with a pole extraction method, e.g. with Pronyb method or the POF-technique.

Subsequently, the zeros of E.i.(s) are determined from its poles and residnes in the way

described in Section 3.1. This yields the following representation for 8.,',(s) (cf. Eq.(1a))

E.,n'(s) (22)

where q(s) and p(s) are given by Eqs.(16) and (18), respectively. The roots of q(s) are the

poles of E,,n,(s,), while the roots of p(s) are the zeros of Er¡nß). Since e,¡,.,.,(t) is a real-valtred

signal, any complex-valued zeros occur in complex-conjugate pairs.

It was proven in Section 2.2 that, for the extrapolation transfer fttnction to be strictly
stable, all the zeros of E,i^(s,) are required to lie in the left half-plane. In general, this is not

the case, so that E.¡^(s,) has to be made minimum phase simply by negating the real part of
any zeros which lie in the right half-plane.

Using the representation of Eq.(22) for E,,*(s), the extrapolation transfer function is

given by

- p(s)- q(Ð'

x(s) = 
qÍtì ¿rrr(r).
p\s )

(23)

If Eq.(2) is used as the waveform to which the response is required, we fincl for Eu*u(s)

(24)

A-fter substitutingEq.QÐ in Eq.(23), and after applyrng a partial-fraction expansion of X(s),
we finally get

N+1

X(s) = EB, *,i=l r -¿i

in which we have ordered the zeros so that {2, e C: i=f, ..., N-1} are the zercls

(2s)

- 11-
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minimum-phase ff of E.,,n(s), ZN = -o, and ZN+1 = -fi. B, e C denotes the residtre

pertaining to the zero zi given by

From Eq.(25) the corresponding extrapolation impulse response is easily found. It is given

by

N+1

x(t) = E Br"',"u(t).
i=1

complex-valued zeros z, and residues ,8, occur in complex-

C: S(z¡) s 0|, X(s) is strictly stable, which follows from

The extrapolated can be found (see Eq.(7)) by convolving the

with the extrapolation impulse response of Eq.(27).

B¡=

Since x(t) is real valued, any

conjugate pairs.

Obviously, since {2, e

Theorem 1.

N

(r-r,)X(s) = 4<P-r> 9
IIQ;,:)
j=1
j+i

lim
s+ zi

(26)

(27)
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NUMERICAL RESUT.ïTS

The procedure outlined in the previous chapter has been employed to a field

mapping of the Vertical Polarized Dipole (VPD) version of FEL-TNO'.s EMIS-3 simulator
(a transportable radiating simulator). We will use as the waveform to which the response

is required (the criterion envi¡onment) the double-exponential waveform given by Eq.(2).

This waveform is depicted in Figure 4.1.

Figure 4.2 shows an incident-field measurement (H-field measurement) of the above

mentioned simulator. The digitizer used has a record length of 572 samples, and an 8-bit

resolution. When this signal is extrapolated, it should be approximately equal to the

waveform of the criterion environment.

Firstly, the field-mapping measurement is approximated with a SEM representation

using Prony's method. The number of poles (and residues) to approximate the original signal

is 17. The signal that has been reconstructed using the 17 poles and residues is shr>rvn in

Figure 4.3.

Secondly, using the poles and residues generated by the Prony program, the zeros ancl

the proportionality constant of the rational representation of the approximated signal are

determined. It was found that some zeros are located in the right half-plane of the complex-

frequency plane, so that a minimum-phase signal is constructed simply by negating the real

part of the zeros which are located in the right half-plane. The resulting minimum-phase

signal is shown in Figure 4.4.The magnitude of the spectrum of the minimum-phase signal

is not shown, because it is the same as that of Figure 4.3b. Comparing Figure 4.3a with

Figure 4.4a shows that the only noticeable difference between these signals is arouncì the

peak vaÌue of the signals.

Subsequently, the extrapolation impulse response is constructed using the clouble-

exponential waveform and the minimum-phase signal of Figure 4.4a.It is shown in Figure

4"5a. The magnitude and the phase of the spectrum of the corresponding extrapolation

transfer function arê depicted in the Figures 4.5b and 4.5c, respectively. In Figure 4.5c1, the

phase of the unstable extrapolätion transfer function is shown (using the approximatecl signal

of Figure 4.3a).

Finally, to show the effects of each step in the process of obtaining the extrapolation
impulse response, the extrapolation impulse response is convolved with the following three

signals:

-13-



1. the minimum-phase signal of Figure 4.4a,

2. the approximated signal of Figure 4.3a,

3. the original signal of Figne 4.2.

The results are depicted in the Figures 4.6, 4.7 arrd 4.8, respectively. The convolution is

determined using the procedure described in Appendix A. Each of the first two data sets

contained the same number of samples as the original signal, i.e., 512 samples.

Obviously, convolving the minimum-phase signal with the extrapolation impulse

response, which is constructed from the minimum-phase signal, yields the exact waveform

of the criterion environment. This is demonstrated in Figure 4.6 (compare this figure with

Figure 4.1).

The influence on the extrapolated signal of making the approximated signal minimum

phase can be seen from Figure 4.7. This shows that (in this case) the effect is small.

The totai influence of approximating the original signal with a SEM representation,

and making this signal minimum phase is depicted in Figure 4.8. When judging this last plot,

one has to keep in mind that the extrapolation transfer function enhances the high

frequencies, so that noise and quantization errors in the original signal are amplifiecl.

150

t Ins]

Figure 4.1 The prevailing waveform in the criterion environment.

-14-



È
att

s.
I

1o'6

ß-7

1o'8

1o' 9

1o'10

1o'11

ß-12

100

t Ins]

(a)

f tlvlÞl

(b)

-15-



200

100

Oì
(D
tt
oat, u(E

o-

- 100

-200
1O-1 1 10 ß2 103 104

f tluttsl

(c)

Figure 4.2 Incident H-field generated by the simulator.
a) time domain,
b) magnitude of the spectrum,
c) phase of the spectrum.
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Figure 4.4 Minimum-phase signai of approximated incident H-fielcl measlrrement.
a) time domain,
b) phase of the spectrum.
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Figure 4.5 The extrapolation function pertaining to the signal of Figure 4.2a:
a) extrapolation impulse response,
b) magnitude of the extrapolation transfer function,
c) phase of the extrapolation transfer function,
d) phase of the non-stable extrapolation transfer function.
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Figure 4.6 Result of the convolution of the extrapolation impulse response with
the minimum-phase signal of Figure 4.4a.
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Figure 4.7 Result of the convolution of the extrapolation impulse response with
the approximated signal of Figure 4.3a.
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5 CONCLUSIONS

A method has been developed and implemented to perform the incident field

extrapolation.

A necessary requirement for the extrapolation transfer function to be strictly stable,

is that it is a minimum-phase signal. Making the extrapolation transfer fiLnction ntinimtlm

phase can be accomplished very easily with this method.

Because the method which has been presented does not use a Fast Fourier

Transform, it circumvents aliasing errors, high-frequency noise due to a truncatecl time

window and quantization noise in the extrapolation transfer function.
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A EVALUATION OF THE COIWOLUTION INTEGRAL

The time scales of the extrapolation impulse response x(t) and the signal to be

extrapolated &i*lÐ can differ significantly, so that special care has to be taken to compute

the convolution integral given by (cf. Eq.(7))

9.,,,(r-r) x(r) dr. (4.1)

Using the fact that the extrapolation impulse response is known in analytical form, howeve¡

the convolution integral can be computed very accurately.

Let t = n At, where Ár is the time step of the sampled data g",,,r(t), then g*(n) : g"(n At)

is given by

g*(n) = x(r) dr. (^.2)

The time step is assumed to be so small over the interval of integration [(i-1)At, iAt], that

g"u,,(nAt-r) may be approximated by

g*(t) = x(t) *&,.(r) = 
J;

t l'o' g"^(nÁt-r)
i=1 .r (i_l)at

g,,^(nr,t-r) o &'n',(n -i "1)-&i.(n -i) (iat-r) * g,,n'(n -i).
Lt

After substituting Eq.(4.3) in Eq.(A.2), this yields

g*(n) = ËA,,(r-;) ,r(i) - &i.(n -i +1) x,(i -1)
i=1

* &i,(n -i*Ð-&i,(n -i) 
f'ia, xr(r) dr,

^t 
J 1i-r¡at ''

xr(i) + xr(iÃ,t) = 
lo^'x(r) 

dr
N+l p

= E ?@' 'o'-1).
i=t .j

(i-1)Ar<rsi^r (A'3)

(A.4)

(A.s)

where xr(i) denotes the integrated extrapolation impulse response given by
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Using the notation xt(i) for the twice integrated extrapolation impulse response, i.e.,

x,(i) + x,(ia,t) = ff!,,,, ,, = I T,*# -iúr), (A.6)

g*(n) = Ig,,.(r-i) tr(Ð - B"¡^(n-i+l) xr(i -1)i=r (4.7)

* &i.(n -i *Ð_T.¡^(n -i) 
@rQ) _x"(i _L)).

After coilecting terms, Eq.(A.7) is finally rewritten as

(n) = -[x,(0) - x'(r)*'(0)]&,,(r)

* ¡xrçn¡-xz@)1?Ø-1)l&,*(o) (A.8)

* lxz?-I) 
-?'ur(í) +xr(¡*t)8,¡,,,(n 

-i).i=1 ar
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